Properties

Label 1300.2.a.j.1.1
Level $1300$
Weight $2$
Character 1300.1
Self dual yes
Analytic conductor $10.381$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1300,2,Mod(1,1300)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1300, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1300.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1300 = 2^{2} \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1300.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(10.3805522628\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.148.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 3x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 260)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(0.311108\) of defining polynomial
Character \(\chi\) \(=\) 1300.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.21432 q^{3} +0.903212 q^{7} +1.90321 q^{9} -0.0666765 q^{11} -1.00000 q^{13} -3.37778 q^{17} +5.11753 q^{19} -2.00000 q^{21} -4.21432 q^{23} +2.42864 q^{27} +1.52543 q^{29} +4.49532 q^{31} +0.147643 q^{33} -11.9541 q^{37} +2.21432 q^{39} +2.75557 q^{41} +8.77631 q^{43} -8.90321 q^{47} -6.18421 q^{49} +7.47949 q^{51} -3.57136 q^{53} -11.3319 q^{57} -8.16839 q^{59} -11.1985 q^{61} +1.71900 q^{63} -2.14764 q^{67} +9.33185 q^{69} -5.54617 q^{71} +2.70964 q^{73} -0.0602231 q^{77} -3.18421 q^{79} -11.0874 q^{81} -9.89384 q^{83} -3.37778 q^{87} -14.4701 q^{89} -0.903212 q^{91} -9.95407 q^{93} -7.93978 q^{97} -0.126900 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 4 q^{7} - q^{9} - 3 q^{13} - 10 q^{17} + 2 q^{19} - 6 q^{21} - 6 q^{23} - 6 q^{27} - 2 q^{29} - 6 q^{33} - 16 q^{37} + 8 q^{41} + 6 q^{43} - 20 q^{47} - 5 q^{49} - 4 q^{51} - 24 q^{53} - 14 q^{57}+ \cdots - 14 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −2.21432 −1.27844 −0.639219 0.769025i \(-0.720742\pi\)
−0.639219 + 0.769025i \(0.720742\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 0.903212 0.341382 0.170691 0.985325i \(-0.445400\pi\)
0.170691 + 0.985325i \(0.445400\pi\)
\(8\) 0 0
\(9\) 1.90321 0.634404
\(10\) 0 0
\(11\) −0.0666765 −0.0201037 −0.0100519 0.999949i \(-0.503200\pi\)
−0.0100519 + 0.999949i \(0.503200\pi\)
\(12\) 0 0
\(13\) −1.00000 −0.277350
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −3.37778 −0.819233 −0.409617 0.912258i \(-0.634337\pi\)
−0.409617 + 0.912258i \(0.634337\pi\)
\(18\) 0 0
\(19\) 5.11753 1.17404 0.587021 0.809572i \(-0.300301\pi\)
0.587021 + 0.809572i \(0.300301\pi\)
\(20\) 0 0
\(21\) −2.00000 −0.436436
\(22\) 0 0
\(23\) −4.21432 −0.878746 −0.439373 0.898305i \(-0.644799\pi\)
−0.439373 + 0.898305i \(0.644799\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 2.42864 0.467392
\(28\) 0 0
\(29\) 1.52543 0.283265 0.141632 0.989919i \(-0.454765\pi\)
0.141632 + 0.989919i \(0.454765\pi\)
\(30\) 0 0
\(31\) 4.49532 0.807383 0.403691 0.914895i \(-0.367727\pi\)
0.403691 + 0.914895i \(0.367727\pi\)
\(32\) 0 0
\(33\) 0.147643 0.0257014
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −11.9541 −1.96524 −0.982618 0.185638i \(-0.940565\pi\)
−0.982618 + 0.185638i \(0.940565\pi\)
\(38\) 0 0
\(39\) 2.21432 0.354575
\(40\) 0 0
\(41\) 2.75557 0.430348 0.215174 0.976576i \(-0.430968\pi\)
0.215174 + 0.976576i \(0.430968\pi\)
\(42\) 0 0
\(43\) 8.77631 1.33838 0.669188 0.743094i \(-0.266642\pi\)
0.669188 + 0.743094i \(0.266642\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −8.90321 −1.29867 −0.649333 0.760504i \(-0.724952\pi\)
−0.649333 + 0.760504i \(0.724952\pi\)
\(48\) 0 0
\(49\) −6.18421 −0.883458
\(50\) 0 0
\(51\) 7.47949 1.04734
\(52\) 0 0
\(53\) −3.57136 −0.490564 −0.245282 0.969452i \(-0.578881\pi\)
−0.245282 + 0.969452i \(0.578881\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −11.3319 −1.50094
\(58\) 0 0
\(59\) −8.16839 −1.06343 −0.531717 0.846922i \(-0.678453\pi\)
−0.531717 + 0.846922i \(0.678453\pi\)
\(60\) 0 0
\(61\) −11.1985 −1.43382 −0.716910 0.697165i \(-0.754444\pi\)
−0.716910 + 0.697165i \(0.754444\pi\)
\(62\) 0 0
\(63\) 1.71900 0.216574
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −2.14764 −0.262376 −0.131188 0.991357i \(-0.541879\pi\)
−0.131188 + 0.991357i \(0.541879\pi\)
\(68\) 0 0
\(69\) 9.33185 1.12342
\(70\) 0 0
