Properties

Label 1296.4.a.s.1.1
Level $1296$
Weight $4$
Character 1296.1
Self dual yes
Analytic conductor $76.466$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1296,4,Mod(1,1296)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1296, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1296.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1296 = 2^{4} \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1296.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(76.4664753674\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{12})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 3 \)
Twist minimal: no (minimal twist has level 162)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-1.73205\) of defining polynomial
Character \(\chi\) \(=\) 1296.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.803848 q^{5} +2.39230 q^{7} -59.5692 q^{11} +77.7461 q^{13} +2.84232 q^{17} +118.315 q^{19} -110.785 q^{23} -124.354 q^{25} +125.627 q^{29} -63.0615 q^{31} +1.92305 q^{35} -227.392 q^{37} +324.631 q^{41} +272.823 q^{43} +4.93851 q^{47} -337.277 q^{49} -598.908 q^{53} -47.8846 q^{55} +670.277 q^{59} +464.531 q^{61} +62.4960 q^{65} +769.069 q^{67} +611.569 q^{71} +923.831 q^{73} -142.508 q^{77} -39.8076 q^{79} -443.769 q^{83} +2.28479 q^{85} -78.4576 q^{89} +185.992 q^{91} +95.1075 q^{95} -91.0155 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 12 q^{5} - 16 q^{7} - 36 q^{11} + 10 q^{13} + 120 q^{17} + 8 q^{19} - 180 q^{23} - 124 q^{25} + 324 q^{29} + 248 q^{31} - 204 q^{35} - 434 q^{37} + 192 q^{41} + 608 q^{43} + 384 q^{47} - 342 q^{49}+ \cdots - 764 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 0.803848 0.0718983 0.0359492 0.999354i \(-0.488555\pi\)
0.0359492 + 0.999354i \(0.488555\pi\)
\(6\) 0 0
\(7\) 2.39230 0.129172 0.0645862 0.997912i \(-0.479427\pi\)
0.0645862 + 0.997912i \(0.479427\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −59.5692 −1.63280 −0.816400 0.577487i \(-0.804033\pi\)
−0.816400 + 0.577487i \(0.804033\pi\)
\(12\) 0 0
\(13\) 77.7461 1.65868 0.829342 0.558741i \(-0.188715\pi\)
0.829342 + 0.558741i \(0.188715\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 2.84232 0.0405509 0.0202754 0.999794i \(-0.493546\pi\)
0.0202754 + 0.999794i \(0.493546\pi\)
\(18\) 0 0
\(19\) 118.315 1.42860 0.714300 0.699840i \(-0.246745\pi\)
0.714300 + 0.699840i \(0.246745\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −110.785 −1.00436 −0.502178 0.864764i \(-0.667468\pi\)
−0.502178 + 0.864764i \(0.667468\pi\)
\(24\) 0 0
\(25\) −124.354 −0.994831
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 125.627 0.804425 0.402213 0.915546i \(-0.368241\pi\)
0.402213 + 0.915546i \(0.368241\pi\)
\(30\) 0 0
\(31\) −63.0615 −0.365361 −0.182680 0.983172i \(-0.558477\pi\)
−0.182680 + 0.983172i \(0.558477\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 1.92305 0.00928727
\(36\) 0 0
\(37\) −227.392 −1.01035 −0.505177 0.863016i \(-0.668573\pi\)
−0.505177 + 0.863016i \(0.668573\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 324.631 1.23656 0.618278 0.785959i \(-0.287831\pi\)
0.618278 + 0.785959i \(0.287831\pi\)
\(42\) 0 0
\(43\) 272.823 0.967561 0.483781 0.875189i \(-0.339263\pi\)
0.483781 + 0.875189i \(0.339263\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 4.93851 0.0153267 0.00766336 0.999971i \(-0.497561\pi\)
0.00766336 + 0.999971i \(0.497561\pi\)
\(48\) 0 0
\(49\) −337.277 −0.983315
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −598.908 −1.55219 −0.776097 0.630614i \(-0.782803\pi\)
−0.776097 + 0.630614i \(0.782803\pi\)
\(54\) 0 0
\(55\) −47.8846 −0.117396
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 670.277 1.47903 0.739514 0.673142i \(-0.235056\pi\)
0.739514 + 0.673142i \(0.235056\pi\)
\(60\) 0 0
\(61\) 464.531 0.975034 0.487517 0.873114i \(-0.337903\pi\)
0.487517 + 0.873114i \(0.337903\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 62.4960 0.119257
\(66\) 0 0
\(67\) 769.069 1.40234 0.701170 0.712994i \(-0.252662\pi\)
