Properties

Label 1280.2.n.q.767.4
Level $1280$
Weight $2$
Character 1280.767
Analytic conductor $10.221$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1280,2,Mod(767,1280)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1280, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1280.767");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1280 = 2^{8} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1280.n (of order \(4\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.2208514587\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(i)\)
Coefficient field: \(\Q(\zeta_{20})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{6} + x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: no (minimal twist has level 40)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 767.4
Root \(-0.951057 + 0.309017i\) of defining polynomial
Character \(\chi\) \(=\) 1280.767
Dual form 1280.2.n.q.1023.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.61803 + 1.61803i) q^{3} +(1.17557 - 1.90211i) q^{5} +(1.17557 - 1.17557i) q^{7} +2.23607i q^{9} +1.23607i q^{11} +(3.07768 - 3.07768i) q^{13} +(4.97980 - 1.17557i) q^{15} +(-1.00000 - 1.00000i) q^{17} -2.00000 q^{19} +3.80423 q^{21} +(2.62866 + 2.62866i) q^{23} +(-2.23607 - 4.47214i) q^{25} +(1.23607 - 1.23607i) q^{27} -1.45309i q^{29} +5.25731i q^{31} +(-2.00000 + 2.00000i) q^{33} +(-0.854102 - 3.61803i) q^{35} +(-3.07768 - 3.07768i) q^{37} +9.95959 q^{39} +7.70820 q^{41} +(2.38197 + 2.38197i) q^{43} +(4.25325 + 2.62866i) q^{45} +(7.33094 - 7.33094i) q^{47} +4.23607i q^{49} -3.23607i q^{51} +(-0.726543 + 0.726543i) q^{53} +(2.35114 + 1.45309i) q^{55} +(-3.23607 - 3.23607i) q^{57} -8.47214 q^{59} -9.95959 q^{61} +(2.62866 + 2.62866i) q^{63} +(-2.23607 - 9.47214i) q^{65} +(-2.38197 + 2.38197i) q^{67} +8.50651i q^{69} -7.05342i q^{71} +(-8.70820 + 8.70820i) q^{73} +(3.61803 - 10.8541i) q^{75} +(1.45309 + 1.45309i) q^{77} +12.3107 q^{79} +10.7082 q^{81} +(4.38197 + 4.38197i) q^{83} +(-3.07768 + 0.726543i) q^{85} +(2.35114 - 2.35114i) q^{87} +6.47214i q^{89} -7.23607i q^{91} +(-8.50651 + 8.50651i) q^{93} +(-2.35114 + 3.80423i) q^{95} +(-0.236068 - 0.236068i) q^{97} -2.76393 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 4 q^{3} - 8 q^{17} - 16 q^{19} - 8 q^{27} - 16 q^{33} + 20 q^{35} + 8 q^{41} + 28 q^{43} - 8 q^{57} - 32 q^{59} - 28 q^{67} - 16 q^{73} + 20 q^{75} + 32 q^{81} + 44 q^{83} + 16 q^{97} - 40 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1280\mathbb{Z}\right)^\times\).

\(n\) \(257\) \(261\) \(511\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.61803 + 1.61803i 0.934172 + 0.934172i 0.997963 0.0637909i \(-0.0203191\pi\)
−0.0637909 + 0.997963i \(0.520319\pi\)
\(4\) 0 0
\(5\) 1.17557 1.90211i 0.525731 0.850651i
\(6\) 0 0
\(7\) 1.17557 1.17557i 0.444324 0.444324i −0.449138 0.893462i \(-0.648269\pi\)
0.893462 + 0.449138i \(0.148269\pi\)
\(8\) 0 0
\(9\) 2.23607i 0.745356i
\(10\) 0 0
\(11\) 1.23607i 0.372689i 0.982485 + 0.186344i \(0.0596640\pi\)
−0.982485 + 0.186344i \(0.940336\pi\)
\(12\) 0 0
\(13\) 3.07768 3.07768i 0.853596 0.853596i −0.136978 0.990574i \(-0.543739\pi\)
0.990574 + 0.136978i \(0.0437390\pi\)
\(14\) 0 0
\(15\) 4.97980 1.17557i 1.28578 0.303531i
\(16\) 0 0
\(17\) −1.00000 1.00000i −0.242536 0.242536i 0.575363 0.817898i \(-0.304861\pi\)
−0.817898 + 0.575363i \(0.804861\pi\)
\(18\) 0 0
\(19\) −2.00000 −0.458831 −0.229416 0.973329i \(-0.573682\pi\)
−0.229416 + 0.973329i \(0.573682\pi\)
\(20\) 0 0
\(21\) 3.80423 0.830150
\(22\) 0 0
\(23\) 2.62866 + 2.62866i 0.548113 + 0.548113i 0.925895 0.377782i \(-0.123313\pi\)
−0.377782 + 0.925895i \(0.623313\pi\)
\(24\) 0 0
\(25\) −2.23607 4.47214i −0.447214 0.894427i
\(26\) 0 0
\(27\) 1.23607 1.23607i 0.237881 0.237881i
\(28\) 0 0
\(29\) 1.45309i 0.269831i −0.990857 0.134916i \(-0.956924\pi\)
0.990857 0.134916i \(-0.0430763\pi\)
\(30\) 0 0
\(31\) 5.25731i 0.944241i 0.881534 + 0.472120i \(0.156511\pi\)
−0.881534 + 0.472120i \(0.843489\pi\)
\(32\) 0 0
\(33\) −2.00000 + 2.00000i −0.348155 + 0.348155i
\(34\) 0 0
\(35\) −0.854102 3.61803i −0.144370 0.611559i
\(36\) 0 0
\(37\) −3.07768 3.07768i −0.505968 0.505968i 0.407318 0.913286i \(-0.366464\pi\)
−0.913286 + 0.407318i \(0.866464\pi\)
\(38\) 0 0
\(39\) 9.95959 1.59481
\(40\) 0 0
\(41\) 7.70820 1.20382 0.601910 0.798564i \(-0.294407\pi\)
0.601910 + 0.798564i \(0.294407\pi\)
\(42\) 0 0
\(43\) 2.38197 + 2.38197i 0.363246 + 0.363246i 0.865007 0.501760i \(-0.167314\pi\)
−0.501760 + 0.865007i \(0.667314\pi\)
\(44\) 0 0
\(45\) 4.25325 + 2.62866i 0.634038 + 0.391857i
\(46\) 0 0
\(47\) 7.33094 7.33094i 1.06933 1.06933i 0.0719165 0.997411i \(-0.477088\pi\)
0.997411 0.0719165i \(-0.0229115\pi\)
\(48\) 0 0
\(49\) 4.23607i 0.605153i
\(50\) 0 0
\(51\) 3.23607i 0.453140i
\(52\) 0 0
\(53\) −0.726543 + 0.726543i −0.0997983 + 0.0997983i −0.755243 0.655445i \(-0.772481\pi\)
0.655445 + 0.755243i \(0.272481\pi\)
\(54\) 0 0
\(55\) 2.35114 + 1.45309i 0.317028 + 0.195934i
\(56\) 0 0
\(57\) −3.23607 3.23607i −0.428628 0.428628i
\(58\) 0 0
\(59\) −8.47214 −1.10298 −0.551489 0.834182i \(-0.685940\pi\)
−0.551489 + 0.834182i \(0.685940\pi\)
\(60\) 0 0
\(61\) −9.95959 −1.27520 −0.637598 0.770370i \(-0.720072\pi\)
−0.637598 + 0.770370i \(0.720072\pi\)
\(62\) 0 0
\(63\) 2.62866 + 2.62866i 0.331179 + 0.331179i
\(64\) 0 0