\(71\) −5.54617 −0.658209 −0.329105 0.944293i \(-0.606747\pi\)
−0.329105 + 0.944293i \(0.606747\pi\)
\(72\) 0 0
\(73\) 2.70964 0.317139 0.158569 0.987348i \(-0.449312\pi\)
0.158569 + 0.987348i \(0.449312\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −0.0602231 −0.00686305
\(78\) 0 0
\(79\) −3.18421 −0.358251 −0.179126 0.983826i \(-0.557327\pi\)
−0.179126 + 0.983826i \(0.557327\pi\)
\(80\) 0 0
\(81\) −11.0874 −1.23194
\(82\) 0 0
\(83\) −9.89384 −1.08599 −0.542995 0.839736i \(-0.682710\pi\)
−0.542995 + 0.839736i \(0.682710\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) −3.37778 −0.362136
\(88\) 0 0
\(89\) −14.4701 −1.53383 −0.766915 0.641748i \(-0.778209\pi\)
−0.766915 + 0.641748i \(0.778209\pi\)
\(90\) 0 0
\(91\) −0.903212 −0.0946823
\(92\) 0 0
\(93\) −9.95407 −1.03219
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −7.93978 −0.806162 −0.403081 0.915164i \(-0.632061\pi\)
−0.403081 + 0.915164i \(0.632061\pi\)
\(98\) 0 0
\(99\) −0.126900 −0.0127539
\(100\) 0 0
\(101\) −5.18421 −0.515848 −0.257924 0.966165i \(-0.583038\pi\)
−0.257924 + 0.966165i \(0.583038\pi\)
\(102\) 0 0
\(103\) 7.88739 0.777168 0.388584 0.921413i \(-0.372964\pi\)
0.388584 + 0.921413i \(0.372964\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 17.3669 1.67892 0.839460 0.543421i \(-0.182871\pi\)
0.839460 + 0.543421i \(0.182871\pi\)
\(108\) 0 0
\(109\) 0.133353 0.0127729 0.00638645 0.999980i \(-0.497967\pi\)
0.00638645 + 0.999980i \(0.497967\pi\)
\(110\) 0 0
\(111\) 26.4701 2.51243
\(112\) 0 0
\(113\) −5.86665 −0.551888 −0.275944 0.961174i \(-0.588990\pi\)
−0.275944 + 0.961174i \(0.588990\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −1.90321 −0.175952
\(118\) 0 0
\(119\) −3.05086 −0.279671
\(120\) 0 0
\(121\) −10.9956 −0.999596
\(122\) 0 0
\(123\) −6.10171 −0.550173
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) −15.5002 −1.37542 −0.687712 0.725984i \(-0.741385\pi\)
−0.687712 + 0.725984i \(0.741385\pi\)
\(128\) 0 0
\(129\) −19.4336 −1.71103
\(130\) 0 0
\(131\) −5.80642 −0.507310 −0.253655 0.967295i \(-0.581633\pi\)
−0.253655 + 0.967295i \(0.581633\pi\)
\(132\) 0 0
\(133\) 4.62222 0.400797
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 16.2766 1.39060 0.695300 0.718720i \(-0.255272\pi\)
0.695300 + 0.718720i \(0.255272\pi\)
\(138\) 0 0
\(139\) −7.18421 −0.609357 −0.304678 0.952455i \(-0.598549\pi\)
−0.304678 + 0.952455i \(0.598549\pi\)
\(140\) 0 0
\(141\) 19.7146 1.66027
\(142\) 0 0
\(143\) 0.0666765 0.00557577
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 13.6938 1.12945
\(148\) 0 0
\(149\) 13.2859 1.08842 0.544212 0.838947i \(-0.316829\pi\)
0.544212 + 0.838947i \(0.316829\pi\)
\(150\) 0 0
\(151\) −15.3111 −1.24600 −0.623000 0.782222i \(-0.714086\pi\)
−0.623000 + 0.782222i \(0.714086\pi\)
\(152\) 0 0
\(153\) −6.42864 −0.519725
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 18.4701 1.47408 0.737038 0.675851i \(-0.236224\pi\)
0.737038 + 0.675851i \(0.236224\pi\)
\(158\) 0 0
\(159\) 7.90813 0.627156
\(160\) 0 0
\(161\) −3.80642 −0.299988
\(162\) 0 0
\(163\) 12.7699 1.00021 0.500106 0.865964i \(-0.333294\pi\)
0.500106 + 0.865964i \(0.333294\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −7.43356 −0.575226 −0.287613 0.957747i \(-0.592862\pi\)
−0.287613 + 0.957747i \(0.592862\pi\)
\(168\) 0 0
\(169\) 1.00000 0.0769231
\(170\) 0 0
\(171\) 9.73975 0.744817
\(172\) 0 0
\(173\) −20.4286 −1.55316 −0.776580 0.630018i \(-0.783047\pi\)
−0.776580 + 0.630018i \(0.783047\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 18.0874 1.35953
\(178\) 0 0
\(179\) 24.6035 1.83895 0.919475 0.393148i \(-0.128614\pi\)
0.919475 + 0.393148i \(0.128614\pi\)
\(180\) 0 0
\(181\) 13.9956 1.04028 0.520141 0.854081i \(-0.325880\pi\)
0.520141 + 0.854081i \(0.325880\pi\)
\(182\) 0 0
\(183\) 24.7971 1.83305
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 0.225219 0.0164696
\(188\) 0 0
\(189\) 2.19358 0.159559
\(190\) 0 0
\(191\) −10.7556 −0.778246 −0.389123 0.921186i \(-0.627222\pi\)
−0.389123 + 0.921186i \(0.627222\pi\)
\(192\) 0 0
\(193\) −15.4193 −1.10990 −0.554952 0.831883i \(-0.687263\pi\)
−0.554952 + 0.831883i \(0.687263\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −21.2257 −1.51227 −0.756134 0.654417i \(-0.772914\pi\)
