Properties

Label 128.8.b.c.65.4
Level $128$
Weight $8$
Character 128.65
Analytic conductor $39.985$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [128,8,Mod(65,128)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(128, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("128.65");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 128 = 2^{7} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 128.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(39.9852832620\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{2}, \sqrt{-5})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 4x^{2} + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{9}\cdot 13^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 65.4
Root \(-0.707107 - 1.58114i\) of defining polynomial
Character \(\chi\) \(=\) 128.65
Dual form 128.8.b.c.65.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+82.2192i q^{3} +232.551i q^{5} +1606.55 q^{7} -4573.00 q^{9} +3370.99i q^{11} +10929.9i q^{13} -19120.2 q^{15} +23110.0 q^{17} +24748.0i q^{19} +132089. i q^{21} +43829.3 q^{23} +24045.0 q^{25} -196175. i q^{27} +79765.0i q^{29} -108612. q^{31} -277160. q^{33} +373604. i q^{35} -173716. i q^{37} -898648. q^{39} +43498.0 q^{41} -609984. i q^{43} -1.06346e6i q^{45} +31814.1 q^{47} +1.75745e6 q^{49} +1.90009e6i q^{51} -1.98854e6i q^{53} -783927. q^{55} -2.03476e6 q^{57} -1.92878e6i q^{59} +1.63786e6i q^{61} -7.34674e6 q^{63} -2.54176e6 q^{65} -1.97614e6i q^{67} +3.60361e6i q^{69} -3.01137e6 q^{71} +2.39083e6 q^{73} +1.97696e6i q^{75} +5.41565e6i q^{77} +2.37384e6 q^{79} +6.12821e6 q^{81} -2.95060e6i q^{83} +5.37426e6i q^{85} -6.55822e6 q^{87} -7.18279e6 q^{89} +1.75594e7i q^{91} -8.92996e6i q^{93} -5.75517e6 q^{95} +1.49150e7 q^{97} -1.54155e7i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 18292 q^{9} + 92440 q^{17} + 96180 q^{25} - 1108640 q^{33} + 173992 q^{41} + 7029796 q^{49} - 8139040 q^{57} - 10167040 q^{65} + 9563320 q^{73} + 24512836 q^{81} - 28731144 q^{89} + 59660120 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/128\mathbb{Z}\right)^\times\).

\(n\) \(5\) \(127\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 82.2192i 1.75812i 0.476709 + 0.879061i \(0.341829\pi\)
−0.476709 + 0.879061i \(0.658171\pi\)
\(4\) 0 0
\(5\) 232.551i 0.832000i 0.909365 + 0.416000i \(0.136568\pi\)
−0.909365 + 0.416000i \(0.863432\pi\)
\(6\) 0 0
\(7\) 1606.55 1.77031 0.885157 0.465293i \(-0.154051\pi\)
0.885157 + 0.465293i \(0.154051\pi\)
\(8\) 0 0
\(9\) −4573.00 −2.09099
\(10\) 0 0
\(11\) 3370.99i 0.763630i 0.924239 + 0.381815i \(0.124701\pi\)
−0.924239 + 0.381815i \(0.875299\pi\)
\(12\) 0 0
\(13\) 10929.9i 1.37979i 0.723907 + 0.689897i \(0.242344\pi\)
−0.723907 + 0.689897i \(0.757656\pi\)
\(14\) 0 0
\(15\) −19120.2 −1.46276
\(16\) 0 0
\(17\) 23110.0 1.14085 0.570425 0.821350i \(-0.306778\pi\)
0.570425 + 0.821350i \(0.306778\pi\)
\(18\) 0 0
\(19\) 24748.0i 0.827756i 0.910332 + 0.413878i \(0.135826\pi\)
−0.910332 + 0.413878i \(0.864174\pi\)
\(20\) 0 0
\(21\) 132089.i 3.11243i
\(22\) 0 0
\(23\) 43829.3 0.751134 0.375567 0.926795i \(-0.377448\pi\)
0.375567 + 0.926795i \(0.377448\pi\)
\(24\) 0 0
\(25\) 24045.0 0.307776
\(26\) 0 0
\(27\) − 196175.i − 1.91810i
\(28\) 0 0
\(29\) 79765.0i 0.607323i 0.952780 + 0.303661i \(0.0982091\pi\)
−0.952780 + 0.303661i \(0.901791\pi\)
\(30\) 0 0
\(31\) −108612. −0.654802 −0.327401 0.944885i \(-0.606173\pi\)
−0.327401 + 0.944885i \(0.606173\pi\)
\(32\) 0 0
\(33\) −277160. −1.34255
\(34\) 0 0
\(35\) 373604.i 1.47290i
\(36\) 0 0
\(37\) − 173716.i − 0.563810i −0.959442 0.281905i \(-0.909034\pi\)
0.959442 0.281905i \(-0.0909663\pi\)
\(38\) 0 0
\(39\) −898648. −2.42585
\(40\) 0 0
\(41\) 43498.0 0.0985657 0.0492828 0.998785i \(-0.484306\pi\)
0.0492828 + 0.998785i \(0.484306\pi\)
\(42\) 0 0
\(43\) − 609984.i − 1.16998i −0.811040 0.584991i \(-0.801098\pi\)
0.811040 0.584991i \(-0.198902\pi\)
\(44\) 0 0
\(45\) − 1.06346e6i − 1.73971i
\(46\) 0 0
\(47\) 31814.1 0.0446969 0.0223485 0.999750i \(-0.492886\pi\)
0.0223485 + 0.999750i \(0.492886\pi\)
\(48\) 0 0
\(49\) 1.75745e6 2.13401
\(50\) 0 0
\(51\) 1.90009e6i 2.00575i
\(52\) 0 0
\(53\) − 1.98854e6i − 1.83472i −0.398059 0.917360i \(-0.630316\pi\)
0.398059 0.917360i \(-0.369684\pi\)
\(54\) 0 0
\(55\) −783927. −0.635340
\(56\) 0 0
\(57\) −2.03476e6 −1.45530
\(58\) 0 0
\(59\) − 1.92878e6i − 1.22265i −0.791381 0.611323i \(-0.790638\pi\)
0.791381 0.611323i \(-0.209362\pi\)
\(60\) 0 0
\(61\) 1.63786e6i 0.923893i 0.886908 + 0.461946i \(0.152849\pi\)
