Properties

Label 162.4.c.j.55.1
Level $162$
Weight $4$
Character 162.55
Analytic conductor $9.558$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [162,4,Mod(55,162)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(162, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([4]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("162.55");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 162 = 2 \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 162.c (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.55830942093\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 3^{3} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 55.1
Root \(-0.866025 - 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 162.55
Dual form 162.4.c.j.109.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.00000 - 1.73205i) q^{2} +(-2.00000 - 3.46410i) q^{4} +(0.401924 + 0.696152i) q^{5} +(1.19615 - 2.07180i) q^{7} -8.00000 q^{8} +1.60770 q^{10} +(29.7846 - 51.5885i) q^{11} +(-38.8731 - 67.3301i) q^{13} +(-2.39230 - 4.14359i) q^{14} +(-8.00000 + 13.8564i) q^{16} -2.84232 q^{17} -118.315 q^{19} +(1.60770 - 2.78461i) q^{20} +(-59.5692 - 103.177i) q^{22} +(55.3923 + 95.9423i) q^{23} +(62.1769 - 107.694i) q^{25} -155.492 q^{26} -9.56922 q^{28} +(62.8135 - 108.796i) q^{29} +(-31.5307 - 54.6128i) q^{31} +(16.0000 + 27.7128i) q^{32} +(-2.84232 + 4.92305i) q^{34} +1.92305 q^{35} -227.392 q^{37} +(-118.315 + 204.928i) q^{38} +(-3.21539 - 5.56922i) q^{40} +(162.315 + 281.138i) q^{41} +(136.412 - 236.272i) q^{43} -238.277 q^{44} +221.569 q^{46} +(-2.46926 + 4.27688i) q^{47} +(168.638 + 292.090i) q^{49} +(-124.354 - 215.387i) q^{50} +(-155.492 + 269.321i) q^{52} +598.908 q^{53} +47.8846 q^{55} +(-9.56922 + 16.5744i) q^{56} +(-125.627 - 217.592i) q^{58} +(-335.138 - 580.477i) q^{59} +(-232.265 + 402.295i) q^{61} -126.123 q^{62} +64.0000 q^{64} +(31.2480 - 54.1232i) q^{65} +(384.535 + 666.033i) q^{67} +(5.68465 + 9.84610i) q^{68} +(1.92305 - 3.33082i) q^{70} +611.569 q^{71} +923.831 q^{73} +(-227.392 + 393.855i) q^{74} +(236.631 + 409.856i) q^{76} +(-71.2539 - 123.415i) q^{77} +(-19.9038 + 34.4744i) q^{79} -12.8616 q^{80} +649.261 q^{82} +(221.885 - 384.315i) q^{83} +(-1.14240 - 1.97869i) q^{85} +(-272.823 - 472.543i) q^{86} +(-238.277 + 412.708i) q^{88} +78.4576 q^{89} -185.992 q^{91} +(221.569 - 383.769i) q^{92} +(4.93851 + 8.55376i) q^{94} +(-47.5538 - 82.3655i) q^{95} +(45.5077 - 78.8217i) q^{97} +674.554 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{2} - 8 q^{4} + 12 q^{5} - 16 q^{7} - 32 q^{8} + 48 q^{10} + 36 q^{11} - 10 q^{13} + 32 q^{14} - 32 q^{16} - 240 q^{17} - 16 q^{19} + 48 q^{20} - 72 q^{22} + 180 q^{23} + 124 q^{25} - 40 q^{26}+ \cdots + 1368 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/162\mathbb{Z}\right)^\times\).

\(n\) \(83\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 1.73205i 0.353553 0.612372i
\(3\) 0 0
\(4\) −2.00000 3.46410i −0.250000 0.433013i
\(5\) 0.401924 + 0.696152i 0.0359492 + 0.0622658i 0.883440 0.468544i \(-0.155221\pi\)
−0.847491 + 0.530810i \(0.821888\pi\)
\(6\) 0 0
\(7\) 1.19615 2.07180i 0.0645862 0.111867i −0.831924 0.554889i \(-0.812761\pi\)
0.896510 + 0.443023i \(0.146094\pi\)
\(8\) −8.00000 −0.353553
\(9\) 0 0
\(10\) 1.60770 0.0508398
\(11\) 29.7846 51.5885i 0.816400 1.41405i −0.0919186 0.995767i \(-0.529300\pi\)
0.908318 0.418279i \(-0.137367\pi\)
\(12\) 0 0
\(13\) −38.8731 67.3301i −0.829342 1.43646i −0.898555 0.438861i \(-0.855382\pi\)
0.0692128 0.997602i \(-0.477951\pi\)
\(14\) −2.39230 4.14359i −0.0456693 0.0791016i
\(15\) 0 0
\(16\) −8.00000 + 13.8564i −0.125000 + 0.216506i
\(17\) −2.84232 −0.0405509 −0.0202754 0.999794i \(-0.506454\pi\)
−0.0202754 + 0.999794i \(0.506454\pi\)
\(18\) 0 0
\(19\) −118.315 −1.42860 −0.714300 0.699840i \(-0.753255\pi\)
−0.714300 + 0.699840i \(0.753255\pi\)
\(20\) 1.60770 2.78461i 0.0179746 0.0311329i
\(21\) 0 0
\(22\) −59.5692 103.177i −0.577282 0.999881i
\(23\) 55.3923 + 95.9423i 0.502178 + 0.869798i 0.999997 + 0.00251677i \(0.000801112\pi\)
−0.497819 + 0.867281i \(0.665866\pi\)
\(24\) 0 0
\(25\) 62.1769 107.694i 0.497415 0.861549i
\(26\) −155.492 −1.17287
\(27\) 0 0
\(28\) −9.56922 −0.0645862
\(29\) 62.8135 108.796i 0.402213 0.696653i −0.591780 0.806100i \(-0.701575\pi\)
0.993993 + 0.109447i \(0.0349079\pi\)
\(30\) 0 0
\(31\) −31.5307 54.6128i −0.182680 0.316412i 0.760112 0.649792i \(-0.225144\pi\)
−0.942792 + 0.333380i \(0.891811\pi\)
\(32\) 16.0000 + 27.7128i 0.0883883 + 0.153093i
\(33\) 0 0
\(34\) −2.84232 + 4.92305i −0.0143369 + 0.0248322i
\(35\) 1.92305 0.00928727
\(36\) 0 0
\(37\) −227.392 −1.01035 −0.505177 0.863016i \(-0.668573\pi\)
−0.505177 + 0.863016i \(0.668573\pi\)
\(38\) −118.315 + 204.928i −0.505086 + 0.874835i
\(39\) 0 0
\(40\) −3.21539 5.56922i −0.0127099 0.0220143i
\(41\) 162.315 + 281.138i 0.618278 + 1.07089i 0.989800 + 0.142465i \(0.0455028\pi\)
−0.371522 + 0.928424i \(0.621164\pi\)
\(42\) 0 0
\(43\) 136.412 236.272i 0.483781 0.837933i −0.516046 0.856561i \(-0.672597\pi\)
0.999826 + 0.0186284i \(0.00592994\pi\)
\(44\) −238.277 −0.816400
\(45\) 0 0
\(46\) 221.569 0.710187
\(47\) −2.46926 + 4.27688i −0.00766336 + 0.0132733i −0.869832 0.493349i \(-0.835773\pi\)
0.862168 + 0.506622i \(0.169106\pi\)
\(48\) 0 0
\(49\) 168.638 + 292.090i 0.491657 + 0.851575i
\(50\) −124.354 215.387i −0.351726 0.609207i
\(51\) 0 0
\(52\) −155.492 + 269.321i −0.414671 + 0.718231i
\(53\) 598.908 1.55219 0.776097 0.630614i \(-0.217197\pi\)
0.776097 + 0.630614i \(0.217197\pi\)
\(54\) 0 0
\(55\) 47.8846 0.117396
\(56\) −9.56922 + 16.5744i −0.0228347 + 0.0395508i
\(57\) 0 0
\(58\) −125.627 217.592i −0.284407 0.492608i
\(59\) −335.138 580.477i −0.739514 1.28088i −0.952714 0.303867i \(-0.901722\pi\)
0.213201 0.977008i \(-0.431611\pi\)
\(60\) 0 0
\(61\) −232.265 + 402.295i −0.487517 + 0.844404i −0.999897 0.0143547i \(-0.995431\pi\)
