Properties

Label 260.2.c.a.209.6
Level $260$
Weight $2$
Character 260.209
Analytic conductor $2.076$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [260,2,Mod(209,260)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(260, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("260.209");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 260 = 2^{2} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 260.c (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.07611045255\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.350464.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} + 2x^{4} + 2x^{3} + 4x^{2} - 4x + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 209.6
Root \(1.45161 - 1.45161i\) of defining polynomial
Character \(\chi\) \(=\) 260.209
Dual form 260.2.c.a.209.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.21432i q^{3} +(2.21432 + 0.311108i) q^{5} +0.903212i q^{7} -1.90321 q^{9} -0.0666765 q^{11} +1.00000i q^{13} +(-0.688892 + 4.90321i) q^{15} -3.37778i q^{17} -5.11753 q^{19} -2.00000 q^{21} +4.21432i q^{23} +(4.80642 + 1.37778i) q^{25} +2.42864i q^{27} -1.52543 q^{29} +4.49532 q^{31} -0.147643i q^{33} +(-0.280996 + 2.00000i) q^{35} -11.9541i q^{37} -2.21432 q^{39} +2.75557 q^{41} -8.77631i q^{43} +(-4.21432 - 0.592104i) q^{45} -8.90321i q^{47} +6.18421 q^{49} +7.47949 q^{51} +3.57136i q^{53} +(-0.147643 - 0.0207436i) q^{55} -11.3319i q^{57} +8.16839 q^{59} -11.1985 q^{61} -1.71900i q^{63} +(-0.311108 + 2.21432i) q^{65} -2.14764i q^{67} -9.33185 q^{69} -5.54617 q^{71} -2.70964i q^{73} +(-3.05086 + 10.6430i) q^{75} -0.0602231i q^{77} +3.18421 q^{79} -11.0874 q^{81} +9.89384i q^{83} +(1.05086 - 7.47949i) q^{85} -3.37778i q^{87} +14.4701 q^{89} -0.903212 q^{91} +9.95407i q^{93} +(-11.3319 - 1.59210i) q^{95} -7.93978i q^{97} +0.126900 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 2 q^{9} - 4 q^{15} - 4 q^{19} - 12 q^{21} + 2 q^{25} + 4 q^{29} + 12 q^{35} + 16 q^{41} - 12 q^{45} + 10 q^{49} - 8 q^{51} + 12 q^{55} - 4 q^{59} - 28 q^{61} - 2 q^{65} - 16 q^{69} + 20 q^{71} + 8 q^{75}+ \cdots + 28 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/260\mathbb{Z}\right)^\times\).

\(n\) \(41\) \(131\) \(157\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.21432i 1.27844i 0.769025 + 0.639219i \(0.220742\pi\)
−0.769025 + 0.639219i \(0.779258\pi\)
\(4\) 0 0
\(5\) 2.21432 + 0.311108i 0.990274 + 0.139132i
\(6\) 0 0
\(7\) 0.903212i 0.341382i 0.985325 + 0.170691i \(0.0546000\pi\)
−0.985325 + 0.170691i \(0.945400\pi\)
\(8\) 0 0
\(9\) −1.90321 −0.634404
\(10\) 0 0
\(11\) −0.0666765 −0.0201037 −0.0100519 0.999949i \(-0.503200\pi\)
−0.0100519 + 0.999949i \(0.503200\pi\)
\(12\) 0 0
\(13\) 1.00000i 0.277350i
\(14\) 0 0
\(15\) −0.688892 + 4.90321i −0.177871 + 1.26600i
\(16\) 0 0
\(17\) 3.37778i 0.819233i −0.912258 0.409617i \(-0.865663\pi\)
0.912258 0.409617i \(-0.134337\pi\)
\(18\) 0 0
\(19\) −5.11753 −1.17404 −0.587021 0.809572i \(-0.699699\pi\)
−0.587021 + 0.809572i \(0.699699\pi\)
\(20\) 0 0
\(21\) −2.00000 −0.436436
\(22\) 0 0
\(23\) 4.21432i 0.878746i 0.898305 + 0.439373i \(0.144799\pi\)
−0.898305 + 0.439373i \(0.855201\pi\)
\(24\) 0 0
\(25\) 4.80642 + 1.37778i 0.961285 + 0.275557i
\(26\) 0 0
\(27\) 2.42864i 0.467392i
\(28\) 0 0
\(29\) −1.52543 −0.283265 −0.141632 0.989919i \(-0.545235\pi\)
−0.141632 + 0.989919i \(0.545235\pi\)
\(30\) 0 0
\(31\) 4.49532 0.807383 0.403691 0.914895i \(-0.367727\pi\)
0.403691 + 0.914895i \(0.367727\pi\)
\(32\) 0 0
\(33\) 0.147643i 0.0257014i
\(34\) 0 0
\(35\) −0.280996 + 2.00000i −0.0474970 + 0.338062i
\(36\) 0 0
\(37\) 11.9541i 1.96524i −0.185638 0.982618i \(-0.559435\pi\)
0.185638 0.982618i \(-0.440565\pi\)
\(38\) 0 0
\(39\) −2.21432 −0.354575
\(40\) 0 0
\(41\) 2.75557 0.430348 0.215174 0.976576i \(-0.430968\pi\)
0.215174 + 0.976576i \(0.430968\pi\)
\(42\) 0 0
\(43\) 8.77631i 1.33838i −0.743094 0.669188i \(-0.766642\pi\)
0.743094 0.669188i \(-0.233358\pi\)
\(44\) 0 0
\(45\) −4.21432 0.592104i −0.628234 0.0882657i
\(46\) 0 0
\(47\) 8.90321i 1.29867i −0.760504 0.649333i \(-0.775048\pi\)
0.760504 0.649333i \(-0.224952\pi\)
\(48\) 0 0
\(49\) 6.18421 0.883458
\(50\) 0 0
\(51\) 7.47949 1.04734
\(52\) 0 0
\(53\) 3.57136i 0.490564i 0.969452 + 0.245282i \(0.0788806\pi\)
−0.969452 + 0.245282i \(0.921119\pi\)
\(54\) 0 0
\(55\) −0.147643 0.0207436i −0.0199082 0.00279707i
\(56\) 0 0
\(57\) 11.3319i 1.50094i
\(58\) 0 0
\(59\) 8.16839 1.06343 0.531717 0.846922i \(-0.321547\pi\)
0.531717 + 0.846922i \(0.321547\pi\)
\(60\) 0 0
\(61\) −11.1985 −1.43382 −0.716910 0.697165i \(-0.754444\pi\)
−0.716910 + 0.697165i \(0.754444\pi\)
\(62\) 0 0
\(63\) 1.71900i 0.216574i