−0.886908 + 0.461946i \(0.847151\pi\)
\(62\) 0 0
\(63\) −7.34674e6 −3.70171
\(64\) 0 0
\(65\) −2.54176e6 −1.14799
\(66\) 0 0
\(67\) − 1.97614e6i − 0.802704i −0.915924 0.401352i \(-0.868540\pi\)
0.915924 0.401352i \(-0.131460\pi\)
\(68\) 0 0
\(69\) 3.60361e6i 1.32058i
\(70\) 0 0
\(71\) −3.01137e6 −0.998527 −0.499264 0.866450i \(-0.666396\pi\)
−0.499264 + 0.866450i \(0.666396\pi\)
\(72\) 0 0
\(73\) 2.39083e6 0.719314 0.359657 0.933085i \(-0.382894\pi\)
0.359657 + 0.933085i \(0.382894\pi\)
\(74\) 0 0
\(75\) 1.97696e6i 0.541108i
\(76\) 0 0
\(77\) 5.41565e6i 1.35186i
\(78\) 0 0
\(79\) 2.37384e6 0.541698 0.270849 0.962622i \(-0.412696\pi\)
0.270849 + 0.962622i \(0.412696\pi\)
\(80\) 0 0
\(81\) 6.12821e6 1.28126
\(82\) 0 0
\(83\) − 2.95060e6i − 0.566418i −0.959058 0.283209i \(-0.908601\pi\)
0.959058 0.283209i \(-0.0913990\pi\)
\(84\) 0 0
\(85\) 5.37426e6i 0.949188i
\(86\) 0 0
\(87\) −6.55822e6 −1.06775
\(88\) 0 0
\(89\) −7.18279e6 −1.08001 −0.540005 0.841662i \(-0.681578\pi\)
−0.540005 + 0.841662i \(0.681578\pi\)
\(90\) 0 0
\(91\) 1.75594e7i 2.44267i
\(92\) 0 0
\(93\) − 8.92996e6i − 1.15122i
\(94\) 0 0
\(95\) −5.75517e6 −0.688693
\(96\) 0 0
\(97\) 1.49150e7 1.65929 0.829646 0.558289i \(-0.188542\pi\)
0.829646 + 0.558289i \(0.188542\pi\)
\(98\) 0 0
\(99\) − 1.54155e7i − 1.59674i
\(100\) 0 0
\(101\) 538821.i 0.0520379i 0.999661 + 0.0260189i \(0.00828302\pi\)
−0.999661 + 0.0260189i \(0.991717\pi\)
\(102\) 0 0
\(103\) −9.22151e6 −0.831518 −0.415759 0.909475i \(-0.636484\pi\)
−0.415759 + 0.909475i \(0.636484\pi\)
\(104\) 0 0
\(105\) −3.07174e7 −2.58954
\(106\) 0 0
\(107\) − 6.74584e6i − 0.532345i −0.963925 0.266172i \(-0.914241\pi\)
0.963925 0.266172i \(-0.0857590\pi\)
\(108\) 0 0
\(109\) − 1.86257e7i − 1.37759i −0.724956 0.688795i \(-0.758140\pi\)
0.724956 0.688795i \(-0.241860\pi\)
\(110\) 0 0
\(111\) 1.42828e7 0.991247
\(112\) 0 0
\(113\) 395570. 0.0257898 0.0128949 0.999917i \(-0.495895\pi\)
0.0128949 + 0.999917i \(0.495895\pi\)
\(114\) 0 0
\(115\) 1.01926e7i 0.624943i
\(116\) 0 0
\(117\) − 4.99824e7i − 2.88514i
\(118\) 0 0
\(119\) 3.71273e7 2.01966
\(120\) 0 0
\(121\) 8.12361e6 0.416870
\(122\) 0 0
\(123\) 3.57637e6i 0.173290i
\(124\) 0 0
\(125\) 2.37597e7i 1.08807i
\(126\) 0 0
\(127\) 1.98061e7 0.857999 0.429000 0.903305i \(-0.358866\pi\)
0.429000 + 0.903305i \(0.358866\pi\)
\(128\) 0 0
\(129\) 5.01524e7 2.05697
\(130\) 0 0
\(131\) − 3.41160e7i − 1.32589i −0.748667 0.662946i \(-0.769306\pi\)
0.748667 0.662946i \(-0.230694\pi\)
\(132\) 0 0
\(133\) 3.97588e7i 1.46539i
\(134\) 0 0
\(135\) 4.56207e7 1.59586
\(136\) 0 0
\(137\) −6.25391e6 −0.207792 −0.103896 0.994588i \(-0.533131\pi\)
−0.103896 + 0.994588i \(0.533131\pi\)
\(138\) 0 0
\(139\) − 2.70701e7i − 0.854945i −0.904028 0.427472i \(-0.859404\pi\)
0.904028 0.427472i \(-0.140596\pi\)
\(140\) 0 0
\(141\) 2.61573e6i 0.0785827i
\(142\) 0 0
\(143\) −3.68446e7 −1.05365
\(144\) 0 0
\(145\) −1.85494e7 −0.505292
\(146\) 0 0
\(147\) 1.44496e8i 3.75185i
\(148\) 0 0
\(149\) 6.04123e7i 1.49615i 0.663617 + 0.748073i \(0.269021\pi\)
−0.663617 + 0.748073i \(0.730979\pi\)
\(150\) 0 0
\(151\) −3.17723e6 −0.0750981 −0.0375491 0.999295i \(-0.511955\pi\)
−0.0375491 + 0.999295i \(0.511955\pi\)
\(152\) 0 0
\(153\) −1.05682e8 −2.38551
\(154\) 0 0
\(155\) − 2.52577e7i − 0.544796i
\(156\) 0 0
\(157\) 7.56710e7i 1.56056i 0.625430 + 0.780280i \(0.284923\pi\)
−0.625430 + 0.780280i \(0.715077\pi\)
\(158\) 0 0
\(159\) 1.63497e8 3.22566
\(160\) 0 0
\(161\) 7.04138e7 1.32974
\(162\) 0 0
\(163\) − 4.80232e7i − 0.868549i −0.900781 0.434274i \(-0.857005\pi\)
0.900781 0.434274i \(-0.142995\pi\)
\(164\) 0 0
\(165\) − 6.44539e7i − 1.11700i
\(166\) 0 0
\(167\) 4.59703e7 0.763782 0.381891 0.924207i \(-0.375273\pi\)
0.381891 + 0.924207i \(0.375273\pi\)
\(168\) 0 0
\(169\) −5.67142e7 −0.903833
\(170\) 0 0
\(171\) − 1.13173e8i − 1.73083i
\(172\) 0 0
\(173\) 8.15580e6i 0.119758i 0.998206 + 0.0598791i \(0.0190715\pi\)
−0.998206 + 0.0598791i \(0.980928\pi\)
\(174\) 0 0
\(175\) 3.86294e7 0.544860
\(176\) 0 0
\(177\) 1.58583e8 2.14956
\(178\) 0 0
\(179\) 7.41717e7i 0.966613i 0.875451 + 0.483306i \(0.160564\pi\)
−0.875451 + 0.483306i \(0.839436\pi\)
\(180\) 0 0
\(181\) 6.18746e7i 0.775600i 0.921744 + 0.387800i \(0.126765\pi\)
−0.921744 + 0.387800i \(0.873235\pi\)
\(182\) 0 0
\(183\) −1.34663e8 −1.62432
\(184\) 0 0
\(185\) 4.03978e7 0.469090
\(186\) 0 0
\(187\) 7.79035e7i 0.871187i
\(188\) 0 0
\(189\) − 3.15164e8i − 3.39563i
\(190\) 0 0