0.512380 + 0.858759i \(0.328764\pi\)
\(62\) −126.123 −0.258349
\(63\) 0 0
\(64\) 64.0000 0.125000
\(65\) 31.2480 54.1232i 0.0596283 0.103279i
\(66\) 0 0
\(67\) 384.535 + 666.033i 0.701170 + 1.21446i 0.968056 + 0.250734i \(0.0806718\pi\)
−0.266886 + 0.963728i \(0.585995\pi\)
\(68\) 5.68465 + 9.84610i 0.0101377 + 0.0175590i
\(69\) 0 0
\(70\) 1.92305 3.33082i 0.00328355 0.00568727i
\(71\) 611.569 1.02225 0.511126 0.859506i \(-0.329228\pi\)
0.511126 + 0.859506i \(0.329228\pi\)
\(72\) 0 0
\(73\) 923.831 1.48118 0.740590 0.671957i \(-0.234546\pi\)
0.740590 + 0.671957i \(0.234546\pi\)
\(74\) −227.392 + 393.855i −0.357214 + 0.618712i
\(75\) 0 0
\(76\) 236.631 + 409.856i 0.357150 + 0.618602i
\(77\) −71.2539 123.415i −0.105456 0.182656i
\(78\) 0 0
\(79\) −19.9038 + 34.4744i −0.0283462 + 0.0490971i −0.879851 0.475251i \(-0.842357\pi\)
0.851504 + 0.524348i \(0.175691\pi\)
\(80\) −12.8616 −0.0179746
\(81\) 0 0
\(82\) 649.261 0.874377
\(83\) 221.885 384.315i 0.293434 0.508242i −0.681186 0.732111i \(-0.738535\pi\)
0.974619 + 0.223869i \(0.0718687\pi\)
\(84\) 0 0
\(85\) −1.14240 1.97869i −0.00145777 0.00252493i
\(86\) −272.823 472.543i −0.342085 0.592508i
\(87\) 0 0
\(88\) −238.277 + 412.708i −0.288641 + 0.499941i
\(89\) 78.4576 0.0934437 0.0467218 0.998908i \(-0.485123\pi\)
0.0467218 + 0.998908i \(0.485123\pi\)
\(90\) 0 0
\(91\) −185.992 −0.214256
\(92\) 221.569 383.769i 0.251089 0.434899i
\(93\) 0 0
\(94\) 4.93851 + 8.55376i 0.00541882 + 0.00938566i
\(95\) −47.5538 82.3655i −0.0513570 0.0889529i
\(96\) 0 0
\(97\) 45.5077 78.8217i 0.0476352 0.0825065i −0.841225 0.540686i \(-0.818165\pi\)
0.888860 + 0.458179i \(0.151498\pi\)
\(98\) 674.554 0.695308
\(99\) 0 0
\(100\) −497.415 −0.497415
\(101\) −811.261 + 1405.15i −0.799243 + 1.38433i 0.120867 + 0.992669i \(0.461433\pi\)
−0.920110 + 0.391661i \(0.871901\pi\)
\(102\) 0 0
\(103\) 374.115 + 647.987i 0.357890 + 0.619884i 0.987608 0.156940i \(-0.0501629\pi\)
−0.629718 + 0.776824i \(0.716830\pi\)
\(104\) 310.985 + 538.641i 0.293217 + 0.507866i
\(105\) 0 0
\(106\) 598.908 1037.34i 0.548783 0.950521i
\(107\) −1435.00 −1.29651 −0.648255 0.761423i \(-0.724501\pi\)
−0.648255 + 0.761423i \(0.724501\pi\)
\(108\) 0 0
\(109\) −83.1305 −0.0730501 −0.0365250 0.999333i \(-0.511629\pi\)
−0.0365250 + 0.999333i \(0.511629\pi\)
\(110\) 47.8846 82.9385i 0.0415056 0.0718898i
\(111\) 0 0
\(112\) 19.1384 + 33.1487i 0.0161465 + 0.0279666i
\(113\) 486.098 + 841.946i 0.404675 + 0.700917i 0.994284 0.106772i \(-0.0340514\pi\)
−0.589609 + 0.807689i \(0.700718\pi\)
\(114\) 0 0
\(115\) −44.5270 + 77.1230i −0.0361058 + 0.0625370i
\(116\) −502.508 −0.402213
\(117\) 0 0
\(118\) −1340.55 −1.04583
\(119\) −3.39985 + 5.88872i −0.00261902 + 0.00453628i
\(120\) 0 0
\(121\) −1108.75 1920.40i −0.833017 1.44283i
\(122\) 464.531 + 804.591i 0.344727 + 0.597084i
\(123\) 0 0
\(124\) −126.123 + 218.451i −0.0913401 + 0.158206i
\(125\) 200.442 0.143425
\(126\) 0 0
\(127\) −1316.13 −0.919588 −0.459794 0.888026i \(-0.652077\pi\)
−0.459794 + 0.888026i \(0.652077\pi\)
\(128\) 64.0000 110.851i 0.0441942 0.0765466i
\(129\) 0 0
\(130\) −62.4960 108.246i −0.0421636 0.0730295i
\(131\) −557.638 965.858i −0.371917 0.644179i 0.617944 0.786222i \(-0.287966\pi\)
−0.989860 + 0.142044i \(0.954633\pi\)
\(132\) 0 0
\(133\) −141.523 + 245.125i −0.0922678 + 0.159813i
\(134\) 1538.14 0.991604
\(135\) 0 0
\(136\) 22.7386 0.0143369
\(137\) 308.571 534.461i 0.192431 0.333300i −0.753624 0.657305i \(-0.771696\pi\)
0.946055 + 0.324005i \(0.105030\pi\)
\(138\) 0 0
\(139\) −1078.28 1867.64i −0.657978 1.13965i −0.981138 0.193307i \(-0.938079\pi\)
0.323161 0.946344i \(-0.395255\pi\)
\(140\) −3.84610 6.66164i −0.00232182 0.00402151i
\(141\) 0 0
\(142\) 611.569 1059.27i 0.361421 0.625999i
\(143\) −4631.28 −2.70830
\(144\) 0 0
\(145\) 100.985 0.0578368
\(146\) 923.831 1600.12i 0.523676 0.907034i
\(147\) 0 0
\(148\) 454.785 + 787.710i 0.252588 + 0.437496i
\(149\) 1785.84 + 3093.17i 0.981893 + 1.70069i 0.655004 + 0.755626i \(0.272667\pi\)
0.326889 + 0.945063i \(0.394000\pi\)
\(150\) 0 0
\(151\) 1130.72 1958.46i 0.609379 1.05548i −0.381963 0.924177i \(-0.624752\pi\)
0.991343 0.131299i \(-0.0419147\pi\)
\(152\) 946.523 0.505086
\(153\) 0 0
\(154\) −285.015 −0.149138
\(155\) 25.3459 43.9004i 0.0131344 0.0227495i
\(156\) 0 0
\(157\) −914.627 1584.18i −0.464937 0.805295i 0.534261 0.845319i \(-0.320590\pi\)
−0.999199 + 0.0400243i \(0.987256\pi\)
\(158\) 39.8076 + 68.9488i 0.0200438 + 0.0347169i
\(159\) 0 0
\(160\) −12.8616 + 22.2769i −0.00635497 + 0.0110071i
\(161\) 265.031 0.129735
\(162\) 0 0
\(163\) 268.554 0.129048 0.0645238 0.997916i \(-0.479447\pi\)
0.0645238 + 0.997916i \(0.479447\pi\)
\(164\) 649.261 1124.55i 0.309139 0.535444i
\(165\) 0 0
\(166\) −443.769 768.631i −0.207489 0.359381i
\(167\) −2027.26 3511.32i −0.939366 1.62703i −0.766657 0.642057i \(-0.778081\pi\)
−0.172710 0.984973i \(-0.555252\pi\)
\(168\) 0 0
\(169\) −1923.73 + 3332.00i −0.875617 + 1.51661i
\(170\) −4.56959 −0.00206160
\(171\) 0 0
\(172\) −1091.29 −0.483781
\(173\) 873.675 1513.25i 0.383955 0.665030i −0.607668 0.794191i \(-0.707895\pi\)
0.991624 + 0.129161i \(0.0412283\pi\)
\(174\) 0 0
\(175\) −148.746 257.636i −0.0642523 0.111288i
\(176\) 476.554 + 825.415i 0.204100 + 0.353511i
\(177\) 0 0
\(178\) 78.4576 135.892i 0.0330373 0.0572223i
\(179\) 2037.71 0.850868 0.425434 0.904989i \(-0.360121\pi\)
0.425434 + 0.904989i \(0.360121\pi\)
\(180\) 0 0
\(181\) 2820.68 1.15834 0.579169 0.815207i \(-0.303377\pi\)
0.579169 + 0.815207i \(0.303377\pi\)
\(182\) −185.992 + 322.148i −0.0757510 + 0.131205i
\(183\) 0 0
\(184\) −443.138 767.538i −0.177547 0.307520i
\(185\) −91.3944 158.300i −0.0363213 0.0629104i
\(186\) 0 0
\(187\) −84.6575 + 146.631i −0.0331057 + 0.0573408i
\(188\) 19.7541 0.00766336
\(189\) 0 0
\(190\) −190.215 −0.0726297
\(191\) 219.862 380.811i 0.0832912 0.144265i −0.821371 0.570395i \(-0.806790\pi\)
