Properties

Label 2340.2.h.e.469.2
Level $2340$
Weight $2$
Character 2340.469
Analytic conductor $18.685$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2340,2,Mod(469,2340)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2340, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2340.469");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2340 = 2^{2} \cdot 3^{2} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2340.h (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.6849940730\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.350464.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} + 2x^{4} + 2x^{3} + 4x^{2} - 4x + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 260)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 469.2
Root \(1.45161 + 1.45161i\) of defining polynomial
Character \(\chi\) \(=\) 2340.469
Dual form 2340.2.h.e.469.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.21432 + 0.311108i) q^{5} -0.903212i q^{7} +0.0666765 q^{11} -1.00000i q^{13} -3.37778i q^{17} -5.11753 q^{19} +4.21432i q^{23} +(4.80642 - 1.37778i) q^{25} +1.52543 q^{29} +4.49532 q^{31} +(0.280996 + 2.00000i) q^{35} +11.9541i q^{37} -2.75557 q^{41} +8.77631i q^{43} -8.90321i q^{47} +6.18421 q^{49} +3.57136i q^{53} +(-0.147643 + 0.0207436i) q^{55} -8.16839 q^{59} -11.1985 q^{61} +(0.311108 + 2.21432i) q^{65} +2.14764i q^{67} +5.54617 q^{71} +2.70964i q^{73} -0.0602231i q^{77} +3.18421 q^{79} +9.89384i q^{83} +(1.05086 + 7.47949i) q^{85} -14.4701 q^{89} -0.903212 q^{91} +(11.3319 - 1.59210i) q^{95} +7.93978i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 4 q^{19} + 2 q^{25} - 4 q^{29} - 12 q^{35} - 16 q^{41} + 10 q^{49} + 12 q^{55} + 4 q^{59} - 28 q^{61} + 2 q^{65} - 20 q^{71} - 8 q^{79} - 20 q^{85} + 20 q^{89} + 8 q^{91} + 28 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2340\mathbb{Z}\right)^\times\).

\(n\) \(937\) \(1081\) \(1171\) \(2081\)
\(\chi(n)\) \(-1\) \(1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −2.21432 + 0.311108i −0.990274 + 0.139132i
\(6\) 0 0
\(7\) 0.903212i 0.341382i −0.985325 0.170691i \(-0.945400\pi\)
0.985325 0.170691i \(-0.0546000\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 0.0666765 0.0201037 0.0100519 0.999949i \(-0.496800\pi\)
0.0100519 + 0.999949i \(0.496800\pi\)
\(12\) 0 0
\(13\) 1.00000i 0.277350i
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 3.37778i 0.819233i −0.912258 0.409617i \(-0.865663\pi\)
0.912258 0.409617i \(-0.134337\pi\)
\(18\) 0 0
\(19\) −5.11753 −1.17404 −0.587021 0.809572i \(-0.699699\pi\)
−0.587021 + 0.809572i \(0.699699\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 4.21432i 0.878746i 0.898305 + 0.439373i \(0.144799\pi\)
−0.898305 + 0.439373i \(0.855201\pi\)
\(24\) 0 0
\(25\) 4.80642 1.37778i 0.961285 0.275557i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 1.52543 0.283265 0.141632 0.989919i \(-0.454765\pi\)
0.141632 + 0.989919i \(0.454765\pi\)
\(30\) 0 0
\(31\) 4.49532 0.807383 0.403691 0.914895i \(-0.367727\pi\)
0.403691 + 0.914895i \(0.367727\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0.280996 + 2.00000i 0.0474970 + 0.338062i
\(36\) 0 0
\(37\) 11.9541i 1.96524i 0.185638 + 0.982618i \(0.440565\pi\)
−0.185638 + 0.982618i \(0.559435\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −2.75557 −0.430348 −0.215174 0.976576i \(-0.569032\pi\)
−0.215174 + 0.976576i \(0.569032\pi\)
\(42\) 0 0
\(43\) 8.77631i 1.33838i 0.743094 + 0.669188i \(0.233358\pi\)
−0.743094 + 0.669188i \(0.766642\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 8.90321i 1.29867i −0.760504 0.649333i \(-0.775048\pi\)
0.760504 0.649333i \(-0.224952\pi\)
\(48\) 0 0
\(49\) 6.18421 0.883458
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 3.57136i 0.490564i 0.969452 + 0.245282i \(0.0788806\pi\)
−0.969452 + 0.245282i \(0.921119\pi\)
\(54\) 0 0
\(55\) −0.147643 + 0.0207436i −0.0199082 + 0.00279707i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −8.16839 −1.06343 −0.531717 0.846922i \(-0.678453\pi\)
−0.531717 + 0.846922i \(0.678453\pi\)
\(60\) 0 0
\(61\) −11.1985 −1.43382 −0.716910 0.697165i \(-0.754444\pi\)
−0.716910 + 0.697165i \(0.754444\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0.311108 + 2.21432i 0.0385882 + 0.274653i
\(66\) 0 0
\(67\) 2.14764i 0.262376i 0.991357 + 0.131188i \(0.0418792\pi\)