\(65\) −2.23607 9.47214i −0.277350 1.17487i
\(66\) 0 0
\(67\) −2.38197 + 2.38197i −0.291003 + 0.291003i −0.837477 0.546473i \(-0.815970\pi\)
0.546473 + 0.837477i \(0.315970\pi\)
\(68\) 0 0
\(69\) 8.50651i 1.02406i
\(70\) 0 0
\(71\) 7.05342i 0.837087i −0.908197 0.418544i \(-0.862541\pi\)
0.908197 0.418544i \(-0.137459\pi\)
\(72\) 0 0
\(73\) −8.70820 + 8.70820i −1.01922 + 1.01922i −0.0194065 + 0.999812i \(0.506178\pi\)
−0.999812 + 0.0194065i \(0.993822\pi\)
\(74\) 0 0
\(75\) 3.61803 10.8541i 0.417775 1.25332i
\(76\) 0 0
\(77\) 1.45309 + 1.45309i 0.165594 + 0.165594i
\(78\) 0 0
\(79\) 12.3107 1.38507 0.692533 0.721386i \(-0.256495\pi\)
0.692533 + 0.721386i \(0.256495\pi\)
\(80\) 0 0
\(81\) 10.7082 1.18980
\(82\) 0 0
\(83\) 4.38197 + 4.38197i 0.480983 + 0.480983i 0.905446 0.424462i \(-0.139537\pi\)
−0.424462 + 0.905446i \(0.639537\pi\)
\(84\) 0 0
\(85\) −3.07768 + 0.726543i −0.333822 + 0.0788046i
\(86\) 0 0
\(87\) 2.35114 2.35114i 0.252069 0.252069i
\(88\) 0 0
\(89\) 6.47214i 0.686045i 0.939327 + 0.343023i \(0.111451\pi\)
−0.939327 + 0.343023i \(0.888549\pi\)
\(90\) 0 0
\(91\) 7.23607i 0.758546i
\(92\) 0 0
\(93\) −8.50651 + 8.50651i −0.882084 + 0.882084i
\(94\) 0 0
\(95\) −2.35114 + 3.80423i −0.241222 + 0.390305i
\(96\) 0 0
\(97\) −0.236068 0.236068i −0.0239691 0.0239691i 0.695021 0.718990i \(-0.255395\pi\)
−0.718990 + 0.695021i \(0.755395\pi\)
\(98\) 0 0
\(99\) −2.76393 −0.277786
\(100\) 0 0
\(101\) −12.3107 −1.22496 −0.612482 0.790485i \(-0.709829\pi\)
−0.612482 + 0.790485i \(0.709829\pi\)
\(102\) 0 0
\(103\) 7.33094 + 7.33094i 0.722339 + 0.722339i 0.969081 0.246742i \(-0.0793601\pi\)
−0.246742 + 0.969081i \(0.579360\pi\)
\(104\) 0 0
\(105\) 4.47214 7.23607i 0.436436 0.706168i
\(106\) 0 0
\(107\) −12.0902 + 12.0902i −1.16880 + 1.16880i −0.186310 + 0.982491i \(0.559653\pi\)
−0.982491 + 0.186310i \(0.940347\pi\)
\(108\) 0 0
\(109\) 6.71040i 0.642739i 0.946954 + 0.321370i \(0.104143\pi\)
−0.946954 + 0.321370i \(0.895857\pi\)
\(110\) 0 0
\(111\) 9.95959i 0.945323i
\(112\) 0 0
\(113\) −4.70820 + 4.70820i −0.442911 + 0.442911i −0.892989 0.450078i \(-0.851396\pi\)
0.450078 + 0.892989i \(0.351396\pi\)
\(114\) 0 0
\(115\) 8.09017 1.90983i 0.754412 0.178093i
\(116\) 0 0
\(117\) 6.88191 + 6.88191i 0.636233 + 0.636233i
\(118\) 0 0
\(119\) −2.35114 −0.215529
\(120\) 0 0
\(121\) 9.47214 0.861103
\(122\) 0 0
\(123\) 12.4721 + 12.4721i 1.12457 + 1.12457i
\(124\) 0 0
\(125\) −11.1352 1.00406i −0.995959 0.0898056i
\(126\) 0 0
\(127\) −8.78402 + 8.78402i −0.779456 + 0.779456i −0.979738 0.200282i \(-0.935814\pi\)
0.200282 + 0.979738i \(0.435814\pi\)
\(128\) 0 0
\(129\) 7.70820i 0.678670i
\(130\) 0 0
\(131\) 0.291796i 0.0254943i −0.999919 0.0127472i \(-0.995942\pi\)
0.999919 0.0127472i \(-0.00405766\pi\)
\(132\) 0 0
\(133\) −2.35114 + 2.35114i −0.203870 + 0.203870i
\(134\) 0 0
\(135\) −0.898056 3.80423i −0.0772924 0.327416i
\(136\) 0 0
\(137\) −3.47214 3.47214i −0.296645 0.296645i 0.543054 0.839698i \(-0.317268\pi\)
−0.839698 + 0.543054i \(0.817268\pi\)
\(138\) 0 0
\(139\) 5.41641 0.459414 0.229707 0.973260i \(-0.426223\pi\)
0.229707 + 0.973260i \(0.426223\pi\)
\(140\) 0 0
\(141\) 23.7234 1.99787
\(142\) 0 0
\(143\) 3.80423 + 3.80423i 0.318125 + 0.318125i
\(144\) 0 0
\(145\) −2.76393 1.70820i −0.229532 0.141859i
\(146\) 0 0
\(147\) −6.85410 + 6.85410i −0.565317 + 0.565317i
\(148\) 0 0
\(149\) 13.2088i 1.08211i −0.840988 0.541053i \(-0.818026\pi\)
0.840988 0.541053i \(-0.181974\pi\)
\(150\) 0 0
\(151\) 14.6619i 1.19317i 0.802551 + 0.596583i \(0.203475\pi\)
−0.802551 + 0.596583i \(0.796525\pi\)
\(152\) 0 0
\(153\) 2.23607 2.23607i 0.180775 0.180775i
\(154\) 0 0
\(155\) 10.0000 + 6.18034i 0.803219 + 0.496417i
\(156\) 0 0
\(157\) −9.78808 9.78808i −0.781174 0.781174i 0.198855 0.980029i \(-0.436278\pi\)
−0.980029 + 0.198855i \(0.936278\pi\)
\(158\) 0 0
\(159\) −2.35114 −0.186458
\(160\) 0 0
\(161\) 6.18034 0.487079
\(162\) 0 0
\(163\) 7.14590 + 7.14590i 0.559710 + 0.559710i 0.929225 0.369515i \(-0.120476\pi\)
−0.369515 + 0.929225i \(0.620476\pi\)
\(164\) 0 0
\(165\) 1.45309 + 6.15537i 0.113123 + 0.479195i
\(166\) 0 0
\(167\) 0.277515 0.277515i 0.0214747 0.0214747i −0.696288 0.717763i \(-0.745166\pi\)
0.717763 + 0.696288i \(0.245166\pi\)
\(168\) 0 0
\(169\) 5.94427i 0.457252i
\(170\) 0 0
\(171\) 4.47214i 0.341993i
\(172\) 0 0
\(173\) 6.32688 6.32688i 0.481024 0.481024i −0.424435 0.905459i \(-0.639527\pi\)
0.905459 + 0.424435i \(0.139527\pi\)
\(174\) 0 0
\(175\) −7.88597 2.62866i −0.596123 0.198708i
\(176\) 0 0
\(177\) −13.7082 13.7082i −1.03037 1.03037i
\(178\) 0 0
\(179\) −16.4721 −1.23119 −0.615593 0.788065i \(-0.711083\pi\)
−0.615593 + 0.788065i \(0.711083\pi\)
\(180\) 0 0
\(181\) 9.40456 0.699036 0.349518 0.936930i \(-0.386345\pi\)
0.349518 + 0.936930i \(0.386345\pi\)
\(182\) 0 0
\(183\) −16.1150 16.1150i −1.19125 1.19125i
\(184\) 0 0
\(185\) −9.47214 + 2.23607i −0.696405 + 0.164399i
\(186\) 0 0
\(187\) 1.23607 1.23607i 0.0903902 0.0903902i
\(188\) 0 0
\(189\) 2.90617i 0.211393i
\(190\) 0 0
\(191\) 12.8658i 0.930934i −0.885065 0.465467i \(-0.845886\pi\)
0.885065 0.465467i \(-0.154114\pi\)
\(192\) 0 0
\(193\) −7.47214 + 7.47214i −0.537856 + 0.537856i −0.922899 0.385043i \(-0.874187\pi\)
0.385043 + 0.922899i \(0.374187\pi\)
\(194\) 0 0
\(195\) 11.7082 18.9443i 0.838442 1.35663i
\(196\) 0 0