0.904662 + 0.426130i \(0.140123\pi\)
\(192\) 0 0
\(193\) 231.338 + 400.689i 0.0862802 + 0.149442i 0.905936 0.423415i \(-0.139169\pi\)
−0.819656 + 0.572856i \(0.805835\pi\)
\(194\) −91.0155 157.643i −0.0336831 0.0583409i
\(195\) 0 0
\(196\) 674.554 1168.36i 0.245829 0.425788i
\(197\) −1036.60 −0.374896 −0.187448 0.982275i \(-0.560022\pi\)
−0.187448 + 0.982275i \(0.560022\pi\)
\(198\) 0 0
\(199\) −1190.22 −0.423980 −0.211990 0.977272i \(-0.567994\pi\)
−0.211990 + 0.977272i \(0.567994\pi\)
\(200\) −497.415 + 861.549i −0.175863 + 0.304603i
\(201\) 0 0
\(202\) 1622.52 + 2810.29i 0.565150 + 0.978869i
\(203\) −150.269 260.273i −0.0519547 0.0899883i
\(204\) 0 0
\(205\) −130.477 + 225.992i −0.0444531 + 0.0769951i
\(206\) 1496.46 0.506133
\(207\) 0 0
\(208\) 1243.94 0.414671
\(209\) −3523.98 + 6103.71i −1.16631 + 2.02011i
\(210\) 0 0
\(211\) 2464.00 + 4267.78i 0.803929 + 1.39245i 0.917012 + 0.398860i \(0.130594\pi\)
−0.113083 + 0.993586i \(0.536073\pi\)
\(212\) −1197.82 2074.68i −0.388049 0.672120i
\(213\) 0 0
\(214\) −1435.00 + 2485.49i −0.458386 + 0.793947i
\(215\) 219.308 0.0695660
\(216\) 0 0
\(217\) −150.862 −0.0471945
\(218\) −83.1305 + 143.986i −0.0258271 + 0.0447339i
\(219\) 0 0
\(220\) −95.7691 165.877i −0.0293489 0.0508338i
\(221\) 110.490 + 191.374i 0.0336305 + 0.0582498i
\(222\) 0 0
\(223\) 735.235 1273.46i 0.220785 0.382410i −0.734262 0.678866i \(-0.762472\pi\)
0.955046 + 0.296456i \(0.0958049\pi\)
\(224\) 76.5538 0.0228347
\(225\) 0 0
\(226\) 1944.39 0.572296
\(227\) 1051.13 1820.61i 0.307339 0.532327i −0.670440 0.741964i \(-0.733895\pi\)
0.977779 + 0.209637i \(0.0672281\pi\)
\(228\) 0 0
\(229\) 500.519 + 866.924i 0.144433 + 0.250166i 0.929161 0.369674i \(-0.120531\pi\)
−0.784728 + 0.619840i \(0.787197\pi\)
\(230\) 89.0539 + 154.246i 0.0255306 + 0.0442203i
\(231\) 0 0
\(232\) −502.508 + 870.369i −0.142204 + 0.246304i
\(233\) 6280.78 1.76596 0.882978 0.469415i \(-0.155535\pi\)
0.882978 + 0.469415i \(0.155535\pi\)
\(234\) 0 0
\(235\) −3.96981 −0.00110197
\(236\) −1340.55 + 2321.91i −0.369757 + 0.640438i
\(237\) 0 0
\(238\) 6.79970 + 11.7774i 0.00185193 + 0.00320764i
\(239\) −508.685 881.068i −0.137674 0.238458i 0.788942 0.614468i \(-0.210629\pi\)
−0.926616 + 0.376010i \(0.877296\pi\)
\(240\) 0 0
\(241\) 460.646 797.862i 0.123124 0.213257i −0.797874 0.602824i \(-0.794042\pi\)
0.920998 + 0.389567i \(0.127375\pi\)
\(242\) −4434.98 −1.17806
\(243\) 0 0
\(244\) 1858.12 0.487517
\(245\) −135.560 + 234.796i −0.0353493 + 0.0612268i
\(246\) 0 0
\(247\) 4599.28 + 7966.19i 1.18480 + 2.05213i
\(248\) 252.246 + 436.903i 0.0645872 + 0.111868i
\(249\) 0 0
\(250\) 200.442 347.177i 0.0507084 0.0878295i
\(251\) −2262.40 −0.568930 −0.284465 0.958686i \(-0.591816\pi\)
−0.284465 + 0.958686i \(0.591816\pi\)
\(252\) 0 0
\(253\) 6599.35 1.63991
\(254\) −1316.13 + 2279.60i −0.325124 + 0.563130i
\(255\) 0 0
\(256\) −128.000 221.703i −0.0312500 0.0541266i
\(257\) 2393.32 + 4145.36i 0.580901 + 1.00615i 0.995373 + 0.0960877i \(0.0306329\pi\)
−0.414472 + 0.910062i \(0.636034\pi\)
\(258\) 0 0
\(259\) −271.996 + 471.111i −0.0652548 + 0.113025i
\(260\) −249.984 −0.0596283
\(261\) 0 0
\(262\) −2230.55 −0.525970
\(263\) −1503.96 + 2604.94i −0.352617 + 0.610750i −0.986707 0.162509i \(-0.948041\pi\)
0.634090 + 0.773259i \(0.281375\pi\)
\(264\) 0 0
\(265\) 240.715 + 416.931i 0.0558001 + 0.0966485i
\(266\) 283.046 + 490.251i 0.0652432 + 0.113005i
\(267\) 0 0
\(268\) 1538.14 2664.13i 0.350585 0.607231i
\(269\) 6559.73 1.48682 0.743409 0.668837i \(-0.233208\pi\)
0.743409 + 0.668837i \(0.233208\pi\)
\(270\) 0 0
\(271\) −5147.64 −1.15386 −0.576931 0.816793i \(-0.695750\pi\)
−0.576931 + 0.816793i \(0.695750\pi\)
\(272\) 22.7386 39.3844i 0.00506886 0.00877952i
\(273\) 0 0
\(274\) −617.143 1068.92i −0.136069 0.235679i
\(275\) −3703.83 6415.22i −0.812180 1.40674i
\(276\) 0 0
\(277\) 533.831 924.622i 0.115793 0.200560i −0.802303 0.596917i \(-0.796392\pi\)
0.918097 + 0.396357i \(0.129726\pi\)
\(278\) −4313.14 −0.930521
\(279\) 0 0
\(280\) −15.3844 −0.00328355
\(281\) 2093.24 3625.59i 0.444384 0.769696i −0.553625 0.832766i \(-0.686756\pi\)
0.998009 + 0.0630699i \(0.0200891\pi\)
\(282\) 0 0
\(283\) −2678.48 4639.26i −0.562611 0.974471i −0.997268 0.0738746i \(-0.976464\pi\)
0.434657 0.900596i \(-0.356870\pi\)
\(284\) −1223.14 2118.54i −0.255563 0.442648i
\(285\) 0 0
\(286\) −4631.28 + 8021.61i −0.957528 + 1.65849i
\(287\) 776.616 0.159729
\(288\) 0 0
\(289\) −4904.92 −0.998356
\(290\) 100.985 174.911i 0.0204484 0.0354177i
\(291\) 0 0
\(292\) −1847.66 3200.24i −0.370295 0.641370i
\(293\) 1447.89 + 2507.83i 0.288692 + 0.500030i 0.973498 0.228696i \(-0.0734462\pi\)
−0.684805 + 0.728726i \(0.740113\pi\)
\(294\) 0 0
\(295\) 269.400 466.615i 0.0531698 0.0920928i
\(296\) 1819.14 0.357214
\(297\) 0 0
\(298\) 7143.38 1.38861
\(299\) 4306.54 7459.14i 0.832955 1.44272i
\(300\) 0 0
\(301\) −326.338 565.234i −0.0624911 0.108238i
\(302\) −2261.43 3916.91i −0.430896 0.746334i
\(303\) 0 0
\(304\) 946.523 1639.43i 0.178575 0.309301i
\(305\) −373.412 −0.0701033
\(306\) 0 0
\(307\) 1855.49 0.344947 0.172473 0.985014i \(-0.444824\pi\)
0.172473 + 0.985014i \(0.444824\pi\)
\(308\) −285.015 + 493.661i −0.0527281 + 0.0913278i
\(309\) 0 0
\(310\) −50.6918 87.8008i −0.00928743 0.0160863i
\(311\) 3585.85 + 6210.87i 0.653809 + 1.13243i 0.982191 + 0.187886i \(0.0601635\pi\)
−0.328382 + 0.944545i \(0.606503\pi\)
\(312\) 0 0
\(313\) 655.415 1135.21i 0.118359 0.205003i −0.800759 0.598987i \(-0.795570\pi\)
0.919117 + 0.393984i \(0.128903\pi\)
\(314\) −3658.51 −0.657521
\(315\) 0 0
\(316\) 159.230 0.0283462
\(317\) 1844.63 3195.00i 0.326829 0.566085i −0.655052 0.755584i \(-0.727353\pi\)
0.981881 + 0.189499i \(0.0606865\pi\)
\(318\) 0 0
\(319\) −3741.75 6480.90i −0.656733 1.13749i
\(320\) 25.7231 + 44.5538i 0.00449364 + 0.00778322i
\(321\) 0 0
\(322\) 265.031 459.046i 0.0458682 0.0794461i
\(323\) 336.290 0.0579310