\(64\) 0 0
\(65\) −0.311108 + 2.21432i −0.0385882 + 0.274653i
\(66\) 0 0
\(67\) 2.14764i 0.262376i −0.991357 0.131188i \(-0.958121\pi\)
0.991357 0.131188i \(-0.0418792\pi\)
\(68\) 0 0
\(69\) −9.33185 −1.12342
\(70\) 0 0
\(71\) −5.54617 −0.658209 −0.329105 0.944293i \(-0.606747\pi\)
−0.329105 + 0.944293i \(0.606747\pi\)
\(72\) 0 0
\(73\) 2.70964i 0.317139i −0.987348 0.158569i \(-0.949312\pi\)
0.987348 0.158569i \(-0.0506882\pi\)
\(74\) 0 0
\(75\) −3.05086 + 10.6430i −0.352282 + 1.22894i
\(76\) 0 0
\(77\) 0.0602231i 0.00686305i
\(78\) 0 0
\(79\) 3.18421 0.358251 0.179126 0.983826i \(-0.442673\pi\)
0.179126 + 0.983826i \(0.442673\pi\)
\(80\) 0 0
\(81\) −11.0874 −1.23194
\(82\) 0 0
\(83\) 9.89384i 1.08599i 0.839736 + 0.542995i \(0.182710\pi\)
−0.839736 + 0.542995i \(0.817290\pi\)
\(84\) 0 0
\(85\) 1.05086 7.47949i 0.113981 0.811265i
\(86\) 0 0
\(87\) 3.37778i 0.362136i
\(88\) 0 0
\(89\) 14.4701 1.53383 0.766915 0.641748i \(-0.221791\pi\)
0.766915 + 0.641748i \(0.221791\pi\)
\(90\) 0 0
\(91\) −0.903212 −0.0946823
\(92\) 0 0
\(93\) 9.95407i 1.03219i
\(94\) 0 0
\(95\) −11.3319 1.59210i −1.16262 0.163346i
\(96\) 0 0
\(97\) 7.93978i 0.806162i −0.915164 0.403081i \(-0.867939\pi\)
0.915164 0.403081i \(-0.132061\pi\)
\(98\) 0 0
\(99\) 0.126900 0.0127539
\(100\) 0 0
\(101\) −5.18421 −0.515848 −0.257924 0.966165i \(-0.583038\pi\)
−0.257924 + 0.966165i \(0.583038\pi\)
\(102\) 0 0
\(103\) 7.88739i 0.777168i −0.921413 0.388584i \(-0.872964\pi\)
0.921413 0.388584i \(-0.127036\pi\)
\(104\) 0 0
\(105\) −4.42864 0.622216i −0.432191 0.0607220i
\(106\) 0 0
\(107\) 17.3669i 1.67892i 0.543421 + 0.839460i \(0.317129\pi\)
−0.543421 + 0.839460i \(0.682871\pi\)
\(108\) 0 0
\(109\) −0.133353 −0.0127729 −0.00638645 0.999980i \(-0.502033\pi\)
−0.00638645 + 0.999980i \(0.502033\pi\)
\(110\) 0 0
\(111\) 26.4701 2.51243
\(112\) 0 0
\(113\) 5.86665i 0.551888i 0.961174 + 0.275944i \(0.0889904\pi\)
−0.961174 + 0.275944i \(0.911010\pi\)
\(114\) 0 0
\(115\) −1.31111 + 9.33185i −0.122261 + 0.870200i
\(116\) 0 0
\(117\) 1.90321i 0.175952i
\(118\) 0 0
\(119\) 3.05086 0.279671
\(120\) 0 0
\(121\) −10.9956 −0.999596
\(122\) 0 0
\(123\) 6.10171i 0.550173i
\(124\) 0 0
\(125\) 10.2143 + 4.54617i 0.913597 + 0.406622i
\(126\) 0 0
\(127\) 15.5002i 1.37542i −0.725984 0.687712i \(-0.758615\pi\)
0.725984 0.687712i \(-0.241385\pi\)
\(128\) 0 0
\(129\) 19.4336 1.71103
\(130\) 0 0
\(131\) −5.80642 −0.507310 −0.253655 0.967295i \(-0.581633\pi\)
−0.253655 + 0.967295i \(0.581633\pi\)
\(132\) 0 0
\(133\) 4.62222i 0.400797i
\(134\) 0 0
\(135\) −0.755569 + 5.37778i −0.0650290 + 0.462846i
\(136\) 0 0
\(137\) 16.2766i 1.39060i 0.718720 + 0.695300i \(0.244728\pi\)
−0.718720 + 0.695300i \(0.755272\pi\)
\(138\) 0 0
\(139\) 7.18421 0.609357 0.304678 0.952455i \(-0.401451\pi\)
0.304678 + 0.952455i \(0.401451\pi\)
\(140\) 0 0
\(141\) 19.7146 1.66027
\(142\) 0 0
\(143\) 0.0666765i 0.00557577i
\(144\) 0 0
\(145\) −3.37778 0.474572i −0.280510 0.0394111i
\(146\) 0 0
\(147\) 13.6938i 1.12945i
\(148\) 0 0
\(149\) −13.2859 −1.08842 −0.544212 0.838947i \(-0.683171\pi\)
−0.544212 + 0.838947i \(0.683171\pi\)
\(150\) 0 0
\(151\) −15.3111 −1.24600 −0.623000 0.782222i \(-0.714086\pi\)
−0.623000 + 0.782222i \(0.714086\pi\)
\(152\) 0 0
\(153\) 6.42864i 0.519725i
\(154\) 0 0
\(155\) 9.95407 + 1.39853i 0.799530 + 0.112332i
\(156\) 0 0
\(157\) 18.4701i 1.47408i 0.675851 + 0.737038i \(0.263776\pi\)
−0.675851 + 0.737038i \(0.736224\pi\)
\(158\) 0 0
\(159\) −7.90813 −0.627156
\(160\) 0 0
\(161\) −3.80642 −0.299988
\(162\) 0 0
\(163\) 12.7699i 1.00021i −0.865964 0.500106i \(-0.833294\pi\)
0.865964 0.500106i \(-0.166706\pi\)
\(164\) 0 0
\(165\) 0.0459330 0.326929i 0.00357588 0.0254514i
\(166\) 0 0
\(167\) 7.43356i 0.575226i −0.957747 0.287613i \(-0.907138\pi\)
0.957747 0.287613i \(-0.0928617\pi\)
\(168\) 0 0
\(169\) −1.00000 −0.0769231
\(170\) 0 0
\(171\) 9.73975 0.744817
\(172\) 0 0
\(173\) 20.4286i 1.55316i 0.630018 + 0.776580i \(0.283047\pi\)
−0.630018 + 0.776580i \(0.716953\pi\)
\(174\) 0 0
\(175\) −1.24443 + 4.34122i −0.0940702 + 0.328165i
\(176\) 0 0
\(177\) 18.0874i 1.35953i
\(178\) 0 0
\(179\) −24.6035 −1.83895 −0.919475 0.393148i \(-0.871386\pi\)
−0.919475 + 0.393148i \(0.871386\pi\)
\(180\) 0 0
\(181\) 13.9956 1.04028 0.520141 0.854081i \(-0.325880\pi\)
0.520141 + 0.854081i \(0.325880\pi\)
\(182\) 0 0
\(183\) 24.7971i 1.83305i
\(184\) 0 0
\(185\) 3.71900 26.4701i 0.273427 1.94612i
\(186\) 0 0
\(187\) 0.225219i 0.0164696i
\(188\) 0 0
\(189\) −2.19358 −0.159559
\(190\) 0 0
\(191\) −10.7556 −0.778246 −0.389123 0.921186i \(-0.627222\pi\)
−0.389123 + 0.921186i \(0.627222\pi\)
\(192\) 0 0