−0.756134 + 0.654417i \(0.772914\pi\)
\(198\) 0 0
\(199\) 20.3368 1.44164 0.720818 0.693125i \(-0.243766\pi\)
0.720818 + 0.693125i \(0.243766\pi\)
\(200\) 0 0
\(201\) 4.75557 0.335432
\(202\) 0 0
\(203\) 1.37778 0.0967015
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −8.02074 −0.557480
\(208\) 0 0
\(209\) −0.341219 −0.0236026
\(210\) 0 0
\(211\) −20.7239 −1.42669 −0.713347 0.700811i \(-0.752822\pi\)
−0.713347 + 0.700811i \(0.752822\pi\)
\(212\) 0 0
\(213\) 12.2810 0.841480
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 4.06022 0.275626
\(218\) 0 0
\(219\) −6.00000 −0.405442
\(220\) 0 0
\(221\) 3.37778 0.227214
\(222\) 0 0
\(223\) 20.2494 1.35600 0.677999 0.735063i \(-0.262848\pi\)
0.677999 + 0.735063i \(0.262848\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 16.9032 1.12191 0.560953 0.827848i \(-0.310435\pi\)
0.560953 + 0.827848i \(0.310435\pi\)
\(228\) 0 0
\(229\) 3.96836 0.262236 0.131118 0.991367i \(-0.458143\pi\)
0.131118 + 0.991367i \(0.458143\pi\)
\(230\) 0 0
\(231\) 0.133353 0.00877399
\(232\) 0 0
\(233\) −15.3176 −1.00349 −0.501743 0.865017i \(-0.667308\pi\)
−0.501743 + 0.865017i \(0.667308\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 7.05086 0.458002
\(238\) 0 0
\(239\) −14.8637 −0.961455 −0.480727 0.876870i \(-0.659627\pi\)
−0.480727 + 0.876870i \(0.659627\pi\)
\(240\) 0 0
\(241\) 20.2953 1.30733 0.653667 0.756782i \(-0.273230\pi\)
0.653667 + 0.756782i \(0.273230\pi\)
\(242\) 0 0
\(243\) 17.2652 1.10756
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −5.11753 −0.325621
\(248\) 0 0
\(249\) 21.9081 1.38837
\(250\) 0 0
\(251\) 20.5620 1.29786 0.648931 0.760847i \(-0.275216\pi\)
0.648931 + 0.760847i \(0.275216\pi\)
\(252\) 0 0
\(253\) 0.280996 0.0176661
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −27.5210 −1.71671 −0.858356 0.513055i \(-0.828514\pi\)
−0.858356 + 0.513055i \(0.828514\pi\)
\(258\) 0 0
\(259\) −10.7971 −0.670896
\(260\) 0 0
\(261\) 2.90321 0.179704
\(262\) 0 0
\(263\) 8.58274 0.529234 0.264617 0.964354i \(-0.414754\pi\)
0.264617 + 0.964354i \(0.414754\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 32.0415 1.96091
\(268\) 0 0
\(269\) 10.8988 0.664510 0.332255 0.943190i \(-0.392191\pi\)
0.332255 + 0.943190i \(0.392191\pi\)
\(270\) 0 0
\(271\) −8.46367 −0.514132 −0.257066 0.966394i \(-0.582756\pi\)
−0.257066 + 0.966394i \(0.582756\pi\)
\(272\) 0 0
\(273\) 2.00000 0.121046
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 28.7239 1.72585 0.862927 0.505329i \(-0.168629\pi\)
0.862927 + 0.505329i \(0.168629\pi\)
\(278\) 0 0
\(279\) 8.55554 0.512207
\(280\) 0 0
\(281\) −14.1936 −0.846718 −0.423359 0.905962i \(-0.639149\pi\)
−0.423359 + 0.905962i \(0.639149\pi\)
\(282\) 0 0
\(283\) 15.9190 0.946288 0.473144 0.880985i \(-0.343119\pi\)
0.473144 + 0.880985i \(0.343119\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 2.48886 0.146913
\(288\) 0 0
\(289\) −5.59057 −0.328857
\(290\) 0 0
\(291\) 17.5812 1.03063
\(292\) 0 0
\(293\) 20.4242 1.19319 0.596597 0.802541i \(-0.296519\pi\)
0.596597 + 0.802541i \(0.296519\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) −0.161933 −0.00939632
\(298\) 0 0
\(299\) 4.21432 0.243720
\(300\) 0 0
\(301\) 7.92687 0.456897
\(302\) 0 0
\(303\) 11.4795 0.659480
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) −0.0874201 −0.00498933 −0.00249467 0.999997i \(-0.500794\pi\)
−0.00249467 + 0.999997i \(0.500794\pi\)
\(308\) 0 0
\(309\) −17.4652 −0.993561
\(310\) 0 0
\(311\) −25.7146 −1.45814 −0.729069 0.684440i \(-0.760047\pi\)
−0.729069 + 0.684440i \(0.760047\pi\)
\(312\) 0 0
\(313\) 7.67307 0.433708 0.216854 0.976204i \(-0.430421\pi\)
0.216854 + 0.976204i \(0.430421\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −3.65878 −0.205498 −0.102749 0.994707i \(-0.532764\pi\)
−0.102749 + 0.994707i \(0.532764\pi\)
\(318\) 0 0
\(319\) −0.101710 −0.00569468
\(320\) 0 0
\(321\) −38.4558 −2.14640
\(322\) 0 0
\(323\) −17.2859 −0.961814
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) −0.295286 −0.0163294
\(328\) 0 0
\(329\) −8.04149 −0.443342
\(330\) 0 0
\(331\) −0.403450 −0.0221756 −0.0110878 0.999939i \(-0.503529\pi\)
−0.0110878 + 0.999939i \(0.503529\pi\)
\(332\) 0 0
\(333\) −22.7511 −1.24675