−0.991357 + 0.131188i \(0.958121\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 5.54617 0.658209 0.329105 0.944293i \(-0.393253\pi\)
0.329105 + 0.944293i \(0.393253\pi\)
\(72\) 0 0
\(73\) 2.70964i 0.317139i 0.987348 + 0.158569i \(0.0506882\pi\)
−0.987348 + 0.158569i \(0.949312\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0.0602231i 0.00686305i
\(78\) 0 0
\(79\) 3.18421 0.358251 0.179126 0.983826i \(-0.442673\pi\)
0.179126 + 0.983826i \(0.442673\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 9.89384i 1.08599i 0.839736 + 0.542995i \(0.182710\pi\)
−0.839736 + 0.542995i \(0.817290\pi\)
\(84\) 0 0
\(85\) 1.05086 + 7.47949i 0.113981 + 0.811265i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −14.4701 −1.53383 −0.766915 0.641748i \(-0.778209\pi\)
−0.766915 + 0.641748i \(0.778209\pi\)
\(90\) 0 0
\(91\) −0.903212 −0.0946823
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 11.3319 1.59210i 1.16262 0.163346i
\(96\) 0 0
\(97\) 7.93978i 0.806162i 0.915164 + 0.403081i \(0.132061\pi\)
−0.915164 + 0.403081i \(0.867939\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 5.18421 0.515848 0.257924 0.966165i \(-0.416962\pi\)
0.257924 + 0.966165i \(0.416962\pi\)
\(102\) 0 0
\(103\) 7.88739i 0.777168i 0.921413 + 0.388584i \(0.127036\pi\)
−0.921413 + 0.388584i \(0.872964\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 17.3669i 1.67892i 0.543421 + 0.839460i \(0.317129\pi\)
−0.543421 + 0.839460i \(0.682871\pi\)
\(108\) 0 0
\(109\) −0.133353 −0.0127729 −0.00638645 0.999980i \(-0.502033\pi\)
−0.00638645 + 0.999980i \(0.502033\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 5.86665i 0.551888i 0.961174 + 0.275944i \(0.0889904\pi\)
−0.961174 + 0.275944i \(0.911010\pi\)
\(114\) 0 0
\(115\) −1.31111 9.33185i −0.122261 0.870200i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −3.05086 −0.279671
\(120\) 0 0
\(121\) −10.9956 −0.999596
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −10.2143 + 4.54617i −0.913597 + 0.406622i
\(126\) 0 0
\(127\) 15.5002i 1.37542i 0.725984 + 0.687712i \(0.241385\pi\)
−0.725984 + 0.687712i \(0.758615\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 5.80642 0.507310 0.253655 0.967295i \(-0.418367\pi\)
0.253655 + 0.967295i \(0.418367\pi\)
\(132\) 0 0
\(133\) 4.62222i 0.400797i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 16.2766i 1.39060i 0.718720 + 0.695300i \(0.244728\pi\)
−0.718720 + 0.695300i \(0.755272\pi\)
\(138\) 0 0
\(139\) 7.18421 0.609357 0.304678 0.952455i \(-0.401451\pi\)
0.304678 + 0.952455i \(0.401451\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0.0666765i 0.00557577i
\(144\) 0 0
\(145\) −3.37778 + 0.474572i −0.280510 + 0.0394111i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 13.2859 1.08842 0.544212 0.838947i \(-0.316829\pi\)
0.544212 + 0.838947i \(0.316829\pi\)
\(150\) 0 0
\(151\) −15.3111 −1.24600 −0.623000 0.782222i \(-0.714086\pi\)
−0.623000 + 0.782222i \(0.714086\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −9.95407 + 1.39853i −0.799530 + 0.112332i
\(156\) 0 0
\(157\) 18.4701i 1.47408i −0.675851 0.737038i \(-0.736224\pi\)
0.675851 0.737038i \(-0.263776\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 3.80642 0.299988
\(162\) 0 0
\(163\) 12.7699i 1.00021i 0.865964 + 0.500106i \(0.166706\pi\)
−0.865964 + 0.500106i \(0.833294\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 7.43356i 0.575226i −0.957747 0.287613i \(-0.907138\pi\)
0.957747 0.287613i \(-0.0928617\pi\)
\(168\) 0 0
\(169\) −1.00000 −0.0769231
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 20.4286i 1.55316i 0.630018 + 0.776580i \(0.283047\pi\)
−0.630018 + 0.776580i \(0.716953\pi\)
\(174\) 0 0
\(175\) −1.24443 4.34122i −0.0940702 0.328165i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 24.6035 1.83895 0.919475 0.393148i \(-0.128614\pi\)
0.919475 + 0.393148i \(0.128614\pi\)
\(180\) 0 0
\(181\) 13.9956 1.04028 0.520141 0.854081i \(-0.325880\pi\)
0.520141 + 0.854081i \(0.325880\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −3.71900 26.4701i −0.273427 1.94612i
\(186\) 0 0
\(187\) 0.225219i 0.0164696i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 10.7556 0.778246 0.389123 0.921186i \(-0.372778\pi\)
0.389123 + 0.921186i \(0.372778\pi\)
\(192\) 0 0
\(193\) 15.4193i 1.10990i −0.831883 0.554952i \(-0.812737\pi\)
0.831883 0.554952i \(-0.187263\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 21.2257i 1.51227i −0.654417 0.756134i \(-0.727086\pi\)
