Properties

Label 135.3.l.a.127.6
Level $135$
Weight $3$
Character 135.127
Analytic conductor $3.678$
Analytic rank $0$
Dimension $40$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [135,3,Mod(37,135)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(135, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([4, 3]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("135.37");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 135 = 3^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 135.l (of order \(12\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.67848356886\)
Analytic rank: \(0\)
Dimension: \(40\)
Relative dimension: \(10\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 45)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 127.6
Character \(\chi\) \(=\) 135.127
Dual form 135.3.l.a.118.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.725667 - 0.194442i) q^{2} +(-2.97532 + 1.71780i) q^{4} +(-4.81907 - 1.33289i) q^{5} +(-1.79727 + 0.481578i) q^{7} +(-3.94998 + 3.94998i) q^{8} +(-3.75621 - 0.0302083i) q^{10} +(-5.82294 + 10.0856i) q^{11} +(-19.8070 - 5.30726i) q^{13} +(-1.21058 + 0.698930i) q^{14} +(4.77288 - 8.26686i) q^{16} +(10.0254 + 10.0254i) q^{17} -10.8032i q^{19} +(16.6279 - 4.31241i) q^{20} +(-2.26444 + 8.45102i) q^{22} +(1.34569 + 0.360576i) q^{23} +(21.4468 + 12.8466i) q^{25} -15.4052 q^{26} +(4.52021 - 4.52021i) q^{28} +(-20.7968 - 12.0070i) q^{29} +(21.6233 + 37.4526i) q^{31} +(7.63926 - 28.5101i) q^{32} +(9.22442 + 5.32572i) q^{34} +(9.30307 + 0.0748176i) q^{35} +(-32.5443 - 32.5443i) q^{37} +(-2.10058 - 7.83949i) q^{38} +(24.3001 - 13.7703i) q^{40} +(20.5409 + 35.5778i) q^{41} +(2.14721 + 8.01349i) q^{43} -40.0106i q^{44} +1.04663 q^{46} +(-17.2577 + 4.62418i) q^{47} +(-39.4370 + 22.7689i) q^{49} +(18.0611 + 5.15220i) q^{50} +(68.0488 - 18.2336i) q^{52} +(51.3281 - 51.3281i) q^{53} +(41.5042 - 40.8419i) q^{55} +(5.19697 - 9.00141i) q^{56} +(-17.4262 - 4.66933i) q^{58} +(-24.3449 + 14.0555i) q^{59} +(-41.1002 + 71.1876i) q^{61} +(22.9736 + 22.9736i) q^{62} +16.0088i q^{64} +(88.3771 + 51.9766i) q^{65} +(8.65757 - 32.3105i) q^{67} +(-47.0502 - 12.6071i) q^{68} +(6.76548 - 1.75461i) q^{70} -99.6917 q^{71} +(-22.3583 + 22.3583i) q^{73} +(-29.9443 - 17.2883i) q^{74} +(18.5577 + 32.1428i) q^{76} +(5.60840 - 20.9308i) q^{77} +(-52.9926 - 30.5953i) q^{79} +(-34.0196 + 33.4768i) q^{80} +(21.8237 + 21.8237i) q^{82} +(-13.3760 - 49.9199i) q^{83} +(-34.9502 - 61.6757i) q^{85} +(3.11631 + 5.39761i) q^{86} +(-16.8375 - 62.8384i) q^{88} +113.914i q^{89} +38.1544 q^{91} +(-4.62324 + 1.23879i) q^{92} +(-11.6242 + 6.71123i) q^{94} +(-14.3995 + 52.0611i) q^{95} +(-29.5689 + 7.92297i) q^{97} +(-24.1909 + 24.1909i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40 q + 2 q^{2} + 2 q^{5} - 2 q^{7} + 24 q^{8} - 8 q^{10} - 8 q^{11} - 2 q^{13} + 28 q^{16} - 28 q^{17} + 114 q^{20} + 14 q^{22} - 82 q^{23} - 8 q^{25} + 112 q^{26} - 88 q^{28} - 4 q^{31} + 14 q^{32} - 352 q^{35}+ \cdots + 1876 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/135\mathbb{Z}\right)^\times\).

\(n\) \(56\) \(82\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.725667 0.194442i 0.362833 0.0972209i −0.0727965 0.997347i \(-0.523192\pi\)
0.435630 + 0.900126i \(0.356526\pi\)
\(3\) 0 0
\(4\) −2.97532 + 1.71780i −0.743829 + 0.429450i
\(5\) −4.81907 1.33289i −0.963813 0.266579i
\(6\) 0 0
\(7\) −1.79727 + 0.481578i −0.256753 + 0.0687969i −0.384900 0.922958i \(-0.625764\pi\)
0.128146 + 0.991755i \(0.459097\pi\)
\(8\) −3.94998 + 3.94998i −0.493747 + 0.493747i
\(9\) 0 0
\(10\) −3.75621 0.0302083i −0.375621 0.00302083i
\(11\) −5.82294 + 10.0856i −0.529358 + 0.916875i 0.470056 + 0.882637i \(0.344234\pi\)
−0.999414 + 0.0342381i \(0.989100\pi\)
\(12\) 0 0
\(13\) −19.8070 5.30726i −1.52361 0.408251i −0.602684 0.797980i \(-0.705902\pi\)
−0.920930 + 0.389729i \(0.872569\pi\)
\(14\) −1.21058 + 0.698930i −0.0864702 + 0.0499236i
\(15\) 0 0
\(16\) 4.77288 8.26686i 0.298305 0.516679i
\(17\) 10.0254 + 10.0254i 0.589728 + 0.589728i 0.937558 0.347830i \(-0.113081\pi\)
−0.347830 + 0.937558i \(0.613081\pi\)
\(18\) 0 0
\(19\) 10.8032i 0.568587i −0.958737 0.284294i \(-0.908241\pi\)
0.958737 0.284294i \(-0.0917590\pi\)
\(20\) 16.6279 4.31241i 0.831395 0.215621i
\(21\) 0 0
\(22\) −2.26444 + 8.45102i −0.102929 + 0.384137i
\(23\) 1.34569 + 0.360576i 0.0585081 + 0.0156772i 0.287954 0.957644i \(-0.407025\pi\)
−0.229446 + 0.973321i \(0.573692\pi\)
\(24\) 0 0
\(25\) 21.4468 + 12.8466i 0.857872 + 0.513864i
\(26\) −15.4052 −0.592508
\(27\) 0 0
\(28\) 4.52021 4.52021i 0.161436 0.161436i
\(29\) −20.7968 12.0070i −0.717130 0.414035i 0.0965656 0.995327i \(-0.469214\pi\)
−0.813695 + 0.581292i \(0.802548\pi\)
\(30\) 0 0
\(31\) 21.6233 + 37.4526i 0.697524 + 1.20815i 0.969322 + 0.245793i \(0.0790484\pi\)
−0.271798 + 0.962354i \(0.587618\pi\)
\(32\) 7.63926 28.5101i 0.238727 0.890941i
\(33\) 0 0
\(34\) 9.22442 + 5.32572i 0.271307 + 0.156639i
\(35\) 9.30307 + 0.0748176i 0.265802 + 0.00213765i
\(36\) 0 0
\(37\) −32.5443 32.5443i −0.879576 0.879576i 0.113915 0.993491i \(-0.463661\pi\)
−0.993491 + 0.113915i \(0.963661\pi\)
\(38\) −2.10058 7.83949i −0.0552785 0.206302i
\(39\) 0 0
\(40\) 24.3001 13.7703i 0.607502 0.344257i
\(41\) 20.5409 + 35.5778i 0.500997 + 0.867752i 0.999999 + 0.00115173i \(0.000366608\pi\)
−0.499002 + 0.866601i \(0.666300\pi\)
\(42\) 0 0
\(43\) 2.14721 + 8.01349i 0.0499351 + 0.186360i 0.986388 0.164432i \(-0.0525791\pi\)
−0.936453 + 0.350792i \(0.885912\pi\)
\(44\) 40.0106i 0.909331i
\(45\) 0 0
\(46\) 1.04663 0.0227528
\(47\) −17.2577 + 4.62418i −0.367185 + 0.0983868i −0.437693 0.899124i \(-0.644204\pi\)
0.0705087 + 0.997511i \(0.477538\pi\)
\(48\) 0 0
\(49\) −39.4370 + 22.7689i −0.804836 + 0.464672i