\(197\) −2.17963 2.17963i −0.155292 0.155292i 0.625185 0.780477i \(-0.285024\pi\)
−0.780477 + 0.625185i \(0.785024\pi\)
\(198\) 0 0
\(199\) −18.1231 −1.28471 −0.642355 0.766407i \(-0.722043\pi\)
−0.642355 + 0.766407i \(0.722043\pi\)
\(200\) 0 0
\(201\) −7.70820 −0.543695
\(202\) 0 0
\(203\) −1.70820 1.70820i −0.119892 0.119892i
\(204\) 0 0
\(205\) 9.06154 14.6619i 0.632885 1.02403i
\(206\) 0 0
\(207\) −5.87785 + 5.87785i −0.408539 + 0.408539i
\(208\) 0 0
\(209\) 2.47214i 0.171001i
\(210\) 0 0
\(211\) 15.7082i 1.08140i −0.841216 0.540699i \(-0.818160\pi\)
0.841216 0.540699i \(-0.181840\pi\)
\(212\) 0 0
\(213\) 11.4127 11.4127i 0.781984 0.781984i
\(214\) 0 0
\(215\) 7.33094 1.73060i 0.499966 0.118026i
\(216\) 0 0
\(217\) 6.18034 + 6.18034i 0.419549 + 0.419549i
\(218\) 0 0
\(219\) −28.1803 −1.90425
\(220\) 0 0
\(221\) −6.15537 −0.414055
\(222\) 0 0
\(223\) −1.73060 1.73060i −0.115890 0.115890i 0.646784 0.762673i \(-0.276114\pi\)
−0.762673 + 0.646784i \(0.776114\pi\)
\(224\) 0 0
\(225\) 10.0000 5.00000i 0.666667 0.333333i
\(226\) 0 0
\(227\) −11.6180 + 11.6180i −0.771116 + 0.771116i −0.978302 0.207186i \(-0.933570\pi\)
0.207186 + 0.978302i \(0.433570\pi\)
\(228\) 0 0
\(229\) 21.3723i 1.41232i −0.708053 0.706160i \(-0.750426\pi\)
0.708053 0.706160i \(-0.249574\pi\)
\(230\) 0 0
\(231\) 4.70228i 0.309387i
\(232\) 0 0
\(233\) 3.47214 3.47214i 0.227467 0.227467i −0.584167 0.811634i \(-0.698579\pi\)
0.811634 + 0.584167i \(0.198579\pi\)
\(234\) 0 0
\(235\) −5.32624 22.5623i −0.347445 1.47180i
\(236\) 0 0
\(237\) 19.9192 + 19.9192i 1.29389 + 1.29389i
\(238\) 0 0
\(239\) −29.3238 −1.89680 −0.948398 0.317083i \(-0.897297\pi\)
−0.948398 + 0.317083i \(0.897297\pi\)
\(240\) 0 0
\(241\) 6.76393 0.435703 0.217852 0.975982i \(-0.430095\pi\)
0.217852 + 0.975982i \(0.430095\pi\)
\(242\) 0 0
\(243\) 13.6180 + 13.6180i 0.873597 + 0.873597i
\(244\) 0 0
\(245\) 8.05748 + 4.97980i 0.514774 + 0.318148i
\(246\) 0 0
\(247\) −6.15537 + 6.15537i −0.391657 + 0.391657i
\(248\) 0 0
\(249\) 14.1803i 0.898643i
\(250\) 0 0
\(251\) 22.1803i 1.40001i −0.714138 0.700005i \(-0.753181\pi\)
0.714138 0.700005i \(-0.246819\pi\)
\(252\) 0 0
\(253\) −3.24920 + 3.24920i −0.204275 + 0.204275i
\(254\) 0 0
\(255\) −6.15537 3.80423i −0.385464 0.238230i
\(256\) 0 0
\(257\) 18.7082 + 18.7082i 1.16699 + 1.16699i 0.982913 + 0.184073i \(0.0589283\pi\)
0.184073 + 0.982913i \(0.441072\pi\)
\(258\) 0 0
\(259\) −7.23607 −0.449627
\(260\) 0 0
\(261\) 3.24920 0.201120
\(262\) 0 0
\(263\) −16.3925 16.3925i −1.01080 1.01080i −0.999941 0.0108623i \(-0.996542\pi\)
−0.0108623 0.999941i \(-0.503458\pi\)
\(264\) 0 0
\(265\) 0.527864 + 2.23607i 0.0324264 + 0.137361i
\(266\) 0 0
\(267\) −10.4721 + 10.4721i −0.640884 + 0.640884i
\(268\) 0 0
\(269\) 17.9111i 1.09206i −0.837766 0.546029i \(-0.816139\pi\)
0.837766 0.546029i \(-0.183861\pi\)
\(270\) 0 0
\(271\) 31.6749i 1.92411i 0.272851 + 0.962056i \(0.412033\pi\)
−0.272851 + 0.962056i \(0.587967\pi\)
\(272\) 0 0
\(273\) 11.7082 11.7082i 0.708613 0.708613i
\(274\) 0 0
\(275\) 5.52786 2.76393i 0.333343 0.166671i
\(276\) 0 0
\(277\) 2.17963 + 2.17963i 0.130961 + 0.130961i 0.769549 0.638588i \(-0.220481\pi\)
−0.638588 + 0.769549i \(0.720481\pi\)
\(278\) 0 0
\(279\) −11.7557 −0.703796
\(280\) 0 0
\(281\) −3.70820 −0.221213 −0.110606 0.993864i \(-0.535279\pi\)
−0.110606 + 0.993864i \(0.535279\pi\)
\(282\) 0 0
\(283\) 15.6180 + 15.6180i 0.928396 + 0.928396i 0.997602 0.0692066i \(-0.0220468\pi\)
−0.0692066 + 0.997602i \(0.522047\pi\)
\(284\) 0 0
\(285\) −9.95959 + 2.35114i −0.589955 + 0.139270i
\(286\) 0 0
\(287\) 9.06154 9.06154i 0.534886 0.534886i
\(288\) 0 0
\(289\) 15.0000i 0.882353i
\(290\) 0 0
\(291\) 0.763932i 0.0447825i
\(292\) 0 0
\(293\) 0.726543 0.726543i 0.0424451 0.0424451i −0.685566 0.728011i \(-0.740445\pi\)
0.728011 + 0.685566i \(0.240445\pi\)
\(294\) 0 0
\(295\) −9.95959 + 16.1150i −0.579870 + 0.938249i
\(296\) 0 0
\(297\) 1.52786 + 1.52786i 0.0886557 + 0.0886557i
\(298\) 0 0
\(299\) 16.1803 0.935733
\(300\) 0 0
\(301\) 5.60034 0.322798
\(302\) 0 0
\(303\) −19.9192 19.9192i −1.14433 1.14433i
\(304\) 0 0
\(305\) −11.7082 + 18.9443i −0.670410 + 1.08475i
\(306\) 0 0
\(307\) 6.56231 6.56231i 0.374531 0.374531i −0.494594 0.869124i \(-0.664683\pi\)
0.869124 + 0.494594i \(0.164683\pi\)
\(308\) 0 0
\(309\) 23.7234i 1.34958i
\(310\) 0 0
\(311\) 8.16348i 0.462909i −0.972846 0.231454i \(-0.925652\pi\)
0.972846 0.231454i \(-0.0743484\pi\)
\(312\) 0 0
\(313\) 6.23607 6.23607i 0.352483 0.352483i −0.508549 0.861033i \(-0.669818\pi\)
0.861033 + 0.508549i \(0.169818\pi\)
\(314\) 0 0
\(315\) 8.09017 1.90983i 0.455829 0.107607i
\(316\) 0 0
\(317\) −10.6861 10.6861i −0.600193 0.600193i 0.340171 0.940364i \(-0.389515\pi\)
−0.940364 + 0.340171i \(0.889515\pi\)
\(318\) 0 0
\(319\) 1.79611 0.100563
\(320\) 0 0
\(321\) −39.1246 −2.18372
\(322\) 0 0
\(323\) 2.00000 + 2.00000i 0.111283 + 0.111283i
\(324\) 0 0
\(325\) −20.6457 6.88191i −1.14522 0.381740i
\(326\) 0 0
\(327\) −10.8576 + 10.8576i −0.600429 + 0.600429i
\(328\) 0 0
\(329\) 17.2361i 0.950255i
\(330\) 0 0
\(331\) 28.0689i 1.54281i 0.636347 + 0.771403i \(0.280445\pi\)
−0.636347 + 0.771403i \(0.719555\pi\)
\(332\) 0 0
\(333\) 6.88191 6.88191i 0.377126 0.377126i
\(334\) 0 0
\(335\) 1.73060 + 7.33094i 0.0945528 + 0.400532i
\(336\) 0 0
\(337\) −2.05573 2.05573i −0.111983 0.111983i 0.648895 0.760878i \(-0.275231\pi\)