0.654417 0.756134i \(-0.272914\pi\)
\(198\) 0 0
\(199\) −20.3368 −1.44164 −0.720818 0.693125i \(-0.756234\pi\)
−0.720818 + 0.693125i \(0.756234\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 1.37778i 0.0967015i
\(204\) 0 0
\(205\) 6.10171 0.857279i 0.426162 0.0598750i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −0.341219 −0.0236026
\(210\) 0 0
\(211\) −20.7239 −1.42669 −0.713347 0.700811i \(-0.752822\pi\)
−0.713347 + 0.700811i \(0.752822\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −2.73038 19.4336i −0.186210 1.32536i
\(216\) 0 0
\(217\) 4.06022i 0.275626i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −3.37778 −0.227214
\(222\) 0 0
\(223\) 20.2494i 1.35600i 0.735063 + 0.677999i \(0.237152\pi\)
−0.735063 + 0.677999i \(0.762848\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 16.9032i 1.12191i 0.827848 + 0.560953i \(0.189565\pi\)
−0.827848 + 0.560953i \(0.810435\pi\)
\(228\) 0 0
\(229\) −3.96836 −0.262236 −0.131118 0.991367i \(-0.541857\pi\)
−0.131118 + 0.991367i \(0.541857\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 15.3176i 1.00349i 0.865017 + 0.501743i \(0.167308\pi\)
−0.865017 + 0.501743i \(0.832692\pi\)
\(234\) 0 0
\(235\) 2.76986 + 19.7146i 0.180686 + 1.28604i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −14.8637 −0.961455 −0.480727 0.876870i \(-0.659627\pi\)
−0.480727 + 0.876870i \(0.659627\pi\)
\(240\) 0 0
\(241\) 20.2953 1.30733 0.653667 0.756782i \(-0.273230\pi\)
0.653667 + 0.756782i \(0.273230\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −13.6938 + 1.92396i −0.874866 + 0.122917i
\(246\) 0 0
\(247\) 5.11753i 0.325621i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −20.5620 −1.29786 −0.648931 0.760847i \(-0.724784\pi\)
−0.648931 + 0.760847i \(0.724784\pi\)
\(252\) 0 0
\(253\) 0.280996i 0.0176661i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 27.5210i 1.71671i −0.513055 0.858356i \(-0.671486\pi\)
0.513055 0.858356i \(-0.328514\pi\)
\(258\) 0 0
\(259\) 10.7971 0.670896
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 8.58274i 0.529234i −0.964354 0.264617i \(-0.914754\pi\)
0.964354 0.264617i \(-0.0852456\pi\)
\(264\) 0 0
\(265\) −1.11108 7.90813i −0.0682530 0.485793i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 10.8988 0.664510 0.332255 0.943190i \(-0.392191\pi\)
0.332255 + 0.943190i \(0.392191\pi\)
\(270\) 0 0
\(271\) −8.46367 −0.514132 −0.257066 0.966394i \(-0.582756\pi\)
−0.257066 + 0.966394i \(0.582756\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0.320476 0.0918659i 0.0193254 0.00553972i
\(276\) 0 0
\(277\) 28.7239i 1.72585i −0.505329 0.862927i \(-0.668629\pi\)
0.505329 0.862927i \(-0.331371\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 14.1936 0.846718 0.423359 0.905962i \(-0.360851\pi\)
0.423359 + 0.905962i \(0.360851\pi\)
\(282\) 0 0
\(283\) 15.9190i 0.946288i 0.880985 + 0.473144i \(0.156881\pi\)
−0.880985 + 0.473144i \(0.843119\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 2.48886i 0.146913i
\(288\) 0 0
\(289\) 5.59057 0.328857
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 20.4242i 1.19319i −0.802541 0.596597i \(-0.796519\pi\)
0.802541 0.596597i \(-0.203481\pi\)
\(294\) 0 0
\(295\) 18.0874 2.54125i 1.05309 0.147957i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 4.21432 0.243720
\(300\) 0 0
\(301\) 7.92687 0.456897
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 24.7971 3.48394i 1.41988 0.199490i
\(306\) 0 0
\(307\) 0.0874201i 0.00498933i 0.999997 + 0.00249467i \(0.000794078\pi\)
−0.999997 + 0.00249467i \(0.999206\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 25.7146 1.45814 0.729069 0.684440i \(-0.239953\pi\)
0.729069 + 0.684440i \(0.239953\pi\)
\(312\) 0 0
\(313\) 7.67307i 0.433708i 0.976204 + 0.216854i \(0.0695795\pi\)
−0.976204 + 0.216854i \(0.930421\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 3.65878i 0.205498i −0.994707 0.102749i \(-0.967236\pi\)
0.994707 0.102749i \(-0.0327638\pi\)
\(318\) 0 0
\(319\) 0.101710 0.00569468
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 17.2859i 0.961814i
\(324\) 0 0
\(325\) −1.37778 4.80642i −0.0764257 0.266612i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −8.04149 −0.443342
\(330\) 0 0
\(331\) −0.403450 −0.0221756 −0.0110878 0.999939i \(-0.503529\pi\)