\(50\) 18.0611 + 5.15220i 0.361223 + 0.103044i
\(51\) 0 0
\(52\) 68.0488 18.2336i 1.30863 0.350647i
\(53\) 51.3281 51.3281i 0.968455 0.968455i −0.0310621 0.999517i \(-0.509889\pi\)
0.999517 + 0.0310621i \(0.00988897\pi\)
\(54\) 0 0
\(55\) 41.5042 40.8419i 0.754621 0.742580i
\(56\) 5.19697 9.00141i 0.0928030 0.160739i
\(57\) 0 0
\(58\) −17.4262 4.66933i −0.300451 0.0805057i
\(59\) −24.3449 + 14.0555i −0.412625 + 0.238229i −0.691917 0.721977i \(-0.743234\pi\)
0.279292 + 0.960206i \(0.409900\pi\)
\(60\) 0 0
\(61\) −41.1002 + 71.1876i −0.673774 + 1.16701i 0.303052 + 0.952974i \(0.401994\pi\)
−0.976826 + 0.214036i \(0.931339\pi\)
\(62\) 22.9736 + 22.9736i 0.370542 + 0.370542i
\(63\) 0 0
\(64\) 16.0088i 0.250137i
\(65\) 88.3771 + 51.9766i 1.35965 + 0.799640i
\(66\) 0 0
\(67\) 8.65757 32.3105i 0.129217 0.482246i −0.870737 0.491748i \(-0.836358\pi\)
0.999955 + 0.00950210i \(0.00302466\pi\)
\(68\) −47.0502 12.6071i −0.691915 0.185398i
\(69\) 0 0
\(70\) 6.76548 1.75461i 0.0966497 0.0250659i
\(71\) −99.6917 −1.40411 −0.702054 0.712123i \(-0.747734\pi\)
−0.702054 + 0.712123i \(0.747734\pi\)
\(72\) 0 0
\(73\) −22.3583 + 22.3583i −0.306278 + 0.306278i −0.843464 0.537186i \(-0.819487\pi\)
0.537186 + 0.843464i \(0.319487\pi\)
\(74\) −29.9443 17.2883i −0.404653 0.233626i
\(75\) 0 0
\(76\) 18.5577 + 32.1428i 0.244180 + 0.422932i
\(77\) 5.60840 20.9308i 0.0728363 0.271829i
\(78\) 0 0
\(79\) −52.9926 30.5953i −0.670793 0.387282i 0.125584 0.992083i \(-0.459919\pi\)
−0.796377 + 0.604801i \(0.793253\pi\)
\(80\) −34.0196 + 33.4768i −0.425246 + 0.418460i
\(81\) 0 0
\(82\) 21.8237 + 21.8237i 0.266142 + 0.266142i
\(83\) −13.3760 49.9199i −0.161157 0.601444i −0.998499 0.0547660i \(-0.982559\pi\)
0.837343 0.546678i \(-0.184108\pi\)
\(84\) 0 0
\(85\) −34.9502 61.6757i −0.411178 0.725596i
\(86\) 3.11631 + 5.39761i 0.0362362 + 0.0627630i
\(87\) 0 0
\(88\) −16.8375 62.8384i −0.191335 0.714073i
\(89\) 113.914i 1.27993i 0.768402 + 0.639967i \(0.221052\pi\)
−0.768402 + 0.639967i \(0.778948\pi\)
\(90\) 0 0
\(91\) 38.1544 0.419279
\(92\) −4.62324 + 1.23879i −0.0502526 + 0.0134651i
\(93\) 0 0
\(94\) −11.6242 + 6.71123i −0.123662 + 0.0713960i
\(95\) −14.3995 + 52.0611i −0.151573 + 0.548012i
\(96\) 0 0
\(97\) −29.5689 + 7.92297i −0.304834 + 0.0816801i −0.407994 0.912985i \(-0.633771\pi\)
0.103160 + 0.994665i \(0.467105\pi\)
\(98\) −24.1909 + 24.1909i −0.246845 + 0.246845i
\(99\) 0 0
\(100\) −85.8789 1.38141i −0.858789 0.0138141i
\(101\) −29.8920 + 51.7745i −0.295961 + 0.512619i −0.975208 0.221291i \(-0.928973\pi\)
0.679247 + 0.733909i \(0.262306\pi\)
\(102\) 0 0
\(103\) −48.8939 13.1011i −0.474698 0.127195i 0.0135348 0.999908i \(-0.495692\pi\)
−0.488233 + 0.872713i \(0.662358\pi\)
\(104\) 99.2006 57.2735i 0.953852 0.550707i
\(105\) 0 0
\(106\) 27.2668 47.2274i 0.257234 0.445542i
\(107\) 14.8359 + 14.8359i 0.138653 + 0.138653i 0.773027 0.634374i \(-0.218742\pi\)
−0.634374 + 0.773027i \(0.718742\pi\)
\(108\) 0 0
\(109\) 115.290i 1.05770i 0.848714 + 0.528852i \(0.177377\pi\)
−0.848714 + 0.528852i \(0.822623\pi\)
\(110\) 22.1768 37.7078i 0.201607 0.342798i
\(111\) 0 0
\(112\) −4.59703 + 17.1563i −0.0410449 + 0.153182i
\(113\) −101.212 27.1198i −0.895686 0.239998i −0.218523 0.975832i \(-0.570124\pi\)
−0.677163 + 0.735833i \(0.736791\pi\)
\(114\) 0 0
\(115\) −6.00434 3.53129i −0.0522117 0.0307069i
\(116\) 82.5026 0.711229
\(117\) 0 0
\(118\) −14.9333 + 14.9333i −0.126553 + 0.126553i
\(119\) −22.8463 13.1903i −0.191986 0.110843i
\(120\) 0 0
\(121\) −7.31319 12.6668i −0.0604396 0.104684i
\(122\) −15.9832 + 59.6501i −0.131010 + 0.488935i
\(123\) 0 0
\(124\) −128.672 74.2889i −1.03768 0.599104i
\(125\) −86.2304 90.4949i −0.689843 0.723959i
\(126\) 0 0
\(127\) 56.0831 + 56.0831i 0.441599 + 0.441599i 0.892549 0.450950i \(-0.148915\pi\)
−0.450950 + 0.892549i \(0.648915\pi\)
\(128\) 33.6698 + 125.657i 0.263045 + 0.981699i
\(129\) 0 0
\(130\) 74.2387 + 20.5335i 0.571067 + 0.157950i
\(131\) 2.31731 + 4.01371i 0.0176894 + 0.0306390i 0.874735 0.484602i \(-0.161036\pi\)
−0.857045 + 0.515241i \(0.827702\pi\)
\(132\) 0 0
\(133\) 5.20256 + 19.4162i 0.0391170 + 0.145987i
\(134\) 25.1300i 0.187538i
\(135\) 0 0
\(136\) −79.1999 −0.582352
\(137\) −2.29751 + 0.615617i −0.0167702 + 0.00449355i −0.267194 0.963643i \(-0.586097\pi\)
0.250424 + 0.968136i \(0.419430\pi\)
\(138\) 0 0
\(139\) 221.925 128.128i 1.59658 0.921786i 0.604441 0.796650i \(-0.293397\pi\)
0.992140 0.125136i \(-0.0399367\pi\)
\(140\) −27.8081 + 15.7582i −0.198629 + 0.112559i
\(141\) 0 0
\(142\) −72.3429 + 19.3842i −0.509457 + 0.136509i
\(143\) 168.862 168.862i 1.18085 1.18085i
\(144\) 0 0
\(145\) 84.2169 + 85.5825i 0.580806 + 0.590224i
\(146\) −11.8773 + 20.5721i −0.0813513 + 0.140905i
\(147\) 0 0
\(148\) 152.734 + 40.9250i 1.03199 + 0.276520i
\(149\) 81.5954 47.1091i 0.547620 0.316168i −0.200542 0.979685i \(-0.564270\pi\)
0.748161 + 0.663517i \(0.230937\pi\)
\(150\) 0 0
\(151\) 14.0475 24.3310i 0.0930299 0.161133i −0.815755 0.578398i \(-0.803678\pi\)
0.908785 + 0.417265i \(0.137011\pi\)
\(152\) 42.6722 + 42.6722i 0.280738 + 0.280738i
\(153\) 0 0
\(154\) 16.2793i 0.105710i
\(155\) −54.2836 209.308i −0.350217 1.35037i
\(156\) 0 0
\(157\) 9.98621 37.2690i 0.0636064 0.237382i −0.926803 0.375549i \(-0.877454\pi\)
0.990409 + 0.138166i \(0.0441209\pi\)
\(158\) −44.4040 11.8980i −0.281038 0.0753039i
\(159\) 0 0
\(160\) −74.8150 + 127.210i −0.467594 + 0.795061i
\(161\) −2.59221 −0.0161007
\(162\) 0 0
\(163\) 140.797 140.797i 0.863787 0.863787i −0.127989 0.991776i \(-0.540852\pi\)
0.991776 + 0.127989i \(0.0408522\pi\)
\(164\) −122.231 70.5703i −0.745313 0.430306i
\(165\) 0 0
\(166\) −19.4130 33.6243i −0.116946 0.202556i
\(167\) 73.2232 273.273i 0.438462 1.63636i −0.294180 0.955750i \(-0.595047\pi\)