−0.760878 + 0.648895i \(0.775231\pi\)
\(338\) 0 0
\(339\) −15.2361 −0.827510
\(340\) 0 0
\(341\) −6.49839 −0.351908
\(342\) 0 0
\(343\) 13.2088 + 13.2088i 0.713208 + 0.713208i
\(344\) 0 0
\(345\) 16.1803 + 10.0000i 0.871120 + 0.538382i
\(346\) 0 0
\(347\) 3.03444 3.03444i 0.162897 0.162897i −0.620952 0.783849i \(-0.713254\pi\)
0.783849 + 0.620952i \(0.213254\pi\)
\(348\) 0 0
\(349\) 15.5599i 0.832904i 0.909158 + 0.416452i \(0.136727\pi\)
−0.909158 + 0.416452i \(0.863273\pi\)
\(350\) 0 0
\(351\) 7.60845i 0.406109i
\(352\) 0 0
\(353\) 4.41641 4.41641i 0.235062 0.235062i −0.579740 0.814802i \(-0.696846\pi\)
0.814802 + 0.579740i \(0.196846\pi\)
\(354\) 0 0
\(355\) −13.4164 8.29180i −0.712069 0.440083i
\(356\) 0 0
\(357\) −3.80423 3.80423i −0.201341 0.201341i
\(358\) 0 0
\(359\) −1.79611 −0.0947952 −0.0473976 0.998876i \(-0.515093\pi\)
−0.0473976 + 0.998876i \(0.515093\pi\)
\(360\) 0 0
\(361\) −15.0000 −0.789474
\(362\) 0 0
\(363\) 15.3262 + 15.3262i 0.804419 + 0.804419i
\(364\) 0 0
\(365\) 6.32688 + 26.8011i 0.331164 + 1.40283i
\(366\) 0 0
\(367\) −24.0009 + 24.0009i −1.25284 + 1.25284i −0.298396 + 0.954442i \(0.596452\pi\)
−0.954442 + 0.298396i \(0.903548\pi\)
\(368\) 0 0
\(369\) 17.2361i 0.897274i
\(370\) 0 0
\(371\) 1.70820i 0.0886855i
\(372\) 0 0
\(373\) −15.0454 + 15.0454i −0.779021 + 0.779021i −0.979664 0.200644i \(-0.935697\pi\)
0.200644 + 0.979664i \(0.435697\pi\)
\(374\) 0 0
\(375\) −16.3925 19.6417i −0.846504 1.01429i
\(376\) 0 0
\(377\) −4.47214 4.47214i −0.230327 0.230327i
\(378\) 0 0
\(379\) −35.8885 −1.84347 −0.921735 0.387820i \(-0.873228\pi\)
−0.921735 + 0.387820i \(0.873228\pi\)
\(380\) 0 0
\(381\) −28.4257 −1.45629
\(382\) 0 0
\(383\) −11.1352 11.1352i −0.568980 0.568980i 0.362862 0.931843i \(-0.381799\pi\)
−0.931843 + 0.362862i \(0.881799\pi\)
\(384\) 0 0
\(385\) 4.47214 1.05573i 0.227921 0.0538049i
\(386\) 0 0
\(387\) −5.32624 + 5.32624i −0.270748 + 0.270748i
\(388\) 0 0
\(389\) 23.7234i 1.20282i 0.798939 + 0.601412i \(0.205395\pi\)
−0.798939 + 0.601412i \(0.794605\pi\)
\(390\) 0 0
\(391\) 5.25731i 0.265874i
\(392\) 0 0
\(393\) 0.472136 0.472136i 0.0238161 0.0238161i
\(394\) 0 0
\(395\) 14.4721 23.4164i 0.728172 1.17821i
\(396\) 0 0
\(397\) −7.22494 7.22494i −0.362609 0.362609i 0.502164 0.864773i \(-0.332538\pi\)
−0.864773 + 0.502164i \(0.832538\pi\)
\(398\) 0 0
\(399\) −7.60845 −0.380899
\(400\) 0 0
\(401\) −3.88854 −0.194185 −0.0970923 0.995275i \(-0.530954\pi\)
−0.0970923 + 0.995275i \(0.530954\pi\)
\(402\) 0 0
\(403\) 16.1803 + 16.1803i 0.806000 + 0.806000i
\(404\) 0 0
\(405\) 12.5882 20.3682i 0.625515 1.01210i
\(406\) 0 0
\(407\) 3.80423 3.80423i 0.188568 0.188568i
\(408\) 0 0
\(409\) 27.5967i 1.36457i −0.731086 0.682286i \(-0.760986\pi\)
0.731086 0.682286i \(-0.239014\pi\)
\(410\) 0 0
\(411\) 11.2361i 0.554234i
\(412\) 0 0
\(413\) −9.95959 + 9.95959i −0.490080 + 0.490080i
\(414\) 0 0
\(415\) 13.4863 3.18368i 0.662017 0.156281i
\(416\) 0 0
\(417\) 8.76393 + 8.76393i 0.429172 + 0.429172i
\(418\) 0 0
\(419\) 24.8328 1.21316 0.606581 0.795022i \(-0.292540\pi\)
0.606581 + 0.795022i \(0.292540\pi\)
\(420\) 0 0
\(421\) 3.46120 0.168689 0.0843443 0.996437i \(-0.473120\pi\)
0.0843443 + 0.996437i \(0.473120\pi\)
\(422\) 0 0
\(423\) 16.3925 + 16.3925i 0.797029 + 0.797029i
\(424\) 0 0
\(425\) −2.23607 + 6.70820i −0.108465 + 0.325396i
\(426\) 0 0
\(427\) −11.7082 + 11.7082i −0.566600 + 0.566600i
\(428\) 0 0
\(429\) 12.3107i 0.594368i
\(430\) 0 0
\(431\) 11.7557i 0.566252i −0.959083 0.283126i \(-0.908628\pi\)
0.959083 0.283126i \(-0.0913715\pi\)
\(432\) 0 0
\(433\) 23.1803 23.1803i 1.11398 1.11398i 0.121369 0.992608i \(-0.461272\pi\)
0.992608 0.121369i \(-0.0387283\pi\)
\(434\) 0 0
\(435\) −1.70820 7.23607i −0.0819021 0.346943i
\(436\) 0 0
\(437\) −5.25731 5.25731i −0.251491 0.251491i
\(438\) 0 0
\(439\) 11.2007 0.534579 0.267290 0.963616i \(-0.413872\pi\)
0.267290 + 0.963616i \(0.413872\pi\)
\(440\) 0 0
\(441\) −9.47214 −0.451054
\(442\) 0 0
\(443\) 10.0902 + 10.0902i 0.479398 + 0.479398i 0.904939 0.425541i \(-0.139916\pi\)
−0.425541 + 0.904939i \(0.639916\pi\)
\(444\) 0 0
\(445\) 12.3107 + 7.60845i 0.583585 + 0.360675i
\(446\) 0 0
\(447\) 21.3723 21.3723i 1.01087 1.01087i
\(448\) 0 0
\(449\) 31.5967i 1.49114i −0.666426 0.745571i \(-0.732177\pi\)
0.666426 0.745571i \(-0.267823\pi\)
\(450\) 0 0
\(451\) 9.52786i 0.448650i
\(452\) 0 0
\(453\) −23.7234 + 23.7234i −1.11462 + 1.11462i
\(454\) 0 0
\(455\) −13.7638 8.50651i −0.645258 0.398791i
\(456\) 0 0
\(457\) 21.6525 + 21.6525i 1.01286 + 1.01286i 0.999916 + 0.0129439i \(0.00412028\pi\)
0.0129439 + 0.999916i \(0.495880\pi\)
\(458\) 0 0
\(459\) −2.47214 −0.115389
\(460\) 0 0
\(461\) −6.49839 −0.302660 −0.151330 0.988483i \(-0.548356\pi\)
−0.151330 + 0.988483i \(0.548356\pi\)
\(462\) 0 0
\(463\) 17.2905 + 17.2905i 0.803559 + 0.803559i 0.983650 0.180091i \(-0.0576392\pi\)
−0.180091 + 0.983650i \(0.557639\pi\)
\(464\) 0 0
\(465\) 6.18034 + 26.1803i 0.286606 + 1.21408i
\(466\) 0 0
\(467\) −2.67376 + 2.67376i −0.123727 + 0.123727i −0.766259 0.642532i \(-0.777884\pi\)
0.642532 + 0.766259i \(0.277884\pi\)
\(468\) 0 0
\(469\) 5.60034i 0.258600i
\(470\) 0 0
\(471\) 31.6749i 1.45950i
\(472\) 0 0
\(473\) −2.94427 + 2.94427i −0.135378 + 0.135378i
\(474\) 0 0
\(475\) 4.47214 + 8.94427i 0.205196 + 0.410391i
\(476\) 0 0