−0.0110878 + 0.999939i \(0.503529\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −0.668149 4.75557i −0.0365049 0.259824i
\(336\) 0 0
\(337\) 20.7971i 1.13289i −0.824100 0.566444i \(-0.808319\pi\)
0.824100 0.566444i \(-0.191681\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 0.299732 0.0162314
\(342\) 0 0
\(343\) 11.9081i 0.642979i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 8.28745i 0.444894i 0.974945 + 0.222447i \(0.0714044\pi\)
−0.974945 + 0.222447i \(0.928596\pi\)
\(348\) 0 0
\(349\) −21.3590 −1.14332 −0.571662 0.820489i \(-0.693701\pi\)
−0.571662 + 0.820489i \(0.693701\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 23.3002i 1.24014i 0.784545 + 0.620072i \(0.212897\pi\)
−0.784545 + 0.620072i \(0.787103\pi\)
\(354\) 0 0
\(355\) −12.2810 + 1.72546i −0.651808 + 0.0915778i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −34.6987 −1.83133 −0.915665 0.401943i \(-0.868335\pi\)
−0.915665 + 0.401943i \(0.868335\pi\)
\(360\) 0 0
\(361\) 7.18913 0.378375
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −0.842989 6.00000i −0.0441241 0.314054i
\(366\) 0 0
\(367\) 27.1131i 1.41529i −0.706567 0.707646i \(-0.749757\pi\)
0.706567 0.707646i \(-0.250243\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 3.22570 0.167470
\(372\) 0 0
\(373\) 19.7146i 1.02078i −0.859943 0.510391i \(-0.829501\pi\)
0.859943 0.510391i \(-0.170499\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 1.52543i 0.0785635i
\(378\) 0 0
\(379\) 24.8321 1.27554 0.637769 0.770227i \(-0.279857\pi\)
0.637769 + 0.770227i \(0.279857\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 1.62714i 0.0831429i −0.999136 0.0415714i \(-0.986764\pi\)
0.999136 0.0415714i \(-0.0132364\pi\)
\(384\) 0 0
\(385\) 0.0187359 + 0.133353i 0.000954868 + 0.00679630i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −8.48886 −0.430402 −0.215201 0.976570i \(-0.569041\pi\)
−0.215201 + 0.976570i \(0.569041\pi\)
\(390\) 0 0
\(391\) 14.2351 0.719898
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −7.05086 + 0.990632i −0.354767 + 0.0498441i
\(396\) 0 0
\(397\) 9.10663i 0.457049i −0.973538 0.228524i \(-0.926610\pi\)
0.973538 0.228524i \(-0.0733901\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −18.1748 −0.907608 −0.453804 0.891101i \(-0.649933\pi\)
−0.453804 + 0.891101i \(0.649933\pi\)
\(402\) 0 0
\(403\) 4.49532i 0.223928i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0.797056i 0.0395086i
\(408\) 0 0
\(409\) 11.3461 0.561031 0.280515 0.959850i \(-0.409495\pi\)
0.280515 + 0.959850i \(0.409495\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 7.37778i 0.363037i
\(414\) 0 0
\(415\) −3.07805 21.9081i −0.151096 1.07543i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −15.7047 −0.767225 −0.383613 0.923494i \(-0.625320\pi\)
−0.383613 + 0.923494i \(0.625320\pi\)
\(420\) 0 0
\(421\) −15.0923 −0.735556 −0.367778 0.929914i \(-0.619881\pi\)
−0.367778 + 0.929914i \(0.619881\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −4.65386 16.2351i −0.225745 0.787516i
\(426\) 0 0
\(427\) 10.1146i 0.489481i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −18.9842 −0.914436 −0.457218 0.889355i \(-0.651154\pi\)
−0.457218 + 0.889355i \(0.651154\pi\)
\(432\) 0 0
\(433\) 1.04101i 0.0500278i 0.999687 + 0.0250139i \(0.00796300\pi\)
−0.999687 + 0.0250139i \(0.992037\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 21.5669i 1.03169i
\(438\) 0 0
\(439\) 19.3876 0.925321 0.462661 0.886536i \(-0.346895\pi\)
0.462661 + 0.886536i \(0.346895\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 36.1037i 1.71534i 0.514201 + 0.857670i \(0.328089\pi\)
−0.514201 + 0.857670i \(0.671911\pi\)
\(444\) 0 0
\(445\) 32.0415 4.50177i 1.51891 0.213404i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 7.34614 0.346686 0.173343 0.984862i \(-0.444543\pi\)
0.173343 + 0.984862i \(0.444543\pi\)
\(450\) 0 0
\(451\) −0.183732 −0.00865159
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 2.00000 0.280996i 0.0937614 0.0131733i
\(456\) 0 0
\(457\) 3.67307i 0.171819i 0.996303 + 0.0859095i \(0.0273796\pi\)
−0.996303 + 0.0859095i \(0.972620\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −25.7748 −1.20045 −0.600226 0.799831i \(-0.704923\pi\)
−0.600226 + 0.799831i \(0.704923\pi\)
\(462\) 0 0
\(463\) 10.6681i 0.495791i 0.968787 + 0.247895i \(0.0797389\pi\)