\(191\) −1.68405e8 −1.74879 −0.874394 0.485217i \(-0.838741\pi\)
−0.874394 + 0.485217i \(0.838741\pi\)
\(192\) 0 0
\(193\) −1.72770e8 −1.72988 −0.864942 0.501873i \(-0.832645\pi\)
−0.864942 + 0.501873i \(0.832645\pi\)
\(194\) 0 0
\(195\) − 2.08982e8i − 2.01830i
\(196\) 0 0
\(197\) − 5.80203e7i − 0.540690i −0.962764 0.270345i \(-0.912862\pi\)
0.962764 0.270345i \(-0.0871378\pi\)
\(198\) 0 0
\(199\) 4.62046e7 0.415623 0.207812 0.978169i \(-0.433366\pi\)
0.207812 + 0.978169i \(0.433366\pi\)
\(200\) 0 0
\(201\) 1.62477e8 1.41125
\(202\) 0 0
\(203\) 1.28146e8i 1.07515i
\(204\) 0 0
\(205\) 1.01155e7i 0.0820067i
\(206\) 0 0
\(207\) −2.00431e8 −1.57061
\(208\) 0 0
\(209\) −8.34252e7 −0.632099
\(210\) 0 0
\(211\) 6.11363e7i 0.448034i 0.974585 + 0.224017i \(0.0719171\pi\)
−0.974585 + 0.224017i \(0.928083\pi\)
\(212\) 0 0
\(213\) − 2.47592e8i − 1.75553i
\(214\) 0 0
\(215\) 1.41853e8 0.973425
\(216\) 0 0
\(217\) −1.74490e8 −1.15921
\(218\) 0 0
\(219\) 1.96572e8i 1.26464i
\(220\) 0 0
\(221\) 2.52590e8i 1.57414i
\(222\) 0 0
\(223\) −5.16836e7 −0.312094 −0.156047 0.987750i \(-0.549875\pi\)
−0.156047 + 0.987750i \(0.549875\pi\)
\(224\) 0 0
\(225\) −1.09958e8 −0.643557
\(226\) 0 0
\(227\) − 2.46371e8i − 1.39797i −0.715135 0.698986i \(-0.753635\pi\)
0.715135 0.698986i \(-0.246365\pi\)
\(228\) 0 0
\(229\) 1.74927e8i 0.962571i 0.876564 + 0.481285i \(0.159830\pi\)
−0.876564 + 0.481285i \(0.840170\pi\)
\(230\) 0 0
\(231\) −4.45270e8 −2.37674
\(232\) 0 0
\(233\) 2.18403e7 0.113113 0.0565565 0.998399i \(-0.481988\pi\)
0.0565565 + 0.998399i \(0.481988\pi\)
\(234\) 0 0
\(235\) 7.39841e6i 0.0371879i
\(236\) 0 0
\(237\) 1.95175e8i 0.952371i
\(238\) 0 0
\(239\) −5.17693e6 −0.0245290 −0.0122645 0.999925i \(-0.503904\pi\)
−0.0122645 + 0.999925i \(0.503904\pi\)
\(240\) 0 0
\(241\) 3.13874e8 1.44443 0.722213 0.691671i \(-0.243125\pi\)
0.722213 + 0.691671i \(0.243125\pi\)
\(242\) 0 0
\(243\) 7.48217e7i 0.334507i
\(244\) 0 0
\(245\) 4.08697e8i 1.77550i
\(246\) 0 0
\(247\) −2.70493e8 −1.14213
\(248\) 0 0
\(249\) 2.42596e8 0.995832
\(250\) 0 0
\(251\) 1.98948e8i 0.794111i 0.917795 + 0.397056i \(0.129968\pi\)
−0.917795 + 0.397056i \(0.870032\pi\)
\(252\) 0 0
\(253\) 1.47748e8i 0.573588i
\(254\) 0 0
\(255\) −4.41867e8 −1.66879
\(256\) 0 0
\(257\) 5.54400e7 0.203731 0.101865 0.994798i \(-0.467519\pi\)
0.101865 + 0.994798i \(0.467519\pi\)
\(258\) 0 0
\(259\) − 2.79082e8i − 0.998121i
\(260\) 0 0
\(261\) − 3.64765e8i − 1.26991i
\(262\) 0 0
\(263\) −2.64976e8 −0.898177 −0.449089 0.893487i \(-0.648251\pi\)
−0.449089 + 0.893487i \(0.648251\pi\)
\(264\) 0 0
\(265\) 4.62438e8 1.52649
\(266\) 0 0
\(267\) − 5.90563e8i − 1.89879i
\(268\) 0 0
\(269\) 1.72913e7i 0.0541621i 0.999633 + 0.0270811i \(0.00862122\pi\)
−0.999633 + 0.0270811i \(0.991379\pi\)
\(270\) 0 0
\(271\) 5.96568e8 1.82082 0.910412 0.413704i \(-0.135765\pi\)
0.910412 + 0.413704i \(0.135765\pi\)
\(272\) 0 0
\(273\) −1.44372e9 −4.29451
\(274\) 0 0
\(275\) 8.10554e7i 0.235027i
\(276\) 0 0
\(277\) 4.38547e8i 1.23976i 0.784697 + 0.619879i \(0.212818\pi\)
−0.784697 + 0.619879i \(0.787182\pi\)
\(278\) 0 0
\(279\) 4.96681e8 1.36919
\(280\) 0 0
\(281\) −9.85846e7 −0.265056 −0.132528 0.991179i \(-0.542309\pi\)
−0.132528 + 0.991179i \(0.542309\pi\)
\(282\) 0 0
\(283\) − 7.70834e7i − 0.202166i −0.994878 0.101083i \(-0.967769\pi\)
0.994878 0.101083i \(-0.0322308\pi\)
\(284\) 0 0
\(285\) − 4.73186e8i − 1.21081i
\(286\) 0 0
\(287\) 6.98816e7 0.174492
\(288\) 0 0
\(289\) 1.23733e8 0.301540
\(290\) 0 0
\(291\) 1.22630e9i 2.91724i
\(292\) 0 0
\(293\) − 3.83106e8i − 0.889780i −0.895585 0.444890i \(-0.853243\pi\)
0.895585 0.444890i \(-0.146757\pi\)
\(294\) 0 0
\(295\) 4.48540e8 1.01724
\(296\) 0 0
\(297\) 6.61304e8 1.46472
\(298\) 0 0
\(299\) 4.79050e8i 1.03641i
\(300\) 0 0
\(301\) − 9.79968e8i − 2.07123i
\(302\) 0 0
\(303\) −4.43014e7 −0.0914889
\(304\) 0 0
\(305\) −3.80885e8 −0.768679
\(306\) 0 0
\(307\) − 2.19599e8i − 0.433158i −0.976265 0.216579i \(-0.930510\pi\)
0.976265 0.216579i \(-0.0694899\pi\)
\(308\) 0 0
\(309\) − 7.58185e8i − 1.46191i
\(310\) 0 0
\(311\) −4.17348e8 −0.786750 −0.393375 0.919378i \(-0.628693\pi\)
−0.393375 + 0.919378i \(0.628693\pi\)
\(312\) 0 0
\(313\) 4.56920e8 0.842239 0.421120 0.907005i \(-0.361637\pi\)
0.421120 + 0.907005i \(0.361637\pi\)
\(314\) 0 0
\(315\) − 1.70849e9i − 3.07982i
\(316\) 0 0
\(317\) 1.87499e8i 0.330592i 0.986244 + 0.165296i \(0.0528579\pi\)
−0.986244 + 0.165296i \(0.947142\pi\)
\(318\) 0 0
\(319\) −2.68887e8 −0.463770
\(320\) 0 0