\(477\) −1.62460 1.62460i −0.0743853 0.0743853i
\(478\) 0 0
\(479\) 7.60845 0.347639 0.173820 0.984778i \(-0.444389\pi\)
0.173820 + 0.984778i \(0.444389\pi\)
\(480\) 0 0
\(481\) −18.9443 −0.863784
\(482\) 0 0
\(483\) 10.0000 + 10.0000i 0.455016 + 0.455016i
\(484\) 0 0
\(485\) −0.726543 + 0.171513i −0.0329906 + 0.00778802i
\(486\) 0 0
\(487\) −9.33905 + 9.33905i −0.423193 + 0.423193i −0.886302 0.463109i \(-0.846734\pi\)
0.463109 + 0.886302i \(0.346734\pi\)
\(488\) 0 0
\(489\) 23.1246i 1.04573i
\(490\) 0 0
\(491\) 10.7639i 0.485769i −0.970055 0.242885i \(-0.921906\pi\)
0.970055 0.242885i \(-0.0780937\pi\)
\(492\) 0 0
\(493\) −1.45309 + 1.45309i −0.0654437 + 0.0654437i
\(494\) 0 0
\(495\) −3.24920 + 5.25731i −0.146041 + 0.236299i
\(496\) 0 0
\(497\) −8.29180 8.29180i −0.371938 0.371938i
\(498\) 0 0
\(499\) −23.8885 −1.06940 −0.534699 0.845043i \(-0.679575\pi\)
−0.534699 + 0.845043i \(0.679575\pi\)
\(500\) 0 0
\(501\) 0.898056 0.0401222
\(502\) 0 0
\(503\) 5.53483 + 5.53483i 0.246786 + 0.246786i 0.819650 0.572864i \(-0.194168\pi\)
−0.572864 + 0.819650i \(0.694168\pi\)
\(504\) 0 0
\(505\) −14.4721 + 23.4164i −0.644002 + 1.04202i
\(506\) 0 0
\(507\) 9.61803 9.61803i 0.427152 0.427152i
\(508\) 0 0
\(509\) 9.06154i 0.401646i −0.979628 0.200823i \(-0.935638\pi\)
0.979628 0.200823i \(-0.0643615\pi\)
\(510\) 0 0
\(511\) 20.4742i 0.905726i
\(512\) 0 0
\(513\) −2.47214 + 2.47214i −0.109147 + 0.109147i
\(514\) 0 0
\(515\) 22.5623 5.32624i 0.994214 0.234702i
\(516\) 0 0
\(517\) 9.06154 + 9.06154i 0.398526 + 0.398526i
\(518\) 0 0
\(519\) 20.4742 0.898718
\(520\) 0 0
\(521\) −8.47214 −0.371171 −0.185586 0.982628i \(-0.559418\pi\)
−0.185586 + 0.982628i \(0.559418\pi\)
\(522\) 0 0
\(523\) −16.7426 16.7426i −0.732105 0.732105i 0.238932 0.971036i \(-0.423203\pi\)
−0.971036 + 0.238932i \(0.923203\pi\)
\(524\) 0 0
\(525\) −8.50651 17.0130i −0.371254 0.742509i
\(526\) 0 0
\(527\) 5.25731 5.25731i 0.229012 0.229012i
\(528\) 0 0
\(529\) 9.18034i 0.399145i
\(530\) 0 0
\(531\) 18.9443i 0.822111i
\(532\) 0 0
\(533\) 23.7234 23.7234i 1.02758 1.02758i
\(534\) 0 0
\(535\) 8.78402 + 37.2097i 0.379766 + 1.60872i
\(536\) 0 0
\(537\) −26.6525 26.6525i −1.15014 1.15014i
\(538\) 0 0
\(539\) −5.23607 −0.225533
\(540\) 0 0
\(541\) −2.90617 −0.124946 −0.0624730 0.998047i \(-0.519899\pi\)
−0.0624730 + 0.998047i \(0.519899\pi\)
\(542\) 0 0
\(543\) 15.2169 + 15.2169i 0.653020 + 0.653020i
\(544\) 0 0
\(545\) 12.7639 + 7.88854i 0.546747 + 0.337908i
\(546\) 0 0
\(547\) −8.56231 + 8.56231i −0.366098 + 0.366098i −0.866052 0.499954i \(-0.833350\pi\)
0.499954 + 0.866052i \(0.333350\pi\)
\(548\) 0 0
\(549\) 22.2703i 0.950474i
\(550\) 0 0
\(551\) 2.90617i 0.123807i
\(552\) 0 0
\(553\) 14.4721 14.4721i 0.615418 0.615418i
\(554\) 0 0
\(555\) −18.9443 11.7082i −0.804140 0.496986i
\(556\) 0 0
\(557\) 17.1845 + 17.1845i 0.728132 + 0.728132i 0.970247 0.242116i \(-0.0778413\pi\)
−0.242116 + 0.970247i \(0.577841\pi\)
\(558\) 0 0
\(559\) 14.6619 0.620131
\(560\) 0 0
\(561\) 4.00000 0.168880
\(562\) 0 0
\(563\) −11.3262 11.3262i −0.477344 0.477344i 0.426937 0.904281i \(-0.359593\pi\)
−0.904281 + 0.426937i \(0.859593\pi\)
\(564\) 0 0
\(565\) 3.42071 + 14.4904i 0.143910 + 0.609614i
\(566\) 0 0
\(567\) 12.5882 12.5882i 0.528657 0.528657i
\(568\) 0 0
\(569\) 13.1246i 0.550212i −0.961414 0.275106i \(-0.911287\pi\)
0.961414 0.275106i \(-0.0887130\pi\)
\(570\) 0 0
\(571\) 8.65248i 0.362095i −0.983474 0.181047i \(-0.942051\pi\)
0.983474 0.181047i \(-0.0579488\pi\)
\(572\) 0 0
\(573\) 20.8172 20.8172i 0.869653 0.869653i
\(574\) 0 0
\(575\) 5.87785 17.6336i 0.245123 0.735370i
\(576\) 0 0
\(577\) 21.7639 + 21.7639i 0.906044 + 0.906044i 0.995950 0.0899059i \(-0.0286566\pi\)
−0.0899059 + 0.995950i \(0.528657\pi\)
\(578\) 0 0
\(579\) −24.1803 −1.00490
\(580\) 0 0
\(581\) 10.3026 0.427425
\(582\) 0 0
\(583\) −0.898056 0.898056i −0.0371937 0.0371937i
\(584\) 0 0
\(585\) 21.1803 5.00000i 0.875699 0.206725i
\(586\) 0 0
\(587\) −5.90983 + 5.90983i −0.243925 + 0.243925i −0.818472 0.574547i \(-0.805178\pi\)
0.574547 + 0.818472i \(0.305178\pi\)
\(588\) 0 0
\(589\) 10.5146i 0.433247i
\(590\) 0 0
\(591\) 7.05342i 0.290139i
\(592\) 0 0
\(593\) −6.41641 + 6.41641i −0.263490 + 0.263490i −0.826470 0.562980i \(-0.809655\pi\)
0.562980 + 0.826470i \(0.309655\pi\)
\(594\) 0 0
\(595\) −2.76393 + 4.47214i −0.113310 + 0.183340i
\(596\) 0 0
\(597\) −29.3238 29.3238i −1.20014 1.20014i
\(598\) 0 0
\(599\) 27.5276 1.12475 0.562374 0.826883i \(-0.309888\pi\)
0.562374 + 0.826883i \(0.309888\pi\)
\(600\) 0 0
\(601\) 4.29180 0.175066 0.0875330 0.996162i \(-0.472102\pi\)
0.0875330 + 0.996162i \(0.472102\pi\)
\(602\) 0 0
\(603\) −5.32624 5.32624i −0.216901 0.216901i
\(604\) 0 0
\(605\) 11.1352 18.0171i 0.452709 0.732498i
\(606\) 0 0
\(607\) −6.08985 + 6.08985i −0.247180 + 0.247180i −0.819812 0.572633i \(-0.805922\pi\)
0.572633 + 0.819812i \(0.305922\pi\)
\(608\) 0 0
\(609\) 5.52786i 0.224000i
\(610\) 0 0
\(611\) 45.1246i 1.82555i
\(612\) 0 0
\(613\) 27.3561 27.3561i 1.10490 1.10490i 0.111094 0.993810i \(-0.464565\pi\)
0.993810 0.111094i \(-0.0354353\pi\)
\(614\) 0 0
\(615\) 38.3853 9.06154i 1.54784 0.365396i
\(616\) 0 0
\(617\) 30.8885 + 30.8885i 1.24353 + 1.24353i 0.958528 + 0.284998i \(0.0919929\pi\)
0.284998 + 0.958528i \(0.408007\pi\)
\(618\) 0 0
\(619\) 27.3050 1.09748 0.548739 0.835994i \(-0.315108\pi\)