0.701170 + 0.712994i \(0.252662\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 611.569 1.02225 0.511126 0.859506i \(-0.329228\pi\)
0.511126 + 0.859506i \(0.329228\pi\)
\(72\) 0 0
\(73\) 923.831 1.48118 0.740590 0.671957i \(-0.234546\pi\)
0.740590 + 0.671957i \(0.234546\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −142.508 −0.210913
\(78\) 0 0
\(79\) −39.8076 −0.0566925 −0.0283462 0.999598i \(-0.509024\pi\)
−0.0283462 + 0.999598i \(0.509024\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −443.769 −0.586867 −0.293434 0.955979i \(-0.594798\pi\)
−0.293434 + 0.955979i \(0.594798\pi\)
\(84\) 0 0
\(85\) 2.28479 0.00291554
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −78.4576 −0.0934437 −0.0467218 0.998908i \(-0.514877\pi\)
−0.0467218 + 0.998908i \(0.514877\pi\)
\(90\) 0 0
\(91\) 185.992 0.214256
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 95.1075 0.102714
\(96\) 0 0
\(97\) −91.0155 −0.0952703 −0.0476352 0.998865i \(-0.515168\pi\)
−0.0476352 + 0.998865i \(0.515168\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −1622.52 −1.59849 −0.799243 0.601008i \(-0.794766\pi\)
−0.799243 + 0.601008i \(0.794766\pi\)
\(102\) 0 0
\(103\) 748.231 0.715780 0.357890 0.933764i \(-0.383496\pi\)
0.357890 + 0.933764i \(0.383496\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −1435.00 −1.29651 −0.648255 0.761423i \(-0.724501\pi\)
−0.648255 + 0.761423i \(0.724501\pi\)
\(108\) 0 0
\(109\) −83.1305 −0.0730501 −0.0365250 0.999333i \(-0.511629\pi\)
−0.0365250 + 0.999333i \(0.511629\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 972.196 0.809349 0.404675 0.914461i \(-0.367385\pi\)
0.404675 + 0.914461i \(0.367385\pi\)
\(114\) 0 0
\(115\) −89.0539 −0.0722115
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 6.79970 0.00523805
\(120\) 0 0
\(121\) 2217.49 1.66603
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −200.442 −0.143425
\(126\) 0 0
\(127\) 1316.13 0.919588 0.459794 0.888026i \(-0.347923\pi\)
0.459794 + 0.888026i \(0.347923\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 1115.28 0.743833 0.371917 0.928266i \(-0.378701\pi\)
0.371917 + 0.928266i \(0.378701\pi\)
\(132\) 0 0
\(133\) 283.046 0.184536
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 617.143 0.384862 0.192431 0.981311i \(-0.438363\pi\)
0.192431 + 0.981311i \(0.438363\pi\)
\(138\) 0 0
\(139\) −2156.57 −1.31596 −0.657978 0.753037i \(-0.728588\pi\)
−0.657978 + 0.753037i \(0.728588\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −4631.28 −2.70830
\(144\) 0 0
\(145\) 100.985 0.0578368
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 3571.69 1.96379 0.981893 0.189437i \(-0.0606662\pi\)
0.981893 + 0.189437i \(0.0606662\pi\)
\(150\) 0 0
\(151\) 2261.43 1.21876 0.609379 0.792879i \(-0.291419\pi\)
0.609379 + 0.792879i \(0.291419\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −50.6918 −0.0262688
\(156\) 0 0
\(157\) 1829.25 0.929875 0.464937 0.885344i \(-0.346077\pi\)
0.464937 + 0.885344i \(0.346077\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −265.031 −0.129735
\(162\) 0 0
\(163\) −268.554 −0.129048 −0.0645238 0.997916i \(-0.520553\pi\)
−0.0645238 + 0.997916i \(0.520553\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 4054.52 1.87873 0.939366 0.342915i \(-0.111414\pi\)
0.939366 + 0.342915i \(0.111414\pi\)
\(168\) 0 0
\(169\) 3847.46 1.75123
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 1747.35 0.767911 0.383955 0.923352i \(-0.374562\pi\)
0.383955 + 0.923352i \(0.374562\pi\)
\(174\) 0 0
\(175\) −297.492 −0.128505
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 2037.71 0.850868 0.425434 0.904989i \(-0.360121\pi\)
0.425434 + 0.904989i \(0.360121\pi\)
\(180\) 0 0
\(181\) 2820.68 1.15834 0.579169 0.815207i \(-0.303377\pi\)
0.579169 + 0.815207i \(0.303377\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −182.789 −0.0726427
\(186\) 0 0
\(187\) −169.315 −0.0662114
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −439.723 −0.166582 −0.0832912 0.996525i \(-0.526543\pi\)
−0.0832912 + 0.996525i \(0.526543\pi\)
\(192\) 0 0
\(193\) −462.676 −0.172560 −0.0862802 0.996271i \(-0.527498\pi\)