0.732642 0.680614i \(-0.238287\pi\)
\(168\) 0 0
\(169\) 217.791 + 125.742i 1.28870 + 0.744033i
\(170\) −37.3545 37.9602i −0.219732 0.223295i
\(171\) 0 0
\(172\) −20.1542 20.1542i −0.117176 0.117176i
\(173\) 80.2289 + 299.418i 0.463751 + 1.73074i 0.660998 + 0.750387i \(0.270133\pi\)
−0.197248 + 0.980354i \(0.563200\pi\)
\(174\) 0 0
\(175\) −44.7324 12.7606i −0.255614 0.0729175i
\(176\) 55.5843 + 96.2748i 0.315820 + 0.547016i
\(177\) 0 0
\(178\) 22.1497 + 82.6637i 0.124436 + 0.464403i
\(179\) 151.884i 0.848512i 0.905542 + 0.424256i \(0.139464\pi\)
−0.905542 + 0.424256i \(0.860536\pi\)
\(180\) 0 0
\(181\) 48.0978 0.265734 0.132867 0.991134i \(-0.457582\pi\)
0.132867 + 0.991134i \(0.457582\pi\)
\(182\) 27.6874 7.41881i 0.152128 0.0407627i
\(183\) 0 0
\(184\) −6.73969 + 3.89116i −0.0366288 + 0.0211476i
\(185\) 113.455 + 200.211i 0.613271 + 1.08222i
\(186\) 0 0
\(187\) −159.489 + 42.7350i −0.852883 + 0.228529i
\(188\) 43.4036 43.4036i 0.230870 0.230870i
\(189\) 0 0
\(190\) −0.326345 + 40.5789i −0.00171761 + 0.213573i
\(191\) 181.698 314.711i 0.951300 1.64770i 0.208683 0.977983i \(-0.433082\pi\)
0.742617 0.669717i \(-0.233584\pi\)
\(192\) 0 0
\(193\) 11.5607 + 3.09769i 0.0599001 + 0.0160502i 0.288645 0.957436i \(-0.406795\pi\)
−0.228745 + 0.973486i \(0.573462\pi\)
\(194\) −19.9166 + 11.4989i −0.102663 + 0.0592725i
\(195\) 0 0
\(196\) 78.2250 135.490i 0.399107 0.691274i
\(197\) −45.3414 45.3414i −0.230159 0.230159i 0.582600 0.812759i \(-0.302036\pi\)
−0.812759 + 0.582600i \(0.802036\pi\)
\(198\) 0 0
\(199\) 17.0082i 0.0854685i −0.999086 0.0427343i \(-0.986393\pi\)
0.999086 0.0427343i \(-0.0136069\pi\)
\(200\) −135.458 + 33.9705i −0.677290 + 0.169853i
\(201\) 0 0
\(202\) −11.6245 + 43.3833i −0.0575471 + 0.214769i
\(203\) 43.1598 + 11.5646i 0.212610 + 0.0569686i
\(204\) 0 0
\(205\) −51.5664 198.831i −0.251543 0.969906i
\(206\) −38.0281 −0.184602
\(207\) 0 0
\(208\) −138.411 + 138.411i −0.665436 + 0.665436i
\(209\) 108.957 + 62.9061i 0.521323 + 0.300986i
\(210\) 0 0
\(211\) −148.887 257.879i −0.705624 1.22218i −0.966466 0.256795i \(-0.917333\pi\)
0.260842 0.965382i \(-0.416000\pi\)
\(212\) −64.5460 + 240.889i −0.304462 + 1.13627i
\(213\) 0 0
\(214\) 13.6506 + 7.88119i 0.0637879 + 0.0368280i
\(215\) 0.333589 41.4795i 0.00155157 0.192928i
\(216\) 0 0
\(217\) −56.8993 56.8993i −0.262209 0.262209i
\(218\) 22.4172 + 83.6620i 0.102831 + 0.383771i
\(219\) 0 0
\(220\) −53.3298 + 192.814i −0.242408 + 0.876425i
\(221\) −145.365 251.779i −0.657760 1.13927i
\(222\) 0 0
\(223\) −8.27356 30.8773i −0.0371012 0.138463i 0.944891 0.327385i \(-0.106167\pi\)
−0.981992 + 0.188922i \(0.939501\pi\)
\(224\) 54.9194i 0.245176i
\(225\) 0 0
\(226\) −78.7197 −0.348317
\(227\) −377.838 + 101.241i −1.66449 + 0.445997i −0.963616 0.267292i \(-0.913871\pi\)
−0.700870 + 0.713289i \(0.747205\pi\)
\(228\) 0 0
\(229\) −217.228 + 125.417i −0.948594 + 0.547671i −0.892644 0.450762i \(-0.851152\pi\)
−0.0559502 + 0.998434i \(0.517819\pi\)
\(230\) −5.04378 1.39505i −0.0219295 0.00606542i
\(231\) 0 0
\(232\) 129.574 34.7193i 0.558509 0.149652i
\(233\) −239.086 + 239.086i −1.02612 + 1.02612i −0.0264709 + 0.999650i \(0.508427\pi\)
−0.999650 + 0.0264709i \(0.991573\pi\)
\(234\) 0 0
\(235\) 89.3294 + 0.718409i 0.380125 + 0.00305706i
\(236\) 48.2891 83.6392i 0.204615 0.354404i
\(237\) 0 0
\(238\) −19.1436 5.12950i −0.0804352 0.0215525i
\(239\) −33.8483 + 19.5423i −0.141625 + 0.0817672i −0.569138 0.822242i \(-0.692723\pi\)
0.427513 + 0.904009i \(0.359390\pi\)
\(240\) 0 0
\(241\) −41.8525 + 72.4907i −0.173662 + 0.300791i −0.939697 0.342007i \(-0.888893\pi\)
0.766036 + 0.642798i \(0.222227\pi\)
\(242\) −7.76989 7.76989i −0.0321070 0.0321070i
\(243\) 0 0
\(244\) 282.408i 1.15741i
\(245\) 220.398 57.1598i 0.899583 0.233305i
\(246\) 0 0
\(247\) −57.3352 + 213.978i −0.232126 + 0.866307i
\(248\) −233.348 62.5254i −0.940920 0.252119i
\(249\) 0 0
\(250\) −80.1705 48.9023i −0.320682 0.195609i
\(251\) 116.674 0.464837 0.232418 0.972616i \(-0.425336\pi\)
0.232418 + 0.972616i \(0.425336\pi\)
\(252\) 0 0
\(253\) −11.4725 + 11.4725i −0.0453458 + 0.0453458i
\(254\) 51.6025 + 29.7927i 0.203159 + 0.117294i
\(255\) 0 0
\(256\) 16.8485 + 29.1825i 0.0658146 + 0.113994i
\(257\) 1.23843 4.62189i 0.00481880 0.0179840i −0.963475 0.267800i \(-0.913703\pi\)
0.968293 + 0.249816i \(0.0803701\pi\)
\(258\) 0 0
\(259\) 74.1637 + 42.8184i 0.286346 + 0.165322i
\(260\) −352.235 2.83276i −1.35475 0.0108952i
\(261\) 0 0
\(262\) 2.46203 + 2.46203i 0.00939706 + 0.00939706i
\(263\) 25.3145 + 94.4750i 0.0962529 + 0.359221i 0.997206 0.0746949i \(-0.0237983\pi\)
−0.900954 + 0.433916i \(0.857132\pi\)
\(264\) 0 0
\(265\) −315.769 + 178.939i −1.19158 + 0.675241i
\(266\) 7.55065 + 13.0781i 0.0283859 + 0.0491658i
\(267\) 0 0
\(268\) 29.7440 + 111.006i 0.110985 + 0.414201i
\(269\) 212.871i 0.791340i 0.918393 + 0.395670i \(0.129488\pi\)
−0.918393 + 0.395670i \(0.870512\pi\)
\(270\) 0 0
\(271\) −180.243 −0.665102 −0.332551 0.943085i \(-0.607909\pi\)
−0.332551 + 0.943085i \(0.607909\pi\)
\(272\) 130.728 35.0285i 0.480618 0.128781i
\(273\) 0 0
\(274\) −1.54753 + 0.893465i −0.00564791 + 0.00326082i
\(275\) −254.449 + 141.499i −0.925270 + 0.514543i
\(276\) 0 0
\(277\) 316.123 84.7048i 1.14124 0.305794i 0.361789 0.932260i \(-0.382166\pi\)
0.779448 + 0.626467i \(0.215499\pi\)
\(278\) 136.130 136.130i 0.489676 0.489676i
\(279\) 0 0
\(280\) −37.0424 + 36.4514i −0.132294 + 0.130184i
\(281\) 15.6356 27.0816i 0.0556426 0.0963758i −0.836862 0.547413i \(-0.815613\pi\)
0.892505 + 0.451037i \(0.148946\pi\)
\(282\) 0 0
\(283\) 195.826 + 52.4715i 0.691966 + 0.185412i 0.587629 0.809130i \(-0.300061\pi\)
0.104337 + 0.994542i \(0.466728\pi\)
\(284\) 296.614 171.250i 1.04442 0.602995i
\(285\) 0 0