0.548739 + 0.835994i \(0.315108\pi\)
\(620\) 0 0
\(621\) 6.49839 0.260772
\(622\) 0 0
\(623\) 7.60845 + 7.60845i 0.304826 + 0.304826i
\(624\) 0 0
\(625\) −15.0000 + 20.0000i −0.600000 + 0.800000i
\(626\) 0 0
\(627\) 4.00000 4.00000i 0.159745 0.159745i
\(628\) 0 0
\(629\) 6.15537i 0.245431i
\(630\) 0 0
\(631\) 28.0827i 1.11795i 0.829183 + 0.558977i \(0.188806\pi\)
−0.829183 + 0.558977i \(0.811194\pi\)
\(632\) 0 0
\(633\) 25.4164 25.4164i 1.01021 1.01021i
\(634\) 0 0
\(635\) 6.38197 + 27.0344i 0.253261 + 1.07283i
\(636\) 0 0
\(637\) 13.0373 + 13.0373i 0.516556 + 0.516556i
\(638\) 0 0
\(639\) 15.7719 0.623928
\(640\) 0 0
\(641\) −7.34752 −0.290210 −0.145105 0.989416i \(-0.546352\pi\)
−0.145105 + 0.989416i \(0.546352\pi\)
\(642\) 0 0
\(643\) −8.56231 8.56231i −0.337664 0.337664i 0.517823 0.855488i \(-0.326742\pi\)
−0.855488 + 0.517823i \(0.826742\pi\)
\(644\) 0 0
\(645\) 14.6619 + 9.06154i 0.577311 + 0.356798i
\(646\) 0 0
\(647\) 22.8909 22.8909i 0.899933 0.899933i −0.0954968 0.995430i \(-0.530444\pi\)
0.995430 + 0.0954968i \(0.0304440\pi\)
\(648\) 0 0
\(649\) 10.4721i 0.411067i
\(650\) 0 0
\(651\) 20.0000i 0.783862i
\(652\) 0 0
\(653\) 11.2412 11.2412i 0.439901 0.439901i −0.452078 0.891979i \(-0.649317\pi\)
0.891979 + 0.452078i \(0.149317\pi\)
\(654\) 0 0
\(655\) −0.555029 0.343027i −0.0216868 0.0134032i
\(656\) 0 0
\(657\) −19.4721 19.4721i −0.759680 0.759680i
\(658\) 0 0
\(659\) 18.0000 0.701180 0.350590 0.936529i \(-0.385981\pi\)
0.350590 + 0.936529i \(0.385981\pi\)
\(660\) 0 0
\(661\) 2.35114 0.0914488 0.0457244 0.998954i \(-0.485440\pi\)
0.0457244 + 0.998954i \(0.485440\pi\)
\(662\) 0 0
\(663\) −9.95959 9.95959i −0.386799 0.386799i
\(664\) 0 0
\(665\) 1.70820 + 7.23607i 0.0662413 + 0.280603i
\(666\) 0 0
\(667\) 3.81966 3.81966i 0.147898 0.147898i
\(668\) 0 0
\(669\) 5.60034i 0.216522i
\(670\) 0 0
\(671\) 12.3107i 0.475251i
\(672\) 0 0
\(673\) −30.7082 + 30.7082i −1.18371 + 1.18371i −0.204940 + 0.978775i \(0.565700\pi\)
−0.978775 + 0.204940i \(0.934300\pi\)
\(674\) 0 0
\(675\) −8.29180 2.76393i −0.319151 0.106384i
\(676\) 0 0
\(677\) 8.33499 + 8.33499i 0.320340 + 0.320340i 0.848897 0.528558i \(-0.177267\pi\)
−0.528558 + 0.848897i \(0.677267\pi\)
\(678\) 0 0
\(679\) −0.555029 −0.0213001
\(680\) 0 0
\(681\) −37.5967 −1.44071
\(682\) 0 0
\(683\) 1.79837 + 1.79837i 0.0688129 + 0.0688129i 0.740676 0.671863i \(-0.234506\pi\)
−0.671863 + 0.740676i \(0.734506\pi\)
\(684\) 0 0
\(685\) −10.6861 + 2.52265i −0.408296 + 0.0963857i
\(686\) 0 0
\(687\) 34.5811 34.5811i 1.31935 1.31935i
\(688\) 0 0
\(689\) 4.47214i 0.170375i
\(690\) 0 0
\(691\) 31.1246i 1.18404i 0.805925 + 0.592018i \(0.201669\pi\)
−0.805925 + 0.592018i \(0.798331\pi\)
\(692\) 0 0
\(693\) −3.24920 + 3.24920i −0.123427 + 0.123427i
\(694\) 0 0
\(695\) 6.36737 10.3026i 0.241528 0.390801i
\(696\) 0 0
\(697\) −7.70820 7.70820i −0.291969 0.291969i
\(698\) 0 0
\(699\) 11.2361 0.424987
\(700\) 0 0
\(701\) 40.3934 1.52564 0.762819 0.646612i \(-0.223815\pi\)
0.762819 + 0.646612i \(0.223815\pi\)
\(702\) 0 0
\(703\) 6.15537 + 6.15537i 0.232154 + 0.232154i
\(704\) 0 0
\(705\) 27.8885 45.1246i 1.05034 1.69949i
\(706\) 0 0
\(707\) −14.4721 + 14.4721i −0.544281 + 0.544281i
\(708\) 0 0
\(709\) 13.7638i 0.516911i −0.966023 0.258456i \(-0.916786\pi\)
0.966023 0.258456i \(-0.0832136\pi\)
\(710\) 0 0
\(711\) 27.5276i 1.03237i
\(712\) 0 0
\(713\) −13.8197 + 13.8197i −0.517550 + 0.517550i
\(714\) 0 0
\(715\) 11.7082 2.76393i 0.437862 0.103365i
\(716\) 0 0
\(717\) −47.4468 47.4468i −1.77193 1.77193i
\(718\) 0 0
\(719\) 44.5407 1.66109 0.830543 0.556954i \(-0.188030\pi\)
0.830543 + 0.556954i \(0.188030\pi\)
\(720\) 0 0
\(721\) 17.2361 0.641905
\(722\) 0 0
\(723\) 10.9443 + 10.9443i 0.407022 + 0.407022i
\(724\) 0 0
\(725\) −6.49839 + 3.24920i −0.241344 + 0.120672i
\(726\) 0 0
\(727\) 5.87785 5.87785i 0.217997 0.217997i −0.589657 0.807654i \(-0.700737\pi\)
0.807654 + 0.589657i \(0.200737\pi\)
\(728\) 0 0
\(729\) 11.9443i 0.442380i
\(730\) 0 0
\(731\) 4.76393i 0.176200i
\(732\) 0 0
\(733\) −1.28157 + 1.28157i −0.0473359 + 0.0473359i −0.730379 0.683043i \(-0.760656\pi\)
0.683043 + 0.730379i \(0.260656\pi\)
\(734\) 0 0
\(735\) 4.97980 + 21.0948i 0.183683 + 0.778092i
\(736\) 0 0
\(737\) −2.94427 2.94427i −0.108454 0.108454i
\(738\) 0 0
\(739\) 17.4164 0.640673 0.320336 0.947304i \(-0.396204\pi\)
0.320336 + 0.947304i \(0.396204\pi\)
\(740\) 0 0
\(741\) −19.9192 −0.731750
\(742\) 0 0
\(743\) −13.4863 13.4863i −0.494765 0.494765i 0.415039 0.909804i \(-0.363768\pi\)
−0.909804 + 0.415039i \(0.863768\pi\)
\(744\) 0 0
\(745\) −25.1246 15.5279i −0.920495 0.568897i
\(746\) 0 0
\(747\) −9.79837 + 9.79837i −0.358504 + 0.358504i
\(748\) 0 0
\(749\) 28.4257i 1.03865i
\(750\) 0 0
\(751\) 7.05342i 0.257383i −0.991685 0.128692i \(-0.958922\pi\)
0.991685 0.128692i \(-0.0410777\pi\)
\(752\) 0 0
\(753\) 35.8885 35.8885i 1.30785 1.30785i
\(754\) 0 0
\(755\) 27.8885 + 17.2361i 1.01497 + 0.627285i
\(756\) 0 0
\(757\) 38.0018 + 38.0018i 1.38120 + 1.38120i 0.842497 + 0.538701i \(0.181085\pi\)
0.538701 + 0.842497i \(0.318915\pi\)
\(758\) 0 0
\(759\) −10.5146 −0.381657
\(760\) 0 0
\(761\) 14.9443 0.541729 0.270865 0.962617i \(-0.412690\pi\)
0.270865 + 0.962617i \(0.412690\pi\)
\(762\) 0 0
\(763\) 7.88854 + 7.88854i 0.285584 + 0.285584i
\(764\) 0 0