\(193\) 15.4193i 1.10990i 0.831883 + 0.554952i \(0.187263\pi\)
−0.831883 + 0.554952i \(0.812737\pi\)
\(194\) 0 0
\(195\) −4.90321 0.688892i −0.351126 0.0493326i
\(196\) 0 0
\(197\) 21.2257i 1.51227i −0.654417 0.756134i \(-0.727086\pi\)
0.654417 0.756134i \(-0.272914\pi\)
\(198\) 0 0
\(199\) −20.3368 −1.44164 −0.720818 0.693125i \(-0.756234\pi\)
−0.720818 + 0.693125i \(0.756234\pi\)
\(200\) 0 0
\(201\) 4.75557 0.335432
\(202\) 0 0
\(203\) 1.37778i 0.0967015i
\(204\) 0 0
\(205\) 6.10171 + 0.857279i 0.426162 + 0.0598750i
\(206\) 0 0
\(207\) 8.02074i 0.557480i
\(208\) 0 0
\(209\) 0.341219 0.0236026
\(210\) 0 0
\(211\) −20.7239 −1.42669 −0.713347 0.700811i \(-0.752822\pi\)
−0.713347 + 0.700811i \(0.752822\pi\)
\(212\) 0 0
\(213\) 12.2810i 0.841480i
\(214\) 0 0
\(215\) 2.73038 19.4336i 0.186210 1.32536i
\(216\) 0 0
\(217\) 4.06022i 0.275626i
\(218\) 0 0
\(219\) 6.00000 0.405442
\(220\) 0 0
\(221\) 3.37778 0.227214
\(222\) 0 0
\(223\) 20.2494i 1.35600i −0.735063 0.677999i \(-0.762848\pi\)
0.735063 0.677999i \(-0.237152\pi\)
\(224\) 0 0
\(225\) −9.14764 2.62222i −0.609843 0.174814i
\(226\) 0 0
\(227\) 16.9032i 1.12191i 0.827848 + 0.560953i \(0.189565\pi\)
−0.827848 + 0.560953i \(0.810435\pi\)
\(228\) 0 0
\(229\) −3.96836 −0.262236 −0.131118 0.991367i \(-0.541857\pi\)
−0.131118 + 0.991367i \(0.541857\pi\)
\(230\) 0 0
\(231\) 0.133353 0.00877399
\(232\) 0 0
\(233\) 15.3176i 1.00349i 0.865017 + 0.501743i \(0.167308\pi\)
−0.865017 + 0.501743i \(0.832692\pi\)
\(234\) 0 0
\(235\) 2.76986 19.7146i 0.180686 1.28604i
\(236\) 0 0
\(237\) 7.05086i 0.458002i
\(238\) 0 0
\(239\) 14.8637 0.961455 0.480727 0.876870i \(-0.340373\pi\)
0.480727 + 0.876870i \(0.340373\pi\)
\(240\) 0 0
\(241\) 20.2953 1.30733 0.653667 0.756782i \(-0.273230\pi\)
0.653667 + 0.756782i \(0.273230\pi\)
\(242\) 0 0
\(243\) 17.2652i 1.10756i
\(244\) 0 0
\(245\) 13.6938 + 1.92396i 0.874866 + 0.122917i
\(246\) 0 0
\(247\) 5.11753i 0.325621i
\(248\) 0 0
\(249\) −21.9081 −1.38837
\(250\) 0 0
\(251\) 20.5620 1.29786 0.648931 0.760847i \(-0.275216\pi\)
0.648931 + 0.760847i \(0.275216\pi\)
\(252\) 0 0
\(253\) 0.280996i 0.0176661i
\(254\) 0 0
\(255\) 16.5620 + 2.32693i 1.03715 + 0.145718i
\(256\) 0 0
\(257\) 27.5210i 1.71671i −0.513055 0.858356i \(-0.671486\pi\)
0.513055 0.858356i \(-0.328514\pi\)
\(258\) 0 0
\(259\) 10.7971 0.670896
\(260\) 0 0
\(261\) 2.90321 0.179704
\(262\) 0 0
\(263\) 8.58274i 0.529234i −0.964354 0.264617i \(-0.914754\pi\)
0.964354 0.264617i \(-0.0852456\pi\)
\(264\) 0 0
\(265\) −1.11108 + 7.90813i −0.0682530 + 0.485793i
\(266\) 0 0
\(267\) 32.0415i 1.96091i
\(268\) 0 0
\(269\) −10.8988 −0.664510 −0.332255 0.943190i \(-0.607809\pi\)
−0.332255 + 0.943190i \(0.607809\pi\)
\(270\) 0 0
\(271\) −8.46367 −0.514132 −0.257066 0.966394i \(-0.582756\pi\)
−0.257066 + 0.966394i \(0.582756\pi\)
\(272\) 0 0
\(273\) 2.00000i 0.121046i
\(274\) 0 0
\(275\) −0.320476 0.0918659i −0.0193254 0.00553972i
\(276\) 0 0
\(277\) 28.7239i 1.72585i 0.505329 + 0.862927i \(0.331371\pi\)
−0.505329 + 0.862927i \(0.668629\pi\)
\(278\) 0 0
\(279\) −8.55554 −0.512207
\(280\) 0 0
\(281\) −14.1936 −0.846718 −0.423359 0.905962i \(-0.639149\pi\)
−0.423359 + 0.905962i \(0.639149\pi\)
\(282\) 0 0
\(283\) 15.9190i 0.946288i −0.880985 0.473144i \(-0.843119\pi\)
0.880985 0.473144i \(-0.156881\pi\)
\(284\) 0 0
\(285\) 3.52543 25.0923i 0.208828 1.48634i
\(286\) 0 0
\(287\) 2.48886i 0.146913i
\(288\) 0 0
\(289\) 5.59057 0.328857
\(290\) 0 0
\(291\) 17.5812 1.03063
\(292\) 0 0
\(293\) 20.4242i 1.19319i −0.802541 0.596597i \(-0.796519\pi\)
0.802541 0.596597i \(-0.203481\pi\)
\(294\) 0 0
\(295\) 18.0874 + 2.54125i 1.05309 + 0.147957i
\(296\) 0 0
\(297\) 0.161933i 0.00939632i
\(298\) 0 0
\(299\) −4.21432 −0.243720
\(300\) 0 0
\(301\) 7.92687 0.456897
\(302\) 0 0
\(303\) 11.4795i 0.659480i
\(304\) 0 0
\(305\) −24.7971 3.48394i −1.41988 0.199490i
\(306\) 0 0
\(307\) 0.0874201i 0.00498933i −0.999997 0.00249467i \(-0.999206\pi\)
0.999997 0.00249467i \(-0.000794078\pi\)
\(308\) 0 0
\(309\) 17.4652 0.993561
\(310\) 0 0
\(311\) −25.7146 −1.45814 −0.729069 0.684440i \(-0.760047\pi\)
−0.729069 + 0.684440i \(0.760047\pi\)
\(312\) 0 0
\(313\) 7.67307i 0.433708i −0.976204 0.216854i \(-0.930421\pi\)
0.976204 0.216854i \(-0.0695795\pi\)
\(314\) 0 0
\(315\) 0.534795 3.80642i 0.0301323 0.214468i
\(316\) 0 0
\(317\) 3.65878i 0.205498i −0.994707 0.102749i \(-0.967236\pi\)
0.994707 0.102749i \(-0.0327638\pi\)
\(318\) 0 0
\(319\) 0.101710 0.00569468
\(320\) 0 0
\(321\) −38.4558 −2.14640
\(322\) 0 0
\(323\) 17.2859i 0.961814i
\(324\) 0 0
\(325\) −1.37778 + 4.80642i −0.0764257 + 0.266612i
\(326\) 0 0
\(327\) 0.295286i 0.0163294i
\(328\) 0 0