\(286\) 89.7036 155.371i 0.313649 0.543256i
\(287\) −54.0511 54.0511i −0.188331 0.188331i
\(288\) 0 0
\(289\) 87.9840i 0.304443i
\(290\) 77.7542 + 45.7291i 0.268118 + 0.157686i
\(291\) 0 0
\(292\) 28.1159 104.930i 0.0962875 0.359350i
\(293\) 37.6696 + 10.0935i 0.128565 + 0.0344490i 0.322528 0.946560i \(-0.395467\pi\)
−0.193963 + 0.981009i \(0.562134\pi\)
\(294\) 0 0
\(295\) 136.054 35.2854i 0.461200 0.119611i
\(296\) 257.098 0.868576
\(297\) 0 0
\(298\) 50.0510 50.0510i 0.167957 0.167957i
\(299\) −24.7403 14.2838i −0.0827435 0.0477720i
\(300\) 0 0
\(301\) −7.71824 13.3684i −0.0256420 0.0444132i
\(302\) 5.46285 20.3876i 0.0180889 0.0675087i
\(303\) 0 0
\(304\) −89.3082 51.5621i −0.293777 0.169612i
\(305\) 292.950 288.276i 0.960492 0.945166i
\(306\) 0 0
\(307\) −28.4359 28.4359i −0.0926251 0.0926251i 0.659276 0.751901i \(-0.270863\pi\)
−0.751901 + 0.659276i \(0.770863\pi\)
\(308\) 19.2682 + 71.9100i 0.0625591 + 0.233474i
\(309\) 0 0
\(310\) −80.0900 141.333i −0.258355 0.455912i
\(311\) 215.953 + 374.041i 0.694381 + 1.20270i 0.970389 + 0.241548i \(0.0776553\pi\)
−0.276007 + 0.961156i \(0.589011\pi\)
\(312\) 0 0
\(313\) 53.6933 + 200.386i 0.171544 + 0.640211i 0.997115 + 0.0759119i \(0.0241868\pi\)
−0.825571 + 0.564299i \(0.809147\pi\)
\(314\) 28.9866i 0.0923141i
\(315\) 0 0
\(316\) 210.226 0.665274
\(317\) −342.998 + 91.9060i −1.08201 + 0.289924i −0.755420 0.655241i \(-0.772567\pi\)
−0.326593 + 0.945165i \(0.605900\pi\)
\(318\) 0 0
\(319\) 242.196 139.832i 0.759237 0.438345i
\(320\) 21.3380 77.1474i 0.0666813 0.241086i
\(321\) 0 0
\(322\) −1.88108 + 0.504034i −0.00584187 + 0.00156532i
\(323\) 108.306 108.306i 0.335311 0.335311i
\(324\) 0 0
\(325\) −356.616 368.276i −1.09728 1.13316i
\(326\) 74.7950 129.549i 0.229432 0.397389i
\(327\) 0 0
\(328\) −221.668 59.3957i −0.675816 0.181084i
\(329\) 28.7899 16.6218i 0.0875072 0.0505223i
\(330\) 0 0
\(331\) −187.451 + 324.675i −0.566318 + 0.980891i 0.430608 + 0.902539i \(0.358299\pi\)
−0.996926 + 0.0783519i \(0.975034\pi\)
\(332\) 125.550 + 125.550i 0.378163 + 0.378163i
\(333\) 0 0
\(334\) 212.543i 0.636355i
\(335\) −84.7879 + 144.167i −0.253098 + 0.430349i
\(336\) 0 0
\(337\) −38.4732 + 143.584i −0.114164 + 0.426065i −0.999223 0.0394135i \(-0.987451\pi\)
0.885059 + 0.465478i \(0.154118\pi\)
\(338\) 182.493 + 48.8988i 0.539920 + 0.144671i
\(339\) 0 0
\(340\) 209.934 + 123.467i 0.617454 + 0.363139i
\(341\) −503.643 −1.47696
\(342\) 0 0
\(343\) 124.383 124.383i 0.362633 0.362633i
\(344\) −40.1345 23.1717i −0.116670 0.0673595i
\(345\) 0 0
\(346\) 116.439 + 201.678i 0.336528 + 0.582884i
\(347\) 62.5014 233.258i 0.180119 0.672214i −0.815504 0.578752i \(-0.803540\pi\)
0.995623 0.0934622i \(-0.0297934\pi\)
\(348\) 0 0
\(349\) 331.191 + 191.213i 0.948971 + 0.547889i 0.892761 0.450530i \(-0.148765\pi\)
0.0562101 + 0.998419i \(0.482098\pi\)
\(350\) −34.9420 0.562061i −0.0998343 0.00160589i
\(351\) 0 0
\(352\) 243.059 + 243.059i 0.690509 + 0.690509i
\(353\) −134.782 503.013i −0.381819 1.42497i −0.843121 0.537724i \(-0.819284\pi\)
0.461302 0.887243i \(-0.347382\pi\)
\(354\) 0 0
\(355\) 480.421 + 132.878i 1.35330 + 0.374305i
\(356\) −195.682 338.931i −0.549668 0.952052i
\(357\) 0 0
\(358\) 29.5325 + 110.217i 0.0824931 + 0.307868i
\(359\) 326.956i 0.910741i −0.890302 0.455370i \(-0.849507\pi\)
0.890302 0.455370i \(-0.150493\pi\)
\(360\) 0 0
\(361\) 244.292 0.676709
\(362\) 34.9030 9.35222i 0.0964170 0.0258349i
\(363\) 0 0
\(364\) −113.521 + 65.5417i −0.311872 + 0.180060i
\(365\) 137.547 77.9449i 0.376842 0.213548i
\(366\) 0 0
\(367\) −505.039 + 135.325i −1.37613 + 0.368733i −0.869713 0.493557i \(-0.835696\pi\)
−0.506415 + 0.862290i \(0.669030\pi\)
\(368\) 9.40362 9.40362i 0.0255533 0.0255533i
\(369\) 0 0
\(370\) 121.260 + 123.226i 0.327730 + 0.333044i
\(371\) −67.5322 + 116.969i −0.182028 + 0.315281i
\(372\) 0 0
\(373\) −23.4631 6.28693i −0.0629039 0.0168550i 0.227230 0.973841i \(-0.427033\pi\)
−0.290134 + 0.956986i \(0.593700\pi\)
\(374\) −107.426 + 62.0227i −0.287237 + 0.165836i
\(375\) 0 0
\(376\) 49.9020 86.4328i 0.132718 0.229874i
\(377\) 348.197 + 348.197i 0.923598 + 0.923598i
\(378\) 0 0
\(379\) 364.939i 0.962900i 0.876474 + 0.481450i \(0.159890\pi\)
−0.876474 + 0.481450i \(0.840110\pi\)
\(380\) −46.5877 179.634i −0.122599 0.472720i
\(381\) 0 0
\(382\) 70.6595 263.705i 0.184972 0.690327i
\(383\) −3.24720 0.870084i −0.00847832 0.00227176i 0.254577 0.967052i \(-0.418064\pi\)
−0.263056 + 0.964781i \(0.584730\pi\)
\(384\) 0 0
\(385\) −54.9258 + 93.3916i −0.142664 + 0.242576i
\(386\) 8.99155 0.0232942
\(387\) 0 0
\(388\) 74.3668 74.3668i 0.191667 0.191667i
\(389\) −131.808 76.0995i −0.338838 0.195628i 0.320920 0.947106i \(-0.396008\pi\)
−0.659758 + 0.751478i \(0.729341\pi\)
\(390\) 0 0
\(391\) 9.87610 + 17.1059i 0.0252586 + 0.0437491i
\(392\) 65.8383 245.712i 0.167955 0.626816i
\(393\) 0 0
\(394\) −41.7190 24.0865i −0.105886 0.0611332i
\(395\) 214.595 + 218.074i 0.543278 + 0.552087i
\(396\) 0 0
\(397\) −275.868 275.868i −0.694882 0.694882i 0.268420 0.963302i \(-0.413498\pi\)
−0.963302 + 0.268420i \(0.913498\pi\)
\(398\) −3.30711 12.3423i −0.00830933 0.0310108i
\(399\) 0 0
\(400\) 208.564 115.982i 0.521410 0.289956i
\(401\) 337.489 + 584.548i 0.841618 + 1.45773i 0.888526 + 0.458826i \(0.151730\pi\)
−0.0469080 + 0.998899i \(0.514937\pi\)
\(402\) 0 0
\(403\) −229.521 856.582i −0.569530 2.12551i
\(404\) 205.394i 0.508401i
\(405\) 0 0
\(406\) 33.5683 0.0826805
\(407\) 517.733 138.726i 1.27207 0.340850i
\(408\) 0 0
\(409\) −375.213 + 216.629i −0.917390 + 0.529655i −0.882802 0.469746i \(-0.844345\pi\)
−0.0345887 + 0.999402i \(0.511012\pi\)
\(410\) −76.0810 134.258i −0.185563 0.327459i
\(411\) 0 0
\(412\) 167.980 45.0101i 0.407718 0.109248i
\(413\) 36.9856 36.9856i 0.0895534 0.0895534i