\(324\) 0 0
\(325\) −9668.03 −1.65011
\(326\) 268.554 465.149i 0.0456252 0.0790252i
\(327\) 0 0
\(328\) −1298.52 2249.11i −0.218594 0.378616i
\(329\) 5.90721 + 10.2316i 0.000989894 + 0.00171455i
\(330\) 0 0
\(331\) 1622.48 2810.22i 0.269425 0.466657i −0.699289 0.714839i \(-0.746500\pi\)
0.968713 + 0.248182i \(0.0798331\pi\)
\(332\) −1775.08 −0.293434
\(333\) 0 0
\(334\) −8109.04 −1.32846
\(335\) −309.107 + 535.389i −0.0504129 + 0.0873177i
\(336\) 0 0
\(337\) −2150.83 3725.35i −0.347665 0.602174i 0.638169 0.769896i \(-0.279692\pi\)
−0.985834 + 0.167722i \(0.946359\pi\)
\(338\) 3847.46 + 6664.00i 0.619155 + 1.07241i
\(339\) 0 0
\(340\) −4.56959 + 7.91476i −0.000728885 + 0.00126247i
\(341\) −3756.52 −0.596561
\(342\) 0 0
\(343\) 1627.43 0.256189
\(344\) −1091.29 + 1890.17i −0.171042 + 0.296254i
\(345\) 0 0
\(346\) −1747.35 3026.50i −0.271497 0.470247i
\(347\) −1652.10 2861.52i −0.255589 0.442693i 0.709466 0.704739i \(-0.248936\pi\)
−0.965055 + 0.262046i \(0.915603\pi\)
\(348\) 0 0
\(349\) −2254.35 + 3904.65i −0.345767 + 0.598886i −0.985493 0.169717i \(-0.945715\pi\)
0.639726 + 0.768603i \(0.279048\pi\)
\(350\) −594.985 −0.0908665
\(351\) 0 0
\(352\) 1906.22 0.288641
\(353\) 3443.37 5964.09i 0.519184 0.899254i −0.480567 0.876958i \(-0.659569\pi\)
0.999751 0.0222956i \(-0.00709751\pi\)
\(354\) 0 0
\(355\) 245.804 + 425.745i 0.0367491 + 0.0636513i
\(356\) −156.915 271.785i −0.0233609 0.0404623i
\(357\) 0 0
\(358\) 2037.71 3529.41i 0.300827 0.521048i
\(359\) 1529.31 0.224829 0.112415 0.993661i \(-0.464141\pi\)
0.112415 + 0.993661i \(0.464141\pi\)
\(360\) 0 0
\(361\) 7139.52 1.04090
\(362\) 2820.68 4885.56i 0.409534 0.709335i
\(363\) 0 0
\(364\) 371.985 + 644.297i 0.0535640 + 0.0927756i
\(365\) 371.310 + 643.127i 0.0532472 + 0.0922269i
\(366\) 0 0
\(367\) 5115.68 8860.62i 0.727620 1.26027i −0.230267 0.973128i \(-0.573960\pi\)
0.957886 0.287147i \(-0.0927069\pi\)
\(368\) −1772.55 −0.251089
\(369\) 0 0
\(370\) −365.578 −0.0513661
\(371\) 716.385 1240.81i 0.100250 0.173639i
\(372\) 0 0
\(373\) −473.215 819.632i −0.0656894 0.113777i 0.831310 0.555809i \(-0.187591\pi\)
−0.897000 + 0.442031i \(0.854258\pi\)
\(374\) 169.315 + 293.262i 0.0234093 + 0.0405461i
\(375\) 0 0
\(376\) 19.7541 34.2150i 0.00270941 0.00469283i
\(377\) −9767.01 −1.33429
\(378\) 0 0
\(379\) −8717.46 −1.18149 −0.590746 0.806857i \(-0.701167\pi\)
−0.590746 + 0.806857i \(0.701167\pi\)
\(380\) −190.215 + 329.462i −0.0256785 + 0.0444764i
\(381\) 0 0
\(382\) −439.723 761.623i −0.0588958 0.102011i
\(383\) 6130.77 + 10618.8i 0.817931 + 1.41670i 0.907204 + 0.420691i \(0.138212\pi\)
−0.0892728 + 0.996007i \(0.528454\pi\)
\(384\) 0 0
\(385\) 57.2772 99.2071i 0.00758213 0.0131326i
\(386\) 925.353 0.122019
\(387\) 0 0
\(388\) −364.062 −0.0476352
\(389\) −6605.53 + 11441.1i −0.860961 + 1.49123i 0.0100423 + 0.999950i \(0.496803\pi\)
−0.871003 + 0.491278i \(0.836530\pi\)
\(390\) 0 0
\(391\) −157.443 272.699i −0.0203638 0.0352711i
\(392\) −1349.11 2336.72i −0.173827 0.301077i
\(393\) 0 0
\(394\) −1036.60 + 1795.44i −0.132546 + 0.229576i
\(395\) −31.9993 −0.00407609
\(396\) 0 0
\(397\) −5211.93 −0.658890 −0.329445 0.944175i \(-0.606862\pi\)
−0.329445 + 0.944175i \(0.606862\pi\)
\(398\) −1190.22 + 2061.51i −0.149900 + 0.259634i
\(399\) 0 0
\(400\) 994.831 + 1723.10i 0.124354 + 0.215387i
\(401\) 492.817 + 853.584i 0.0613719 + 0.106299i 0.895079 0.445908i \(-0.147119\pi\)
−0.833707 + 0.552207i \(0.813786\pi\)
\(402\) 0 0
\(403\) −2451.39 + 4245.94i −0.303009 + 0.524827i
\(404\) 6490.09 0.799243
\(405\) 0 0
\(406\) −601.076 −0.0734751
\(407\) −6772.79 + 11730.8i −0.824852 + 1.42869i
\(408\) 0 0
\(409\) 337.323 + 584.261i 0.0407813 + 0.0706354i 0.885696 0.464266i \(-0.153682\pi\)
−0.844914 + 0.534902i \(0.820349\pi\)
\(410\) 260.954 + 451.985i 0.0314331 + 0.0544438i
\(411\) 0 0
\(412\) 1496.46 2591.95i 0.178945 0.309942i
\(413\) −1603.51 −0.191049
\(414\) 0 0
\(415\) 356.723 0.0421948
\(416\) 1243.94 2154.56i 0.146608 0.253933i
\(417\) 0 0
\(418\) 7047.95 + 12207.4i 0.824705 + 1.42843i
\(419\) −3752.82 6500.07i −0.437559 0.757874i 0.559942 0.828532i \(-0.310823\pi\)
−0.997501 + 0.0706581i \(0.977490\pi\)
\(420\) 0 0
\(421\) 676.312 1171.41i 0.0782932 0.135608i −0.824220 0.566269i \(-0.808386\pi\)
0.902514 + 0.430661i \(0.141720\pi\)
\(422\) 9856.01 1.13693
\(423\) 0 0
\(424\) −4791.26 −0.548783
\(425\) −176.727 + 306.100i −0.0201706 + 0.0349365i
\(426\) 0 0
\(427\) 555.650 + 962.413i 0.0629737 + 0.109074i
\(428\) 2870.00 + 4970.98i 0.324128 + 0.561406i
\(429\) 0 0
\(430\) 219.308 379.853i 0.0245953 0.0426003i
\(431\) −4003.21 −0.447397 −0.223698 0.974658i \(-0.571813\pi\)
−0.223698 + 0.974658i \(0.571813\pi\)
\(432\) 0 0
\(433\) 9975.38 1.10713 0.553564 0.832807i \(-0.313267\pi\)
0.553564 + 0.832807i \(0.313267\pi\)
\(434\) −150.862 + 261.301i −0.0166858 + 0.0289006i
\(435\) 0 0
\(436\) 166.261 + 287.973i 0.0182625 + 0.0316316i
\(437\) −6553.76 11351.4i −0.717412 1.24259i
\(438\) 0 0
\(439\) −8680.46 + 15035.0i −0.943726 + 1.63458i −0.185444 + 0.982655i \(0.559372\pi\)
−0.758282 + 0.651927i \(0.773961\pi\)
\(440\) −383.077 −0.0415056
\(441\) 0 0
\(442\) 441.959 0.0475608
\(443\) 4287.71 7426.54i 0.459854 0.796491i −0.539099 0.842243i \(-0.681235\pi\)
0.998953 + 0.0457517i \(0.0145683\pi\)
\(444\) 0 0
\(445\) 31.5340 + 54.6184i 0.00335922 + 0.00581834i
\(446\) −1470.47 2546.93i −0.156118 0.270405i
\(447\) 0 0
\(448\) 76.5538 132.595i 0.00807327 0.0139833i
\(449\) 4703.77 0.494398 0.247199 0.968965i \(-0.420490\pi\)
0.247199 + 0.968965i \(0.420490\pi\)
\(450\) 0 0
\(451\) 19338.0 2.01905
\(452\) 1944.39 3367.78i 0.202337 0.350459i
\(453\) 0 0
\(454\) −2102.26 3641.22i −0.217322 0.376412i
\(455\) −74.7548 129.479i −0.00770233 0.0133408i
\(456\) 0 0
\(457\) 3523.40 6102.71i 0.360651 0.624667i −0.627417 0.778684i \(-0.715888\pi\)
0.988068 + 0.154017i \(0.0492211\pi\)
\(458\) 2002.08 0.204259