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 20.7971 1.13289 0.566444 0.824100i \(-0.308319\pi\)
0.566444 + 0.824100i \(0.308319\pi\)
\(338\) 0 0
\(339\) 12.9906 0.705554
\(340\) 0 0
\(341\) −0.299732 −0.0162314
\(342\) 0 0
\(343\) −11.9081 −0.642979
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 8.28745 0.444894 0.222447 0.974945i \(-0.428596\pi\)
0.222447 + 0.974945i \(0.428596\pi\)
\(348\) 0 0
\(349\) 21.3590 1.14332 0.571662 0.820489i \(-0.306299\pi\)
0.571662 + 0.820489i \(0.306299\pi\)
\(350\) 0 0
\(351\) −2.42864 −0.129631
\(352\) 0 0
\(353\) −23.3002 −1.24014 −0.620072 0.784545i \(-0.712897\pi\)
−0.620072 + 0.784545i \(0.712897\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 6.75557 0.357543
\(358\) 0 0
\(359\) −34.6987 −1.83133 −0.915665 0.401943i \(-0.868335\pi\)
−0.915665 + 0.401943i \(0.868335\pi\)
\(360\) 0 0
\(361\) 7.18913 0.378375
\(362\) 0 0
\(363\) 24.3477 1.27792
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 27.1131 1.41529 0.707646 0.706567i \(-0.249757\pi\)
0.707646 + 0.706567i \(0.249757\pi\)
\(368\) 0 0
\(369\) 5.24443 0.273014
\(370\) 0 0
\(371\) −3.22570 −0.167470
\(372\) 0 0
\(373\) −19.7146 −1.02078 −0.510391 0.859943i \(-0.670499\pi\)
−0.510391 + 0.859943i \(0.670499\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −1.52543 −0.0785635
\(378\) 0 0
\(379\) −24.8321 −1.27554 −0.637769 0.770227i \(-0.720143\pi\)
−0.637769 + 0.770227i \(0.720143\pi\)
\(380\) 0 0
\(381\) 34.3225 1.75839
\(382\) 0 0
\(383\) 1.62714 0.0831429 0.0415714 0.999136i \(-0.486764\pi\)
0.0415714 + 0.999136i \(0.486764\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 16.7032 0.849070
\(388\) 0 0
\(389\) −8.48886 −0.430402 −0.215201 0.976570i \(-0.569041\pi\)
−0.215201 + 0.976570i \(0.569041\pi\)
\(390\) 0 0
\(391\) 14.2351 0.719898
\(392\) 0 0
\(393\) 12.8573 0.648564
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 9.10663 0.457049 0.228524 0.973538i \(-0.426610\pi\)
0.228524 + 0.973538i \(0.426610\pi\)
\(398\) 0 0
\(399\) −10.2351 −0.512394
\(400\) 0 0
\(401\) 18.1748 0.907608 0.453804 0.891101i \(-0.350067\pi\)
0.453804 + 0.891101i \(0.350067\pi\)
\(402\) 0 0
\(403\) −4.49532 −0.223928
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0.797056 0.0395086
\(408\) 0 0
\(409\) −11.3461 −0.561031 −0.280515 0.959850i \(-0.590505\pi\)
−0.280515 + 0.959850i \(0.590505\pi\)
\(410\) 0 0
\(411\) −36.0415 −1.77780
\(412\) 0 0
\(413\) −7.37778 −0.363037
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 15.9081 0.779025
\(418\) 0 0
\(419\) −15.7047 −0.767225 −0.383613 0.923494i \(-0.625320\pi\)
−0.383613 + 0.923494i \(0.625320\pi\)
\(420\) 0 0
\(421\) −15.0923 −0.735556 −0.367778 0.929914i \(-0.619881\pi\)
−0.367778 + 0.929914i \(0.619881\pi\)
\(422\) 0 0
\(423\) −16.9447 −0.823879
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −10.1146 −0.489481
\(428\) 0 0
\(429\) −0.147643 −0.00712828
\(430\) 0 0
\(431\) 18.9842 0.914436 0.457218 0.889355i \(-0.348846\pi\)
0.457218 + 0.889355i \(0.348846\pi\)
\(432\) 0 0
\(433\) 1.04101 0.0500278 0.0250139 0.999687i \(-0.492037\pi\)
0.0250139 + 0.999687i \(0.492037\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −21.5669 −1.03169
\(438\) 0 0
\(439\) −19.3876 −0.925321 −0.462661 0.886536i \(-0.653105\pi\)
−0.462661 + 0.886536i \(0.653105\pi\)
\(440\) 0 0
\(441\) −11.7699 −0.560469
\(442\) 0 0
\(443\) −36.1037 −1.71534 −0.857670 0.514201i \(-0.828089\pi\)
−0.857670 + 0.514201i \(0.828089\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) −29.4193 −1.39148
\(448\) 0 0
\(449\) 7.34614 0.346686 0.173343 0.984862i \(-0.444543\pi\)
0.173343 + 0.984862i \(0.444543\pi\)
\(450\) 0 0
\(451\) −0.183732 −0.00865159
\(452\) 0 0
\(453\) 33.9037 1.59293
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −3.67307 −0.171819 −0.0859095 0.996303i \(-0.527380\pi\)
−0.0859095 + 0.996303i \(0.527380\pi\)
\(458\) 0 0
\(459\) −8.20342 −0.382903
\(460\) 0 0
\(461\) 25.7748 1.20045 0.600226 0.799831i \(-0.295077\pi\)
0.600226 + 0.799831i \(0.295077\pi\)
\(462\) 0 0
\(463\) 10.6681 0.495791 0.247895 0.968787i \(-0.420261\pi\)
0.247895 + 0.968787i \(0.420261\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 13.5190 0.625584 0.312792 0.949822i \(-0.398736\pi\)