\(414\) 0 0
\(415\) −2.07808 + 258.396i −0.00500743 + 0.622641i
\(416\) −302.621 + 524.155i −0.727455 + 1.25999i
\(417\) 0 0
\(418\) 91.2977 + 24.4631i 0.218416 + 0.0585243i
\(419\) −432.869 + 249.917i −1.03310 + 0.596461i −0.917871 0.396878i \(-0.870093\pi\)
−0.115229 + 0.993339i \(0.536760\pi\)
\(420\) 0 0
\(421\) 15.0425 26.0544i 0.0357304 0.0618869i −0.847607 0.530624i \(-0.821958\pi\)
0.883338 + 0.468737i \(0.155291\pi\)
\(422\) −158.185 158.185i −0.374845 0.374845i
\(423\) 0 0
\(424\) 405.490i 0.956344i
\(425\) 86.2201 + 343.804i 0.202871 + 0.808950i
\(426\) 0 0
\(427\) 39.5859 147.737i 0.0927071 0.345987i
\(428\) −69.6265 18.6564i −0.162679 0.0435896i
\(429\) 0 0
\(430\) −7.82328 30.1652i −0.0181937 0.0701516i
\(431\) −515.749 −1.19663 −0.598316 0.801260i \(-0.704163\pi\)
−0.598316 + 0.801260i \(0.704163\pi\)
\(432\) 0 0
\(433\) −305.797 + 305.797i −0.706229 + 0.706229i −0.965740 0.259511i \(-0.916439\pi\)
0.259511 + 0.965740i \(0.416439\pi\)
\(434\) −52.3535 30.2263i −0.120630 0.0696458i
\(435\) 0 0
\(436\) −198.045 343.024i −0.454231 0.786752i
\(437\) 3.89535 14.5377i 0.00891385 0.0332669i
\(438\) 0 0
\(439\) −437.591 252.643i −0.996790 0.575497i −0.0894929 0.995987i \(-0.528525\pi\)
−0.907297 + 0.420491i \(0.861858\pi\)
\(440\) −2.61586 + 325.265i −0.00594514 + 0.739239i
\(441\) 0 0
\(442\) −154.443 154.443i −0.349418 0.349418i
\(443\) 52.3076 + 195.215i 0.118076 + 0.440665i 0.999499 0.0316632i \(-0.0100804\pi\)
−0.881423 + 0.472328i \(0.843414\pi\)
\(444\) 0 0
\(445\) 151.835 548.960i 0.341203 1.23362i
\(446\) −12.0077 20.7979i −0.0269231 0.0466321i
\(447\) 0 0
\(448\) −7.70948 28.7722i −0.0172087 0.0642236i
\(449\) 145.089i 0.323138i 0.986861 + 0.161569i \(0.0516554\pi\)
−0.986861 + 0.161569i \(0.948345\pi\)
\(450\) 0 0
\(451\) −478.433 −1.06083
\(452\) 347.726 93.1728i 0.769305 0.206135i
\(453\) 0 0
\(454\) −254.499 + 146.935i −0.560570 + 0.323645i
\(455\) −183.869 50.8558i −0.404107 0.111771i
\(456\) 0 0
\(457\) −286.527 + 76.7746i −0.626973 + 0.167997i −0.558296 0.829642i \(-0.688545\pi\)
−0.0686775 + 0.997639i \(0.521878\pi\)
\(458\) −133.249 + 133.249i −0.290936 + 0.290936i
\(459\) 0 0
\(460\) 23.9309 + 0.192458i 0.0520236 + 0.000418387i
\(461\) −143.044 + 247.759i −0.310291 + 0.537439i −0.978425 0.206601i \(-0.933760\pi\)
0.668135 + 0.744040i \(0.267093\pi\)
\(462\) 0 0
\(463\) −241.707 64.7653i −0.522046 0.139882i −0.0118333 0.999930i \(-0.503767\pi\)
−0.510213 + 0.860048i \(0.670433\pi\)
\(464\) −198.521 + 114.616i −0.427846 + 0.247017i
\(465\) 0 0
\(466\) −127.008 + 219.985i −0.272550 + 0.472071i
\(467\) 71.3291 + 71.3291i 0.152739 + 0.152739i 0.779340 0.626601i \(-0.215554\pi\)
−0.626601 + 0.779340i \(0.715554\pi\)
\(468\) 0 0
\(469\) 62.2401i 0.132708i
\(470\) 64.9631 16.8480i 0.138219 0.0358469i
\(471\) 0 0
\(472\) 40.6427 151.681i 0.0861074 0.321357i
\(473\) −93.3241 25.0061i −0.197302 0.0528670i
\(474\) 0 0
\(475\) 138.784 231.693i 0.292176 0.487775i
\(476\) 90.6334 0.190406
\(477\) 0 0
\(478\) −20.7628 + 20.7628i −0.0434367 + 0.0434367i
\(479\) 169.803 + 98.0357i 0.354494 + 0.204667i 0.666663 0.745359i \(-0.267722\pi\)
−0.312169 + 0.950027i \(0.601055\pi\)
\(480\) 0 0
\(481\) 471.883 + 817.325i 0.981046 + 1.69922i
\(482\) −16.2758 + 60.7419i −0.0337671 + 0.126021i
\(483\) 0 0
\(484\) 43.5181 + 25.1252i 0.0899135 + 0.0519116i
\(485\) 153.055 + 1.23091i 0.315577 + 0.00253795i
\(486\) 0 0
\(487\) 660.124 + 660.124i 1.35549 + 1.35549i 0.879391 + 0.476100i \(0.157950\pi\)
0.476100 + 0.879391i \(0.342050\pi\)
\(488\) −118.845 443.534i −0.243534 0.908882i
\(489\) 0 0
\(490\) 148.821 84.3335i 0.303717 0.172109i
\(491\) −393.999 682.426i −0.802442 1.38987i −0.918004 0.396570i \(-0.870200\pi\)
0.115562 0.993300i \(-0.463133\pi\)
\(492\) 0 0
\(493\) −88.1204 328.870i −0.178743 0.667079i
\(494\) 166.425i 0.336892i
\(495\) 0 0
\(496\) 412.820 0.832299
\(497\) 179.173 48.0093i 0.360510 0.0965983i
\(498\) 0 0
\(499\) 144.756 83.5751i 0.290093 0.167485i −0.347891 0.937535i \(-0.613102\pi\)
0.637984 + 0.770050i \(0.279769\pi\)
\(500\) 412.015 + 121.124i 0.824030 + 0.242249i
\(501\) 0 0
\(502\) 84.6664 22.6863i 0.168658 0.0451918i
\(503\) −249.990 + 249.990i −0.496998 + 0.496998i −0.910502 0.413504i \(-0.864305\pi\)
0.413504 + 0.910502i \(0.364305\pi\)
\(504\) 0 0
\(505\) 213.061 209.662i 0.421904 0.415172i
\(506\) −6.09446 + 10.5559i −0.0120444 + 0.0208615i
\(507\) 0 0
\(508\) −263.204 70.5254i −0.518119 0.138830i
\(509\) −95.6645 + 55.2319i −0.187946 + 0.108511i −0.591021 0.806656i \(-0.701275\pi\)
0.403075 + 0.915167i \(0.367941\pi\)
\(510\) 0 0
\(511\) 29.4167 50.9513i 0.0575670 0.0997089i
\(512\) −350.050 350.050i −0.683691 0.683691i
\(513\) 0 0
\(514\) 3.59475i 0.00699368i
\(515\) 218.160 + 128.305i 0.423613 + 0.249136i
\(516\) 0 0
\(517\) 53.8526 200.981i 0.104164 0.388744i
\(518\) 62.1438 + 16.6514i 0.119969 + 0.0321455i
\(519\) 0 0
\(520\) −554.394 + 143.781i −1.06614 + 0.276502i
\(521\) 415.088 0.796715 0.398357 0.917230i \(-0.369580\pi\)
0.398357 + 0.917230i \(0.369580\pi\)
\(522\) 0 0
\(523\) −384.585 + 384.585i −0.735344 + 0.735344i −0.971673 0.236329i \(-0.924056\pi\)
0.236329 + 0.971673i \(0.424056\pi\)
\(524\) −13.7895 7.96136i −0.0263158 0.0151934i
\(525\) 0 0
\(526\) 36.7398 + 63.6352i 0.0698475 + 0.120979i
\(527\) −158.695 + 592.257i −0.301129 + 1.12383i
\(528\) 0 0
\(529\) −456.447 263.530i −0.862848 0.498166i
\(530\) −194.350 + 191.248i −0.366697 + 0.360846i
\(531\) 0 0
\(532\) −48.8325 48.8325i −0.0917904 0.0917904i
\(533\) −218.032 813.705i −0.409065 1.52665i
\(534\) 0 0
\(535\) −51.7204 91.2697i −0.0966737 0.170598i
\(536\) 93.4285 + 161.823i 0.174307 + 0.301908i
\(537\) 0 0
\(538\) 41.3909 + 154.473i 0.0769348 + 0.287125i