\(321\) 5.54638e8 0.935927
\(322\) 0 0
\(323\) 5.71926e8i 0.944346i
\(324\) 0 0
\(325\) 2.62809e8i 0.424668i
\(326\) 0 0
\(327\) 1.53139e9 2.42197
\(328\) 0 0
\(329\) 5.11109e7 0.0791276
\(330\) 0 0
\(331\) 3.21982e8i 0.488016i 0.969773 + 0.244008i \(0.0784623\pi\)
−0.969773 + 0.244008i \(0.921538\pi\)
\(332\) 0 0
\(333\) 7.94402e8i 1.17892i
\(334\) 0 0
\(335\) 4.59553e8 0.667850
\(336\) 0 0
\(337\) −3.23755e7 −0.0460799 −0.0230399 0.999735i \(-0.507334\pi\)
−0.0230399 + 0.999735i \(0.507334\pi\)
\(338\) 0 0
\(339\) 3.25235e7i 0.0453417i
\(340\) 0 0
\(341\) − 3.66128e8i − 0.500027i
\(342\) 0 0
\(343\) 1.50036e9 2.00755
\(344\) 0 0
\(345\) −8.38024e8 −1.09873
\(346\) 0 0
\(347\) 2.06409e8i 0.265201i 0.991170 + 0.132600i \(0.0423327\pi\)
−0.991170 + 0.132600i \(0.957667\pi\)
\(348\) 0 0
\(349\) 2.00076e8i 0.251945i 0.992034 + 0.125972i \(0.0402050\pi\)
−0.992034 + 0.125972i \(0.959795\pi\)
\(350\) 0 0
\(351\) 2.14417e9 2.64658
\(352\) 0 0
\(353\) −4.23810e8 −0.512814 −0.256407 0.966569i \(-0.582539\pi\)
−0.256407 + 0.966569i \(0.582539\pi\)
\(354\) 0 0
\(355\) − 7.00297e8i − 0.830775i
\(356\) 0 0
\(357\) 3.05258e9i 3.55081i
\(358\) 0 0
\(359\) −1.36046e9 −1.55187 −0.775936 0.630812i \(-0.782722\pi\)
−0.775936 + 0.630812i \(0.782722\pi\)
\(360\) 0 0
\(361\) 2.81409e8 0.314820
\(362\) 0 0
\(363\) 6.67917e8i 0.732908i
\(364\) 0 0
\(365\) 5.55990e8i 0.598469i
\(366\) 0 0
\(367\) 1.09202e8 0.115319 0.0576593 0.998336i \(-0.481636\pi\)
0.0576593 + 0.998336i \(0.481636\pi\)
\(368\) 0 0
\(369\) −1.98916e8 −0.206100
\(370\) 0 0
\(371\) − 3.19469e9i − 3.24803i
\(372\) 0 0
\(373\) − 1.24855e9i − 1.24573i −0.782330 0.622865i \(-0.785969\pi\)
0.782330 0.622865i \(-0.214031\pi\)
\(374\) 0 0
\(375\) −1.95351e9 −1.91296
\(376\) 0 0
\(377\) −8.71824e8 −0.837981
\(378\) 0 0
\(379\) 1.62778e9i 1.53588i 0.640520 + 0.767942i \(0.278719\pi\)
−0.640520 + 0.767942i \(0.721281\pi\)
\(380\) 0 0
\(381\) 1.62845e9i 1.50847i
\(382\) 0 0
\(383\) 8.33436e8 0.758013 0.379006 0.925394i \(-0.376266\pi\)
0.379006 + 0.925394i \(0.376266\pi\)
\(384\) 0 0
\(385\) −1.25942e9 −1.12475
\(386\) 0 0
\(387\) 2.78946e9i 2.44642i
\(388\) 0 0
\(389\) − 2.13085e9i − 1.83540i −0.397278 0.917698i \(-0.630045\pi\)
0.397278 0.917698i \(-0.369955\pi\)
\(390\) 0 0
\(391\) 1.01290e9 0.856931
\(392\) 0 0
\(393\) 2.80499e9 2.33108
\(394\) 0 0
\(395\) 5.52040e8i 0.450693i
\(396\) 0 0
\(397\) 5.03042e8i 0.403494i 0.979438 + 0.201747i \(0.0646620\pi\)
−0.979438 + 0.201747i \(0.935338\pi\)
\(398\) 0 0
\(399\) −3.26894e9 −2.57633
\(400\) 0 0
\(401\) 2.25217e9 1.74420 0.872101 0.489327i \(-0.162757\pi\)
0.872101 + 0.489327i \(0.162757\pi\)
\(402\) 0 0
\(403\) − 1.18711e9i − 0.903493i
\(404\) 0 0
\(405\) 1.42512e9i 1.06601i
\(406\) 0 0
\(407\) 5.85593e8 0.430542
\(408\) 0 0
\(409\) −1.95602e9 −1.41365 −0.706826 0.707388i \(-0.749873\pi\)
−0.706826 + 0.707388i \(0.749873\pi\)
\(410\) 0 0
\(411\) − 5.14192e8i − 0.365324i
\(412\) 0 0
\(413\) − 3.09868e9i − 2.16447i
\(414\) 0 0
\(415\) 6.86165e8 0.471260
\(416\) 0 0
\(417\) 2.22568e9 1.50310
\(418\) 0 0
\(419\) − 4.76013e8i − 0.316133i −0.987428 0.158066i \(-0.949474\pi\)
0.987428 0.158066i \(-0.0505260\pi\)
\(420\) 0 0
\(421\) − 1.26889e9i − 0.828775i −0.910101 0.414387i \(-0.863996\pi\)
0.910101 0.414387i \(-0.136004\pi\)
\(422\) 0 0
\(423\) −1.45486e8 −0.0934610
\(424\) 0 0
\(425\) 5.55680e8 0.351126
\(426\) 0 0
\(427\) 2.63129e9i 1.63558i
\(428\) 0 0
\(429\) − 3.02933e9i − 1.85245i
\(430\) 0 0
\(431\) −1.43299e9 −0.862127 −0.431063 0.902322i \(-0.641861\pi\)
−0.431063 + 0.902322i \(0.641861\pi\)
\(432\) 0 0
\(433\) −5.93740e8 −0.351470 −0.175735 0.984438i \(-0.556230\pi\)
−0.175735 + 0.984438i \(0.556230\pi\)
\(434\) 0 0
\(435\) − 1.52512e9i − 0.888366i
\(436\) 0 0
\(437\) 1.08469e9i 0.621755i
\(438\) 0 0
\(439\) 1.14709e9 0.647103 0.323551 0.946211i \(-0.395123\pi\)
0.323551 + 0.946211i \(0.395123\pi\)
\(440\) 0 0
\(441\) −8.03681e9 −4.46220
\(442\) 0 0
\(443\) − 1.87714e9i − 1.02585i −0.858434 0.512924i \(-0.828562\pi\)
0.858434 0.512924i \(-0.171438\pi\)
\(444\) 0 0
\(445\) − 1.67036e9i − 0.898569i
\(446\) 0 0
\(447\) −4.96706e9 −2.63041
\(448\) 0 0
\(449\) 2.11344e9 1.10186 0.550931 0.834551i \(-0.314273\pi\)
0.550931 + 0.834551i \(0.314273\pi\)
\(450\) 0 0
\(451\) 1.46631e8i 0.0752677i
\(452\) 0 0
\(453\) − 2.61229e8i − 0.132032i
\(454\) 0 0
\(455\) −4.08346e9 −2.03230
\(456\) 0 0
\(457\) −1.16152e9 −0.569271 −0.284635 0.958636i \(-0.591873\pi\)
−0.284635 + 0.958636i \(0.591873\pi\)