0.312792 + 0.949822i \(0.398736\pi\)
\(468\) 0 0
\(469\) −1.93978 −0.0895706
\(470\) 0 0
\(471\) −40.8988 −1.88452
\(472\) 0 0
\(473\) −0.585174 −0.0269063
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −6.79706 −0.311216
\(478\) 0 0
\(479\) 19.2192 0.878150 0.439075 0.898451i \(-0.355306\pi\)
0.439075 + 0.898451i \(0.355306\pi\)
\(480\) 0 0
\(481\) 11.9541 0.545059
\(482\) 0 0
\(483\) 8.42864 0.383516
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) −4.00445 −0.181459 −0.0907294 0.995876i \(-0.528920\pi\)
−0.0907294 + 0.995876i \(0.528920\pi\)
\(488\) 0 0
\(489\) −28.2766 −1.27871
\(490\) 0 0
\(491\) −17.5812 −0.793429 −0.396714 0.917942i \(-0.629850\pi\)
−0.396714 + 0.917942i \(0.629850\pi\)
\(492\) 0 0
\(493\) −5.15257 −0.232060
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −5.00937 −0.224701
\(498\) 0 0
\(499\) −1.37133 −0.0613892 −0.0306946 0.999529i \(-0.509772\pi\)
−0.0306946 + 0.999529i \(0.509772\pi\)
\(500\) 0 0
\(501\) 16.4603 0.735391
\(502\) 0 0
\(503\) −15.1032 −0.673420 −0.336710 0.941608i \(-0.609314\pi\)
−0.336710 + 0.941608i \(0.609314\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −2.21432 −0.0983414
\(508\) 0 0
\(509\) 29.7748 1.31974 0.659872 0.751378i \(-0.270610\pi\)
0.659872 + 0.751378i \(0.270610\pi\)
\(510\) 0 0
\(511\) 2.44738 0.108266
\(512\) 0 0
\(513\) 12.4286 0.548738
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0.593635 0.0261081
\(518\) 0 0
\(519\) 45.2355 1.98562
\(520\) 0 0
\(521\) 5.79213 0.253758 0.126879 0.991918i \(-0.459504\pi\)
0.126879 + 0.991918i \(0.459504\pi\)
\(522\) 0 0
\(523\) 12.3575 0.540356 0.270178 0.962810i \(-0.412917\pi\)
0.270178 + 0.962810i \(0.412917\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −15.1842 −0.661434
\(528\) 0 0
\(529\) −5.23951 −0.227805
\(530\) 0 0
\(531\) −15.5462 −0.674646
\(532\) 0 0
\(533\) −2.75557 −0.119357
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) −54.4800 −2.35098
\(538\) 0 0
\(539\) 0.412342 0.0177608
\(540\) 0 0
\(541\) −43.5526 −1.87247 −0.936237 0.351370i \(-0.885716\pi\)
−0.936237 + 0.351370i \(0.885716\pi\)
\(542\) 0 0
\(543\) −30.9906 −1.32994
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 1.43017 0.0611497 0.0305748 0.999532i \(-0.490266\pi\)
0.0305748 + 0.999532i \(0.490266\pi\)
\(548\) 0 0
\(549\) −21.3131 −0.909622
\(550\) 0 0
\(551\) 7.80642 0.332565
\(552\) 0 0
\(553\) −2.87601 −0.122301
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −27.0968 −1.14813 −0.574064 0.818811i \(-0.694634\pi\)
−0.574064 + 0.818811i \(0.694634\pi\)
\(558\) 0 0
\(559\) −8.77631 −0.371198
\(560\) 0 0
\(561\) −0.498707 −0.0210554
\(562\) 0 0
\(563\) 26.6113 1.12153 0.560767 0.827974i \(-0.310506\pi\)
0.560767 + 0.827974i \(0.310506\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) −10.0143 −0.420561
\(568\) 0 0
\(569\) 5.95407 0.249607 0.124804 0.992181i \(-0.460170\pi\)
0.124804 + 0.992181i \(0.460170\pi\)
\(570\) 0 0
\(571\) −13.2859 −0.555998 −0.277999 0.960581i \(-0.589671\pi\)
−0.277999 + 0.960581i \(0.589671\pi\)
\(572\) 0 0
\(573\) 23.8163 0.994939
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 28.4242 1.18331 0.591657 0.806190i \(-0.298474\pi\)
0.591657 + 0.806190i \(0.298474\pi\)
\(578\) 0 0
\(579\) 34.1432 1.41894
\(580\) 0 0
\(581\) −8.93624 −0.370738
\(582\) 0 0
\(583\) 0.238126 0.00986217
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 8.76986 0.361971 0.180985 0.983486i \(-0.442071\pi\)
0.180985 + 0.983486i \(0.442071\pi\)
\(588\) 0 0
\(589\) 23.0049 0.947901
\(590\) 0 0
\(591\) 47.0005 1.93334
\(592\) 0 0
\(593\) 30.2449 1.24201 0.621005 0.783807i \(-0.286725\pi\)
0.621005 + 0.783807i \(0.286725\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −45.0321 −1.84304
\(598\) 0 0
\(599\) 17.3274 0.707979 0.353989 0.935249i \(-0.384825\pi\)
0.353989 + 0.935249i \(0.384825\pi\)
\(600\) 0 0
\(601\) 34.2864 1.39857 0.699286 0.714842i \(-0.253502\pi\)
0.699286 + 0.714842i \(0.253502\pi\)
\(602\) 0 0
\(603\) −4.08742 −0.166453
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −19.6523 −0.797663 −0.398832 0.917024i \(-0.630584\pi\)
−0.398832 + 0.917024i \(0.630584\pi\)
\(608\) 0 0
\(609\) −3.05086 −0.123627