\(539\) 530.329i 0.983912i
\(540\) 0 0
\(541\) 251.489 0.464859 0.232430 0.972613i \(-0.425332\pi\)
0.232430 + 0.972613i \(0.425332\pi\)
\(542\) −130.796 + 35.0467i −0.241321 + 0.0646618i
\(543\) 0 0
\(544\) 362.411 209.238i 0.666196 0.384628i
\(545\) 153.669 555.589i 0.281961 1.01943i
\(546\) 0 0
\(547\) 539.479 144.553i 0.986251 0.264265i 0.270576 0.962699i \(-0.412786\pi\)
0.715675 + 0.698433i \(0.246119\pi\)
\(548\) 5.77833 5.77833i 0.0105444 0.0105444i
\(549\) 0 0
\(550\) −157.132 + 152.157i −0.285694 + 0.276649i
\(551\) −129.714 + 224.671i −0.235415 + 0.407751i
\(552\) 0 0
\(553\) 109.976 + 29.4681i 0.198872 + 0.0532876i
\(554\) 212.930 122.935i 0.384349 0.221904i
\(555\) 0 0
\(556\) −440.197 + 762.444i −0.791722 + 1.37130i
\(557\) −302.419 302.419i −0.542943 0.542943i 0.381447 0.924391i \(-0.375426\pi\)
−0.924391 + 0.381447i \(0.875426\pi\)
\(558\) 0 0
\(559\) 170.119i 0.304327i
\(560\) 45.0209 76.5501i 0.0803945 0.136697i
\(561\) 0 0
\(562\) 6.08041 22.6924i 0.0108192 0.0403780i
\(563\) 874.123 + 234.221i 1.55262 + 0.416022i 0.930317 0.366756i \(-0.119532\pi\)
0.622300 + 0.782779i \(0.286198\pi\)
\(564\) 0 0
\(565\) 451.602 + 265.598i 0.799295 + 0.470084i
\(566\) 152.307 0.269094
\(567\) 0 0
\(568\) 393.780 393.780i 0.693274 0.693274i
\(569\) −194.081 112.053i −0.341092 0.196929i 0.319663 0.947531i \(-0.396430\pi\)
−0.660755 + 0.750602i \(0.729764\pi\)
\(570\) 0 0
\(571\) −28.3061 49.0275i −0.0495728 0.0858626i 0.840174 0.542317i \(-0.182453\pi\)
−0.889747 + 0.456454i \(0.849119\pi\)
\(572\) −212.347 + 792.488i −0.371235 + 1.38547i
\(573\) 0 0
\(574\) −49.7329 28.7133i −0.0866426 0.0500232i
\(575\) 24.2285 + 25.0207i 0.0421365 + 0.0435142i
\(576\) 0 0
\(577\) −450.543 450.543i −0.780838 0.780838i 0.199135 0.979972i \(-0.436187\pi\)
−0.979972 + 0.199135i \(0.936187\pi\)
\(578\) −17.1078 63.8471i −0.0295982 0.110462i
\(579\) 0 0
\(580\) −397.586 109.967i −0.685492 0.189599i
\(581\) 48.0806 + 83.2781i 0.0827550 + 0.143336i
\(582\) 0 0
\(583\) 218.796 + 816.557i 0.375293 + 1.40061i
\(584\) 176.630i 0.302448i
\(585\) 0 0
\(586\) 29.2982 0.0499969
\(587\) −335.371 + 89.8623i −0.571330 + 0.153087i −0.532906 0.846174i \(-0.678900\pi\)
−0.0384234 + 0.999262i \(0.512234\pi\)
\(588\) 0 0
\(589\) 404.606 233.599i 0.686937 0.396603i
\(590\) 91.8689 52.0600i 0.155710 0.0882373i
\(591\) 0 0
\(592\) −424.369 + 113.709i −0.716840 + 0.192077i
\(593\) 235.628 235.628i 0.397350 0.397350i −0.479948 0.877297i \(-0.659344\pi\)
0.877297 + 0.479948i \(0.159344\pi\)
\(594\) 0 0
\(595\) 92.5167 + 94.0168i 0.155490 + 0.158011i
\(596\) −161.848 + 280.329i −0.271557 + 0.470351i
\(597\) 0 0
\(598\) −20.7306 5.55474i −0.0346665 0.00928887i
\(599\) 513.829 296.659i 0.857811 0.495258i −0.00546746 0.999985i \(-0.501740\pi\)
0.863279 + 0.504727i \(0.168407\pi\)
\(600\) 0 0
\(601\) 269.249 466.354i 0.448002 0.775963i −0.550254 0.834998i \(-0.685469\pi\)
0.998256 + 0.0590349i \(0.0188023\pi\)
\(602\) −8.20024 8.20024i −0.0136217 0.0136217i
\(603\) 0 0
\(604\) 96.5233i 0.159807i
\(605\) 18.3592 + 70.7899i 0.0303458 + 0.117008i
\(606\) 0 0
\(607\) 105.915 395.280i 0.174489 0.651203i −0.822149 0.569273i \(-0.807225\pi\)
0.996638 0.0819303i \(-0.0261085\pi\)
\(608\) −307.999 82.5281i −0.506577 0.135737i
\(609\) 0 0
\(610\) 156.531 266.154i 0.256609 0.436318i
\(611\) 366.364 0.599614
\(612\) 0 0
\(613\) −10.5026 + 10.5026i −0.0171331 + 0.0171331i −0.715621 0.698488i \(-0.753856\pi\)
0.698488 + 0.715621i \(0.253856\pi\)
\(614\) −26.1641 15.1059i −0.0426126 0.0246024i
\(615\) 0 0
\(616\) 60.5232 + 104.829i 0.0982520 + 0.170177i
\(617\) 113.048 421.900i 0.183222 0.683793i −0.811782 0.583960i \(-0.801502\pi\)
0.995004 0.0998331i \(-0.0318309\pi\)
\(618\) 0 0
\(619\) −8.91186 5.14527i −0.0143972 0.00831222i 0.492784 0.870152i \(-0.335979\pi\)
−0.507181 + 0.861839i \(0.669313\pi\)
\(620\) 521.060 + 529.509i 0.840420 + 0.854047i
\(621\) 0 0
\(622\) 229.439 + 229.439i 0.368873 + 0.368873i
\(623\) −54.8585 204.735i −0.0880554 0.328627i
\(624\) 0 0
\(625\) 294.930 + 551.037i 0.471888 + 0.881659i
\(626\) 77.9268 + 134.973i 0.124484 + 0.215612i
\(627\) 0 0
\(628\) 34.3086 + 128.042i 0.0546316 + 0.203888i
\(629\) 652.537i 1.03742i
\(630\) 0 0
\(631\) 154.559 0.244943 0.122472 0.992472i \(-0.460918\pi\)
0.122472 + 0.992472i \(0.460918\pi\)
\(632\) 330.170 88.4689i 0.522421 0.139982i
\(633\) 0 0
\(634\) −231.032 + 133.386i −0.364403 + 0.210388i
\(635\) −195.515 345.021i −0.307898 0.543340i
\(636\) 0 0
\(637\) 901.968 241.682i 1.41596 0.379406i
\(638\) 148.565 148.565i 0.232860 0.232860i
\(639\) 0 0
\(640\) 5.23092 650.430i 0.00817331 1.01630i
\(641\) 302.816 524.493i 0.472412 0.818242i −0.527089 0.849810i \(-0.676717\pi\)
0.999502 + 0.0315680i \(0.0100501\pi\)
\(642\) 0 0
\(643\) 450.687 + 120.761i 0.700912 + 0.187809i 0.591639 0.806203i \(-0.298481\pi\)
0.109273 + 0.994012i \(0.465148\pi\)
\(644\) 7.71265 4.45290i 0.0119762 0.00691444i
\(645\) 0 0
\(646\) 57.5346 99.6529i 0.0890629 0.154261i
\(647\) 117.084 + 117.084i 0.180965 + 0.180965i 0.791776 0.610811i \(-0.209157\pi\)
−0.610811 + 0.791776i \(0.709157\pi\)
\(648\) 0 0
\(649\) 327.378i 0.504434i
\(650\) −330.392 197.905i −0.508296 0.304469i
\(651\) 0 0
\(652\) −177.055 + 660.778i −0.271557 + 1.01346i
\(653\) −322.638 86.4506i −0.494086 0.132390i 0.00316798 0.999995i \(-0.498992\pi\)
−0.497254 + 0.867605i \(0.665658\pi\)
\(654\) 0 0
\(655\) −5.81745 22.4310i −0.00888160 0.0342459i
\(656\) 392.156 0.597799
\(657\) 0 0
\(658\) 17.6599 17.6599i 0.0268387 0.0268387i
\(659\) 1062.27 + 613.303i 1.61195 + 0.930657i 0.988919 + 0.148457i \(0.0474308\pi\)
0.623027 + 0.782200i \(0.285903\pi\)
\(660\) 0 0
\(661\) 79.8777 + 138.352i 0.120844 + 0.209307i 0.920101 0.391682i \(-0.128107\pi\)