\(329\) 8.04149 0.443342
\(330\) 0 0
\(331\) −0.403450 −0.0221756 −0.0110878 0.999939i \(-0.503529\pi\)
−0.0110878 + 0.999939i \(0.503529\pi\)
\(332\) 0 0
\(333\) 22.7511i 1.24675i
\(334\) 0 0
\(335\) 0.668149 4.75557i 0.0365049 0.259824i
\(336\) 0 0
\(337\) 20.7971i 1.13289i 0.824100 + 0.566444i \(0.191681\pi\)
−0.824100 + 0.566444i \(0.808319\pi\)
\(338\) 0 0
\(339\) −12.9906 −0.705554
\(340\) 0 0
\(341\) −0.299732 −0.0162314
\(342\) 0 0
\(343\) 11.9081i 0.642979i
\(344\) 0 0
\(345\) −20.6637 2.90321i −1.11250 0.156304i
\(346\) 0 0
\(347\) 8.28745i 0.444894i 0.974945 + 0.222447i \(0.0714044\pi\)
−0.974945 + 0.222447i \(0.928596\pi\)
\(348\) 0 0
\(349\) −21.3590 −1.14332 −0.571662 0.820489i \(-0.693701\pi\)
−0.571662 + 0.820489i \(0.693701\pi\)
\(350\) 0 0
\(351\) −2.42864 −0.129631
\(352\) 0 0
\(353\) 23.3002i 1.24014i 0.784545 + 0.620072i \(0.212897\pi\)
−0.784545 + 0.620072i \(0.787103\pi\)
\(354\) 0 0
\(355\) −12.2810 1.72546i −0.651808 0.0915778i
\(356\) 0 0
\(357\) 6.75557i 0.357543i
\(358\) 0 0
\(359\) 34.6987 1.83133 0.915665 0.401943i \(-0.131665\pi\)
0.915665 + 0.401943i \(0.131665\pi\)
\(360\) 0 0
\(361\) 7.18913 0.378375
\(362\) 0 0
\(363\) 24.3477i 1.27792i
\(364\) 0 0
\(365\) 0.842989 6.00000i 0.0441241 0.314054i
\(366\) 0 0
\(367\) 27.1131i 1.41529i 0.706567 + 0.707646i \(0.250243\pi\)
−0.706567 + 0.707646i \(0.749757\pi\)
\(368\) 0 0
\(369\) −5.24443 −0.273014
\(370\) 0 0
\(371\) −3.22570 −0.167470
\(372\) 0 0
\(373\) 19.7146i 1.02078i 0.859943 + 0.510391i \(0.170499\pi\)
−0.859943 + 0.510391i \(0.829501\pi\)
\(374\) 0 0
\(375\) −10.0667 + 22.6178i −0.519841 + 1.16798i
\(376\) 0 0
\(377\) 1.52543i 0.0785635i
\(378\) 0 0
\(379\) 24.8321 1.27554 0.637769 0.770227i \(-0.279857\pi\)
0.637769 + 0.770227i \(0.279857\pi\)
\(380\) 0 0
\(381\) 34.3225 1.75839
\(382\) 0 0
\(383\) 1.62714i 0.0831429i −0.999136 0.0415714i \(-0.986764\pi\)
0.999136 0.0415714i \(-0.0132364\pi\)
\(384\) 0 0
\(385\) 0.0187359 0.133353i 0.000954868 0.00679630i
\(386\) 0 0
\(387\) 16.7032i 0.849070i
\(388\) 0 0
\(389\) 8.48886 0.430402 0.215201 0.976570i \(-0.430959\pi\)
0.215201 + 0.976570i \(0.430959\pi\)
\(390\) 0 0
\(391\) 14.2351 0.719898
\(392\) 0 0
\(393\) 12.8573i 0.648564i
\(394\) 0 0
\(395\) 7.05086 + 0.990632i 0.354767 + 0.0498441i
\(396\) 0 0
\(397\) 9.10663i 0.457049i 0.973538 + 0.228524i \(0.0733901\pi\)
−0.973538 + 0.228524i \(0.926610\pi\)
\(398\) 0 0
\(399\) 10.2351 0.512394
\(400\) 0 0
\(401\) 18.1748 0.907608 0.453804 0.891101i \(-0.350067\pi\)
0.453804 + 0.891101i \(0.350067\pi\)
\(402\) 0 0
\(403\) 4.49532i 0.223928i
\(404\) 0 0
\(405\) −24.5511 3.44938i −1.21995 0.171401i
\(406\) 0 0
\(407\) 0.797056i 0.0395086i
\(408\) 0 0
\(409\) 11.3461 0.561031 0.280515 0.959850i \(-0.409495\pi\)
0.280515 + 0.959850i \(0.409495\pi\)
\(410\) 0 0
\(411\) −36.0415 −1.77780
\(412\) 0 0
\(413\) 7.37778i 0.363037i
\(414\) 0 0
\(415\) −3.07805 + 21.9081i −0.151096 + 1.07543i
\(416\) 0 0
\(417\) 15.9081i 0.779025i
\(418\) 0 0
\(419\) 15.7047 0.767225 0.383613 0.923494i \(-0.374680\pi\)
0.383613 + 0.923494i \(0.374680\pi\)
\(420\) 0 0
\(421\) −15.0923 −0.735556 −0.367778 0.929914i \(-0.619881\pi\)
−0.367778 + 0.929914i \(0.619881\pi\)
\(422\) 0 0
\(423\) 16.9447i 0.823879i
\(424\) 0 0
\(425\) 4.65386 16.2351i 0.225745 0.787516i
\(426\) 0 0
\(427\) 10.1146i 0.489481i
\(428\) 0 0
\(429\) 0.147643 0.00712828
\(430\) 0 0
\(431\) 18.9842 0.914436 0.457218 0.889355i \(-0.348846\pi\)
0.457218 + 0.889355i \(0.348846\pi\)
\(432\) 0 0
\(433\) 1.04101i 0.0500278i −0.999687 0.0250139i \(-0.992037\pi\)
0.999687 0.0250139i \(-0.00796300\pi\)
\(434\) 0 0
\(435\) 1.05086 7.47949i 0.0503846 0.358614i
\(436\) 0 0
\(437\) 21.5669i 1.03169i
\(438\) 0 0
\(439\) 19.3876 0.925321 0.462661 0.886536i \(-0.346895\pi\)
0.462661 + 0.886536i \(0.346895\pi\)
\(440\) 0 0
\(441\) −11.7699 −0.560469
\(442\) 0 0
\(443\) 36.1037i 1.71534i 0.514201 + 0.857670i \(0.328089\pi\)
−0.514201 + 0.857670i \(0.671911\pi\)
\(444\) 0 0
\(445\) 32.0415 + 4.50177i 1.51891 + 0.213404i
\(446\) 0 0
\(447\) 29.4193i 1.39148i
\(448\) 0 0
\(449\) −7.34614 −0.346686 −0.173343 0.984862i \(-0.555457\pi\)
−0.173343 + 0.984862i \(0.555457\pi\)
\(450\) 0 0
\(451\) −0.183732 −0.00865159
\(452\) 0 0
\(453\) 33.9037i 1.59293i
\(454\) 0 0
\(455\) −2.00000 0.280996i −0.0937614 0.0131733i
\(456\) 0 0
\(457\) 3.67307i 0.171819i −0.996303 0.0859095i \(-0.972620\pi\)
0.996303 0.0859095i \(-0.0273796\pi\)
\(458\) 0 0
\(459\) 8.20342 0.382903
\(460\) 0 0
\(461\) 25.7748 1.20045 0.600226 0.799831i \(-0.295077\pi\)
0.600226 + 0.799831i \(0.295077\pi\)
\(462\) 0 0
\(463\) 10.6681i 0.495791i −0.968787 0.247895i \(-0.920261\pi\)