−0.0862802 + 0.996271i \(0.527498\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 1036.60 0.374896 0.187448 0.982275i \(-0.439978\pi\)
0.187448 + 0.982275i \(0.439978\pi\)
\(198\) 0 0
\(199\) 1190.22 0.423980 0.211990 0.977272i \(-0.432006\pi\)
0.211990 + 0.977272i \(0.432006\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 300.538 0.103909
\(204\) 0 0
\(205\) 260.954 0.0889063
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −7047.95 −2.33262
\(210\) 0 0
\(211\) 4928.01 1.60786 0.803929 0.594725i \(-0.202739\pi\)
0.803929 + 0.594725i \(0.202739\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 219.308 0.0695660
\(216\) 0 0
\(217\) −150.862 −0.0471945
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 220.980 0.0672611
\(222\) 0 0
\(223\) 1470.47 0.441569 0.220785 0.975323i \(-0.429138\pi\)
0.220785 + 0.975323i \(0.429138\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −2102.26 −0.614678 −0.307339 0.951600i \(-0.599439\pi\)
−0.307339 + 0.951600i \(0.599439\pi\)
\(228\) 0 0
\(229\) −1001.04 −0.288867 −0.144433 0.989515i \(-0.546136\pi\)
−0.144433 + 0.989515i \(0.546136\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −6280.78 −1.76596 −0.882978 0.469415i \(-0.844465\pi\)
−0.882978 + 0.469415i \(0.844465\pi\)
\(234\) 0 0
\(235\) 3.96981 0.00110197
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 1017.37 0.275348 0.137674 0.990478i \(-0.456037\pi\)
0.137674 + 0.990478i \(0.456037\pi\)
\(240\) 0 0
\(241\) −921.292 −0.246247 −0.123124 0.992391i \(-0.539291\pi\)
−0.123124 + 0.992391i \(0.539291\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −271.119 −0.0706987
\(246\) 0 0
\(247\) 9198.56 2.36960
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −2262.40 −0.568930 −0.284465 0.958686i \(-0.591816\pi\)
−0.284465 + 0.958686i \(0.591816\pi\)
\(252\) 0 0
\(253\) 6599.35 1.63991
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 4786.65 1.16180 0.580901 0.813974i \(-0.302700\pi\)
0.580901 + 0.813974i \(0.302700\pi\)
\(258\) 0 0
\(259\) −543.992 −0.130510
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 3007.92 0.705234 0.352617 0.935768i \(-0.385292\pi\)
0.352617 + 0.935768i \(0.385292\pi\)
\(264\) 0 0
\(265\) −481.430 −0.111600
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −6559.73 −1.48682 −0.743409 0.668837i \(-0.766792\pi\)
−0.743409 + 0.668837i \(0.766792\pi\)
\(270\) 0 0
\(271\) 5147.64 1.15386 0.576931 0.816793i \(-0.304250\pi\)
0.576931 + 0.816793i \(0.304250\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 7407.66 1.62436
\(276\) 0 0
\(277\) −1067.66 −0.231587 −0.115793 0.993273i \(-0.536941\pi\)
−0.115793 + 0.993273i \(0.536941\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 4186.47 0.888769 0.444384 0.895836i \(-0.353422\pi\)
0.444384 + 0.895836i \(0.353422\pi\)
\(282\) 0 0
\(283\) −5356.95 −1.12522 −0.562611 0.826722i \(-0.690203\pi\)
−0.562611 + 0.826722i \(0.690203\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 776.616 0.159729
\(288\) 0 0
\(289\) −4904.92 −0.998356
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 2895.79 0.577385 0.288692 0.957422i \(-0.406780\pi\)
0.288692 + 0.957422i \(0.406780\pi\)
\(294\) 0 0
\(295\) 538.800 0.106340
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −8613.08 −1.66591
\(300\) 0 0
\(301\) 652.676 0.124982
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 373.412 0.0701033
\(306\) 0 0
\(307\) −1855.49 −0.344947 −0.172473 0.985014i \(-0.555176\pi\)
−0.172473 + 0.985014i \(0.555176\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −7171.69 −1.30762 −0.653809 0.756659i \(-0.726830\pi\)
−0.653809 + 0.756659i \(0.726830\pi\)
\(312\) 0 0
\(313\) −1310.83 −0.236717 −0.118359 0.992971i \(-0.537763\pi\)
−0.118359 + 0.992971i \(0.537763\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 3689.26 0.653658 0.326829 0.945083i \(-0.394020\pi\)
0.326829 + 0.945083i \(0.394020\pi\)
\(318\) 0 0
\(319\) −7483.50 −1.31347
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 336.290 0.0579310
\(324\) 0 0
\(325\) −9668.03 −1.65011