\(765\) −1.62460 6.88191i −0.0587375 0.248816i
\(766\) 0 0
\(767\) −26.0746 + 26.0746i −0.941498 + 0.941498i
\(768\) 0 0
\(769\) 2.47214i 0.0891475i 0.999006 + 0.0445738i \(0.0141930\pi\)
−0.999006 + 0.0445738i \(0.985807\pi\)
\(770\) 0 0
\(771\) 60.5410i 2.18033i
\(772\) 0 0
\(773\) −4.18774 + 4.18774i −0.150623 + 0.150623i −0.778396 0.627773i \(-0.783966\pi\)
0.627773 + 0.778396i \(0.283966\pi\)
\(774\) 0 0
\(775\) 23.5114 11.7557i 0.844555 0.422277i
\(776\) 0 0
\(777\) −11.7082 11.7082i −0.420029 0.420029i
\(778\) 0 0
\(779\) −15.4164 −0.552350
\(780\) 0 0
\(781\) 8.71851 0.311973
\(782\) 0 0
\(783\) −1.79611 1.79611i −0.0641878 0.0641878i
\(784\) 0 0
\(785\) −30.1246 + 7.11146i −1.07519 + 0.253819i
\(786\) 0 0
\(787\) 11.1459 11.1459i 0.397308 0.397308i −0.479974 0.877283i \(-0.659354\pi\)
0.877283 + 0.479974i \(0.159354\pi\)
\(788\) 0 0
\(789\) 53.0472i 1.88853i
\(790\) 0 0
\(791\) 11.0697i 0.393591i
\(792\) 0 0
\(793\) −30.6525 + 30.6525i −1.08850 + 1.08850i
\(794\) 0 0
\(795\) −2.76393 + 4.47214i −0.0980266 + 0.158610i
\(796\) 0 0
\(797\) 19.7477 + 19.7477i 0.699498 + 0.699498i 0.964302 0.264804i \(-0.0853072\pi\)
−0.264804 + 0.964302i \(0.585307\pi\)
\(798\) 0 0
\(799\) −14.6619 −0.518700
\(800\) 0 0
\(801\) −14.4721 −0.511348
\(802\) 0 0
\(803\) −10.7639 10.7639i −0.379851 0.379851i
\(804\) 0 0
\(805\) 7.26543 11.7557i 0.256073 0.414334i
\(806\) 0 0
\(807\) 28.9807 28.9807i 1.02017 1.02017i
\(808\) 0 0
\(809\) 12.9443i 0.455096i −0.973767 0.227548i \(-0.926929\pi\)
0.973767 0.227548i \(-0.0730709\pi\)
\(810\) 0 0
\(811\) 32.0689i 1.12609i −0.826426 0.563045i \(-0.809630\pi\)
0.826426 0.563045i \(-0.190370\pi\)
\(812\) 0 0
\(813\) −51.2511 + 51.2511i −1.79745 + 1.79745i
\(814\) 0 0
\(815\) 21.9928 5.19180i 0.770375 0.181861i
\(816\) 0 0
\(817\) −4.76393 4.76393i −0.166669 0.166669i
\(818\) 0 0
\(819\) 16.1803 0.565387
\(820\) 0 0
\(821\) −20.4742 −0.714555 −0.357278 0.933998i \(-0.616295\pi\)
−0.357278 + 0.933998i \(0.616295\pi\)
\(822\) 0 0
\(823\) 24.3440 + 24.3440i 0.848577 + 0.848577i 0.989956 0.141379i \(-0.0451535\pi\)
−0.141379 + 0.989956i \(0.545154\pi\)
\(824\) 0 0
\(825\) 13.4164 + 4.47214i 0.467099 + 0.155700i
\(826\) 0 0
\(827\) −14.8541 + 14.8541i −0.516528 + 0.516528i −0.916519 0.399991i \(-0.869013\pi\)
0.399991 + 0.916519i \(0.369013\pi\)
\(828\) 0 0
\(829\) 3.11817i 0.108299i 0.998533 + 0.0541493i \(0.0172447\pi\)
−0.998533 + 0.0541493i \(0.982755\pi\)
\(830\) 0 0
\(831\) 7.05342i 0.244681i
\(832\) 0 0
\(833\) 4.23607 4.23607i 0.146771 0.146771i
\(834\) 0 0
\(835\) −0.201626 0.854102i −0.00697756 0.0295574i
\(836\) 0 0
\(837\) 6.49839 + 6.49839i 0.224617 + 0.224617i
\(838\) 0 0
\(839\) −9.40456 −0.324682 −0.162341 0.986735i \(-0.551904\pi\)
−0.162341 + 0.986735i \(0.551904\pi\)
\(840\) 0 0
\(841\) 26.8885 0.927191
\(842\) 0 0
\(843\) −6.00000 6.00000i −0.206651 0.206651i
\(844\) 0 0
\(845\) −11.3067 6.98791i −0.388962 0.240391i
\(846\) 0 0
\(847\) 11.1352 11.1352i 0.382609 0.382609i
\(848\) 0 0
\(849\) 50.5410i 1.73456i
\(850\) 0 0
\(851\) 16.1803i 0.554655i
\(852\) 0 0
\(853\) −24.7930 + 24.7930i −0.848896 + 0.848896i −0.989995 0.141100i \(-0.954936\pi\)
0.141100 + 0.989995i \(0.454936\pi\)
\(854\) 0 0
\(855\) −8.50651 5.25731i −0.290916 0.179796i
\(856\) 0 0
\(857\) 17.8328 + 17.8328i 0.609157 + 0.609157i 0.942726 0.333568i \(-0.108253\pi\)
−0.333568 + 0.942726i \(0.608253\pi\)
\(858\) 0 0
\(859\) 7.52786 0.256847 0.128424 0.991719i \(-0.459008\pi\)
0.128424 + 0.991719i \(0.459008\pi\)
\(860\) 0 0
\(861\) 29.3238 0.999351
\(862\) 0 0
\(863\) −6.22088 6.22088i −0.211761 0.211761i 0.593254 0.805015i \(-0.297843\pi\)
−0.805015 + 0.593254i \(0.797843\pi\)
\(864\) 0 0
\(865\) −4.59675 19.4721i −0.156294 0.662072i
\(866\) 0 0
\(867\) 24.2705 24.2705i 0.824270 0.824270i
\(868\) 0 0
\(869\) 15.2169i 0.516198i
\(870\) 0 0
\(871\) 14.6619i 0.496799i
\(872\) 0 0
\(873\) 0.527864 0.527864i 0.0178655 0.0178655i
\(874\) 0 0
\(875\) −14.2705 + 11.9098i −0.482431 + 0.402626i
\(876\) 0 0
\(877\) −5.08580 5.08580i −0.171735 0.171735i 0.616006 0.787741i \(-0.288750\pi\)
−0.787741 + 0.616006i \(0.788750\pi\)
\(878\) 0 0
\(879\) 2.35114 0.0793020
\(880\) 0 0
\(881\) 47.1246 1.58767 0.793834 0.608134i \(-0.208082\pi\)
0.793834 + 0.608134i \(0.208082\pi\)
\(882\) 0 0
\(883\) −21.7984 21.7984i −0.733574 0.733574i 0.237752 0.971326i \(-0.423589\pi\)
−0.971326 + 0.237752i \(0.923589\pi\)
\(884\) 0 0
\(885\) −42.1895 + 9.95959i −1.41818 + 0.334788i
\(886\) 0 0
\(887\) −28.1482 + 28.1482i −0.945123 + 0.945123i −0.998571 0.0534473i \(-0.982979\pi\)
0.0534473 + 0.998571i \(0.482979\pi\)
\(888\) 0 0
\(889\) 20.6525i 0.692662i
\(890\) 0 0
\(891\) 13.2361i 0.443425i
\(892\) 0 0
\(893\) −14.6619 + 14.6619i −0.490641 + 0.490641i
\(894\) 0 0
\(895\) −19.3642 + 31.3319i −0.647272 + 1.04731i
\(896\) 0 0
\(897\) 26.1803 + 26.1803i 0.874136 + 0.874136i
\(898\) 0 0
\(899\) 7.63932 0.254786
\(900\) 0 0
\(901\) 1.45309 0.0484093
\(902\) 0 0
\(903\) 9.06154 + 9.06154i 0.301549 + 0.301549i
\(904\) 0 0
\(905\) 11.0557 17.8885i 0.367505 0.594635i
\(906\) 0 0
\(907\) 23.3262 23.3262i 0.774535 0.774535i −0.204361 0.978896i \(-0.565512\pi\)
0.978896 + 0.204361i \(0.0655115\pi\)
\(908\) 0 0
\(909\) 27.5276i 0.913034i
\(910\) 0 0
\(911\) 25.1765i 0.834135i −0.908876 0.417067i \(-0.863058\pi\)
0.908876 0.417067i \(-0.136942\pi\)