\(610\) 0 0
\(611\) 8.90321 0.360185
\(612\) 0 0
\(613\) −17.9496 −0.724978 −0.362489 0.931988i \(-0.618073\pi\)
−0.362489 + 0.931988i \(0.618073\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −39.6227 −1.59515 −0.797575 0.603220i \(-0.793884\pi\)
−0.797575 + 0.603220i \(0.793884\pi\)
\(618\) 0 0
\(619\) 12.5052 0.502625 0.251312 0.967906i \(-0.419138\pi\)
0.251312 + 0.967906i \(0.419138\pi\)
\(620\) 0 0
\(621\) −10.2351 −0.410719
\(622\) 0 0
\(623\) −13.0696 −0.523622
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 0.755569 0.0301745
\(628\) 0 0
\(629\) 40.3783 1.60999
\(630\) 0 0
\(631\) 15.2094 0.605477 0.302738 0.953074i \(-0.402099\pi\)
0.302738 + 0.953074i \(0.402099\pi\)
\(632\) 0 0
\(633\) 45.8894 1.82394
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 6.18421 0.245027
\(638\) 0 0
\(639\) −10.5555 −0.417571
\(640\) 0 0
\(641\) 41.5496 1.64111 0.820555 0.571568i \(-0.193665\pi\)
0.820555 + 0.571568i \(0.193665\pi\)
\(642\) 0 0
\(643\) 18.3225 0.722568 0.361284 0.932456i \(-0.382338\pi\)
0.361284 + 0.932456i \(0.382338\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −9.31555 −0.366232 −0.183116 0.983091i \(-0.558618\pi\)
−0.183116 + 0.983091i \(0.558618\pi\)
\(648\) 0 0
\(649\) 0.544640 0.0213790
\(650\) 0 0
\(651\) −8.99063 −0.352371
\(652\) 0 0
\(653\) −37.6128 −1.47190 −0.735952 0.677033i \(-0.763265\pi\)
−0.735952 + 0.677033i \(0.763265\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 5.15701 0.201194
\(658\) 0 0
\(659\) −46.4800 −1.81060 −0.905301 0.424770i \(-0.860355\pi\)
−0.905301 + 0.424770i \(0.860355\pi\)
\(660\) 0 0
\(661\) −17.1655 −0.667659 −0.333830 0.942633i \(-0.608341\pi\)
−0.333830 + 0.942633i \(0.608341\pi\)
\(662\) 0 0
\(663\) −7.47949 −0.290480
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −6.42864 −0.248918
\(668\) 0 0
\(669\) −44.8385 −1.73356
\(670\) 0 0
\(671\) 0.746677 0.0288252
\(672\) 0 0
\(673\) −5.06376 −0.195194 −0.0975968 0.995226i \(-0.531116\pi\)
−0.0975968 + 0.995226i \(0.531116\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −16.6035 −0.638124 −0.319062 0.947734i \(-0.603368\pi\)
−0.319062 + 0.947734i \(0.603368\pi\)
\(678\) 0 0
\(679\) −7.17130 −0.275209
\(680\) 0 0
\(681\) −37.4291 −1.43429
\(682\) 0 0
\(683\) −21.4938 −0.822437 −0.411218 0.911537i \(-0.634897\pi\)
−0.411218 + 0.911537i \(0.634897\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) −8.78721 −0.335253
\(688\) 0 0
\(689\) 3.57136 0.136058
\(690\) 0 0
\(691\) 48.3245 1.83835 0.919175 0.393849i \(-0.128857\pi\)
0.919175 + 0.393849i \(0.128857\pi\)
\(692\) 0 0
\(693\) −0.114617 −0.00435395
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −9.30772 −0.352555
\(698\) 0 0
\(699\) 33.9180 1.28290
\(700\) 0 0
\(701\) −41.6543 −1.57326 −0.786631 0.617423i \(-0.788177\pi\)
−0.786631 + 0.617423i \(0.788177\pi\)
\(702\) 0 0
\(703\) −61.1753 −2.30727
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −4.68244 −0.176101
\(708\) 0 0
\(709\) 42.8988 1.61110 0.805548 0.592530i \(-0.201871\pi\)
0.805548 + 0.592530i \(0.201871\pi\)
\(710\) 0 0
\(711\) −6.06022 −0.227276
\(712\) 0 0
\(713\) −18.9447 −0.709485
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 32.9131 1.22916
\(718\) 0 0
\(719\) −6.39700 −0.238568 −0.119284 0.992860i \(-0.538060\pi\)
−0.119284 + 0.992860i \(0.538060\pi\)
\(720\) 0 0
\(721\) 7.12399 0.265311
\(722\) 0 0
\(723\) −44.9403 −1.67135
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 14.0493 0.521061 0.260530 0.965466i \(-0.416103\pi\)
0.260530 + 0.965466i \(0.416103\pi\)
\(728\) 0 0
\(729\) −4.96836 −0.184013
\(730\) 0 0
\(731\) −29.6445 −1.09644
\(732\) 0 0
\(733\) 18.4701 0.682210 0.341105 0.940025i \(-0.389199\pi\)
0.341105 + 0.940025i \(0.389199\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0.143197 0.00527475
\(738\) 0 0
\(739\) 27.7911 1.02231 0.511156 0.859488i \(-0.329218\pi\)
0.511156 + 0.859488i \(0.329218\pi\)
\(740\) 0 0
\(741\) 11.3319 0.416286
\(742\) 0 0
\(743\) 15.3417 0.562832 0.281416 0.959586i \(-0.409196\pi\)
0.281416 + 0.959586i \(0.409196\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) −18.8301 −0.688957
\(748\) 0 0
\(749\) 15.6860 0.573153
\(750\) 0 0
\(751\) 37.3560 1.36314 0.681570 0.731753i \(-0.261298\pi\)