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 11.8144 0.00197979
\(330\) 0 0
\(331\) 3244.96 0.538849 0.269425 0.963021i \(-0.413166\pi\)
0.269425 + 0.963021i \(0.413166\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 618.214 0.100826
\(336\) 0 0
\(337\) 4301.66 0.695331 0.347665 0.937619i \(-0.386975\pi\)
0.347665 + 0.937619i \(0.386975\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 3756.52 0.596561
\(342\) 0 0
\(343\) −1627.43 −0.256189
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 3304.20 0.511178 0.255589 0.966786i \(-0.417731\pi\)
0.255589 + 0.966786i \(0.417731\pi\)
\(348\) 0 0
\(349\) 4508.71 0.691535 0.345767 0.938320i \(-0.387619\pi\)
0.345767 + 0.938320i \(0.387619\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 6886.74 1.03837 0.519184 0.854662i \(-0.326236\pi\)
0.519184 + 0.854662i \(0.326236\pi\)
\(354\) 0 0
\(355\) 491.608 0.0734982
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 1529.31 0.224829 0.112415 0.993661i \(-0.464141\pi\)
0.112415 + 0.993661i \(0.464141\pi\)
\(360\) 0 0
\(361\) 7139.52 1.04090
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 742.619 0.106494
\(366\) 0 0
\(367\) 10231.4 1.45524 0.727620 0.685980i \(-0.240626\pi\)
0.727620 + 0.685980i \(0.240626\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −1432.77 −0.200501
\(372\) 0 0
\(373\) 946.430 0.131379 0.0656894 0.997840i \(-0.479075\pi\)
0.0656894 + 0.997840i \(0.479075\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 9767.01 1.33429
\(378\) 0 0
\(379\) 8717.46 1.18149 0.590746 0.806857i \(-0.298833\pi\)
0.590746 + 0.806857i \(0.298833\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −12261.5 −1.63586 −0.817931 0.575316i \(-0.804879\pi\)
−0.817931 + 0.575316i \(0.804879\pi\)
\(384\) 0 0
\(385\) −114.554 −0.0151643
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −13211.1 −1.72192 −0.860961 0.508672i \(-0.830137\pi\)
−0.860961 + 0.508672i \(0.830137\pi\)
\(390\) 0 0
\(391\) −314.886 −0.0407275
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −31.9993 −0.00407609
\(396\) 0 0
\(397\) −5211.93 −0.658890 −0.329445 0.944175i \(-0.606862\pi\)
−0.329445 + 0.944175i \(0.606862\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 985.634 0.122744 0.0613719 0.998115i \(-0.480452\pi\)
0.0613719 + 0.998115i \(0.480452\pi\)
\(402\) 0 0
\(403\) −4902.79 −0.606018
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 13545.6 1.64970
\(408\) 0 0
\(409\) −674.647 −0.0815627 −0.0407813 0.999168i \(-0.512985\pi\)
−0.0407813 + 0.999168i \(0.512985\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 1603.51 0.191049
\(414\) 0 0
\(415\) −356.723 −0.0421948
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 7505.63 0.875117 0.437559 0.899190i \(-0.355843\pi\)
0.437559 + 0.899190i \(0.355843\pi\)
\(420\) 0 0
\(421\) −1352.62 −0.156586 −0.0782932 0.996930i \(-0.524947\pi\)
−0.0782932 + 0.996930i \(0.524947\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −353.454 −0.0403412
\(426\) 0 0
\(427\) 1111.30 0.125947
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −4003.21 −0.447397 −0.223698 0.974658i \(-0.571813\pi\)
−0.223698 + 0.974658i \(0.571813\pi\)
\(432\) 0 0
\(433\) 9975.38 1.10713 0.553564 0.832807i \(-0.313267\pi\)
0.553564 + 0.832807i \(0.313267\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −13107.5 −1.43482
\(438\) 0 0
\(439\) −17360.9 −1.88745 −0.943726 0.330728i \(-0.892706\pi\)
−0.943726 + 0.330728i \(0.892706\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −8575.43 −0.919709 −0.459854 0.887994i \(-0.652098\pi\)
−0.459854 + 0.887994i \(0.652098\pi\)
\(444\) 0 0
\(445\) −63.0679 −0.00671844
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −4703.77 −0.494398 −0.247199 0.968965i \(-0.579510\pi\)
−0.247199 + 0.968965i \(0.579510\pi\)
\(450\) 0 0
\(451\) −19338.0 −2.01905
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 149.510 0.0154047
\(456\) 0 0
\(457\) −7046.80 −0.721303 −0.360651 0.932701i \(-0.617446\pi\)
−0.360651 + 0.932701i \(0.617446\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −5770.26 −0.582967 −0.291484 0.956576i \(-0.594149\pi\)