−0.968787 + 0.247895i \(0.920261\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 13.5190i 0.625584i 0.949822 + 0.312792i \(0.101264\pi\)
−0.949822 + 0.312792i \(0.898736\pi\)
\(468\) 0 0
\(469\) 1.93978 0.0895706
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0.585174i 0.0269063i
\(474\) 0 0
\(475\) −24.5970 + 7.05086i −1.12859 + 0.323515i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 19.2192 0.878150 0.439075 0.898451i \(-0.355306\pi\)
0.439075 + 0.898451i \(0.355306\pi\)
\(480\) 0 0
\(481\) 11.9541 0.545059
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −2.47013 17.5812i −0.112163 0.798321i
\(486\) 0 0
\(487\) 4.00445i 0.181459i 0.995876 + 0.0907294i \(0.0289198\pi\)
−0.995876 + 0.0907294i \(0.971080\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 17.5812 0.793429 0.396714 0.917942i \(-0.370150\pi\)
0.396714 + 0.917942i \(0.370150\pi\)
\(492\) 0 0
\(493\) 5.15257i 0.232060i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 5.00937i 0.224701i
\(498\) 0 0
\(499\) 1.37133 0.0613892 0.0306946 0.999529i \(-0.490228\pi\)
0.0306946 + 0.999529i \(0.490228\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 15.1032i 0.673420i 0.941608 + 0.336710i \(0.109314\pi\)
−0.941608 + 0.336710i \(0.890686\pi\)
\(504\) 0 0
\(505\) −11.4795 + 1.61285i −0.510831 + 0.0717708i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 29.7748 1.31974 0.659872 0.751378i \(-0.270610\pi\)
0.659872 + 0.751378i \(0.270610\pi\)
\(510\) 0 0
\(511\) 2.44738 0.108266
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −2.45383 17.4652i −0.108129 0.769609i
\(516\) 0 0
\(517\) 0.593635i 0.0261081i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −5.79213 −0.253758 −0.126879 0.991918i \(-0.540496\pi\)
−0.126879 + 0.991918i \(0.540496\pi\)
\(522\) 0 0
\(523\) 12.3575i 0.540356i 0.962810 + 0.270178i \(0.0870826\pi\)
−0.962810 + 0.270178i \(0.912917\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 15.1842i 0.661434i
\(528\) 0 0
\(529\) 5.23951 0.227805
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 2.75557i 0.119357i
\(534\) 0 0
\(535\) −5.40297 38.4558i −0.233591 1.66259i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0.412342 0.0177608
\(540\) 0 0
\(541\) −43.5526 −1.87247 −0.936237 0.351370i \(-0.885716\pi\)
−0.936237 + 0.351370i \(0.885716\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0.295286 0.0414872i 0.0126487 0.00177712i
\(546\) 0 0
\(547\) 1.43017i 0.0611497i −0.999532 0.0305748i \(-0.990266\pi\)
0.999532 0.0305748i \(-0.00973379\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −7.80642 −0.332565
\(552\) 0 0
\(553\) 2.87601i 0.122301i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 27.0968i 1.14813i −0.818811 0.574064i \(-0.805366\pi\)
0.818811 0.574064i \(-0.194634\pi\)
\(558\) 0 0
\(559\) 8.77631 0.371198
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 26.6113i 1.12153i −0.827974 0.560767i \(-0.810506\pi\)
0.827974 0.560767i \(-0.189494\pi\)
\(564\) 0 0
\(565\) −1.82516 12.9906i −0.0767850 0.546520i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 5.95407 0.249607 0.124804 0.992181i \(-0.460170\pi\)
0.124804 + 0.992181i \(0.460170\pi\)
\(570\) 0 0
\(571\) −13.2859 −0.555998 −0.277999 0.960581i \(-0.589671\pi\)
−0.277999 + 0.960581i \(0.589671\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 5.80642 + 20.2558i 0.242145 + 0.844726i
\(576\) 0 0
\(577\) 28.4242i 1.18331i −0.806190 0.591657i \(-0.798474\pi\)
0.806190 0.591657i \(-0.201526\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 8.93624 0.370738
\(582\) 0 0
\(583\) 0.238126i 0.00986217i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 8.76986i 0.361971i 0.983486 + 0.180985i \(0.0579287\pi\)
−0.983486 + 0.180985i \(0.942071\pi\)
\(588\) 0 0
\(589\) −23.0049 −0.947901
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 30.2449i 1.24201i −0.783807 0.621005i \(-0.786725\pi\)
0.783807 0.621005i \(-0.213275\pi\)
\(594\) 0 0
\(595\) 6.75557 0.949145i 0.276951 0.0389111i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 17.3274 0.707979 0.353989 0.935249i \(-0.384825\pi\)
0.353989 + 0.935249i \(0.384825\pi\)
\(600\) 0 0
\(601\) 34.2864 1.39857 0.699286 0.714842i \(-0.253502\pi\)
0.699286 + 0.714842i \(0.253502\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 24.3477 3.42080i 0.989874 0.139075i
\(606\) 0 0
\(607\) 19.6523i 0.797663i 0.917024 + 0.398832i \(0.130584\pi\)