\(458\) 0 0
\(459\) − 4.53361e9i − 2.18826i
\(460\) 0 0
\(461\) − 5.90214e8i − 0.280580i −0.990110 0.140290i \(-0.955197\pi\)
0.990110 0.140290i \(-0.0448034\pi\)
\(462\) 0 0
\(463\) 2.34116e9 1.09622 0.548109 0.836407i \(-0.315348\pi\)
0.548109 + 0.836407i \(0.315348\pi\)
\(464\) 0 0
\(465\) 2.07667e9 0.957817
\(466\) 0 0
\(467\) 1.58376e9i 0.719581i 0.933033 + 0.359791i \(0.117152\pi\)
−0.933033 + 0.359791i \(0.882848\pi\)
\(468\) 0 0
\(469\) − 3.17476e9i − 1.42104i
\(470\) 0 0
\(471\) −6.22161e9 −2.74365
\(472\) 0 0
\(473\) 2.05625e9 0.893433
\(474\) 0 0
\(475\) 5.95065e8i 0.254763i
\(476\) 0 0
\(477\) 9.09361e9i 3.83638i
\(478\) 0 0
\(479\) −2.79309e9 −1.16121 −0.580605 0.814185i \(-0.697184\pi\)
−0.580605 + 0.814185i \(0.697184\pi\)
\(480\) 0 0
\(481\) 1.89869e9 0.777942
\(482\) 0 0
\(483\) 5.78937e9i 2.33785i
\(484\) 0 0
\(485\) 3.46851e9i 1.38053i
\(486\) 0 0
\(487\) 2.33046e9 0.914305 0.457152 0.889388i \(-0.348869\pi\)
0.457152 + 0.889388i \(0.348869\pi\)
\(488\) 0 0
\(489\) 3.94843e9 1.52701
\(490\) 0 0
\(491\) 2.02375e9i 0.771564i 0.922590 + 0.385782i \(0.126068\pi\)
−0.922590 + 0.385782i \(0.873932\pi\)
\(492\) 0 0
\(493\) 1.84337e9i 0.692864i
\(494\) 0 0
\(495\) 3.58490e9 1.32849
\(496\) 0 0
\(497\) −4.83791e9 −1.76771
\(498\) 0 0
\(499\) 5.37651e8i 0.193708i 0.995299 + 0.0968542i \(0.0308780\pi\)
−0.995299 + 0.0968542i \(0.969122\pi\)
\(500\) 0 0
\(501\) 3.77964e9i 1.34282i
\(502\) 0 0
\(503\) 1.86741e9 0.654262 0.327131 0.944979i \(-0.393918\pi\)
0.327131 + 0.944979i \(0.393918\pi\)
\(504\) 0 0
\(505\) −1.25303e8 −0.0432955
\(506\) 0 0
\(507\) − 4.66300e9i − 1.58905i
\(508\) 0 0
\(509\) − 4.22019e9i − 1.41847i −0.704973 0.709234i \(-0.749041\pi\)
0.704973 0.709234i \(-0.250959\pi\)
\(510\) 0 0
\(511\) 3.84098e9 1.27341
\(512\) 0 0
\(513\) 4.85494e9 1.58772
\(514\) 0 0
\(515\) − 2.14447e9i − 0.691823i
\(516\) 0 0
\(517\) 1.07245e8i 0.0341319i
\(518\) 0 0
\(519\) −6.70563e8 −0.210549
\(520\) 0 0
\(521\) −3.86723e9 −1.19803 −0.599016 0.800737i \(-0.704441\pi\)
−0.599016 + 0.800737i \(0.704441\pi\)
\(522\) 0 0
\(523\) − 5.30082e9i − 1.62027i −0.586244 0.810134i \(-0.699394\pi\)
0.586244 0.810134i \(-0.300606\pi\)
\(524\) 0 0
\(525\) 3.17608e9i 0.957930i
\(526\) 0 0
\(527\) −2.51001e9 −0.747032
\(528\) 0 0
\(529\) −1.48382e9 −0.435798
\(530\) 0 0
\(531\) 8.82031e9i 2.55654i
\(532\) 0 0
\(533\) 4.75429e8i 0.136000i
\(534\) 0 0
\(535\) 1.56875e9 0.442911
\(536\) 0 0
\(537\) −6.09834e9 −1.69942
\(538\) 0 0
\(539\) 5.92434e9i 1.62959i
\(540\) 0 0
\(541\) − 6.07700e8i − 0.165006i −0.996591 0.0825028i \(-0.973709\pi\)
0.996591 0.0825028i \(-0.0262913\pi\)
\(542\) 0 0
\(543\) −5.08728e9 −1.36360
\(544\) 0 0
\(545\) 4.33143e9 1.14616
\(546\) 0 0
\(547\) − 6.34461e9i − 1.65748i −0.559631 0.828742i \(-0.689057\pi\)
0.559631 0.828742i \(-0.310943\pi\)
\(548\) 0 0
\(549\) − 7.48992e9i − 1.93185i
\(550\) 0 0
\(551\) −1.97402e9 −0.502715
\(552\) 0 0
\(553\) 3.81369e9 0.958975
\(554\) 0 0
\(555\) 3.32147e9i 0.824717i
\(556\) 0 0
\(557\) 3.46471e9i 0.849520i 0.905306 + 0.424760i \(0.139642\pi\)
−0.905306 + 0.424760i \(0.860358\pi\)
\(558\) 0 0
\(559\) 6.66707e9 1.61433
\(560\) 0 0
\(561\) −6.40517e9 −1.53165
\(562\) 0 0
\(563\) − 3.62033e9i − 0.855006i −0.904014 0.427503i \(-0.859393\pi\)
0.904014 0.427503i \(-0.140607\pi\)
\(564\) 0 0
\(565\) 9.19902e7i 0.0214572i
\(566\) 0 0
\(567\) 9.84525e9 2.26823
\(568\) 0 0
\(569\) −8.30120e9 −1.88907 −0.944535 0.328411i \(-0.893487\pi\)
−0.944535 + 0.328411i \(0.893487\pi\)
\(570\) 0 0
\(571\) − 1.75351e9i − 0.394169i −0.980386 0.197085i \(-0.936853\pi\)
0.980386 0.197085i \(-0.0631474\pi\)
\(572\) 0 0
\(573\) − 1.38461e10i − 3.07458i
\(574\) 0 0
\(575\) 1.05388e9 0.231181
\(576\) 0 0
\(577\) 4.61658e9 1.00047 0.500236 0.865889i \(-0.333247\pi\)
0.500236 + 0.865889i \(0.333247\pi\)
\(578\) 0 0
\(579\) − 1.42050e10i − 3.04135i
\(580\) 0 0
\(581\) − 4.74028e9i − 1.00274i
\(582\) 0 0
\(583\) 6.70336e9 1.40105
\(584\) 0 0
\(585\) 1.16235e10 2.40044
\(586\) 0 0
\(587\) − 7.58842e6i − 0.00154852i −1.00000 0.000774262i \(-0.999754\pi\)
1.00000 0.000774262i \(-0.000246455\pi\)
\(588\) 0 0
\(589\) − 2.68792e9i − 0.542017i
\(590\) 0 0
\(591\) 4.77039e9 0.950599
\(592\) 0 0
\(593\) 3.39305e9 0.668189 0.334094 0.942540i \(-0.391570\pi\)
0.334094 + 0.942540i \(0.391570\pi\)
\(594\) 0 0
\(595\) 8.63399e9i 1.68036i
\(596\) 0 0
\(597\) 3.79891e9i 0.730716i
\(598\) 0 0
\(599\) 6.24638e9 1.18750 0.593752 0.804648i \(-0.297646\pi\)
0.593752 + 0.804648i \(0.297646\pi\)