0.968787 0.247895i \(-0.0797389\pi\)
\(464\) 0 0
\(465\) −3.09679 + 22.0415i −0.143610 + 1.02215i
\(466\) 0 0
\(467\) 13.5190i 0.625584i 0.949822 + 0.312792i \(0.101264\pi\)
−0.949822 + 0.312792i \(0.898736\pi\)
\(468\) 0 0
\(469\) 1.93978 0.0895706
\(470\) 0 0
\(471\) −40.8988 −1.88452
\(472\) 0 0
\(473\) 0.585174i 0.0269063i
\(474\) 0 0
\(475\) −24.5970 7.05086i −1.12859 0.323515i
\(476\) 0 0
\(477\) 6.79706i 0.311216i
\(478\) 0 0
\(479\) −19.2192 −0.878150 −0.439075 0.898451i \(-0.644694\pi\)
−0.439075 + 0.898451i \(0.644694\pi\)
\(480\) 0 0
\(481\) 11.9541 0.545059
\(482\) 0 0
\(483\) 8.42864i 0.383516i
\(484\) 0 0
\(485\) 2.47013 17.5812i 0.112163 0.798321i
\(486\) 0 0
\(487\) 4.00445i 0.181459i −0.995876 0.0907294i \(-0.971080\pi\)
0.995876 0.0907294i \(-0.0289198\pi\)
\(488\) 0 0
\(489\) 28.2766 1.27871
\(490\) 0 0
\(491\) −17.5812 −0.793429 −0.396714 0.917942i \(-0.629850\pi\)
−0.396714 + 0.917942i \(0.629850\pi\)
\(492\) 0 0
\(493\) 5.15257i 0.232060i
\(494\) 0 0
\(495\) 0.280996 + 0.0394795i 0.0126298 + 0.00177447i
\(496\) 0 0
\(497\) 5.00937i 0.224701i
\(498\) 0 0
\(499\) 1.37133 0.0613892 0.0306946 0.999529i \(-0.490228\pi\)
0.0306946 + 0.999529i \(0.490228\pi\)
\(500\) 0 0
\(501\) 16.4603 0.735391
\(502\) 0 0
\(503\) 15.1032i 0.673420i 0.941608 + 0.336710i \(0.109314\pi\)
−0.941608 + 0.336710i \(0.890686\pi\)
\(504\) 0 0
\(505\) −11.4795 1.61285i −0.510831 0.0717708i
\(506\) 0 0
\(507\) 2.21432i 0.0983414i
\(508\) 0 0
\(509\) −29.7748 −1.31974 −0.659872 0.751378i \(-0.729390\pi\)
−0.659872 + 0.751378i \(0.729390\pi\)
\(510\) 0 0
\(511\) 2.44738 0.108266
\(512\) 0 0
\(513\) 12.4286i 0.548738i
\(514\) 0 0
\(515\) 2.45383 17.4652i 0.108129 0.769609i
\(516\) 0 0
\(517\) 0.593635i 0.0261081i
\(518\) 0 0
\(519\) −45.2355 −1.98562
\(520\) 0 0
\(521\) 5.79213 0.253758 0.126879 0.991918i \(-0.459504\pi\)
0.126879 + 0.991918i \(0.459504\pi\)
\(522\) 0 0
\(523\) 12.3575i 0.540356i −0.962810 0.270178i \(-0.912917\pi\)
0.962810 0.270178i \(-0.0870826\pi\)
\(524\) 0 0
\(525\) −9.61285 2.75557i −0.419539 0.120263i
\(526\) 0 0
\(527\) 15.1842i 0.661434i
\(528\) 0 0
\(529\) 5.23951 0.227805
\(530\) 0 0
\(531\) −15.5462 −0.674646
\(532\) 0 0
\(533\) 2.75557i 0.119357i
\(534\) 0 0
\(535\) −5.40297 + 38.4558i −0.233591 + 1.66259i
\(536\) 0 0
\(537\) 54.4800i 2.35098i
\(538\) 0 0
\(539\) −0.412342 −0.0177608
\(540\) 0 0
\(541\) −43.5526 −1.87247 −0.936237 0.351370i \(-0.885716\pi\)
−0.936237 + 0.351370i \(0.885716\pi\)
\(542\) 0 0
\(543\) 30.9906i 1.32994i
\(544\) 0 0
\(545\) −0.295286 0.0414872i −0.0126487 0.00177712i
\(546\) 0 0
\(547\) 1.43017i 0.0611497i 0.999532 + 0.0305748i \(0.00973379\pi\)
−0.999532 + 0.0305748i \(0.990266\pi\)
\(548\) 0 0
\(549\) 21.3131 0.909622
\(550\) 0 0
\(551\) 7.80642 0.332565
\(552\) 0 0
\(553\) 2.87601i 0.122301i
\(554\) 0 0
\(555\) 58.6133 + 8.23506i 2.48800 + 0.349559i
\(556\) 0 0
\(557\) 27.0968i 1.14813i −0.818811 0.574064i \(-0.805366\pi\)
0.818811 0.574064i \(-0.194634\pi\)
\(558\) 0 0
\(559\) 8.77631 0.371198
\(560\) 0 0
\(561\) −0.498707 −0.0210554
\(562\) 0 0
\(563\) 26.6113i 1.12153i −0.827974 0.560767i \(-0.810506\pi\)
0.827974 0.560767i \(-0.189494\pi\)
\(564\) 0 0
\(565\) −1.82516 + 12.9906i −0.0767850 + 0.546520i
\(566\) 0 0
\(567\) 10.0143i 0.420561i
\(568\) 0 0
\(569\) −5.95407 −0.249607 −0.124804 0.992181i \(-0.539830\pi\)
−0.124804 + 0.992181i \(0.539830\pi\)
\(570\) 0 0
\(571\) −13.2859 −0.555998 −0.277999 0.960581i \(-0.589671\pi\)
−0.277999 + 0.960581i \(0.589671\pi\)
\(572\) 0 0
\(573\) 23.8163i 0.994939i
\(574\) 0 0
\(575\) −5.80642 + 20.2558i −0.242145 + 0.844726i
\(576\) 0 0
\(577\) 28.4242i 1.18331i 0.806190 + 0.591657i \(0.201526\pi\)
−0.806190 + 0.591657i \(0.798474\pi\)
\(578\) 0 0
\(579\) −34.1432 −1.41894
\(580\) 0 0
\(581\) −8.93624 −0.370738
\(582\) 0 0
\(583\) 0.238126i 0.00986217i
\(584\) 0 0
\(585\) 0.592104 4.21432i 0.0244805 0.174241i
\(586\) 0 0
\(587\) 8.76986i 0.361971i 0.983486 + 0.180985i \(0.0579287\pi\)
−0.983486 + 0.180985i \(0.942071\pi\)
\(588\) 0 0
\(589\) −23.0049 −0.947901
\(590\) 0 0
\(591\) 47.0005 1.93334
\(592\) 0 0
\(593\) 30.2449i 1.24201i −0.783807 0.621005i \(-0.786725\pi\)
0.783807 0.621005i \(-0.213275\pi\)
\(594\) 0 0
\(595\) 6.75557 + 0.949145i 0.276951 + 0.0389111i
\(596\) 0 0
\(597\) 45.0321i 1.84304i
\(598\) 0 0
\(599\) −17.3274 −0.707979 −0.353989 0.935249i \(-0.615175\pi\)
−0.353989 + 0.935249i \(0.615175\pi\)
\(600\) 0 0
\(601\) 34.2864 1.39857 0.699286 0.714842i \(-0.253502\pi\)
0.699286 + 0.714842i \(0.253502\pi\)
\(602\) 0 0
\(603\) 4.08742i 0.166453i
\(604\) 0 0
\(605\) −24.3477 3.42080i −0.989874 0.139075i