−0.917024 + 0.398832i \(0.869416\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −8.90321 −0.360185
\(612\) 0 0
\(613\) 17.9496i 0.724978i −0.931988 0.362489i \(-0.881927\pi\)
0.931988 0.362489i \(-0.118073\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 39.6227i 1.59515i −0.603220 0.797575i \(-0.706116\pi\)
0.603220 0.797575i \(-0.293884\pi\)
\(618\) 0 0
\(619\) −12.5052 −0.502625 −0.251312 0.967906i \(-0.580862\pi\)
−0.251312 + 0.967906i \(0.580862\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 13.0696i 0.523622i
\(624\) 0 0
\(625\) 21.2034 13.2444i 0.848137 0.529777i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 40.3783 1.60999
\(630\) 0 0
\(631\) 15.2094 0.605477 0.302738 0.953074i \(-0.402099\pi\)
0.302738 + 0.953074i \(0.402099\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −4.82225 34.3225i −0.191365 1.36205i
\(636\) 0 0
\(637\) 6.18421i 0.245027i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −41.5496 −1.64111 −0.820555 0.571568i \(-0.806335\pi\)
−0.820555 + 0.571568i \(0.806335\pi\)
\(642\) 0 0
\(643\) 18.3225i 0.722568i 0.932456 + 0.361284i \(0.117662\pi\)
−0.932456 + 0.361284i \(0.882338\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 9.31555i 0.366232i −0.983091 0.183116i \(-0.941382\pi\)
0.983091 0.183116i \(-0.0586184\pi\)
\(648\) 0 0
\(649\) −0.544640 −0.0213790
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 37.6128i 1.47190i 0.677033 + 0.735952i \(0.263265\pi\)
−0.677033 + 0.735952i \(0.736735\pi\)
\(654\) 0 0
\(655\) −12.8573 + 1.80642i −0.502375 + 0.0705828i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −46.4800 −1.81060 −0.905301 0.424770i \(-0.860355\pi\)
−0.905301 + 0.424770i \(0.860355\pi\)
\(660\) 0 0
\(661\) −17.1655 −0.667659 −0.333830 0.942633i \(-0.608341\pi\)
−0.333830 + 0.942633i \(0.608341\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −1.43801 10.2351i −0.0557635 0.396899i
\(666\) 0 0
\(667\) 6.42864i 0.248918i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −0.746677 −0.0288252
\(672\) 0 0
\(673\) 5.06376i 0.195194i −0.995226 0.0975968i \(-0.968884\pi\)
0.995226 0.0975968i \(-0.0311156\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 16.6035i 0.638124i −0.947734 0.319062i \(-0.896632\pi\)
0.947734 0.319062i \(-0.103368\pi\)
\(678\) 0 0
\(679\) 7.17130 0.275209
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 21.4938i 0.822437i 0.911537 + 0.411218i \(0.134897\pi\)
−0.911537 + 0.411218i \(0.865103\pi\)
\(684\) 0 0
\(685\) −5.06376 36.0415i −0.193476 1.37707i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 3.57136 0.136058
\(690\) 0 0
\(691\) 48.3245 1.83835 0.919175 0.393849i \(-0.128857\pi\)
0.919175 + 0.393849i \(0.128857\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −15.9081 + 2.23506i −0.603430 + 0.0847808i
\(696\) 0 0
\(697\) 9.30772i 0.352555i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 41.6543 1.57326 0.786631 0.617423i \(-0.211823\pi\)
0.786631 + 0.617423i \(0.211823\pi\)
\(702\) 0 0
\(703\) 61.1753i 2.30727i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 4.68244i 0.176101i
\(708\) 0 0
\(709\) −42.8988 −1.61110 −0.805548 0.592530i \(-0.798129\pi\)
−0.805548 + 0.592530i \(0.798129\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 18.9447i 0.709485i
\(714\) 0 0
\(715\) 0.0207436 + 0.147643i 0.000775766 + 0.00552154i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −6.39700 −0.238568 −0.119284 0.992860i \(-0.538060\pi\)
−0.119284 + 0.992860i \(0.538060\pi\)
\(720\) 0 0
\(721\) 7.12399 0.265311
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 7.33185 2.10171i 0.272298 0.0780556i
\(726\) 0 0
\(727\) 14.0493i 0.521061i −0.965466 0.260530i \(-0.916103\pi\)
0.965466 0.260530i \(-0.0838974\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 29.6445 1.09644
\(732\) 0 0
\(733\) 18.4701i 0.682210i 0.940025 + 0.341105i \(0.110801\pi\)
−0.940025 + 0.341105i \(0.889199\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0.143197i 0.00527475i
\(738\) 0 0
\(739\) −27.7911 −1.02231 −0.511156 0.859488i \(-0.670782\pi\)
−0.511156 + 0.859488i \(0.670782\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 15.3417i 0.562832i −0.959586 0.281416i \(-0.909196\pi\)
0.959586 0.281416i \(-0.0908041\pi\)
\(744\) 0 0
\(745\) −29.4193 + 4.13335i −1.07784 + 0.151434i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 15.6860 0.573153