−0.291484 + 0.956576i \(0.594149\pi\)
\(462\) 0 0
\(463\) 13599.1 1.36502 0.682511 0.730875i \(-0.260888\pi\)
0.682511 + 0.730875i \(0.260888\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 5730.52 0.567831 0.283915 0.958849i \(-0.408367\pi\)
0.283915 + 0.958849i \(0.408367\pi\)
\(468\) 0 0
\(469\) 1839.85 0.181143
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −16251.9 −1.57983
\(474\) 0 0
\(475\) −14713.0 −1.42122
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 14568.3 1.38965 0.694824 0.719180i \(-0.255482\pi\)
0.694824 + 0.719180i \(0.255482\pi\)
\(480\) 0 0
\(481\) −17678.9 −1.67586
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −73.1626 −0.00684977
\(486\) 0 0
\(487\) −7164.51 −0.666642 −0.333321 0.942813i \(-0.608169\pi\)
−0.333321 + 0.942813i \(0.608169\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −9510.06 −0.874100 −0.437050 0.899437i \(-0.643977\pi\)
−0.437050 + 0.899437i \(0.643977\pi\)
\(492\) 0 0
\(493\) 357.072 0.0326201
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 1463.06 0.132047
\(498\) 0 0
\(499\) −21485.6 −1.92751 −0.963756 0.266785i \(-0.914039\pi\)
−0.963756 + 0.266785i \(0.914039\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −11603.2 −1.02855 −0.514274 0.857626i \(-0.671939\pi\)
−0.514274 + 0.857626i \(0.671939\pi\)
\(504\) 0 0
\(505\) −1304.26 −0.114928
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −8939.74 −0.778481 −0.389241 0.921136i \(-0.627262\pi\)
−0.389241 + 0.921136i \(0.627262\pi\)
\(510\) 0 0
\(511\) 2210.08 0.191328
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 601.464 0.0514634
\(516\) 0 0
\(517\) −294.183 −0.0250255
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 7410.10 0.623114 0.311557 0.950227i \(-0.399149\pi\)
0.311557 + 0.950227i \(0.399149\pi\)
\(522\) 0 0
\(523\) −18970.8 −1.58611 −0.793054 0.609151i \(-0.791510\pi\)
−0.793054 + 0.609151i \(0.791510\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −179.241 −0.0148157
\(528\) 0 0
\(529\) 106.230 0.00873097
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 25238.8 2.05106
\(534\) 0 0
\(535\) −1153.52 −0.0932169
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 20091.3 1.60556
\(540\) 0 0
\(541\) −11440.4 −0.909169 −0.454584 0.890704i \(-0.650212\pi\)
−0.454584 + 0.890704i \(0.650212\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −66.8243 −0.00525218
\(546\) 0 0
\(547\) −10253.0 −0.801434 −0.400717 0.916202i \(-0.631239\pi\)
−0.400717 + 0.916202i \(0.631239\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 14863.6 1.14920
\(552\) 0 0
\(553\) −95.2320 −0.00732310
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 15336.5 1.16666 0.583328 0.812236i \(-0.301750\pi\)
0.583328 + 0.812236i \(0.301750\pi\)
\(558\) 0 0
\(559\) 21210.9 1.60488
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −7701.37 −0.576508 −0.288254 0.957554i \(-0.593075\pi\)
−0.288254 + 0.957554i \(0.593075\pi\)
\(564\) 0 0
\(565\) 781.497 0.0581909
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −17739.3 −1.30697 −0.653487 0.756938i \(-0.726695\pi\)
−0.653487 + 0.756938i \(0.726695\pi\)
\(570\) 0 0
\(571\) −13823.1 −1.01310 −0.506549 0.862211i \(-0.669079\pi\)
−0.506549 + 0.862211i \(0.669079\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 13776.5 0.999164
\(576\) 0 0
\(577\) −15339.1 −1.10672 −0.553359 0.832943i \(-0.686654\pi\)
−0.553359 + 0.832943i \(0.686654\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −1061.63 −0.0758070
\(582\) 0 0
\(583\) 35676.5 2.53442
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −14766.5 −1.03830 −0.519148 0.854684i \(-0.673751\pi\)
−0.519148 + 0.854684i \(0.673751\pi\)
\(588\) 0 0
\(589\) −7461.14 −0.521954
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 17603.6 1.21904 0.609522 0.792769i \(-0.291361\pi\)
0.609522 + 0.792769i \(0.291361\pi\)
\(594\) 0 0
\(595\) 5.46593 0.000376607 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −22801.1 −1.55531 −0.777653 0.628694i \(-0.783590\pi\)