\(606\) 0 0
\(607\) 19.6523i 0.797663i −0.917024 0.398832i \(-0.869416\pi\)
0.917024 0.398832i \(-0.130584\pi\)
\(608\) 0 0
\(609\) 3.05086 0.123627
\(610\) 0 0
\(611\) 8.90321 0.360185
\(612\) 0 0
\(613\) 17.9496i 0.724978i 0.931988 + 0.362489i \(0.118073\pi\)
−0.931988 + 0.362489i \(0.881927\pi\)
\(614\) 0 0
\(615\) −1.89829 + 13.5111i −0.0765464 + 0.544822i
\(616\) 0 0
\(617\) 39.6227i 1.59515i −0.603220 0.797575i \(-0.706116\pi\)
0.603220 0.797575i \(-0.293884\pi\)
\(618\) 0 0
\(619\) −12.5052 −0.502625 −0.251312 0.967906i \(-0.580862\pi\)
−0.251312 + 0.967906i \(0.580862\pi\)
\(620\) 0 0
\(621\) −10.2351 −0.410719
\(622\) 0 0
\(623\) 13.0696i 0.523622i
\(624\) 0 0
\(625\) 21.2034 + 13.2444i 0.848137 + 0.529777i
\(626\) 0 0
\(627\) 0.755569i 0.0301745i
\(628\) 0 0
\(629\) −40.3783 −1.60999
\(630\) 0 0
\(631\) 15.2094 0.605477 0.302738 0.953074i \(-0.402099\pi\)
0.302738 + 0.953074i \(0.402099\pi\)
\(632\) 0 0
\(633\) 45.8894i 1.82394i
\(634\) 0 0
\(635\) 4.82225 34.3225i 0.191365 1.36205i
\(636\) 0 0
\(637\) 6.18421i 0.245027i
\(638\) 0 0
\(639\) 10.5555 0.417571
\(640\) 0 0
\(641\) 41.5496 1.64111 0.820555 0.571568i \(-0.193665\pi\)
0.820555 + 0.571568i \(0.193665\pi\)
\(642\) 0 0
\(643\) 18.3225i 0.722568i −0.932456 0.361284i \(-0.882338\pi\)
0.932456 0.361284i \(-0.117662\pi\)
\(644\) 0 0
\(645\) 43.0321 + 6.04593i 1.69439 + 0.238058i
\(646\) 0 0
\(647\) 9.31555i 0.366232i −0.983091 0.183116i \(-0.941382\pi\)
0.983091 0.183116i \(-0.0586184\pi\)
\(648\) 0 0
\(649\) −0.544640 −0.0213790
\(650\) 0 0
\(651\) −8.99063 −0.352371
\(652\) 0 0
\(653\) 37.6128i 1.47190i 0.677033 + 0.735952i \(0.263265\pi\)
−0.677033 + 0.735952i \(0.736735\pi\)
\(654\) 0 0
\(655\) −12.8573 1.80642i −0.502375 0.0705828i
\(656\) 0 0
\(657\) 5.15701i 0.201194i
\(658\) 0 0
\(659\) 46.4800 1.81060 0.905301 0.424770i \(-0.139645\pi\)
0.905301 + 0.424770i \(0.139645\pi\)
\(660\) 0 0
\(661\) −17.1655 −0.667659 −0.333830 0.942633i \(-0.608341\pi\)
−0.333830 + 0.942633i \(0.608341\pi\)
\(662\) 0 0
\(663\) 7.47949i 0.290480i
\(664\) 0 0
\(665\) 1.43801 10.2351i 0.0557635 0.396899i
\(666\) 0 0
\(667\) 6.42864i 0.248918i
\(668\) 0 0
\(669\) 44.8385 1.73356
\(670\) 0 0
\(671\) 0.746677 0.0288252
\(672\) 0 0
\(673\) 5.06376i 0.195194i 0.995226 + 0.0975968i \(0.0311156\pi\)
−0.995226 + 0.0975968i \(0.968884\pi\)
\(674\) 0 0
\(675\) −3.34614 + 11.6731i −0.128793 + 0.449297i
\(676\) 0 0
\(677\) 16.6035i 0.638124i −0.947734 0.319062i \(-0.896632\pi\)
0.947734 0.319062i \(-0.103368\pi\)
\(678\) 0 0
\(679\) 7.17130 0.275209
\(680\) 0 0
\(681\) −37.4291 −1.43429
\(682\) 0 0
\(683\) 21.4938i 0.822437i 0.911537 + 0.411218i \(0.134897\pi\)
−0.911537 + 0.411218i \(0.865103\pi\)
\(684\) 0 0
\(685\) −5.06376 + 36.0415i −0.193476 + 1.37707i
\(686\) 0 0
\(687\) 8.78721i 0.335253i
\(688\) 0 0
\(689\) −3.57136 −0.136058
\(690\) 0 0
\(691\) 48.3245 1.83835 0.919175 0.393849i \(-0.128857\pi\)
0.919175 + 0.393849i \(0.128857\pi\)
\(692\) 0 0
\(693\) 0.114617i 0.00435395i
\(694\) 0 0
\(695\) 15.9081 + 2.23506i 0.603430 + 0.0847808i
\(696\) 0 0
\(697\) 9.30772i 0.352555i
\(698\) 0 0
\(699\) −33.9180 −1.28290
\(700\) 0 0
\(701\) −41.6543 −1.57326 −0.786631 0.617423i \(-0.788177\pi\)
−0.786631 + 0.617423i \(0.788177\pi\)
\(702\) 0 0
\(703\) 61.1753i 2.30727i
\(704\) 0 0
\(705\) 43.6543 + 6.13335i 1.64412 + 0.230995i
\(706\) 0 0
\(707\) 4.68244i 0.176101i
\(708\) 0 0
\(709\) −42.8988 −1.61110 −0.805548 0.592530i \(-0.798129\pi\)
−0.805548 + 0.592530i \(0.798129\pi\)
\(710\) 0 0
\(711\) −6.06022 −0.227276
\(712\) 0 0
\(713\) 18.9447i 0.709485i
\(714\) 0 0
\(715\) 0.0207436 0.147643i 0.000775766 0.00552154i
\(716\) 0 0
\(717\) 32.9131i 1.22916i
\(718\) 0 0
\(719\) 6.39700 0.238568 0.119284 0.992860i \(-0.461940\pi\)
0.119284 + 0.992860i \(0.461940\pi\)
\(720\) 0 0
\(721\) 7.12399 0.265311
\(722\) 0 0
\(723\) 44.9403i 1.67135i
\(724\) 0 0
\(725\) −7.33185 2.10171i −0.272298 0.0780556i
\(726\) 0 0
\(727\) 14.0493i 0.521061i 0.965466 + 0.260530i \(0.0838974\pi\)
−0.965466 + 0.260530i \(0.916103\pi\)
\(728\) 0 0
\(729\) 4.96836 0.184013
\(730\) 0 0
\(731\) −29.6445 −1.09644
\(732\) 0 0
\(733\) 18.4701i 0.682210i −0.940025 0.341105i \(-0.889199\pi\)
0.940025 0.341105i \(-0.110801\pi\)
\(734\) 0 0
\(735\) −4.26025 + 30.3225i −0.157142 + 1.11846i
\(736\) 0 0
\(737\) 0.143197i 0.00527475i
\(738\) 0 0
\(739\) −27.7911 −1.02231 −0.511156 0.859488i \(-0.670782\pi\)
−0.511156 + 0.859488i \(0.670782\pi\)
\(740\) 0 0
\(741\) 11.3319 0.416286
\(742\) 0 0
\(743\) 15.3417i 0.562832i −0.959586 0.281416i \(-0.909196\pi\)
0.959586 0.281416i \(-0.0908041\pi\)
\(744\) 0 0