\(600\) 0 0
\(601\) 6.30382e9 1.18452 0.592261 0.805746i \(-0.298235\pi\)
0.592261 + 0.805746i \(0.298235\pi\)
\(602\) 0 0
\(603\) 9.03688e9i 1.67845i
\(604\) 0 0
\(605\) 1.88915e9i 0.346836i
\(606\) 0 0
\(607\) 7.33337e9 1.33089 0.665447 0.746445i \(-0.268241\pi\)
0.665447 + 0.746445i \(0.268241\pi\)
\(608\) 0 0
\(609\) −1.05361e10 −1.89025
\(610\) 0 0
\(611\) 3.47725e8i 0.0616726i
\(612\) 0 0
\(613\) 2.12088e9i 0.371882i 0.982561 + 0.185941i \(0.0595333\pi\)
−0.982561 + 0.185941i \(0.940467\pi\)
\(614\) 0 0
\(615\) −8.31689e8 −0.144178
\(616\) 0 0
\(617\) 8.12132e9 1.39197 0.695983 0.718058i \(-0.254969\pi\)
0.695983 + 0.718058i \(0.254969\pi\)
\(618\) 0 0
\(619\) 8.07704e9i 1.36878i 0.729114 + 0.684392i \(0.239932\pi\)
−0.729114 + 0.684392i \(0.760068\pi\)
\(620\) 0 0
\(621\) − 8.59822e9i − 1.44075i
\(622\) 0 0
\(623\) −1.15395e10 −1.91196
\(624\) 0 0
\(625\) −3.64684e9 −0.597498
\(626\) 0 0
\(627\) − 6.85915e9i − 1.11131i
\(628\) 0 0
\(629\) − 4.01457e9i − 0.643223i
\(630\) 0 0
\(631\) −6.61772e9 −1.04859 −0.524295 0.851537i \(-0.675671\pi\)
−0.524295 + 0.851537i \(0.675671\pi\)
\(632\) 0 0
\(633\) −5.02658e9 −0.787698
\(634\) 0 0
\(635\) 4.60594e9i 0.713855i
\(636\) 0 0
\(637\) 1.92087e10i 2.94450i
\(638\) 0 0
\(639\) 1.37710e10 2.08791
\(640\) 0 0
\(641\) −1.11366e10 −1.67013 −0.835063 0.550155i \(-0.814569\pi\)
−0.835063 + 0.550155i \(0.814569\pi\)
\(642\) 0 0
\(643\) − 2.96548e9i − 0.439903i −0.975511 0.219952i \(-0.929410\pi\)
0.975511 0.219952i \(-0.0705899\pi\)
\(644\) 0 0
\(645\) 1.16630e10i 1.71140i
\(646\) 0 0
\(647\) −5.69850e9 −0.827171 −0.413586 0.910465i \(-0.635724\pi\)
−0.413586 + 0.910465i \(0.635724\pi\)
\(648\) 0 0
\(649\) 6.50190e9 0.933649
\(650\) 0 0
\(651\) − 1.43464e10i − 2.03802i
\(652\) 0 0
\(653\) 6.52934e9i 0.917642i 0.888529 + 0.458821i \(0.151728\pi\)
−0.888529 + 0.458821i \(0.848272\pi\)
\(654\) 0 0
\(655\) 7.93370e9 1.10314
\(656\) 0 0
\(657\) −1.09333e10 −1.50408
\(658\) 0 0
\(659\) 1.34359e10i 1.82881i 0.404802 + 0.914404i \(0.367340\pi\)
−0.404802 + 0.914404i \(0.632660\pi\)
\(660\) 0 0
\(661\) 7.88705e9i 1.06221i 0.847307 + 0.531104i \(0.178223\pi\)
−0.847307 + 0.531104i \(0.821777\pi\)
\(662\) 0 0
\(663\) −2.07678e10 −2.76753
\(664\) 0 0
\(665\) −9.24595e9 −1.21920
\(666\) 0 0
\(667\) 3.49605e9i 0.456180i
\(668\) 0 0
\(669\) − 4.24938e9i − 0.548699i
\(670\) 0 0
\(671\) −5.52120e9 −0.705512
\(672\) 0 0
\(673\) −1.66540e9 −0.210603 −0.105302 0.994440i \(-0.533581\pi\)
−0.105302 + 0.994440i \(0.533581\pi\)
\(674\) 0 0
\(675\) − 4.71703e9i − 0.590344i
\(676\) 0 0
\(677\) 1.16341e10i 1.44103i 0.693438 + 0.720516i \(0.256095\pi\)
−0.693438 + 0.720516i \(0.743905\pi\)
\(678\) 0 0
\(679\) 2.39617e10 2.93747
\(680\) 0 0
\(681\) 2.02564e10 2.45781
\(682\) 0 0
\(683\) − 9.34980e9i − 1.12287i −0.827521 0.561435i \(-0.810249\pi\)
0.827521 0.561435i \(-0.189751\pi\)
\(684\) 0 0
\(685\) − 1.45435e9i − 0.172883i
\(686\) 0 0
\(687\) −1.43824e10 −1.69232
\(688\) 0 0
\(689\) 2.17346e10 2.53154
\(690\) 0 0
\(691\) − 6.10881e9i − 0.704341i −0.935936 0.352171i \(-0.885444\pi\)
0.935936 0.352171i \(-0.114556\pi\)
\(692\) 0 0
\(693\) − 2.47658e10i − 2.82674i
\(694\) 0 0
\(695\) 6.29518e9 0.711314
\(696\) 0 0
\(697\) 1.00524e9 0.112449
\(698\) 0 0
\(699\) 1.79569e9i 0.198866i
\(700\) 0 0
\(701\) 1.61502e10i 1.77078i 0.464845 + 0.885392i \(0.346110\pi\)
−0.464845 + 0.885392i \(0.653890\pi\)
\(702\) 0 0
\(703\) 4.29911e9 0.466697
\(704\) 0 0
\(705\) −6.08292e8 −0.0653808
\(706\) 0 0
\(707\) 8.65641e8i 0.0921234i
\(708\) 0 0
\(709\) − 9.31508e9i − 0.981578i −0.871279 0.490789i \(-0.836709\pi\)
0.871279 0.490789i \(-0.163291\pi\)
\(710\) 0 0
\(711\) −1.08556e10 −1.13269
\(712\) 0 0
\(713\) −4.76037e9 −0.491844
\(714\) 0 0
\(715\) − 8.56824e9i − 0.876639i
\(716\) 0 0
\(717\) − 4.25643e8i − 0.0431249i
\(718\) 0 0
\(719\) −1.84156e10 −1.84772 −0.923859 0.382733i \(-0.874983\pi\)
−0.923859 + 0.382733i \(0.874983\pi\)
\(720\) 0 0
\(721\) −1.48148e10 −1.47205
\(722\) 0 0
\(723\) 2.58064e10i 2.53948i
\(724\) 0 0
\(725\) 1.91795e9i 0.186919i
\(726\) 0 0
\(727\) 4.46970e8 0.0431427 0.0215714 0.999767i \(-0.493133\pi\)
0.0215714 + 0.999767i \(0.493133\pi\)
\(728\) 0 0
\(729\) 7.25061e9 0.693152
\(730\) 0 0
\(731\) − 1.40967e10i − 1.33477i
\(732\) 0 0
\(733\) − 1.43625e10i − 1.34699i −0.739190 0.673497i \(-0.764791\pi\)
0.739190 0.673497i \(-0.235209\pi\)
\(734\) 0 0
\(735\) −3.36027e10 −3.12154
\(736\) 0 0
\(737\) 6.66154e9 0.612969
\(738\) 0 0