−0.777653 + 0.628694i \(0.783590\pi\)
\(600\) 0 0
\(601\) 1905.25 0.129312 0.0646562 0.997908i \(-0.479405\pi\)
0.0646562 + 0.997908i \(0.479405\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 1782.53 0.119785
\(606\) 0 0
\(607\) 2589.22 0.173136 0.0865678 0.996246i \(-0.472410\pi\)
0.0865678 + 0.996246i \(0.472410\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 383.950 0.0254222
\(612\) 0 0
\(613\) 16930.4 1.11552 0.557759 0.830003i \(-0.311661\pi\)
0.557759 + 0.830003i \(0.311661\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 12813.4 0.836061 0.418030 0.908433i \(-0.362721\pi\)
0.418030 + 0.908433i \(0.362721\pi\)
\(618\) 0 0
\(619\) −10267.6 −0.666703 −0.333351 0.942803i \(-0.608180\pi\)
−0.333351 + 0.942803i \(0.608180\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −187.694 −0.0120703
\(624\) 0 0
\(625\) 15383.1 0.984519
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −646.322 −0.0409707
\(630\) 0 0
\(631\) 21887.5 1.38087 0.690433 0.723397i \(-0.257420\pi\)
0.690433 + 0.723397i \(0.257420\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 1057.97 0.0661168
\(636\) 0 0
\(637\) −26222.0 −1.63101
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 17203.7 1.06007 0.530035 0.847976i \(-0.322179\pi\)
0.530035 + 0.847976i \(0.322179\pi\)
\(642\) 0 0
\(643\) −12565.6 −0.770666 −0.385333 0.922778i \(-0.625913\pi\)
−0.385333 + 0.922778i \(0.625913\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −3552.55 −0.215866 −0.107933 0.994158i \(-0.534423\pi\)
−0.107933 + 0.994158i \(0.534423\pi\)
\(648\) 0 0
\(649\) −39927.9 −2.41496
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 5771.00 0.345845 0.172922 0.984935i \(-0.444679\pi\)
0.172922 + 0.984935i \(0.444679\pi\)
\(654\) 0 0
\(655\) 896.512 0.0534804
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −16478.4 −0.974063 −0.487032 0.873384i \(-0.661920\pi\)
−0.487032 + 0.873384i \(0.661920\pi\)
\(660\) 0 0
\(661\) −4563.24 −0.268516 −0.134258 0.990946i \(-0.542865\pi\)
−0.134258 + 0.990946i \(0.542865\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 227.526 0.0132678
\(666\) 0 0
\(667\) −13917.5 −0.807929
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −27671.7 −1.59203
\(672\) 0 0
\(673\) −13152.3 −0.753318 −0.376659 0.926352i \(-0.622927\pi\)
−0.376659 + 0.926352i \(0.622927\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 14876.1 0.844515 0.422257 0.906476i \(-0.361238\pi\)
0.422257 + 0.906476i \(0.361238\pi\)
\(678\) 0 0
\(679\) −217.737 −0.0123063
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 24082.4 1.34918 0.674588 0.738195i \(-0.264321\pi\)
0.674588 + 0.738195i \(0.264321\pi\)
\(684\) 0 0
\(685\) 496.089 0.0276709
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −46562.7 −2.57460
\(690\) 0 0
\(691\) −12890.2 −0.709648 −0.354824 0.934933i \(-0.615459\pi\)
−0.354824 + 0.934933i \(0.615459\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −1733.55 −0.0946150
\(696\) 0 0
\(697\) 922.705 0.0501434
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −11887.0 −0.640467 −0.320233 0.947339i \(-0.603761\pi\)
−0.320233 + 0.947339i \(0.603761\pi\)
\(702\) 0 0
\(703\) −26904.0 −1.44339
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −3881.57 −0.206480
\(708\) 0 0
\(709\) 5814.43 0.307991 0.153996 0.988072i \(-0.450786\pi\)
0.153996 + 0.988072i \(0.450786\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 6986.24 0.366952
\(714\) 0 0
\(715\) −3722.84 −0.194722
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −4488.23 −0.232800 −0.116400 0.993202i \(-0.537135\pi\)
−0.116400 + 0.993202i \(0.537135\pi\)
\(720\) 0 0
\(721\) 1790.00 0.0924590
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −15622.2 −0.800267
\(726\) 0 0
\(727\) −23184.0 −1.18273 −0.591366 0.806403i \(-0.701411\pi\)
−0.591366 + 0.806403i \(0.701411\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 775.451 0.0392354
\(732\) 0 0
\(733\) −20677.4 −1.04193 −0.520967 0.853577i \(-0.674429\pi\)
−0.520967 + 0.853577i \(0.674429\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −45812.8 −2.28974