\(745\) −29.4193 4.13335i −1.07784 0.151434i
\(746\) 0 0
\(747\) 18.8301i 0.688957i
\(748\) 0 0
\(749\) −15.6860 −0.573153
\(750\) 0 0
\(751\) 37.3560 1.36314 0.681570 0.731753i \(-0.261298\pi\)
0.681570 + 0.731753i \(0.261298\pi\)
\(752\) 0 0
\(753\) 45.5308i 1.65924i
\(754\) 0 0
\(755\) −33.9037 4.76341i −1.23388 0.173358i
\(756\) 0 0
\(757\) 11.5081i 0.418268i −0.977887 0.209134i \(-0.932935\pi\)
0.977887 0.209134i \(-0.0670645\pi\)
\(758\) 0 0
\(759\) 0.622216 0.0225850
\(760\) 0 0
\(761\) 1.23459 0.0447537 0.0223769 0.999750i \(-0.492877\pi\)
0.0223769 + 0.999750i \(0.492877\pi\)
\(762\) 0 0
\(763\) 0.120446i 0.00436044i
\(764\) 0 0
\(765\) −2.00000 + 14.2351i −0.0723102 + 0.514670i
\(766\) 0 0
\(767\) 8.16839i 0.294943i
\(768\) 0 0
\(769\) −21.3176 −0.768731 −0.384365 0.923181i \(-0.625580\pi\)
−0.384365 + 0.923181i \(0.625580\pi\)
\(770\) 0 0
\(771\) 60.9403 2.19471
\(772\) 0 0
\(773\) 27.8336i 1.00111i 0.865706 + 0.500553i \(0.166870\pi\)
−0.865706 + 0.500553i \(0.833130\pi\)
\(774\) 0 0
\(775\) 21.6064 + 6.19358i 0.776125 + 0.222480i
\(776\) 0 0
\(777\) 23.9081i 0.857700i
\(778\) 0 0
\(779\) −14.1017 −0.505246
\(780\) 0 0
\(781\) 0.369800 0.0132325
\(782\) 0 0
\(783\) 3.70471i 0.132396i
\(784\) 0 0
\(785\) −5.74620 + 40.8988i −0.205091 + 1.45974i
\(786\) 0 0
\(787\) 43.7832i 1.56070i −0.625340 0.780352i \(-0.715040\pi\)
0.625340 0.780352i \(-0.284960\pi\)
\(788\) 0 0
\(789\) 19.0049 0.676593
\(790\) 0 0
\(791\) −5.29883 −0.188405
\(792\) 0 0
\(793\) 11.1985i 0.397670i
\(794\) 0 0
\(795\) −17.5111 2.46028i −0.621056 0.0872572i
\(796\) 0 0
\(797\) 0.314022i 0.0111232i −0.999985 0.00556162i \(-0.998230\pi\)
0.999985 0.00556162i \(-0.00177033\pi\)
\(798\) 0 0
\(799\) −30.0731 −1.06391
\(800\) 0 0
\(801\) −27.5397 −0.973068
\(802\) 0 0
\(803\) 0.180669i 0.00637568i
\(804\) 0 0
\(805\) −8.42864 1.18421i −0.297071 0.0417379i
\(806\) 0 0
\(807\) 24.1334i 0.849534i
\(808\) 0 0
\(809\) 17.4050 0.611927 0.305963 0.952043i \(-0.401022\pi\)
0.305963 + 0.952043i \(0.401022\pi\)
\(810\) 0 0
\(811\) 6.99709 0.245701 0.122850 0.992425i \(-0.460796\pi\)
0.122850 + 0.992425i \(0.460796\pi\)
\(812\) 0 0
\(813\) 18.7413i 0.657285i
\(814\) 0 0
\(815\) 3.97280 28.2766i 0.139161 0.990484i
\(816\) 0 0
\(817\) 44.9131i 1.57131i
\(818\) 0 0
\(819\) 1.71900 0.0600669
\(820\) 0 0
\(821\) −22.6133 −0.789210 −0.394605 0.918851i \(-0.629119\pi\)
−0.394605 + 0.918851i \(0.629119\pi\)
\(822\) 0 0
\(823\) 19.5506i 0.681492i 0.940155 + 0.340746i \(0.110680\pi\)
−0.940155 + 0.340746i \(0.889320\pi\)
\(824\) 0 0
\(825\) 0.203420 0.709636i 0.00708219 0.0247063i
\(826\) 0 0
\(827\) 20.4746i 0.711971i 0.934492 + 0.355985i \(0.115855\pi\)
−0.934492 + 0.355985i \(0.884145\pi\)
\(828\) 0 0
\(829\) 39.4019 1.36849 0.684243 0.729254i \(-0.260133\pi\)
0.684243 + 0.729254i \(0.260133\pi\)
\(830\) 0 0
\(831\) −63.6040 −2.20640
\(832\) 0 0
\(833\) 20.8889i 0.723758i
\(834\) 0 0
\(835\) 2.31264 16.4603i 0.0800322 0.569632i
\(836\) 0 0
\(837\) 10.9175i 0.377364i
\(838\) 0 0
\(839\) 1.69826 0.0586305 0.0293152 0.999570i \(-0.490667\pi\)
0.0293152 + 0.999570i \(0.490667\pi\)
\(840\) 0 0
\(841\) −26.6731 −0.919761
\(842\) 0 0
\(843\) 31.4291i 1.08248i
\(844\) 0 0
\(845\) −2.21432 0.311108i −0.0761749 0.0107024i
\(846\) 0 0
\(847\) 9.93132i 0.341244i
\(848\) 0 0
\(849\) 35.2498 1.20977
\(850\) 0 0
\(851\) 50.3783 1.72694
\(852\) 0 0
\(853\) 35.4465i 1.21366i −0.794830 0.606832i \(-0.792440\pi\)
0.794830 0.606832i \(-0.207560\pi\)
\(854\) 0 0
\(855\) 21.5669 + 3.03011i 0.737573 + 0.103628i
\(856\) 0 0
\(857\) 4.85728i 0.165921i 0.996553 + 0.0829607i \(0.0264376\pi\)
−0.996553 + 0.0829607i \(0.973562\pi\)
\(858\) 0 0
\(859\) 39.4420 1.34574 0.672872 0.739759i \(-0.265060\pi\)
0.672872 + 0.739759i \(0.265060\pi\)
\(860\) 0 0
\(861\) −5.51114 −0.187819
\(862\) 0 0
\(863\) 3.68736i 0.125519i 0.998029 + 0.0627596i \(0.0199901\pi\)
−0.998029 + 0.0627596i \(0.980010\pi\)
\(864\) 0 0
\(865\) −6.35551 + 45.2355i −0.216094 + 1.53805i
\(866\) 0 0
\(867\) 12.3793i 0.420424i
\(868\) 0 0
\(869\) −0.212312 −0.00720219
\(870\) 0 0
\(871\) 2.14764 0.0727701
\(872\) 0 0
\(873\) 15.1111i 0.511433i
\(874\) 0 0
\(875\) −4.10616 + 9.22570i −0.138813 + 0.311885i
\(876\) 0 0
\(877\) 47.4608i 1.60264i 0.598239 + 0.801318i \(0.295867\pi\)
−0.598239 + 0.801318i \(0.704133\pi\)
\(878\) 0 0
\(879\) 45.2257 1.52542
\(880\) 0 0
\(881\) 7.49378 0.252472 0.126236 0.992000i \(-0.459710\pi\)
0.126236 + 0.992000i \(0.459710\pi\)
\(882\) 0 0
\(883\) 28.8879i 0.972154i −0.873916 0.486077i \(-0.838427\pi\)
0.873916 0.486077i \(-0.161573\pi\)
\(884\) 0 0
\(885\) −5.62714 + 40.0513i −0.189154 + 1.34631i
\(886\) 0 0