\(912\) 0 0
\(913\) −5.41641 + 5.41641i −0.179257 + 0.179257i
\(914\) 0 0
\(915\) −49.5967 + 11.7082i −1.63962 + 0.387061i
\(916\) 0 0
\(917\) −0.343027 0.343027i −0.0113277 0.0113277i
\(918\) 0 0
\(919\) −21.7153 −0.716322 −0.358161 0.933660i \(-0.616596\pi\)
−0.358161 + 0.933660i \(0.616596\pi\)
\(920\) 0 0
\(921\) 21.2361 0.699752
\(922\) 0 0
\(923\) −21.7082 21.7082i −0.714534 0.714534i
\(924\) 0 0
\(925\) −6.88191 + 20.6457i −0.226276 + 0.678827i
\(926\) 0 0
\(927\) −16.3925 + 16.3925i −0.538400 + 0.538400i
\(928\) 0 0
\(929\) 5.34752i 0.175447i −0.996145 0.0877233i \(-0.972041\pi\)
0.996145 0.0877233i \(-0.0279591\pi\)
\(930\) 0 0
\(931\) 8.47214i 0.277663i
\(932\) 0 0
\(933\) 13.2088 13.2088i 0.432436 0.432436i
\(934\) 0 0
\(935\) −0.898056 3.80423i −0.0293696 0.124411i
\(936\) 0 0
\(937\) −20.3050 20.3050i −0.663334 0.663334i 0.292831 0.956164i \(-0.405403\pi\)
−0.956164 + 0.292831i \(0.905403\pi\)
\(938\) 0 0
\(939\) 20.1803 0.658561
\(940\) 0 0
\(941\) −60.8676 −1.98423 −0.992114 0.125340i \(-0.959998\pi\)
−0.992114 + 0.125340i \(0.959998\pi\)
\(942\) 0 0
\(943\) 20.2622 + 20.2622i 0.659828 + 0.659828i
\(944\) 0 0
\(945\) −5.52786 3.41641i −0.179821 0.111136i
\(946\) 0 0
\(947\) −8.85410 + 8.85410i −0.287720 + 0.287720i −0.836178 0.548458i \(-0.815215\pi\)
0.548458 + 0.836178i \(0.315215\pi\)
\(948\) 0 0
\(949\) 53.6022i 1.74000i
\(950\) 0 0
\(951\) 34.5811i 1.12137i
\(952\) 0 0
\(953\) 6.81966 6.81966i 0.220910 0.220910i −0.587971 0.808882i \(-0.700073\pi\)
0.808882 + 0.587971i \(0.200073\pi\)
\(954\) 0 0
\(955\) −24.4721 15.1246i −0.791900 0.489421i
\(956\) 0 0
\(957\) 2.90617 + 2.90617i 0.0939431 + 0.0939431i
\(958\) 0 0
\(959\) −8.16348 −0.263613
\(960\) 0 0
\(961\) 3.36068 0.108409
\(962\) 0 0
\(963\) −27.0344 27.0344i −0.871173 0.871173i
\(964\) 0 0
\(965\) 5.42882 + 22.9969i 0.174760 + 0.740295i
\(966\) 0 0
\(967\) −12.0332 + 12.0332i −0.386962 + 0.386962i −0.873602 0.486640i \(-0.838222\pi\)
0.486640 + 0.873602i \(0.338222\pi\)
\(968\) 0 0
\(969\) 6.47214i 0.207915i
\(970\) 0 0
\(971\) 33.5967i 1.07817i 0.842251 + 0.539085i \(0.181230\pi\)
−0.842251 + 0.539085i \(0.818770\pi\)
\(972\) 0 0
\(973\) 6.36737 6.36737i 0.204128 0.204128i
\(974\) 0 0
\(975\) −22.2703 44.5407i −0.713221 1.42644i
\(976\) 0 0
\(977\) −28.2361 28.2361i −0.903352 0.903352i 0.0923727 0.995725i \(-0.470555\pi\)
−0.995725 + 0.0923727i \(0.970555\pi\)
\(978\) 0 0
\(979\) −8.00000 −0.255681
\(980\) 0 0
\(981\) −15.0049 −0.479070
\(982\) 0 0
\(983\) 0.620541 + 0.620541i 0.0197922 + 0.0197922i 0.716934 0.697141i \(-0.245545\pi\)
−0.697141 + 0.716934i \(0.745545\pi\)
\(984\) 0 0
\(985\) −6.70820 + 1.58359i −0.213741 + 0.0504574i
\(986\) 0 0
\(987\) 27.8885 27.8885i 0.887702 0.887702i
\(988\) 0 0
\(989\) 12.5227i 0.398200i
\(990\) 0 0
\(991\) 19.3642i 0.615123i 0.951528 + 0.307561i \(0.0995129\pi\)
−0.951528 + 0.307561i \(0.900487\pi\)
\(992\) 0 0
\(993\) −45.4164 + 45.4164i −1.44125 + 1.44125i
\(994\) 0 0
\(995\) −21.3050 + 34.4721i −0.675412 + 1.09284i
\(996\) 0 0
\(997\) −35.6506 35.6506i −1.12907 1.12907i −0.990329 0.138738i \(-0.955696\pi\)
−0.138738 0.990329i \(-0.544304\pi\)
\(998\) 0 0
\(999\) −7.60845 −0.240721
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1280.2.n.q.767.4 8
4.3 odd 2 1280.2.n.m.767.2 8
5.3 odd 4 1280.2.n.m.1023.2 8
8.3 odd 2 inner 1280.2.n.q.767.3 8
8.5 even 2 1280.2.n.m.767.1 8
16.3 odd 4 160.2.o.a.47.3 8
16.5 even 4 160.2.o.a.47.4 8
16.11 odd 4 40.2.k.a.27.2 yes 8
16.13 even 4 40.2.k.a.27.4 yes 8
20.3 even 4 inner 1280.2.n.q.1023.4 8
40.3 even 4 1280.2.n.m.1023.1 8
40.13 odd 4 inner 1280.2.n.q.1023.3 8
48.5 odd 4 1440.2.bi.c.847.1 8
48.11 even 4 360.2.w.c.307.3 8
48.29 odd 4 360.2.w.c.307.1 8
48.35 even 4 1440.2.bi.c.847.4 8
80.3 even 4 160.2.o.a.143.4 8
80.13 odd 4 40.2.k.a.3.2 8
80.19 odd 4 800.2.o.g.207.1 8
80.27 even 4 200.2.k.h.43.1 8
80.29 even 4 200.2.k.h.107.1 8
80.37 odd 4 800.2.o.g.143.1 8
80.43 even 4 40.2.k.a.3.4 yes 8
80.53 odd 4 160.2.o.a.143.3 8
80.59 odd 4 200.2.k.h.107.3 8
80.67 even 4 800.2.o.g.143.2 8
80.69 even 4 800.2.o.g.207.2 8
80.77 odd 4 200.2.k.h.43.3 8
240.53 even 4 1440.2.bi.c.1423.4 8
240.83 odd 4 1440.2.bi.c.1423.1 8
240.173 even 4 360.2.w.c.163.3 8
240.203 odd 4 360.2.w.c.163.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
40.2.k.a.3.2 8 80.13 odd 4
40.2.k.a.3.4 yes 8 80.43 even 4
40.2.k.a.27.2 yes 8 16.11 odd 4
40.2.k.a.27.4 yes 8 16.13 even 4
160.2.o.a.47.3 8 16.3 odd 4
160.2.o.a.47.4 8 16.5 even 4
160.2.o.a.143.3 8 80.53 odd 4
160.2.o.a.143.4 8 80.3 even 4
200.2.k.h.43.1 8 80.27 even 4
200.2.k.h.43.3 8 80.77 odd 4
200.2.k.h.107.1 8 80.29 even 4
200.2.k.h.107.3 8 80.59 odd 4
360.2.w.c.163.1 8 240.203 odd 4
360.2.w.c.163.3 8 240.173 even 4
360.2.w.c.307.1 8 48.29 odd 4
360.2.w.c.307.3 8 48.11 even 4
800.2.o.g.143.1 8 80.37 odd 4
800.2.o.g.143.2 8 80.67 even 4
800.2.o.g.207.1 8 80.19 odd 4
800.2.o.g.207.2 8 80.69 even 4
1280.2.n.m.767.1 8 8.5 even 2
1280.2.n.m.767.2 8 4.3 odd 2
1280.2.n.m.1023.1 8 40.3 even 4
1280.2.n.m.1023.2 8 5.3 odd 4
1280.2.n.q.767.3 8 8.3 odd 2 inner
1280.2.n.q.767.4 8 1.1 even 1 trivial
1280.2.n.q.1023.3 8 40.13 odd 4 inner
1280.2.n.q.1023.4 8 20.3 even 4 inner
1440.2.bi.c.847.1 8 48.5 odd 4
1440.2.bi.c.847.4 8 48.35 even 4
1440.2.bi.c.1423.1 8 240.83 odd 4
1440.2.bi.c.1423.4 8 240.53 even 4