\(738\) 0 0
\(739\) 13001.7 0.647191 0.323595 0.946196i \(-0.395108\pi\)
0.323595 + 0.946196i \(0.395108\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −9267.09 −0.457573 −0.228786 0.973477i \(-0.573476\pi\)
−0.228786 + 0.973477i \(0.573476\pi\)
\(744\) 0 0
\(745\) 2871.09 0.141193
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −3432.96 −0.167473
\(750\) 0 0
\(751\) 30722.3 1.49277 0.746385 0.665514i \(-0.231788\pi\)
0.746385 + 0.665514i \(0.231788\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 1817.85 0.0876267
\(756\) 0 0
\(757\) 5356.86 0.257197 0.128599 0.991697i \(-0.458952\pi\)
0.128599 + 0.991697i \(0.458952\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 10019.0 0.477252 0.238626 0.971111i \(-0.423303\pi\)
0.238626 + 0.971111i \(0.423303\pi\)
\(762\) 0 0
\(763\) −198.874 −0.00943605
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 52111.4 2.45324
\(768\) 0 0
\(769\) −17551.1 −0.823029 −0.411514 0.911403i \(-0.635000\pi\)
−0.411514 + 0.911403i \(0.635000\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 17144.5 0.797731 0.398866 0.917009i \(-0.369404\pi\)
0.398866 + 0.917009i \(0.369404\pi\)
\(774\) 0 0
\(775\) 7841.94 0.363472
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 38408.8 1.76654
\(780\) 0 0
\(781\) −36430.7 −1.66913
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 1470.44 0.0668564
\(786\) 0 0
\(787\) 8595.46 0.389320 0.194660 0.980871i \(-0.437640\pi\)
0.194660 + 0.980871i \(0.437640\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 2325.79 0.104546
\(792\) 0 0
\(793\) 36115.5 1.61727
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 20837.8 0.926115 0.463057 0.886328i \(-0.346752\pi\)
0.463057 + 0.886328i \(0.346752\pi\)
\(798\) 0 0
\(799\) 14.0369 0.000621512 0
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −55031.9 −2.41847
\(804\) 0 0
\(805\) −213.044 −0.00932773
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 6529.43 0.283761 0.141880 0.989884i \(-0.454685\pi\)
0.141880 + 0.989884i \(0.454685\pi\)
\(810\) 0 0
\(811\) −29764.0 −1.28873 −0.644363 0.764720i \(-0.722877\pi\)
−0.644363 + 0.764720i \(0.722877\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −215.876 −0.00927830
\(816\) 0 0
\(817\) 32279.2 1.38226
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −29571.2 −1.25705 −0.628527 0.777788i \(-0.716342\pi\)
−0.628527 + 0.777788i \(0.716342\pi\)
\(822\) 0 0
\(823\) −6112.43 −0.258889 −0.129445 0.991587i \(-0.541319\pi\)
−0.129445 + 0.991587i \(0.541319\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 3265.87 0.137322 0.0686612 0.997640i \(-0.478127\pi\)
0.0686612 + 0.997640i \(0.478127\pi\)
\(828\) 0 0
\(829\) −19327.8 −0.809747 −0.404874 0.914373i \(-0.632685\pi\)
−0.404874 + 0.914373i \(0.632685\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −958.650 −0.0398743
\(834\) 0 0
\(835\) 3259.22 0.135078
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 37638.1 1.54876 0.774382 0.632719i \(-0.218061\pi\)
0.774382 + 0.632719i \(0.218061\pi\)
\(840\) 0 0
\(841\) −8606.87 −0.352900
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 3092.77 0.125911
\(846\) 0 0
\(847\) 5304.92 0.215206
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 25191.6 1.01475
\(852\) 0 0
\(853\) 41869.6 1.68064 0.840322 0.542088i \(-0.182366\pi\)
0.840322 + 0.542088i \(0.182366\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −33072.9 −1.31826 −0.659131 0.752029i \(-0.729076\pi\)
−0.659131 + 0.752029i \(0.729076\pi\)
\(858\) 0 0
\(859\) 14609.7 0.580298 0.290149 0.956981i \(-0.406295\pi\)
0.290149 + 0.956981i \(0.406295\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 118.786 0.00468543 0.00234271 0.999997i \(-0.499254\pi\)
0.00234271 + 0.999997i \(0.499254\pi\)
\(864\) 0 0
\(865\) 1404.60 0.0552115
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 2371.31 0.0925675
\(870\) 0 0
\(871\) 59792.1 2.32604
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −479.519 −0.0185265
\(876\) 0 0
\(877\) −6360.18 −0.244889 −0.122445 0.992475i \(-0.539073\pi\)