−0.799257 + 0.600989i \(0.794773\pi\)
\(662\) −72.8967 + 272.054i −0.110116 + 0.410958i
\(663\) 0 0
\(664\) 250.017 + 144.347i 0.376532 + 0.217391i
\(665\) 0.808266 100.503i 0.00121544 0.151132i
\(666\) 0 0
\(667\) −23.6565 23.6565i −0.0354670 0.0354670i
\(668\) 251.566 + 938.856i 0.376595 + 1.40547i
\(669\) 0 0
\(670\) −33.4957 + 121.103i −0.0499935 + 0.180751i
\(671\) −478.648 829.042i −0.713335 1.23553i
\(672\) 0 0
\(673\) 12.3181 + 45.9717i 0.0183032 + 0.0683086i 0.974473 0.224503i \(-0.0720758\pi\)
−0.956170 + 0.292811i \(0.905409\pi\)
\(674\) 111.675i 0.165690i
\(675\) 0 0
\(676\) −863.996 −1.27810
\(677\) 141.633 37.9504i 0.209206 0.0560567i −0.152694 0.988274i \(-0.548795\pi\)
0.361900 + 0.932217i \(0.382128\pi\)
\(678\) 0 0
\(679\) 49.3279 28.4795i 0.0726479 0.0419433i
\(680\) 381.670 + 105.565i 0.561279 + 0.155243i
\(681\) 0 0
\(682\) −365.477 + 97.9293i −0.535890 + 0.143591i
\(683\) −882.608 + 882.608i −1.29225 + 1.29225i −0.358860 + 0.933391i \(0.616835\pi\)
−0.933391 + 0.358860i \(0.883165\pi\)
\(684\) 0 0
\(685\) 11.8924 + 0.0956418i 0.0173612 + 0.000139623i
\(686\) 66.0754 114.446i 0.0963198 0.166831i
\(687\) 0 0
\(688\) 76.4948 + 20.4967i 0.111184 + 0.0297917i
\(689\) −1289.07 + 744.243i −1.87092 + 1.08018i
\(690\) 0 0
\(691\) 253.832 439.650i 0.367340 0.636252i −0.621808 0.783169i \(-0.713602\pi\)
0.989149 + 0.146917i \(0.0469351\pi\)
\(692\) −753.047 753.047i −1.08822 1.08822i
\(693\) 0 0
\(694\) 181.421i 0.261413i
\(695\) −1240.25 + 321.657i −1.78453 + 0.462815i
\(696\) 0 0
\(697\) −150.751 + 562.611i −0.216286 + 0.807189i
\(698\) 277.514 + 74.3597i 0.397585 + 0.106532i
\(699\) 0 0
\(700\) 155.013 38.8746i 0.221447 0.0555352i
\(701\) −194.042 −0.276807 −0.138403 0.990376i \(-0.544197\pi\)
−0.138403 + 0.990376i \(0.544197\pi\)
\(702\) 0 0
\(703\) −351.581 + 351.581i −0.500115 + 0.500115i
\(704\) −161.459 93.2182i −0.229345 0.132412i
\(705\) 0 0
\(706\) −195.614 338.813i −0.277073 0.479905i
\(707\) 28.7907 107.448i 0.0407223 0.151978i
\(708\) 0 0
\(709\) 414.499 + 239.311i 0.584625 + 0.337534i 0.762969 0.646435i \(-0.223741\pi\)
−0.178344 + 0.983968i \(0.557074\pi\)
\(710\) 374.463 + 3.01152i 0.527412 + 0.00424158i
\(711\) 0 0
\(712\) −449.958 449.958i −0.631963 0.631963i
\(713\) 15.5936 + 58.1962i 0.0218705 + 0.0816216i
\(714\) 0 0
\(715\) −1038.83 + 588.681i −1.45291 + 0.823331i
\(716\) −260.906 451.902i −0.364393 0.631148i
\(717\) 0 0
\(718\) −63.5739 237.261i −0.0885430 0.330447i
\(719\) 443.536i 0.616879i 0.951244 + 0.308439i \(0.0998067\pi\)
−0.951244 + 0.308439i \(0.900193\pi\)
\(720\) 0 0
\(721\) 94.1849 0.130631
\(722\) 177.274 47.5005i 0.245532 0.0657902i
\(723\) 0 0
\(724\) −143.106 + 82.6224i −0.197660 + 0.114119i
\(725\) −291.774 524.680i −0.402448 0.723696i
\(726\) 0 0
\(727\) −280.010 + 75.0285i −0.385158 + 0.103203i −0.446202 0.894932i \(-0.647224\pi\)
0.0610438 + 0.998135i \(0.480557\pi\)
\(728\) −150.709 + 150.709i −0.207018 + 0.207018i
\(729\) 0 0
\(730\) 84.6578 83.3070i 0.115970 0.114119i
\(731\) −58.8116 + 101.865i −0.0804536 + 0.139350i
\(732\) 0 0
\(733\) −987.435 264.583i −1.34712 0.360958i −0.488046 0.872818i \(-0.662290\pi\)
−0.859069 + 0.511859i \(0.828957\pi\)
\(734\) −340.177 + 196.401i −0.463457 + 0.267577i
\(735\) 0 0
\(736\) 20.5601 35.6111i 0.0279349 0.0483847i
\(737\) 275.459 + 275.459i 0.373757 + 0.373757i
\(738\) 0 0
\(739\) 153.917i 0.208277i 0.994563 + 0.104138i \(0.0332085\pi\)
−0.994563 + 0.104138i \(0.966791\pi\)
\(740\) −681.488 400.799i −0.920929 0.541620i
\(741\) 0 0
\(742\) −26.2622 + 98.0117i −0.0353938 + 0.132091i
\(743\) 1261.02 + 337.889i 1.69720 + 0.454763i 0.972231 0.234021i \(-0.0751886\pi\)
0.724966 + 0.688784i \(0.241855\pi\)
\(744\) 0 0
\(745\) −456.005 + 118.264i −0.612087 + 0.158744i
\(746\) −18.2489 −0.0244623
\(747\) 0 0
\(748\) 401.121 401.121i 0.536258 0.536258i
\(749\) −33.8088 19.5195i −0.0451385 0.0260607i
\(750\) 0 0
\(751\) −728.908 1262.51i −0.970583 1.68110i −0.693801 0.720167i \(-0.744065\pi\)
−0.276783 0.960933i \(-0.589268\pi\)
\(752\) −44.1413 + 164.737i −0.0586985 + 0.219066i
\(753\) 0 0
\(754\) 320.379 + 184.971i 0.424905 + 0.245319i
\(755\) −100.127 + 98.5289i −0.132618 + 0.130502i
\(756\) 0 0
\(757\) −575.216 575.216i −0.759863 0.759863i 0.216434 0.976297i \(-0.430557\pi\)
−0.976297 + 0.216434i \(0.930557\pi\)
\(758\) 70.9594 + 264.824i 0.0936140 + 0.349372i
\(759\) 0 0
\(760\) −148.763 262.518i −0.195740 0.345418i
\(761\) 506.722 + 877.668i 0.665863 + 1.15331i 0.979051 + 0.203618i \(0.0652699\pi\)
−0.313187 + 0.949691i \(0.601397\pi\)
\(762\) 0 0
\(763\) −55.5211 207.207i −0.0727668 0.271569i
\(764\) 1248.49i 1.63414i
\(765\) 0 0
\(766\) −2.52556 −0.00329708
\(767\) 556.794 149.193i 0.725938 0.194515i
\(768\) 0 0
\(769\) −486.081 + 280.639i −0.632095 + 0.364940i −0.781563 0.623827i \(-0.785577\pi\)
0.149468 + 0.988767i \(0.452244\pi\)
\(770\) −21.6986 + 78.4511i −0.0281800 + 0.101884i
\(771\) 0 0
\(772\) −39.7180 + 10.6424i −0.0514482 + 0.0137855i
\(773\) −445.834 + 445.834i −0.576758 + 0.576758i −0.934008 0.357251i \(-0.883714\pi\)
0.357251 + 0.934008i \(0.383714\pi\)
\(774\) 0 0
\(775\) −17.3888 + 1081.02i −0.0224372 + 1.39487i
\(776\) 85.5009 148.092i 0.110182 0.190840i
\(777\) 0 0
\(778\) −110.446 29.5938i −0.141961 0.0380383i
\(779\) 384.353 221.906i 0.493393 0.284860i
\(780\) 0 0
\(781\) 580.499 1005.45i 0.743276 1.28739i
\(782\) 10.4929 + 10.4929i 0.0134180 + 0.0134180i
\(783\) 0 0
\(784\) 434.693i 0.554456i
\(785\) −97.7999 + 166.291i −0.124586 + 0.211836i
\(786\) 0 0
\(787\) −362.598 + 1353.23i −0.460734 + 1.71948i 0.209925 + 0.977717i \(0.432678\pi\)
−0.670659 + 0.741766i \(0.733989\pi\)
\(788\) 212.793 + 57.0176i 0.270041 + 0.0723573i
\(789\) 0 0
\(790\) 198.127 + 116.523i 0.250794 + 0.147498i