0.681570 + 0.731753i \(0.261298\pi\)
\(752\) 0 0
\(753\) −45.5308 −1.65924
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −11.5081 −0.418268 −0.209134 0.977887i \(-0.567065\pi\)
−0.209134 + 0.977887i \(0.567065\pi\)
\(758\) 0 0
\(759\) −0.622216 −0.0225850
\(760\) 0 0
\(761\) 1.23459 0.0447537 0.0223769 0.999750i \(-0.492877\pi\)
0.0223769 + 0.999750i \(0.492877\pi\)
\(762\) 0 0
\(763\) 0.120446 0.00436044
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 8.16839 0.294943
\(768\) 0 0
\(769\) 21.3176 0.768731 0.384365 0.923181i \(-0.374420\pi\)
0.384365 + 0.923181i \(0.374420\pi\)
\(770\) 0 0
\(771\) 60.9403 2.19471
\(772\) 0 0
\(773\) −27.8336 −1.00111 −0.500553 0.865706i \(-0.666870\pi\)
−0.500553 + 0.865706i \(0.666870\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 23.9081 0.857700
\(778\) 0 0
\(779\) 14.1017 0.505246
\(780\) 0 0
\(781\) 0.369800 0.0132325
\(782\) 0 0
\(783\) 3.70471 0.132396
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −43.7832 −1.56070 −0.780352 0.625340i \(-0.784960\pi\)
−0.780352 + 0.625340i \(0.784960\pi\)
\(788\) 0 0
\(789\) −19.0049 −0.676593
\(790\) 0 0
\(791\) −5.29883 −0.188405
\(792\) 0 0
\(793\) 11.1985 0.397670
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −0.314022 −0.0111232 −0.00556162 0.999985i \(-0.501770\pi\)
−0.00556162 + 0.999985i \(0.501770\pi\)
\(798\) 0 0
\(799\) 30.0731 1.06391
\(800\) 0 0
\(801\) −27.5397 −0.973068
\(802\) 0 0
\(803\) −0.180669 −0.00637568
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −24.1334 −0.849534
\(808\) 0 0
\(809\) −17.4050 −0.611927 −0.305963 0.952043i \(-0.598978\pi\)
−0.305963 + 0.952043i \(0.598978\pi\)
\(810\) 0 0
\(811\) 6.99709 0.245701 0.122850 0.992425i \(-0.460796\pi\)
0.122850 + 0.992425i \(0.460796\pi\)
\(812\) 0 0
\(813\) 18.7413 0.657285
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 44.9131 1.57131
\(818\) 0 0
\(819\) −1.71900 −0.0600669
\(820\) 0 0
\(821\) −22.6133 −0.789210 −0.394605 0.918851i \(-0.629119\pi\)
−0.394605 + 0.918851i \(0.629119\pi\)
\(822\) 0 0
\(823\) −19.5506 −0.681492 −0.340746 0.940155i \(-0.610680\pi\)
−0.340746 + 0.940155i \(0.610680\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 20.4746 0.711971 0.355985 0.934492i \(-0.384145\pi\)
0.355985 + 0.934492i \(0.384145\pi\)
\(828\) 0 0
\(829\) −39.4019 −1.36849 −0.684243 0.729254i \(-0.739867\pi\)
−0.684243 + 0.729254i \(0.739867\pi\)
\(830\) 0 0
\(831\) −63.6040 −2.20640
\(832\) 0 0
\(833\) 20.8889 0.723758
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 10.9175 0.377364
\(838\) 0 0
\(839\) −1.69826 −0.0586305 −0.0293152 0.999570i \(-0.509333\pi\)
−0.0293152 + 0.999570i \(0.509333\pi\)
\(840\) 0 0
\(841\) −26.6731 −0.919761
\(842\) 0 0
\(843\) 31.4291 1.08248
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −9.93132 −0.341244
\(848\) 0 0
\(849\) −35.2498 −1.20977
\(850\) 0 0
\(851\) 50.3783 1.72694
\(852\) 0 0
\(853\) 35.4465 1.21366 0.606832 0.794830i \(-0.292440\pi\)
0.606832 + 0.794830i \(0.292440\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 4.85728 0.165921 0.0829607 0.996553i \(-0.473562\pi\)
0.0829607 + 0.996553i \(0.473562\pi\)
\(858\) 0 0
\(859\) −39.4420 −1.34574 −0.672872 0.739759i \(-0.734940\pi\)
−0.672872 + 0.739759i \(0.734940\pi\)
\(860\) 0 0
\(861\) −5.51114 −0.187819
\(862\) 0 0
\(863\) −3.68736 −0.125519 −0.0627596 0.998029i \(-0.519990\pi\)
−0.0627596 + 0.998029i \(0.519990\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 12.3793 0.420424
\(868\) 0 0
\(869\) 0.212312 0.00720219
\(870\) 0 0
\(871\) 2.14764 0.0727701
\(872\) 0 0
\(873\) −15.1111 −0.511433
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 47.4608 1.60264 0.801318 0.598239i \(-0.204133\pi\)
0.801318 + 0.598239i \(0.204133\pi\)
\(878\) 0 0
\(879\) −45.2257 −1.52542
\(880\) 0 0
\(881\) 7.49378 0.252472 0.126236 0.992000i \(-0.459710\pi\)
0.126236 + 0.992000i \(0.459710\pi\)
\(882\) 0 0
\(883\) 28.8879 0.972154 0.486077 0.873916i \(-0.338427\pi\)
0.486077 + 0.873916i \(0.338427\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −59.4499 −1.99613 −0.998065 0.0621718i \(-0.980197\pi\)
−0.998065 + 0.0621718i \(0.980197\pi\)
\(888\) 0 0
\(889\) −14.0000 −0.469545