\(459\) 0 0
\(460\) 356.216 0.0361058
\(461\) −2885.13 + 4997.19i −0.291484 + 0.504864i −0.974161 0.225856i \(-0.927482\pi\)
0.682677 + 0.730720i \(0.260816\pi\)
\(462\) 0 0
\(463\) 6799.57 + 11777.2i 0.682511 + 1.18214i 0.974212 + 0.225634i \(0.0724455\pi\)
−0.291701 + 0.956510i \(0.594221\pi\)
\(464\) 1005.02 + 1740.74i 0.100553 + 0.174163i
\(465\) 0 0
\(466\) 6280.78 10878.6i 0.624359 1.08142i
\(467\) 5730.52 0.567831 0.283915 0.958849i \(-0.408367\pi\)
0.283915 + 0.958849i \(0.408367\pi\)
\(468\) 0 0
\(469\) 1839.85 0.181143
\(470\) −3.96981 + 6.87592i −0.000389604 + 0.000674813i
\(471\) 0 0
\(472\) 2681.11 + 4643.81i 0.261458 + 0.452858i
\(473\) −8125.93 14074.5i −0.789917 1.36818i
\(474\) 0 0
\(475\) −7356.48 + 12741.8i −0.710608 + 1.23081i
\(476\) 27.1988 0.00261902
\(477\) 0 0
\(478\) −2034.74 −0.194701
\(479\) −7284.14 + 12616.5i −0.694824 + 1.20347i 0.275416 + 0.961325i \(0.411184\pi\)
−0.970240 + 0.242145i \(0.922149\pi\)
\(480\) 0 0
\(481\) 8839.44 + 15310.4i 0.837928 + 1.45133i
\(482\) −921.292 1595.72i −0.0870616 0.150795i
\(483\) 0 0
\(484\) −4434.98 + 7681.62i −0.416509 + 0.721414i
\(485\) 73.1626 0.00684977
\(486\) 0 0
\(487\) 7164.51 0.666642 0.333321 0.942813i \(-0.391831\pi\)
0.333321 + 0.942813i \(0.391831\pi\)
\(488\) 1858.12 3218.36i 0.172363 0.298542i
\(489\) 0 0
\(490\) 271.119 + 469.592i 0.0249957 + 0.0432939i
\(491\) 4755.03 + 8235.96i 0.437050 + 0.756993i 0.997460 0.0712222i \(-0.0226899\pi\)
−0.560410 + 0.828215i \(0.689357\pi\)
\(492\) 0 0
\(493\) −178.536 + 309.234i −0.0163101 + 0.0282499i
\(494\) 18397.1 1.67556
\(495\) 0 0
\(496\) 1008.98 0.0913401
\(497\) 731.530 1267.05i 0.0660234 0.114356i
\(498\) 0 0
\(499\) −10742.8 18607.1i −0.963756 1.66927i −0.712921 0.701245i \(-0.752628\pi\)
−0.250835 0.968030i \(-0.580705\pi\)
\(500\) −400.885 694.353i −0.0358562 0.0621048i
\(501\) 0 0
\(502\) −2262.40 + 3918.59i −0.201147 + 0.348397i
\(503\) −11603.2 −1.02855 −0.514274 0.857626i \(-0.671939\pi\)
−0.514274 + 0.857626i \(0.671939\pi\)
\(504\) 0 0
\(505\) −1304.26 −0.114928
\(506\) 6599.35 11430.4i 0.579796 1.00424i
\(507\) 0 0
\(508\) 2632.26 + 4559.21i 0.229897 + 0.398193i
\(509\) −4469.87 7742.04i −0.389241 0.674184i 0.603107 0.797660i \(-0.293929\pi\)
−0.992348 + 0.123476i \(0.960596\pi\)
\(510\) 0 0
\(511\) 1105.04 1913.99i 0.0956638 0.165695i
\(512\) −512.000 −0.0441942
\(513\) 0 0
\(514\) 9573.30 0.821518
\(515\) −300.732 + 520.883i −0.0257317 + 0.0445686i
\(516\) 0 0
\(517\) 147.092 + 254.770i 0.0125127 + 0.0216727i
\(518\) 543.992 + 942.221i 0.0461421 + 0.0799205i
\(519\) 0 0
\(520\) −249.984 + 432.985i −0.0210818 + 0.0365147i
\(521\) −7410.10 −0.623114 −0.311557 0.950227i \(-0.600851\pi\)
−0.311557 + 0.950227i \(0.600851\pi\)
\(522\) 0 0
\(523\) 18970.8 1.58611 0.793054 0.609151i \(-0.208490\pi\)
0.793054 + 0.609151i \(0.208490\pi\)
\(524\) −2230.55 + 3863.43i −0.185958 + 0.322089i
\(525\) 0 0
\(526\) 3007.92 + 5209.88i 0.249338 + 0.431866i
\(527\) 89.6206 + 155.227i 0.00740784 + 0.0128308i
\(528\) 0 0
\(529\) −53.1149 + 91.9977i −0.00436549 + 0.00756124i
\(530\) 962.861 0.0789132
\(531\) 0 0
\(532\) 1132.19 0.0922678
\(533\) 12619.4 21857.4i 1.02553 1.77627i
\(534\) 0 0
\(535\) −576.760 998.978i −0.0466085 0.0807282i
\(536\) −3076.28 5328.27i −0.247901 0.429377i
\(537\) 0 0
\(538\) 6559.73 11361.8i 0.525669 0.910486i
\(539\) 20091.3 1.60556
\(540\) 0 0
\(541\) −11440.4 −0.909169 −0.454584 0.890704i \(-0.650212\pi\)
−0.454584 + 0.890704i \(0.650212\pi\)
\(542\) −5147.64 + 8915.97i −0.407952 + 0.706594i
\(543\) 0 0
\(544\) −45.4772 78.7688i −0.00358422 0.00620806i
\(545\) −33.4121 57.8715i −0.00262609 0.00454852i
\(546\) 0 0
\(547\) −5126.48 + 8879.32i −0.400717 + 0.694063i −0.993813 0.111070i \(-0.964572\pi\)
0.593095 + 0.805132i \(0.297906\pi\)
\(548\) −2468.57 −0.192431
\(549\) 0 0
\(550\) −14815.3 −1.14860
\(551\) −7431.80 + 12872.3i −0.574601 + 0.995238i
\(552\) 0 0
\(553\) 47.6160 + 82.4733i 0.00366155 + 0.00634199i
\(554\) −1067.66 1849.24i −0.0818783 0.141817i
\(555\) 0 0
\(556\) −4313.14 + 7470.57i −0.328989 + 0.569825i
\(557\) −15336.5 −1.16666 −0.583328 0.812236i \(-0.698250\pi\)
−0.583328 + 0.812236i \(0.698250\pi\)
\(558\) 0 0
\(559\) −21210.9 −1.60488
\(560\) −15.3844 + 26.6465i −0.00116091 + 0.00201075i
\(561\) 0 0
\(562\) −4186.47 7251.18i −0.314227 0.544257i
\(563\) 3850.69 + 6669.58i 0.288254 + 0.499271i 0.973393 0.229142i \(-0.0735919\pi\)
−0.685139 + 0.728412i \(0.740259\pi\)
\(564\) 0 0
\(565\) −390.749 + 676.796i −0.0290954 + 0.0503948i
\(566\) −10713.9 −0.795652
\(567\) 0 0
\(568\) −4892.55 −0.361421
\(569\) −8869.63 + 15362.6i −0.653487 + 1.13187i 0.328784 + 0.944405i \(0.393361\pi\)
−0.982271 + 0.187467i \(0.939972\pi\)
\(570\) 0 0
\(571\) −6911.55 11971.2i −0.506549 0.877369i −0.999971 0.00757865i \(-0.997588\pi\)
0.493422 0.869790i \(-0.335746\pi\)
\(572\) 9262.55 + 16043.2i 0.677075 + 1.17273i
\(573\) 0 0
\(574\) 776.616 1345.14i 0.0564727 0.0978135i
\(575\) 13776.5 0.999164
\(576\) 0 0
\(577\) −15339.1 −1.10672 −0.553359 0.832943i \(-0.686654\pi\)
−0.553359 + 0.832943i \(0.686654\pi\)
\(578\) −4904.92 + 8495.57i −0.352972 + 0.611365i
\(579\) 0 0
\(580\) −201.970 349.822i −0.0144592 0.0250441i
\(581\) −530.816 919.399i −0.0379035 0.0656508i
\(582\) 0 0
\(583\) 17838.2 30896.7i 1.26721 2.19487i
\(584\) −7390.65 −0.523676
\(585\) 0 0
\(586\) 5791.58 0.408273
\(587\) 7383.26 12788.2i 0.519148 0.899191i −0.480604 0.876937i \(-0.659583\pi\)
0.999752 0.0222531i \(-0.00708396\pi\)
\(588\) 0 0
\(589\) 3730.57 + 6461.54i 0.260977 + 0.452026i
\(590\) −538.800 933.230i −0.0375967 0.0651194i
\(591\) 0 0
\(592\) 1819.14 3150.84i 0.126294 0.218748i
\(593\) −17603.6 −1.21904 −0.609522 0.792769i \(-0.708639\pi\)
−0.609522 + 0.792769i \(0.708639\pi\)
\(594\) 0 0
\(595\) −5.46593 −0.000376607
\(596\) 7143.38 12372.7i 0.490946 0.850344i
\(597\) 0 0