\(750\) 0 0
\(751\) 37.3560 1.36314 0.681570 0.731753i \(-0.261298\pi\)
0.681570 + 0.731753i \(0.261298\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 33.9037 4.76341i 1.23388 0.173358i
\(756\) 0 0
\(757\) 11.5081i 0.418268i 0.977887 + 0.209134i \(0.0670645\pi\)
−0.977887 + 0.209134i \(0.932935\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −1.23459 −0.0447537 −0.0223769 0.999750i \(-0.507123\pi\)
−0.0223769 + 0.999750i \(0.507123\pi\)
\(762\) 0 0
\(763\) 0.120446i 0.00436044i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 8.16839i 0.294943i
\(768\) 0 0
\(769\) −21.3176 −0.768731 −0.384365 0.923181i \(-0.625580\pi\)
−0.384365 + 0.923181i \(0.625580\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 27.8336i 1.00111i 0.865706 + 0.500553i \(0.166870\pi\)
−0.865706 + 0.500553i \(0.833130\pi\)
\(774\) 0 0
\(775\) 21.6064 6.19358i 0.776125 0.222480i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 14.1017 0.505246
\(780\) 0 0
\(781\) 0.369800 0.0132325
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 5.74620 + 40.8988i 0.205091 + 1.45974i
\(786\) 0 0
\(787\) 43.7832i 1.56070i 0.625340 + 0.780352i \(0.284960\pi\)
−0.625340 + 0.780352i \(0.715040\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 5.29883 0.188405
\(792\) 0 0
\(793\) 11.1985i 0.397670i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 0.314022i 0.0111232i −0.999985 0.00556162i \(-0.998230\pi\)
0.999985 0.00556162i \(-0.00177033\pi\)
\(798\) 0 0
\(799\) −30.0731 −1.06391
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 0.180669i 0.00637568i
\(804\) 0 0
\(805\) −8.42864 + 1.18421i −0.297071 + 0.0417379i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −17.4050 −0.611927 −0.305963 0.952043i \(-0.598978\pi\)
−0.305963 + 0.952043i \(0.598978\pi\)
\(810\) 0 0
\(811\) 6.99709 0.245701 0.122850 0.992425i \(-0.460796\pi\)
0.122850 + 0.992425i \(0.460796\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −3.97280 28.2766i −0.139161 0.990484i
\(816\) 0 0
\(817\) 44.9131i 1.57131i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 22.6133 0.789210 0.394605 0.918851i \(-0.370881\pi\)
0.394605 + 0.918851i \(0.370881\pi\)
\(822\) 0 0
\(823\) 19.5506i 0.681492i −0.940155 0.340746i \(-0.889320\pi\)
0.940155 0.340746i \(-0.110680\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 20.4746i 0.711971i 0.934492 + 0.355985i \(0.115855\pi\)
−0.934492 + 0.355985i \(0.884145\pi\)
\(828\) 0 0
\(829\) 39.4019 1.36849 0.684243 0.729254i \(-0.260133\pi\)
0.684243 + 0.729254i \(0.260133\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 20.8889i 0.723758i
\(834\) 0 0
\(835\) 2.31264 + 16.4603i 0.0800322 + 0.569632i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −1.69826 −0.0586305 −0.0293152 0.999570i \(-0.509333\pi\)
−0.0293152 + 0.999570i \(0.509333\pi\)
\(840\) 0 0
\(841\) −26.6731 −0.919761
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 2.21432 0.311108i 0.0761749 0.0107024i
\(846\) 0 0
\(847\) 9.93132i 0.341244i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −50.3783 −1.72694
\(852\) 0 0
\(853\) 35.4465i 1.21366i 0.794830 + 0.606832i \(0.207560\pi\)
−0.794830 + 0.606832i \(0.792440\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 4.85728i 0.165921i 0.996553 + 0.0829607i \(0.0264376\pi\)
−0.996553 + 0.0829607i \(0.973562\pi\)
\(858\) 0 0
\(859\) 39.4420 1.34574 0.672872 0.739759i \(-0.265060\pi\)
0.672872 + 0.739759i \(0.265060\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 3.68736i 0.125519i 0.998029 + 0.0627596i \(0.0199901\pi\)
−0.998029 + 0.0627596i \(0.980010\pi\)
\(864\) 0 0
\(865\) −6.35551 45.2355i −0.216094 1.53805i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 0.212312 0.00720219
\(870\) 0 0
\(871\) 2.14764 0.0727701
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 4.10616 + 9.22570i 0.138813 + 0.311885i
\(876\) 0 0
\(877\) 47.4608i 1.60264i −0.598239 0.801318i \(-0.704133\pi\)
0.598239 0.801318i \(-0.295867\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −7.49378 −0.252472 −0.126236 0.992000i \(-0.540290\pi\)
−0.126236 + 0.992000i \(0.540290\pi\)
\(882\) 0 0
\(883\) 28.8879i 0.972154i 0.873916 + 0.486077i \(0.161573\pi\)
−0.873916 + 0.486077i \(0.838427\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 59.4499i 1.99613i −0.0621718 0.998065i \(-0.519803\pi\)
0.0621718 0.998065i \(-0.480197\pi\)