−0.122445 + 0.992475i \(0.539073\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 32601.5 1.24673 0.623367 0.781930i \(-0.285764\pi\)
0.623367 + 0.781930i \(0.285764\pi\)
\(882\) 0 0
\(883\) −1478.26 −0.0563392 −0.0281696 0.999603i \(-0.508968\pi\)
−0.0281696 + 0.999603i \(0.508968\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −45267.1 −1.71355 −0.856776 0.515688i \(-0.827536\pi\)
−0.856776 + 0.515688i \(0.827536\pi\)
\(888\) 0 0
\(889\) 3148.59 0.118785
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 584.302 0.0218958
\(894\) 0 0
\(895\) 1638.01 0.0611760
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −7922.22 −0.293905
\(900\) 0 0
\(901\) −1702.29 −0.0629428
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 2267.39 0.0832826
\(906\) 0 0
\(907\) −7261.52 −0.265838 −0.132919 0.991127i \(-0.542435\pi\)
−0.132919 + 0.991127i \(0.542435\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 19434.4 0.706795 0.353398 0.935473i \(-0.385026\pi\)
0.353398 + 0.935473i \(0.385026\pi\)
\(912\) 0 0
\(913\) 26435.0 0.958237
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 2668.08 0.0960827
\(918\) 0 0
\(919\) 24010.2 0.861830 0.430915 0.902392i \(-0.358191\pi\)
0.430915 + 0.902392i \(0.358191\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 47547.1 1.69559
\(924\) 0 0
\(925\) 28277.1 1.00513
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 41554.6 1.46756 0.733780 0.679387i \(-0.237754\pi\)
0.733780 + 0.679387i \(0.237754\pi\)
\(930\) 0 0
\(931\) −39905.0 −1.40476
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −136.103 −0.00476049
\(936\) 0 0
\(937\) 16811.0 0.586116 0.293058 0.956095i \(-0.405327\pi\)
0.293058 + 0.956095i \(0.405327\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −10732.9 −0.371819 −0.185909 0.982567i \(-0.559523\pi\)
−0.185909 + 0.982567i \(0.559523\pi\)
\(942\) 0 0
\(943\) −35964.1 −1.24194
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −31549.3 −1.08259 −0.541297 0.840832i \(-0.682066\pi\)
−0.541297 + 0.840832i \(0.682066\pi\)
\(948\) 0 0
\(949\) 71824.3 2.45681
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 31955.2 1.08618 0.543090 0.839675i \(-0.317254\pi\)
0.543090 + 0.839675i \(0.317254\pi\)
\(954\) 0 0
\(955\) −353.470 −0.0119770
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 1476.39 0.0497135
\(960\) 0 0
\(961\) −25814.2 −0.866512
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −371.921 −0.0124068
\(966\) 0 0
\(967\) −38372.2 −1.27608 −0.638038 0.770005i \(-0.720254\pi\)
−0.638038 + 0.770005i \(0.720254\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −46445.9 −1.53503 −0.767517 0.641028i \(-0.778508\pi\)
−0.767517 + 0.641028i \(0.778508\pi\)
\(972\) 0 0
\(973\) −5159.17 −0.169985
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 47908.3 1.56880 0.784402 0.620253i \(-0.212970\pi\)
0.784402 + 0.620253i \(0.212970\pi\)
\(978\) 0 0
\(979\) 4673.66 0.152575
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −40547.7 −1.31564 −0.657818 0.753177i \(-0.728520\pi\)
−0.657818 + 0.753177i \(0.728520\pi\)
\(984\) 0 0
\(985\) 833.265 0.0269544
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −30224.6 −0.971776
\(990\) 0 0
\(991\) 10651.5 0.341428 0.170714 0.985321i \(-0.445393\pi\)
0.170714 + 0.985321i \(0.445393\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 956.751 0.0304835
\(996\) 0 0
\(997\) −18758.4 −0.595871 −0.297935 0.954586i \(-0.596298\pi\)
−0.297935 + 0.954586i \(0.596298\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1296.4.a.s.1.1 2
3.2 odd 2 1296.4.a.j.1.2 2
4.3 odd 2 162.4.a.h.1.1 yes 2
12.11 even 2 162.4.a.e.1.2 2
36.7 odd 6 162.4.c.i.109.2 4
36.11 even 6 162.4.c.j.109.1 4
36.23 even 6 162.4.c.j.55.1 4
36.31 odd 6 162.4.c.i.55.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
162.4.a.e.1.2 2 12.11 even 2
162.4.a.h.1.1 yes 2 4.3 odd 2
162.4.c.i.55.2 4 36.31 odd 6
162.4.c.i.109.2 4 36.7 odd 6
162.4.c.j.55.1 4 36.23 even 6
162.4.c.j.109.1 4 36.11 even 6
1296.4.a.j.1.2 2 3.2 odd 2
1296.4.a.s.1.1 2 1.1 even 1 trivial