\(598\) −8613.08 14918.3i −0.588988 1.02016i
\(599\) 11400.6 + 19746.3i 0.777653 + 1.34693i 0.933291 + 0.359120i \(0.116923\pi\)
−0.155638 + 0.987814i \(0.549743\pi\)
\(600\) 0 0
\(601\) −952.624 + 1649.99i −0.0646562 + 0.111988i −0.896541 0.442960i \(-0.853928\pi\)
0.831885 + 0.554948i \(0.187262\pi\)
\(602\) −1305.35 −0.0883757
\(603\) 0 0
\(604\) −9045.72 −0.609379
\(605\) 891.263 1543.71i 0.0598925 0.103737i
\(606\) 0 0
\(607\) 1294.61 + 2242.33i 0.0865678 + 0.149940i 0.906058 0.423153i \(-0.139077\pi\)
−0.819490 + 0.573093i \(0.805743\pi\)
\(608\) −1893.05 3278.85i −0.126272 0.218709i
\(609\) 0 0
\(610\) −373.412 + 646.768i −0.0247853 + 0.0429293i
\(611\) 383.950 0.0254222
\(612\) 0 0
\(613\) 16930.4 1.11552 0.557759 0.830003i \(-0.311661\pi\)
0.557759 + 0.830003i \(0.311661\pi\)
\(614\) 1855.49 3213.81i 0.121957 0.211236i
\(615\) 0 0
\(616\) 570.031 + 987.323i 0.0372844 + 0.0645785i
\(617\) 6406.72 + 11096.8i 0.418030 + 0.724050i 0.995741 0.0921917i \(-0.0293872\pi\)
−0.577711 + 0.816241i \(0.696054\pi\)
\(618\) 0 0
\(619\) −5133.79 + 8891.99i −0.333351 + 0.577382i −0.983167 0.182711i \(-0.941513\pi\)
0.649815 + 0.760092i \(0.274846\pi\)
\(620\) −202.767 −0.0131344
\(621\) 0 0
\(622\) 14343.4 0.924626
\(623\) 93.8472 162.548i 0.00603517 0.0104532i
\(624\) 0 0
\(625\) −7691.55 13322.2i −0.492259 0.852618i
\(626\) −1310.83 2270.42i −0.0836922 0.144959i
\(627\) 0 0
\(628\) −3658.51 + 6336.72i −0.232469 + 0.402648i
\(629\) 646.322 0.0409707
\(630\) 0 0
\(631\) −21887.5 −1.38087 −0.690433 0.723397i \(-0.742580\pi\)
−0.690433 + 0.723397i \(0.742580\pi\)
\(632\) 159.230 275.795i 0.0100219 0.0173585i
\(633\) 0 0
\(634\) −3689.26 6389.99i −0.231103 0.400282i
\(635\) −528.984 916.227i −0.0330584 0.0572589i
\(636\) 0 0
\(637\) 13111.0 22708.9i 0.815504 1.41249i
\(638\) −14967.0 −0.928760
\(639\) 0 0
\(640\) 102.892 0.00635497
\(641\) 8601.84 14898.8i 0.530035 0.918047i −0.469351 0.883012i \(-0.655512\pi\)
0.999386 0.0350356i \(-0.0111545\pi\)
\(642\) 0 0
\(643\) −6282.79 10882.1i −0.385333 0.667416i 0.606482 0.795097i \(-0.292580\pi\)
−0.991815 + 0.127681i \(0.959247\pi\)
\(644\) −530.061 918.093i −0.0324337 0.0561769i
\(645\) 0 0
\(646\) 336.290 582.472i 0.0204817 0.0354753i
\(647\) −3552.55 −0.215866 −0.107933 0.994158i \(-0.534423\pi\)
−0.107933 + 0.994158i \(0.534423\pi\)
\(648\) 0 0
\(649\) −39927.9 −2.41496
\(650\) −9668.03 + 16745.5i −0.583402 + 1.01048i
\(651\) 0 0
\(652\) −537.108 930.297i −0.0322619 0.0558792i
\(653\) 2885.50 + 4997.83i 0.172922 + 0.299511i 0.939440 0.342712i \(-0.111346\pi\)
−0.766518 + 0.642223i \(0.778012\pi\)
\(654\) 0 0
\(655\) 448.256 776.402i 0.0267402 0.0463153i
\(656\) −5194.09 −0.309139
\(657\) 0 0
\(658\) 23.6289 0.00139992
\(659\) 8239.20 14270.7i 0.487032 0.843564i −0.512857 0.858474i \(-0.671413\pi\)
0.999889 + 0.0149104i \(0.00474631\pi\)
\(660\) 0 0
\(661\) 2281.62 + 3951.88i 0.134258 + 0.232542i 0.925314 0.379202i \(-0.123801\pi\)
−0.791056 + 0.611744i \(0.790468\pi\)
\(662\) −3244.96 5620.44i −0.190512 0.329977i
\(663\) 0 0
\(664\) −1775.08 + 3074.52i −0.103744 + 0.179691i
\(665\) −227.526 −0.0132678
\(666\) 0 0
\(667\) 13917.5 0.807929
\(668\) −8109.04 + 14045.3i −0.469683 + 0.813515i
\(669\) 0 0
\(670\) 618.214 + 1070.78i 0.0356473 + 0.0617430i
\(671\) 13835.9 + 23964.4i 0.796017 + 1.37874i
\(672\) 0 0
\(673\) 6576.14 11390.2i 0.376659 0.652393i −0.613915 0.789372i \(-0.710406\pi\)
0.990574 + 0.136980i \(0.0437395\pi\)
\(674\) −8603.32 −0.491673
\(675\) 0 0
\(676\) 15389.8 0.875617
\(677\) 7438.07 12883.1i 0.422257 0.731371i −0.573903 0.818924i \(-0.694571\pi\)
0.996160 + 0.0875524i \(0.0279045\pi\)
\(678\) 0 0
\(679\) −108.868 188.566i −0.00615314 0.0106576i
\(680\) 9.13918 + 15.8295i 0.000515399 + 0.000892698i
\(681\) 0 0
\(682\) −3756.52 + 6506.49i −0.210916 + 0.365317i
\(683\) 24082.4 1.34918 0.674588 0.738195i \(-0.264321\pi\)
0.674588 + 0.738195i \(0.264321\pi\)
\(684\) 0 0
\(685\) 496.089 0.0276709
\(686\) 1627.43 2818.79i 0.0905766 0.156883i
\(687\) 0 0
\(688\) 2182.58 + 3780.35i 0.120945 + 0.209483i
\(689\) −23281.4 40324.5i −1.28730 2.22967i
\(690\) 0 0
\(691\) −6445.10 + 11163.2i −0.354824 + 0.614573i −0.987088 0.160180i \(-0.948792\pi\)
0.632264 + 0.774753i \(0.282126\pi\)
\(692\) −6989.40 −0.383955
\(693\) 0 0
\(694\) −6608.40 −0.361457
\(695\) 866.776 1501.30i 0.0473075 0.0819390i
\(696\) 0 0
\(697\) −461.353 799.086i −0.0250717 0.0434255i
\(698\) 4508.71 + 7809.31i 0.244494 + 0.423477i
\(699\) 0 0
\(700\) −594.985 + 1030.54i −0.0321261 + 0.0556441i
\(701\) 11887.0 0.640467 0.320233 0.947339i \(-0.396239\pi\)
0.320233 + 0.947339i \(0.396239\pi\)
\(702\) 0 0
\(703\) 26904.0 1.44339
\(704\) 1906.22 3301.66i 0.102050 0.176756i
\(705\) 0 0
\(706\) −6886.74 11928.2i −0.367119 0.635868i
\(707\) 1940.78 + 3361.54i 0.103240 + 0.178817i
\(708\) 0 0
\(709\) −2907.22 + 5035.45i −0.153996 + 0.266728i −0.932693 0.360672i \(-0.882547\pi\)
0.778697 + 0.627400i \(0.215881\pi\)
\(710\) 983.217 0.0519711
\(711\) 0 0
\(712\) −627.661 −0.0330373
\(713\) 3493.12 6050.26i 0.183476 0.317790i
\(714\) 0 0
\(715\) −1861.42 3224.07i −0.0973611 0.168634i
\(716\) −4075.42 7058.83i −0.212717 0.368437i
\(717\) 0 0
\(718\) 1529.31 2648.84i 0.0794892 0.137679i
\(719\) −4488.23 −0.232800 −0.116400 0.993202i \(-0.537135\pi\)
−0.116400 + 0.993202i \(0.537135\pi\)
\(720\) 0 0
\(721\) 1790.00 0.0924590
\(722\) 7139.52 12366.0i 0.368013 0.637418i
\(723\) 0 0
\(724\) −5641.35 9771.11i −0.289585 0.501575i
\(725\) −7811.10 13529.2i −0.400134 0.693052i
\(726\) 0 0
\(727\) −11592.0 + 20077.9i −0.591366 + 1.02428i 0.402682 + 0.915340i \(0.368078\pi\)
−0.994049 + 0.108937i \(0.965255\pi\)
\(728\) 1487.94 0.0757510
\(729\) 0 0
\(730\) 1485.24 0.0753029
\(731\) −387.726 + 671.561i −0.0196177 + 0.0339789i
\(732\) 0 0
\(733\) 10338.7 + 17907.2i 0.520967 + 0.902341i 0.999703 + 0.0243822i \(0.00776185\pi\)