\(888\) 0 0
\(889\) 14.0000 0.469545
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 45.5625i 1.52469i
\(894\) 0 0
\(895\) −54.4800 + 7.65433i −1.82106 + 0.255856i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 6.85728 0.228703
\(900\) 0 0
\(901\) 12.0633 0.401886
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −30.9906 + 4.35413i −1.03016 + 0.144736i
\(906\) 0 0
\(907\) 8.58274i 0.284985i 0.989796 + 0.142493i \(0.0455117\pi\)
−0.989796 + 0.142493i \(0.954488\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 9.96836 0.330266 0.165133 0.986271i \(-0.447195\pi\)
0.165133 + 0.986271i \(0.447195\pi\)
\(912\) 0 0
\(913\) 0.659687i 0.0218325i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 5.24443i 0.173186i
\(918\) 0 0
\(919\) 22.9590 0.757347 0.378674 0.925530i \(-0.376380\pi\)
0.378674 + 0.925530i \(0.376380\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 5.54617i 0.182554i
\(924\) 0 0
\(925\) 16.4701 + 57.4563i 0.541534 + 1.88915i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −23.0509 −0.756274 −0.378137 0.925750i \(-0.623435\pi\)
−0.378137 + 0.925750i \(0.623435\pi\)
\(930\) 0 0
\(931\) −31.6479 −1.03722
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0.0700674 + 0.498707i 0.00229145 + 0.0163095i
\(936\) 0 0
\(937\) 35.2543i 1.15171i 0.817553 + 0.575853i \(0.195330\pi\)
−0.817553 + 0.575853i \(0.804670\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −10.1334 −0.330338 −0.165169 0.986265i \(-0.552817\pi\)
−0.165169 + 0.986265i \(0.552817\pi\)
\(942\) 0 0
\(943\) 11.6128i 0.378166i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 32.9447i 1.07056i 0.844675 + 0.535279i \(0.179794\pi\)
−0.844675 + 0.535279i \(0.820206\pi\)
\(948\) 0 0
\(949\) 2.70964 0.0879585
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 22.3684i 0.724584i 0.932065 + 0.362292i \(0.118006\pi\)
−0.932065 + 0.362292i \(0.881994\pi\)
\(954\) 0 0
\(955\) −23.8163 + 3.34614i −0.770676 + 0.108279i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 14.7012 0.474726
\(960\) 0 0
\(961\) −10.7921 −0.348133
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 4.79706 + 34.1432i 0.154423 + 1.09911i
\(966\) 0 0
\(967\) 7.12537i 0.229136i −0.993415 0.114568i \(-0.963452\pi\)
0.993415 0.114568i \(-0.0365484\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 10.1521 0.325796 0.162898 0.986643i \(-0.447916\pi\)
0.162898 + 0.986643i \(0.447916\pi\)
\(972\) 0 0
\(973\) 6.48886i 0.208023i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 22.4973i 0.719753i −0.933000 0.359877i \(-0.882819\pi\)
0.933000 0.359877i \(-0.117181\pi\)
\(978\) 0 0
\(979\) −0.964818 −0.0308357
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 27.7003i 0.883501i 0.897138 + 0.441751i \(0.145642\pi\)
−0.897138 + 0.441751i \(0.854358\pi\)
\(984\) 0 0
\(985\) 6.60348 + 47.0005i 0.210404 + 1.49756i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −36.9862 −1.17609
\(990\) 0 0
\(991\) 0.898766 0.0285502 0.0142751 0.999898i \(-0.495456\pi\)
0.0142751 + 0.999898i \(0.495456\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 45.0321 6.32693i 1.42761 0.200577i
\(996\) 0 0
\(997\) 19.5625i 0.619550i 0.950810 + 0.309775i \(0.100254\pi\)
−0.950810 + 0.309775i \(0.899746\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2340.2.h.e.469.2 6
3.2 odd 2 260.2.c.a.209.1 6
5.4 even 2 inner 2340.2.h.e.469.1 6
12.11 even 2 1040.2.d.d.209.6 6
15.2 even 4 1300.2.a.j.1.1 3
15.8 even 4 1300.2.a.k.1.3 3
15.14 odd 2 260.2.c.a.209.6 yes 6
39.5 even 4 3380.2.d.a.1689.1 6
39.8 even 4 3380.2.d.b.1689.1 6
39.38 odd 2 3380.2.c.c.2029.1 6
60.23 odd 4 5200.2.a.cd.1.1 3
60.47 odd 4 5200.2.a.cg.1.3 3
60.59 even 2 1040.2.d.d.209.1 6
195.44 even 4 3380.2.d.b.1689.6 6
195.164 even 4 3380.2.d.a.1689.6 6
195.194 odd 2 3380.2.c.c.2029.6 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
260.2.c.a.209.1 6 3.2 odd 2
260.2.c.a.209.6 yes 6 15.14 odd 2
1040.2.d.d.209.1 6 60.59 even 2
1040.2.d.d.209.6 6 12.11 even 2
1300.2.a.j.1.1 3 15.2 even 4
1300.2.a.k.1.3 3 15.8 even 4
2340.2.h.e.469.1 6 5.4 even 2 inner
2340.2.h.e.469.2 6 1.1 even 1 trivial
3380.2.c.c.2029.1 6 39.38 odd 2
3380.2.c.c.2029.6 6 195.194 odd 2
3380.2.d.a.1689.1 6 39.5 even 4
3380.2.d.a.1689.6 6 195.164 even 4
3380.2.d.b.1689.1 6 39.8 even 4
3380.2.d.b.1689.6 6 195.44 even 4
5200.2.a.cd.1.1 3 60.23 odd 4
5200.2.a.cg.1.3 3 60.47 odd 4