\(739\) 7.82928e9i 0.713618i 0.934177 + 0.356809i \(0.116135\pi\)
−0.934177 + 0.356809i \(0.883865\pi\)
\(740\) 0 0
\(741\) − 2.22397e10i − 2.00801i
\(742\) 0 0
\(743\) −1.85028e10 −1.65492 −0.827460 0.561525i \(-0.810215\pi\)
−0.827460 + 0.561525i \(0.810215\pi\)
\(744\) 0 0
\(745\) −1.40490e10 −1.24479
\(746\) 0 0
\(747\) 1.34931e10i 1.18438i
\(748\) 0 0
\(749\) − 1.08375e10i − 0.942417i
\(750\) 0 0
\(751\) −2.06945e9 −0.178285 −0.0891424 0.996019i \(-0.528413\pi\)
−0.0891424 + 0.996019i \(0.528413\pi\)
\(752\) 0 0
\(753\) −1.63573e10 −1.39614
\(754\) 0 0
\(755\) − 7.38868e8i − 0.0624817i
\(756\) 0 0
\(757\) 2.15642e10i 1.80675i 0.428849 + 0.903376i \(0.358919\pi\)
−0.428849 + 0.903376i \(0.641081\pi\)
\(758\) 0 0
\(759\) −1.21477e10 −1.00844
\(760\) 0 0
\(761\) 1.43334e10 1.17897 0.589484 0.807780i \(-0.299331\pi\)
0.589484 + 0.807780i \(0.299331\pi\)
\(762\) 0 0
\(763\) − 2.99231e10i − 2.43877i
\(764\) 0 0
\(765\) − 2.45765e10i − 1.98474i
\(766\) 0 0
\(767\) 2.10814e10 1.68700
\(768\) 0 0
\(769\) −1.52724e10 −1.21106 −0.605530 0.795822i \(-0.707039\pi\)
−0.605530 + 0.795822i \(0.707039\pi\)
\(770\) 0 0
\(771\) 4.55823e9i 0.358184i
\(772\) 0 0
\(773\) 1.21986e10i 0.949911i 0.880010 + 0.474956i \(0.157536\pi\)
−0.880010 + 0.474956i \(0.842464\pi\)
\(774\) 0 0
\(775\) −2.61157e9 −0.201532
\(776\) 0 0
\(777\) 2.29459e10 1.75482
\(778\) 0 0
\(779\) 1.07649e9i 0.0815883i
\(780\) 0 0
\(781\) − 1.01513e10i − 0.762505i
\(782\) 0 0
\(783\) 1.56479e10 1.16490
\(784\) 0 0
\(785\) −1.75974e10 −1.29839
\(786\) 0 0
\(787\) 7.73131e9i 0.565381i 0.959211 + 0.282691i \(0.0912270\pi\)
−0.959211 + 0.282691i \(0.908773\pi\)
\(788\) 0 0
\(789\) − 2.17862e10i − 1.57911i
\(790\) 0 0
\(791\) 6.35502e8 0.0456561
\(792\) 0 0
\(793\) −1.79016e10 −1.27478
\(794\) 0 0
\(795\) 3.80213e10i 2.68375i
\(796\) 0 0
\(797\) − 1.27527e9i − 0.0892275i −0.999004 0.0446138i \(-0.985794\pi\)
0.999004 0.0446138i \(-0.0142057\pi\)
\(798\) 0 0
\(799\) 7.35225e8 0.0509925
\(800\) 0 0
\(801\) 3.28469e10 2.25829
\(802\) 0 0
\(803\) 8.05946e9i 0.549290i
\(804\) 0 0
\(805\) 1.63748e10i 1.10635i
\(806\) 0 0
\(807\) −1.42168e9 −0.0952236
\(808\) 0 0
\(809\) −1.50809e10 −1.00140 −0.500701 0.865621i \(-0.666924\pi\)
−0.500701 + 0.865621i \(0.666924\pi\)
\(810\) 0 0
\(811\) 2.20340e10i 1.45051i 0.688483 + 0.725253i \(0.258277\pi\)
−0.688483 + 0.725253i \(0.741723\pi\)
\(812\) 0 0
\(813\) 4.90494e10i 3.20123i
\(814\) 0 0
\(815\) 1.11678e10 0.722633
\(816\) 0 0
\(817\) 1.50959e10 0.968459
\(818\) 0 0
\(819\) − 8.02991e10i − 5.10760i
\(820\) 0 0
\(821\) 1.55711e9i 0.0982015i 0.998794 + 0.0491008i \(0.0156355\pi\)
−0.998794 + 0.0491008i \(0.984364\pi\)
\(822\) 0 0
\(823\) 1.46343e10 0.915109 0.457554 0.889182i \(-0.348726\pi\)
0.457554 + 0.889182i \(0.348726\pi\)
\(824\) 0 0
\(825\) −6.66431e9 −0.413206
\(826\) 0 0
\(827\) − 2.98290e10i − 1.83388i −0.399029 0.916938i \(-0.630653\pi\)
0.399029 0.916938i \(-0.369347\pi\)
\(828\) 0 0
\(829\) 2.83611e10i 1.72895i 0.502677 + 0.864474i \(0.332348\pi\)
−0.502677 + 0.864474i \(0.667652\pi\)
\(830\) 0 0
\(831\) −3.60570e10 −2.17965
\(832\) 0 0
\(833\) 4.06146e10 2.43459
\(834\) 0 0
\(835\) 1.06904e10i 0.635467i
\(836\) 0 0
\(837\) 2.13069e10i 1.25597i
\(838\) 0 0
\(839\) −3.34789e10 −1.95706 −0.978529 0.206107i \(-0.933920\pi\)
−0.978529 + 0.206107i \(0.933920\pi\)
\(840\) 0 0
\(841\) 1.08874e10 0.631159
\(842\) 0 0
\(843\) − 8.10555e9i − 0.466000i
\(844\) 0 0
\(845\) − 1.31889e10i − 0.751989i
\(846\) 0 0
\(847\) 1.30510e10 0.737990
\(848\) 0 0
\(849\) 6.33774e9 0.355433
\(850\) 0 0
\(851\) − 7.61384e9i − 0.423497i
\(852\) 0 0
\(853\) − 2.58519e9i − 0.142617i −0.997454 0.0713083i \(-0.977283\pi\)
0.997454 0.0713083i \(-0.0227174\pi\)
\(854\) 0 0
\(855\) 2.63184e10 1.44005
\(856\) 0 0
\(857\) −2.64139e10 −1.43351 −0.716754 0.697326i \(-0.754373\pi\)
−0.716754 + 0.697326i \(0.754373\pi\)
\(858\) 0 0
\(859\) 2.11238e10i 1.13710i 0.822650 + 0.568548i \(0.192494\pi\)
−0.822650 + 0.568548i \(0.807506\pi\)
\(860\) 0 0
\(861\) 5.74561e9i 0.306779i
\(862\) 0 0
\(863\) 1.92964e10 1.02197 0.510987 0.859589i \(-0.329280\pi\)
0.510987 + 0.859589i \(0.329280\pi\)
\(864\) 0 0
\(865\) −1.89664e9 −0.0996388
\(866\) 0 0
\(867\) 1.01733e10i 0.530144i
\(868\) 0 0
\(869\) 8.00219e9i 0.413657i
\(870\) 0 0
\(871\) 2.15990e10 1.10757
\(872\) 0 0
\(873\) −6.82064e10 −3.46957
\(874\) 0 0
\(875\) 3.81711e10i 1.92622i
\(876\) 0 0
\(877\) − 2.07991e10i − 1.04123i −0.853792 0.520615i \(-0.825703\pi\)