−0.478736 + 0.877959i \(0.658905\pi\)
\(734\) −10231.4 17721.2i −0.514505 0.891149i
\(735\) 0 0
\(736\) −1772.55 + 3070.15i −0.0887734 + 0.153760i
\(737\) 45812.8 2.28974
\(738\) 0 0
\(739\) −13001.7 −0.647191 −0.323595 0.946196i \(-0.604892\pi\)
−0.323595 + 0.946196i \(0.604892\pi\)
\(740\) −365.578 + 633.199i −0.0181607 + 0.0314552i
\(741\) 0 0
\(742\) −1432.77 2481.63i −0.0708876 0.122781i
\(743\) 4633.55 + 8025.54i 0.228786 + 0.396270i 0.957449 0.288603i \(-0.0931909\pi\)
−0.728662 + 0.684873i \(0.759858\pi\)
\(744\) 0 0
\(745\) −1435.55 + 2486.44i −0.0705964 + 0.122277i
\(746\) −1892.86 −0.0928988
\(747\) 0 0
\(748\) 677.260 0.0331057
\(749\) −1716.48 + 2973.03i −0.0837367 + 0.145036i
\(750\) 0 0
\(751\) 15361.1 + 26606.3i 0.746385 + 1.29278i 0.949545 + 0.313632i \(0.101546\pi\)
−0.203159 + 0.979146i \(0.565121\pi\)
\(752\) −39.5081 68.4300i −0.00191584 0.00331833i
\(753\) 0 0
\(754\) −9767.01 + 16917.0i −0.471742 + 0.817081i
\(755\) 1817.85 0.0876267
\(756\) 0 0
\(757\) 5356.86 0.257197 0.128599 0.991697i \(-0.458952\pi\)
0.128599 + 0.991697i \(0.458952\pi\)
\(758\) −8717.46 + 15099.1i −0.417721 + 0.723514i
\(759\) 0 0
\(760\) 380.430 + 658.924i 0.0181574 + 0.0314496i
\(761\) 5009.51 + 8676.72i 0.238626 + 0.413313i 0.960320 0.278899i \(-0.0899696\pi\)
−0.721694 + 0.692212i \(0.756636\pi\)
\(762\) 0 0
\(763\) −99.4368 + 172.230i −0.00471802 + 0.00817186i
\(764\) −1758.89 −0.0832912
\(765\) 0 0
\(766\) 24523.1 1.15673
\(767\) −26055.7 + 45129.8i −1.22662 + 2.12457i
\(768\) 0 0
\(769\) 8775.55 + 15199.7i 0.411514 + 0.712764i 0.995056 0.0993198i \(-0.0316667\pi\)
−0.583541 + 0.812084i \(0.698333\pi\)
\(770\) −114.554 198.414i −0.00536137 0.00928617i
\(771\) 0 0
\(772\) 925.353 1602.76i 0.0431401 0.0747209i
\(773\) −17144.5 −0.797731 −0.398866 0.917009i \(-0.630596\pi\)
−0.398866 + 0.917009i \(0.630596\pi\)
\(774\) 0 0
\(775\) −7841.94 −0.363472
\(776\) −364.062 + 630.574i −0.0168416 + 0.0291705i
\(777\) 0 0
\(778\) 13211.1 + 22882.2i 0.608791 + 1.05446i
\(779\) −19204.4 33263.0i −0.883272 1.52987i
\(780\) 0 0
\(781\) 18215.4 31549.9i 0.834567 1.44551i
\(782\) −629.771 −0.0287987
\(783\) 0 0
\(784\) −5396.43 −0.245829
\(785\) 735.220 1273.44i 0.0334282 0.0578994i
\(786\) 0 0
\(787\) 4297.73 + 7443.89i 0.194660 + 0.337161i 0.946789 0.321855i \(-0.104306\pi\)
−0.752129 + 0.659016i \(0.770973\pi\)
\(788\) 2073.19 + 3590.88i 0.0937239 + 0.162335i
\(789\) 0 0
\(790\) −31.9993 + 55.4243i −0.00144112 + 0.00249609i
\(791\) 2325.79 0.104546
\(792\) 0 0
\(793\) 36115.5 1.61727
\(794\) −5211.93 + 9027.33i −0.232953 + 0.403486i
\(795\) 0 0
\(796\) 2380.43 + 4123.03i 0.105995 + 0.183589i
\(797\) 10418.9 + 18046.1i 0.463057 + 0.802039i 0.999112 0.0421447i \(-0.0134190\pi\)
−0.536054 + 0.844184i \(0.680086\pi\)
\(798\) 0 0
\(799\) 7.01843 12.1563i 0.000310756 0.000538245i
\(800\) 3979.32 0.175863
\(801\) 0 0
\(802\) 1971.27 0.0867929
\(803\) 27515.9 47659.0i 1.20924 2.09446i
\(804\) 0 0
\(805\) 106.522 + 184.502i 0.00466386 + 0.00807805i
\(806\) 4902.79 + 8491.88i 0.214260 + 0.371109i
\(807\) 0 0
\(808\) 6490.09 11241.2i 0.282575 0.489434i
\(809\) −6529.43 −0.283761 −0.141880 0.989884i \(-0.545315\pi\)
−0.141880 + 0.989884i \(0.545315\pi\)
\(810\) 0 0
\(811\) 29764.0 1.28873 0.644363 0.764720i \(-0.277123\pi\)
0.644363 + 0.764720i \(0.277123\pi\)
\(812\) −601.076 + 1041.09i −0.0259774 + 0.0449941i
\(813\) 0 0
\(814\) 13545.6 + 23461.6i 0.583258 + 1.01023i
\(815\) 107.938 + 186.954i 0.00463915 + 0.00803525i
\(816\) 0 0
\(817\) −16139.6 + 27954.6i −0.691129 + 1.19707i
\(818\) 1349.29 0.0576735
\(819\) 0 0
\(820\) 1043.81 0.0444531
\(821\) −14785.6 + 25609.4i −0.628527 + 1.08864i 0.359321 + 0.933214i \(0.383008\pi\)
−0.987847 + 0.155426i \(0.950325\pi\)
\(822\) 0 0
\(823\) −3056.22 5293.52i −0.129445 0.224205i 0.794017 0.607896i \(-0.207986\pi\)
−0.923462 + 0.383691i \(0.874653\pi\)
\(824\) −2992.92 5183.90i −0.126533 0.219162i
\(825\) 0 0
\(826\) −1603.51 + 2777.35i −0.0675462 + 0.116993i
\(827\) 3265.87 0.137322 0.0686612 0.997640i \(-0.478127\pi\)
0.0686612 + 0.997640i \(0.478127\pi\)
\(828\) 0 0
\(829\) −19327.8 −0.809747 −0.404874 0.914373i \(-0.632685\pi\)
−0.404874 + 0.914373i \(0.632685\pi\)
\(830\) 356.723 617.862i 0.0149181 0.0258389i
\(831\) 0 0
\(832\) −2487.88 4309.13i −0.103668 0.179558i
\(833\) −479.325 830.215i −0.0199371 0.0345321i
\(834\) 0 0
\(835\) 1629.61 2822.57i 0.0675389 0.116981i
\(836\) 28191.8 1.16631
\(837\) 0 0
\(838\) −15011.3 −0.618801
\(839\) −18819.1 + 32595.6i −0.774382 + 1.34127i 0.160760 + 0.986994i \(0.448606\pi\)
−0.935141 + 0.354275i \(0.884728\pi\)
\(840\) 0 0
\(841\) 4303.44 + 7453.77i 0.176450 + 0.305620i
\(842\) −1352.62 2342.81i −0.0553617 0.0958892i
\(843\) 0 0
\(844\) 9856.01 17071.1i 0.401964 0.696223i
\(845\) −3092.77 −0.125911
\(846\) 0 0
\(847\) −5304.92 −0.215206
\(848\) −4791.26 + 8298.71i −0.194024 + 0.336060i
\(849\) 0 0
\(850\) 353.454 + 612.200i 0.0142628 + 0.0247039i
\(851\) −12595.8 21816.5i −0.507377 0.878803i
\(852\) 0 0
\(853\) −20934.8 + 36260.2i −0.840322 + 1.45548i 0.0493012 + 0.998784i \(0.484301\pi\)
−0.889623 + 0.456696i \(0.849033\pi\)
\(854\) 2222.60 0.0890583
\(855\) 0 0
\(856\) 11480.0 0.458386
\(857\) −16536.5 + 28642.0i −0.659131 + 1.14165i 0.321711 + 0.946838i \(0.395742\pi\)
−0.980841 + 0.194810i \(0.937591\pi\)
\(858\) 0 0
\(859\) 7304.84 + 12652.4i 0.290149 + 0.502553i 0.973845 0.227214i \(-0.0729618\pi\)
−0.683696 + 0.729767i \(0.739628\pi\)
\(860\) −438.616 759.706i −0.0173915 0.0301230i
\(861\) 0 0
\(862\) −4003.21 + 6933.77i −0.158179 + 0.273973i
\(863\) 118.786 0.00468543 0.00234271 0.999997i \(-0.499254\pi\)
0.00234271 + 0.999997i \(0.499254\pi\)
\(864\) 0 0
\(865\) 1404.60 0.0552115
\(866\) 9975.38 17277.9i 0.391429 0.677974i
\(867\) 0 0
\(868\) 301.725 + 522.602i 0.0117986 + 0.0204358i
\(869\) 1185.65 + 2053.61i 0.0462837 + 0.0801658i
\(870\) 0 0
\(871\) 29896.1 51781.5i 1.16302 2.01441i