\(890\) 0 0
\(891\) 0.739271 0.0247665
\(892\) 0 0
\(893\) −45.5625 −1.52469
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) −9.33185 −0.311581
\(898\) 0 0
\(899\) 6.85728 0.228703
\(900\) 0 0
\(901\) 12.0633 0.401886
\(902\) 0 0
\(903\) −17.5526 −0.584115
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −8.58274 −0.284985 −0.142493 0.989796i \(-0.545512\pi\)
−0.142493 + 0.989796i \(0.545512\pi\)
\(908\) 0 0
\(909\) −9.86665 −0.327256
\(910\) 0 0
\(911\) −9.96836 −0.330266 −0.165133 0.986271i \(-0.552805\pi\)
−0.165133 + 0.986271i \(0.552805\pi\)
\(912\) 0 0
\(913\) 0.659687 0.0218325
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −5.24443 −0.173186
\(918\) 0 0
\(919\) −22.9590 −0.757347 −0.378674 0.925530i \(-0.623620\pi\)
−0.378674 + 0.925530i \(0.623620\pi\)
\(920\) 0 0
\(921\) 0.193576 0.00637855
\(922\) 0 0
\(923\) 5.54617 0.182554
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 15.0114 0.493038
\(928\) 0 0
\(929\) −23.0509 −0.756274 −0.378137 0.925750i \(-0.623435\pi\)
−0.378137 + 0.925750i \(0.623435\pi\)
\(930\) 0 0
\(931\) −31.6479 −1.03722
\(932\) 0 0
\(933\) 56.9403 1.86414
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −35.2543 −1.15171 −0.575853 0.817553i \(-0.695330\pi\)
−0.575853 + 0.817553i \(0.695330\pi\)
\(938\) 0 0
\(939\) −16.9906 −0.554468
\(940\) 0 0
\(941\) 10.1334 0.330338 0.165169 0.986265i \(-0.447183\pi\)
0.165169 + 0.986265i \(0.447183\pi\)
\(942\) 0 0
\(943\) −11.6128 −0.378166
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 32.9447 1.07056 0.535279 0.844675i \(-0.320206\pi\)
0.535279 + 0.844675i \(0.320206\pi\)
\(948\) 0 0
\(949\) −2.70964 −0.0879585
\(950\) 0 0
\(951\) 8.10171 0.262716
\(952\) 0 0
\(953\) −22.3684 −0.724584 −0.362292 0.932065i \(-0.618006\pi\)
−0.362292 + 0.932065i \(0.618006\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0.225219 0.00728030
\(958\) 0 0
\(959\) 14.7012 0.474726
\(960\) 0 0
\(961\) −10.7921 −0.348133
\(962\) 0 0
\(963\) 33.0529 1.06511
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 7.12537 0.229136 0.114568 0.993415i \(-0.463452\pi\)
0.114568 + 0.993415i \(0.463452\pi\)
\(968\) 0 0
\(969\) 38.2766 1.22962
\(970\) 0 0
\(971\) −10.1521 −0.325796 −0.162898 0.986643i \(-0.552084\pi\)
−0.162898 + 0.986643i \(0.552084\pi\)
\(972\) 0 0
\(973\) −6.48886 −0.208023
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −22.4973 −0.719753 −0.359877 0.933000i \(-0.617181\pi\)
−0.359877 + 0.933000i \(0.617181\pi\)
\(978\) 0 0
\(979\) 0.964818 0.0308357
\(980\) 0 0
\(981\) 0.253799 0.00810318
\(982\) 0 0
\(983\) −27.7003 −0.883501 −0.441751 0.897138i \(-0.645642\pi\)
−0.441751 + 0.897138i \(0.645642\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 17.8064 0.566785
\(988\) 0 0
\(989\) −36.9862 −1.17609
\(990\) 0 0
\(991\) 0.898766 0.0285502 0.0142751 0.999898i \(-0.495456\pi\)
0.0142751 + 0.999898i \(0.495456\pi\)
\(992\) 0 0
\(993\) 0.893368 0.0283502
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −19.5625 −0.619550 −0.309775 0.950810i \(-0.600254\pi\)
−0.309775 + 0.950810i \(0.600254\pi\)
\(998\) 0 0
\(999\) −29.0321 −0.918536
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1300.2.a.j.1.1 3
4.3 odd 2 5200.2.a.cg.1.3 3
5.2 odd 4 260.2.c.a.209.6 yes 6
5.3 odd 4 260.2.c.a.209.1 6
5.4 even 2 1300.2.a.k.1.3 3
15.2 even 4 2340.2.h.e.469.1 6
15.8 even 4 2340.2.h.e.469.2 6
20.3 even 4 1040.2.d.d.209.6 6
20.7 even 4 1040.2.d.d.209.1 6
20.19 odd 2 5200.2.a.cd.1.1 3
65.8 even 4 3380.2.d.b.1689.1 6
65.12 odd 4 3380.2.c.c.2029.6 6
65.18 even 4 3380.2.d.a.1689.1 6
65.38 odd 4 3380.2.c.c.2029.1 6
65.47 even 4 3380.2.d.a.1689.6 6
65.57 even 4 3380.2.d.b.1689.6 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
260.2.c.a.209.1 6 5.3 odd 4
260.2.c.a.209.6 yes 6 5.2 odd 4
1040.2.d.d.209.1 6 20.7 even 4
1040.2.d.d.209.6 6 20.3 even 4
1300.2.a.j.1.1 3 1.1 even 1 trivial
1300.2.a.k.1.3 3 5.4 even 2
2340.2.h.e.469.1 6 15.2 even 4
2340.2.h.e.469.2 6 15.8 even 4
3380.2.c.c.2029.1 6 65.38 odd 4
3380.2.c.c.2029.6 6 65.12 odd 4
3380.2.d.a.1689.1 6 65.18 even 4
3380.2.d.a.1689.6 6 65.47 even 4
3380.2.d.b.1689.1 6 65.8 even 4
3380.2.d.b.1689.6 6 65.57 even 4
5200.2.a.cd.1.1 3 20.19 odd 2
5200.2.a.cg.1.3 3 4.3 odd 2