\(887\) 59.4499i 1.99613i −0.0621718 0.998065i \(-0.519803\pi\)
0.0621718 0.998065i \(-0.480197\pi\)
\(888\) 0 0
\(889\) 14.0000 0.469545
\(890\) 0 0
\(891\) 0.739271 0.0247665
\(892\) 0 0
\(893\) 45.5625i 1.52469i
\(894\) 0 0
\(895\) −54.4800 7.65433i −1.82106 0.255856i
\(896\) 0 0
\(897\) 9.33185i 0.311581i
\(898\) 0 0
\(899\) −6.85728 −0.228703
\(900\) 0 0
\(901\) 12.0633 0.401886
\(902\) 0 0
\(903\) 17.5526i 0.584115i
\(904\) 0 0
\(905\) 30.9906 + 4.35413i 1.03016 + 0.144736i
\(906\) 0 0
\(907\) 8.58274i 0.284985i −0.989796 0.142493i \(-0.954488\pi\)
0.989796 0.142493i \(-0.0455117\pi\)
\(908\) 0 0
\(909\) 9.86665 0.327256
\(910\) 0 0
\(911\) −9.96836 −0.330266 −0.165133 0.986271i \(-0.552805\pi\)
−0.165133 + 0.986271i \(0.552805\pi\)
\(912\) 0 0
\(913\) 0.659687i 0.0218325i
\(914\) 0 0
\(915\) 7.71456 54.9086i 0.255035 1.81522i
\(916\) 0 0
\(917\) 5.24443i 0.173186i
\(918\) 0 0
\(919\) 22.9590 0.757347 0.378674 0.925530i \(-0.376380\pi\)
0.378674 + 0.925530i \(0.376380\pi\)
\(920\) 0 0
\(921\) 0.193576 0.00637855
\(922\) 0 0
\(923\) 5.54617i 0.182554i
\(924\) 0 0
\(925\) 16.4701 57.4563i 0.541534 1.88915i
\(926\) 0 0
\(927\) 15.0114i 0.493038i
\(928\) 0 0
\(929\) 23.0509 0.756274 0.378137 0.925750i \(-0.376565\pi\)
0.378137 + 0.925750i \(0.376565\pi\)
\(930\) 0 0
\(931\) −31.6479 −1.03722
\(932\) 0 0
\(933\) 56.9403i 1.86414i
\(934\) 0 0
\(935\) −0.0700674 + 0.498707i −0.00229145 + 0.0163095i
\(936\) 0 0
\(937\) 35.2543i 1.15171i −0.817553 0.575853i \(-0.804670\pi\)
0.817553 0.575853i \(-0.195330\pi\)
\(938\) 0 0
\(939\) 16.9906 0.554468
\(940\) 0 0
\(941\) 10.1334 0.330338 0.165169 0.986265i \(-0.447183\pi\)
0.165169 + 0.986265i \(0.447183\pi\)
\(942\) 0 0
\(943\) 11.6128i 0.378166i
\(944\) 0 0
\(945\) −4.85728 0.682439i −0.158007 0.0221997i
\(946\) 0 0
\(947\) 32.9447i 1.07056i 0.844675 + 0.535279i \(0.179794\pi\)
−0.844675 + 0.535279i \(0.820206\pi\)
\(948\) 0 0
\(949\) 2.70964 0.0879585
\(950\) 0 0
\(951\) 8.10171 0.262716
\(952\) 0 0
\(953\) 22.3684i 0.724584i 0.932065 + 0.362292i \(0.118006\pi\)
−0.932065 + 0.362292i \(0.881994\pi\)
\(954\) 0 0
\(955\) −23.8163 3.34614i −0.770676 0.108279i
\(956\) 0 0
\(957\) 0.225219i 0.00728030i
\(958\) 0 0
\(959\) −14.7012 −0.474726
\(960\) 0 0
\(961\) −10.7921 −0.348133
\(962\) 0 0
\(963\) 33.0529i 1.06511i
\(964\) 0 0
\(965\) −4.79706 + 34.1432i −0.154423 + 1.09911i
\(966\) 0 0
\(967\) 7.12537i 0.229136i 0.993415 + 0.114568i \(0.0365484\pi\)
−0.993415 + 0.114568i \(0.963452\pi\)
\(968\) 0 0
\(969\) −38.2766 −1.22962
\(970\) 0 0
\(971\) −10.1521 −0.325796 −0.162898 0.986643i \(-0.552084\pi\)
−0.162898 + 0.986643i \(0.552084\pi\)
\(972\) 0 0
\(973\) 6.48886i 0.208023i
\(974\) 0 0
\(975\) −10.6430 3.05086i −0.340847 0.0977056i
\(976\) 0 0
\(977\) 22.4973i 0.719753i −0.933000 0.359877i \(-0.882819\pi\)
0.933000 0.359877i \(-0.117181\pi\)
\(978\) 0 0
\(979\) −0.964818 −0.0308357
\(980\) 0 0
\(981\) 0.253799 0.00810318
\(982\) 0 0
\(983\) 27.7003i 0.883501i 0.897138 + 0.441751i \(0.145642\pi\)
−0.897138 + 0.441751i \(0.854358\pi\)
\(984\) 0 0
\(985\) 6.60348 47.0005i 0.210404 1.49756i
\(986\) 0 0
\(987\) 17.8064i 0.566785i
\(988\) 0 0
\(989\) 36.9862 1.17609
\(990\) 0 0
\(991\) 0.898766 0.0285502 0.0142751 0.999898i \(-0.495456\pi\)
0.0142751 + 0.999898i \(0.495456\pi\)
\(992\) 0 0
\(993\) 0.893368i 0.0283502i
\(994\) 0 0
\(995\) −45.0321 6.32693i −1.42761 0.200577i
\(996\) 0 0
\(997\) 19.5625i 0.619550i −0.950810 0.309775i \(-0.899746\pi\)
0.950810 0.309775i \(-0.100254\pi\)
\(998\) 0 0
\(999\) 29.0321 0.918536
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 260.2.c.a.209.6 yes 6
3.2 odd 2 2340.2.h.e.469.1 6
4.3 odd 2 1040.2.d.d.209.1 6
5.2 odd 4 1300.2.a.k.1.3 3
5.3 odd 4 1300.2.a.j.1.1 3
5.4 even 2 inner 260.2.c.a.209.1 6
13.5 odd 4 3380.2.d.b.1689.6 6
13.8 odd 4 3380.2.d.a.1689.6 6
13.12 even 2 3380.2.c.c.2029.6 6
15.14 odd 2 2340.2.h.e.469.2 6
20.3 even 4 5200.2.a.cg.1.3 3
20.7 even 4 5200.2.a.cd.1.1 3
20.19 odd 2 1040.2.d.d.209.6 6
65.34 odd 4 3380.2.d.b.1689.1 6
65.44 odd 4 3380.2.d.a.1689.1 6
65.64 even 2 3380.2.c.c.2029.1 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
260.2.c.a.209.1 6 5.4 even 2 inner
260.2.c.a.209.6 yes 6 1.1 even 1 trivial
1040.2.d.d.209.1 6 4.3 odd 2
1040.2.d.d.209.6 6 20.19 odd 2
1300.2.a.j.1.1 3 5.3 odd 4
1300.2.a.k.1.3 3 5.2 odd 4
2340.2.h.e.469.1 6 3.2 odd 2
2340.2.h.e.469.2 6 15.14 odd 2
3380.2.c.c.2029.1 6 65.64 even 2
3380.2.c.c.2029.6 6 13.12 even 2
3380.2.d.a.1689.1 6 65.44 odd 4
3380.2.d.a.1689.6 6 13.8 odd 4
3380.2.d.b.1689.1 6 65.34 odd 4
3380.2.d.b.1689.6 6 13.5 odd 4
5200.2.a.cd.1.1 3 20.7 even 4
5200.2.a.cg.1.3 3 20.3 even 4