\(872\) 665.044 0.0258271
\(873\) 0 0
\(874\) −26215.0 −1.01457
\(875\) 239.760 415.276i 0.00926327 0.0160444i
\(876\) 0 0
\(877\) 3180.09 + 5508.08i 0.122445 + 0.212080i 0.920731 0.390197i \(-0.127593\pi\)
−0.798287 + 0.602278i \(0.794260\pi\)
\(878\) 17360.9 + 30070.0i 0.667315 + 1.15582i
\(879\) 0 0
\(880\) −383.077 + 663.508i −0.0146744 + 0.0254169i
\(881\) −32601.5 −1.24673 −0.623367 0.781930i \(-0.714236\pi\)
−0.623367 + 0.781930i \(0.714236\pi\)
\(882\) 0 0
\(883\) 1478.26 0.0563392 0.0281696 0.999603i \(-0.491032\pi\)
0.0281696 + 0.999603i \(0.491032\pi\)
\(884\) 441.959 765.496i 0.0168153 0.0291249i
\(885\) 0 0
\(886\) −8575.43 14853.1i −0.325166 0.563204i
\(887\) 22633.6 + 39202.5i 0.856776 + 1.48398i 0.874987 + 0.484146i \(0.160870\pi\)
−0.0182111 + 0.999834i \(0.505797\pi\)
\(888\) 0 0
\(889\) −1574.29 + 2726.75i −0.0593927 + 0.102871i
\(890\) 126.136 0.00475066
\(891\) 0 0
\(892\) −5881.88 −0.220785
\(893\) 292.151 506.020i 0.0109479 0.0189623i
\(894\) 0 0
\(895\) 819.003 + 1418.56i 0.0305880 + 0.0529800i
\(896\) −153.108 265.190i −0.00570866 0.00988770i
\(897\) 0 0
\(898\) 4703.77 8147.17i 0.174796 0.302756i
\(899\) −7922.22 −0.293905
\(900\) 0 0
\(901\) −1702.29 −0.0629428
\(902\) 19338.0 33494.4i 0.713841 1.23641i
\(903\) 0 0
\(904\) −3888.78 6735.57i −0.143074 0.247812i
\(905\) 1133.70 + 1963.62i 0.0416413 + 0.0721248i
\(906\) 0 0
\(907\) −3630.76 + 6288.66i −0.132919 + 0.230222i −0.924801 0.380452i \(-0.875768\pi\)
0.791882 + 0.610675i \(0.209102\pi\)
\(908\) −8409.04 −0.307339
\(909\) 0 0
\(910\) −299.019 −0.0108927
\(911\) −9717.20 + 16830.7i −0.353398 + 0.612103i −0.986842 0.161685i \(-0.948307\pi\)
0.633445 + 0.773788i \(0.281640\pi\)
\(912\) 0 0
\(913\) −13217.5 22893.4i −0.479118 0.829857i
\(914\) −7046.80 12205.4i −0.255019 0.441706i
\(915\) 0 0
\(916\) 2002.08 3467.70i 0.0722166 0.125083i
\(917\) −2668.08 −0.0960827
\(918\) 0 0
\(919\) −24010.2 −0.861830 −0.430915 0.902392i \(-0.641809\pi\)
−0.430915 + 0.902392i \(0.641809\pi\)
\(920\) 356.216 616.984i 0.0127653 0.0221102i
\(921\) 0 0
\(922\) 5770.26 + 9994.38i 0.206110 + 0.356993i
\(923\) −23773.6 41177.0i −0.847797 1.46843i
\(924\) 0 0
\(925\) −14138.6 + 24488.7i −0.502565 + 0.870468i
\(926\) 27198.3 0.965217
\(927\) 0 0
\(928\) 4020.06 0.142204
\(929\) 20777.3 35987.4i 0.733780 1.27094i −0.221477 0.975166i \(-0.571088\pi\)
0.955257 0.295778i \(-0.0955790\pi\)
\(930\) 0 0
\(931\) −19952.5 34558.8i −0.702382 1.21656i
\(932\) −12561.6 21757.3i −0.441489 0.764681i
\(933\) 0 0
\(934\) 5730.52 9925.55i 0.200758 0.347724i
\(935\) −136.103 −0.00476049
\(936\) 0 0
\(937\) 16811.0 0.586116 0.293058 0.956095i \(-0.405327\pi\)
0.293058 + 0.956095i \(0.405327\pi\)
\(938\) 1839.85 3186.71i 0.0640439 0.110927i
\(939\) 0 0
\(940\) 7.93962 + 13.7518i 0.000275491 + 0.000477165i
\(941\) −5366.43 9294.93i −0.185909 0.322004i 0.757973 0.652286i \(-0.226190\pi\)
−0.943883 + 0.330281i \(0.892856\pi\)
\(942\) 0 0
\(943\) −17982.0 + 31145.8i −0.620971 + 1.07555i
\(944\) 10724.4 0.369757
\(945\) 0 0
\(946\) −32503.7 −1.11711
\(947\) 15774.7 27322.5i 0.541297 0.937553i −0.457533 0.889192i \(-0.651267\pi\)
0.998830 0.0483606i \(-0.0153997\pi\)
\(948\) 0 0
\(949\) −35912.1 62201.6i −1.22841 2.12766i
\(950\) 14713.0 + 25483.6i 0.502475 + 0.870313i
\(951\) 0 0
\(952\) 27.1988 47.1097i 0.000925965 0.00160382i
\(953\) −31955.2 −1.08618 −0.543090 0.839675i \(-0.682746\pi\)
−0.543090 + 0.839675i \(0.682746\pi\)
\(954\) 0 0
\(955\) 353.470 0.0119770
\(956\) −2034.74 + 3524.27i −0.0688370 + 0.119229i
\(957\) 0 0
\(958\) 14568.3 + 25233.0i 0.491315 + 0.850982i
\(959\) −738.197 1278.59i −0.0248567 0.0430531i
\(960\) 0 0
\(961\) 12907.1 22355.8i 0.433256 0.750421i
\(962\) 35357.7 1.18501
\(963\) 0 0
\(964\) −3685.17 −0.123124
\(965\) −185.961 + 322.093i −0.00620340 + 0.0107446i
\(966\) 0 0
\(967\) −19186.1 33231.3i −0.638038 1.10511i −0.985863 0.167555i \(-0.946413\pi\)
0.347825 0.937560i \(-0.386920\pi\)
\(968\) 8869.97 + 15363.2i 0.294516 + 0.510117i
\(969\) 0 0
\(970\) 73.1626 126.721i 0.00242176 0.00419461i
\(971\) −46445.9 −1.53503 −0.767517 0.641028i \(-0.778508\pi\)
−0.767517 + 0.641028i \(0.778508\pi\)
\(972\) 0 0
\(973\) −5159.17 −0.169985
\(974\) 7164.51 12409.3i 0.235694 0.408233i
\(975\) 0 0
\(976\) −3716.25 6436.73i −0.121879 0.211101i
\(977\) 23954.1 + 41489.8i 0.784402 + 1.35862i 0.929356 + 0.369185i \(0.120363\pi\)
−0.144954 + 0.989438i \(0.546303\pi\)
\(978\) 0 0
\(979\) 2336.83 4047.50i 0.0762874 0.132134i
\(980\) 1084.48 0.0353493
\(981\) 0 0
\(982\) 19020.1 0.618082
\(983\) 20273.8 35115.3i 0.657818 1.13937i −0.323361 0.946276i \(-0.604813\pi\)
0.981179 0.193099i \(-0.0618538\pi\)
\(984\) 0 0
\(985\) −416.633 721.629i −0.0134772 0.0233432i
\(986\) 357.072 + 618.467i 0.0115330 + 0.0199757i
\(987\) 0 0
\(988\) 18397.1 31864.8i 0.592399 1.02607i
\(989\) 30224.6 0.971776
\(990\) 0 0
\(991\) −10651.5 −0.341428 −0.170714 0.985321i \(-0.554607\pi\)
−0.170714 + 0.985321i \(0.554607\pi\)
\(992\) 1008.98 1747.61i 0.0322936 0.0559342i
\(993\) 0 0
\(994\) −1463.06 2534.09i −0.0466856 0.0808618i
\(995\) −478.376 828.571i −0.0152417 0.0263995i
\(996\) 0 0
\(997\) 9379.18 16245.2i 0.297935 0.516039i −0.677728 0.735313i \(-0.737035\pi\)
0.975663 + 0.219273i \(0.0703687\pi\)
\(998\) −42971.2 −1.36296
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 162.4.c.j.55.1 4
3.2 odd 2 162.4.c.i.55.2 4
9.2 odd 6 162.4.a.h.1.1 yes 2
9.4 even 3 inner 162.4.c.j.109.1 4
9.5 odd 6 162.4.c.i.109.2 4
9.7 even 3 162.4.a.e.1.2 2
36.7 odd 6 1296.4.a.j.1.2 2
36.11 even 6 1296.4.a.s.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
162.4.a.e.1.2 2 9.7 even 3
162.4.a.h.1.1 yes 2 9.2 odd 6
162.4.c.i.55.2 4 3.2 odd 2
162.4.c.i.109.2 4 9.5 odd 6
162.4.c.j.55.1 4 1.1 even 1 trivial
162.4.c.j.109.1 4 9.4 even 3 inner
1296.4.a.j.1.2 2 36.7 odd 6
1296.4.a.s.1.1 2 36.11 even 6