0.853792 0.520615i \(-0.174297\pi\)
\(878\) 0 0
\(879\) 3.14987e10 1.56434
\(880\) 0 0
\(881\) 8.49220e9 0.418412 0.209206 0.977872i \(-0.432912\pi\)
0.209206 + 0.977872i \(0.432912\pi\)
\(882\) 0 0
\(883\) 2.47905e9i 0.121178i 0.998163 + 0.0605888i \(0.0192978\pi\)
−0.998163 + 0.0605888i \(0.980702\pi\)
\(884\) 0 0
\(885\) 3.68786e10i 1.78843i
\(886\) 0 0
\(887\) 8.57742e9 0.412690 0.206345 0.978479i \(-0.433843\pi\)
0.206345 + 0.978479i \(0.433843\pi\)
\(888\) 0 0
\(889\) 3.18195e10 1.51893
\(890\) 0 0
\(891\) 2.06581e10i 0.978405i
\(892\) 0 0
\(893\) 7.87336e8i 0.0369982i
\(894\) 0 0
\(895\) −1.72487e10 −0.804222
\(896\) 0 0
\(897\) −3.93871e10 −1.82214
\(898\) 0 0
\(899\) − 8.66341e9i − 0.397676i
\(900\) 0 0
\(901\) − 4.59553e10i − 2.09314i
\(902\) 0 0
\(903\) 8.05722e10 3.64148
\(904\) 0 0
\(905\) −1.43890e10 −0.645299
\(906\) 0 0
\(907\) − 1.62696e10i − 0.724023i −0.932174 0.362011i \(-0.882090\pi\)
0.932174 0.362011i \(-0.117910\pi\)
\(908\) 0 0
\(909\) − 2.46403e9i − 0.108811i
\(910\) 0 0
\(911\) −5.39206e9 −0.236287 −0.118144 0.992997i \(-0.537694\pi\)
−0.118144 + 0.992997i \(0.537694\pi\)
\(912\) 0 0
\(913\) 9.94644e9 0.432534
\(914\) 0 0
\(915\) − 3.13161e10i − 1.35143i
\(916\) 0 0
\(917\) − 5.48089e10i − 2.34724i
\(918\) 0 0
\(919\) −1.78439e9 −0.0758376 −0.0379188 0.999281i \(-0.512073\pi\)
−0.0379188 + 0.999281i \(0.512073\pi\)
\(920\) 0 0
\(921\) 1.80553e10 0.761545
\(922\) 0 0
\(923\) − 3.29140e10i − 1.37776i
\(924\) 0 0
\(925\) − 4.17699e9i − 0.173527i
\(926\) 0 0
\(927\) 4.21700e10 1.73870
\(928\) 0 0
\(929\) 5.70081e9 0.233282 0.116641 0.993174i \(-0.462787\pi\)
0.116641 + 0.993174i \(0.462787\pi\)
\(930\) 0 0
\(931\) 4.34933e10i 1.76644i
\(932\) 0 0
\(933\) − 3.43140e10i − 1.38320i
\(934\) 0 0
\(935\) −1.81165e10 −0.724828
\(936\) 0 0
\(937\) 4.18534e10 1.66204 0.831022 0.556240i \(-0.187756\pi\)
0.831022 + 0.556240i \(0.187756\pi\)
\(938\) 0 0
\(939\) 3.75676e10i 1.48076i
\(940\) 0 0
\(941\) 1.59230e10i 0.622961i 0.950253 + 0.311480i \(0.100825\pi\)
−0.950253 + 0.311480i \(0.899175\pi\)
\(942\) 0 0
\(943\) 1.90649e9 0.0740360
\(944\) 0 0
\(945\) 7.32918e10 2.82517
\(946\) 0 0
\(947\) 1.00392e10i 0.384127i 0.981383 + 0.192063i \(0.0615179\pi\)
−0.981383 + 0.192063i \(0.938482\pi\)
\(948\) 0 0
\(949\) 2.61315e10i 0.992506i
\(950\) 0 0
\(951\) −1.54160e10 −0.581220
\(952\) 0 0
\(953\) −3.04755e10 −1.14058 −0.570290 0.821443i \(-0.693169\pi\)
−0.570290 + 0.821443i \(0.693169\pi\)
\(954\) 0 0
\(955\) − 3.91627e10i − 1.45499i
\(956\) 0 0
\(957\) − 2.21077e10i − 0.815363i
\(958\) 0 0
\(959\) −1.00472e10 −0.367858
\(960\) 0 0
\(961\) −1.57161e10 −0.571234
\(962\) 0 0
\(963\) 3.08487e10i 1.11313i
\(964\) 0 0
\(965\) − 4.01778e10i − 1.43926i
\(966\) 0 0
\(967\) −6.74850e9 −0.240002 −0.120001 0.992774i \(-0.538290\pi\)
−0.120001 + 0.992774i \(0.538290\pi\)
\(968\) 0 0
\(969\) −4.70233e10 −1.66027
\(970\) 0 0
\(971\) − 3.79338e10i − 1.32972i −0.746969 0.664859i \(-0.768492\pi\)
0.746969 0.664859i \(-0.231508\pi\)
\(972\) 0 0
\(973\) − 4.34894e10i − 1.51352i
\(974\) 0 0
\(975\) −2.16080e10 −0.746618
\(976\) 0 0
\(977\) 3.54073e10 1.21468 0.607340 0.794442i \(-0.292237\pi\)
0.607340 + 0.794442i \(0.292237\pi\)
\(978\) 0 0
\(979\) − 2.42131e10i − 0.824728i
\(980\) 0 0
\(981\) 8.51754e10i 2.88053i
\(982\) 0 0
\(983\) 3.38292e8 0.0113594 0.00567970 0.999984i \(-0.498192\pi\)
0.00567970 + 0.999984i \(0.498192\pi\)
\(984\) 0 0
\(985\) 1.34927e10 0.449854
\(986\) 0 0
\(987\) 4.20230e9i 0.139116i
\(988\) 0 0
\(989\) − 2.67352e10i − 0.878813i
\(990\) 0 0
\(991\) 2.44058e10 0.796590 0.398295 0.917257i \(-0.369602\pi\)
0.398295 + 0.917257i \(0.369602\pi\)
\(992\) 0 0
\(993\) −2.64731e10 −0.857992
\(994\) 0 0
\(995\) 1.07449e10i 0.345798i
\(996\) 0 0
\(997\) − 2.79556e10i − 0.893380i −0.894689 0.446690i \(-0.852603\pi\)
0.894689 0.446690i \(-0.147397\pi\)
\(998\) 0 0
\(999\) −3.40787e10 −1.08144
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 128.8.b.c.65.4 yes 4
4.3 odd 2 inner 128.8.b.c.65.2 yes 4
8.3 odd 2 inner 128.8.b.c.65.3 yes 4
8.5 even 2 inner 128.8.b.c.65.1 4
16.3 odd 4 256.8.a.n.1.4 4
16.5 even 4 256.8.a.n.1.3 4
16.11 odd 4 256.8.a.n.1.1 4
16.13 even 4 256.8.a.n.1.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
128.8.b.c.65.1 4 8.5 even 2 inner
128.8.b.c.65.2 yes 4 4.3 odd 2 inner
128.8.b.c.65.3 yes 4 8.3 odd 2 inner
128.8.b.c.65.4 yes 4 1.1 even 1 trivial
256.8.a.n.1.1 4 16.11 odd 4
256.8.a.n.1.2 4 16.13 even 4
256.8.a.n.1.3 4 16.5 even 4
256.8.a.n.1.4 4 16.3 odd 4