\(791\) 194.967 0.246482
\(792\) 0 0
\(793\) 1191.88 1191.88i 1.50300 1.50300i
\(794\) −253.828 146.548i −0.319683 0.184569i
\(795\) 0 0
\(796\) 29.2167 + 50.6049i 0.0367045 + 0.0635740i
\(797\) 122.829 458.403i 0.154114 0.575160i −0.845066 0.534662i \(-0.820439\pi\)
0.999180 0.0404981i \(-0.0128945\pi\)
\(798\) 0 0
\(799\) −219.374 126.655i −0.274560 0.158517i
\(800\) 530.095 513.312i 0.662619 0.641640i
\(801\) 0 0
\(802\) 358.565 + 358.565i 0.447088 + 0.447088i
\(803\) −95.3064 355.688i −0.118688 0.442949i
\(804\) 0 0
\(805\) 12.4920 + 3.45514i 0.0155181 + 0.00429210i
\(806\) −333.111 576.965i −0.413289 0.715837i
\(807\) 0 0
\(808\) −86.4352 322.581i −0.106974 0.399234i
\(809\) 806.321i 0.996689i −0.866979 0.498344i \(-0.833941\pi\)
0.866979 0.498344i \(-0.166059\pi\)
\(810\) 0 0
\(811\) −928.637 −1.14505 −0.572526 0.819887i \(-0.694036\pi\)
−0.572526 + 0.819887i \(0.694036\pi\)
\(812\) −148.280 + 39.7315i −0.182611 + 0.0489304i
\(813\) 0 0
\(814\) 348.727 201.338i 0.428412 0.247344i
\(815\) −866.179 + 490.843i −1.06280 + 0.602262i
\(816\) 0 0
\(817\) 86.5709 23.1966i 0.105962 0.0283924i
\(818\) −230.158 + 230.158i −0.281366 + 0.281366i
\(819\) 0 0
\(820\) 494.978 + 503.004i 0.603632 + 0.613419i
\(821\) 259.589 449.622i 0.316187 0.547652i −0.663502 0.748174i \(-0.730931\pi\)
0.979689 + 0.200523i \(0.0642640\pi\)
\(822\) 0 0
\(823\) 1245.48 + 333.724i 1.51334 + 0.405497i 0.917542 0.397639i \(-0.130170\pi\)
0.595795 + 0.803136i \(0.296837\pi\)
\(824\) 244.879 141.381i 0.297183 0.171579i
\(825\) 0 0
\(826\) 19.6477 34.0307i 0.0237865 0.0411994i
\(827\) 380.149 + 380.149i 0.459672 + 0.459672i 0.898548 0.438876i \(-0.144623\pi\)
−0.438876 + 0.898548i \(0.644623\pi\)
\(828\) 0 0
\(829\) 511.167i 0.616606i −0.951288 0.308303i \(-0.900239\pi\)
0.951288 0.308303i \(-0.0997611\pi\)
\(830\) 48.7350 + 187.913i 0.0587168 + 0.226402i
\(831\) 0 0
\(832\) 84.9628 317.086i 0.102119 0.381113i
\(833\) −623.637 167.103i −0.748664 0.200604i
\(834\) 0 0
\(835\) −717.111 + 1219.32i −0.858815 + 1.46026i
\(836\) −432.240 −0.517034
\(837\) 0 0
\(838\) −265.524 + 265.524i −0.316855 + 0.316855i
\(839\) 889.044 + 513.290i 1.05965 + 0.611788i 0.925335 0.379151i \(-0.123784\pi\)
0.134313 + 0.990939i \(0.457117\pi\)
\(840\) 0 0
\(841\) −132.163 228.913i −0.157150 0.272192i
\(842\) 5.84978 21.8317i 0.00694749 0.0259284i
\(843\) 0 0
\(844\) 885.970 + 511.515i 1.04973 + 0.606061i
\(845\) −881.948 896.249i −1.04373 1.06065i
\(846\) 0 0
\(847\) 19.2439 + 19.2439i 0.0227200 + 0.0227200i
\(848\) −179.340 669.305i −0.211486 0.789275i
\(849\) 0 0
\(850\) 129.417 + 232.722i 0.152255 + 0.273791i
\(851\) −32.0597 55.5291i −0.0376730 0.0652516i
\(852\) 0 0
\(853\) 360.478 + 1345.32i 0.422600 + 1.57717i 0.769108 + 0.639119i \(0.220701\pi\)
−0.346508 + 0.938047i \(0.612633\pi\)
\(854\) 114.905i 0.134549i
\(855\) 0 0
\(856\) −117.203 −0.136919
\(857\) −319.058 + 85.4914i −0.372297 + 0.0997566i −0.440116 0.897941i \(-0.645063\pi\)
0.0678191 + 0.997698i \(0.478396\pi\)
\(858\) 0 0
\(859\) 264.795 152.879i 0.308259 0.177974i −0.337888 0.941186i \(-0.609713\pi\)
0.646147 + 0.763213i \(0.276379\pi\)
\(860\) 70.2610 + 123.988i 0.0816988 + 0.144172i
\(861\) 0 0
\(862\) −374.262 + 100.283i −0.434178 + 0.116338i
\(863\) −386.017 + 386.017i −0.447297 + 0.447297i −0.894455 0.447158i \(-0.852436\pi\)
0.447158 + 0.894455i \(0.352436\pi\)
\(864\) 0 0
\(865\) 12.4643 1549.85i 0.0144096 1.79174i
\(866\) −162.447 + 281.367i −0.187583 + 0.324904i
\(867\) 0 0
\(868\) 267.035 + 71.5518i 0.307644 + 0.0824329i
\(869\) 617.145 356.309i 0.710179 0.410022i
\(870\) 0 0
\(871\) −342.961 + 594.025i −0.393755 + 0.682004i
\(872\) −455.392 455.392i −0.522238 0.522238i
\(873\) 0 0
\(874\) 11.3069i 0.0129370i
\(875\) 198.560 + 121.117i 0.226926 + 0.138420i
\(876\) 0 0
\(877\) 108.142 403.592i 0.123309 0.460196i −0.876465 0.481466i \(-0.840104\pi\)
0.999774 + 0.0212701i \(0.00677100\pi\)
\(878\) −366.669 98.2488i −0.417619 0.111901i
\(879\) 0 0
\(880\) −139.540 538.043i −0.158569 0.611412i
\(881\) 1495.93 1.69799 0.848993 0.528403i \(-0.177209\pi\)
0.848993 + 0.528403i \(0.177209\pi\)
\(882\) 0 0
\(883\) −158.383 + 158.383i −0.179369 + 0.179369i −0.791081 0.611712i \(-0.790481\pi\)
0.611712 + 0.791081i \(0.290481\pi\)
\(884\) 865.014 + 499.416i 0.978522 + 0.564950i
\(885\) 0 0
\(886\) 75.9157 + 131.490i 0.0856837 + 0.148408i
\(887\) −355.206 + 1325.65i −0.400458 + 1.49453i 0.411823 + 0.911264i \(0.364892\pi\)
−0.812281 + 0.583266i \(0.801775\pi\)
\(888\) 0 0
\(889\) −127.805 73.7883i −0.143763 0.0830014i
\(890\) 3.44115 427.885i 0.00386647 0.480769i
\(891\) 0 0
\(892\) 77.6576 + 77.6576i 0.0870601 + 0.0870601i
\(893\) 49.9557 + 186.437i 0.0559415 + 0.208776i
\(894\) 0 0
\(895\) 202.445 731.937i 0.226195 0.817807i
\(896\) −121.028 209.626i −0.135076 0.233958i
\(897\) 0 0
\(898\) 28.2113 + 105.286i 0.0314157 + 0.117245i
\(899\) 1038.52i 1.15520i
\(900\) 0 0
\(901\) 1029.17 1.14225
\(902\) −347.183 + 93.0274i −0.384903 + 0.103135i
\(903\) 0 0
\(904\) 506.909 292.664i 0.560741 0.323744i
\(905\) −231.786 64.1092i −0.256118 0.0708389i
\(906\) 0 0
\(907\) 535.743 143.552i 0.590676 0.158271i 0.0489140 0.998803i \(-0.484424\pi\)
0.541762 + 0.840532i \(0.317757\pi\)
\(908\) 950.276 950.276i 1.04656 1.04656i
\(909\) 0 0
\(910\) −143.316 1.15258i −0.157490 0.00126657i
\(911\) 484.409 839.021i 0.531733 0.920989i −0.467581 0.883950i \(-0.654874\pi\)
0.999314 0.0370382i \(-0.0117923\pi\)
\(912\) 0 0
\(913\) 581.361 + 155.775i 0.636759 + 0.170619i
\(914\) −192.995 + 111.426i −0.211154 + 0.121910i
\(915\) 0 0
\(916\) 430.882 746.309i 0.470395 0.814748i
\(917\) −6.09776 6.09776i −0.00664968 0.00664968i
\(918\) 0 0
\(919\) 600.903i 0.653866i −0.945048 0.326933i \(-0.893985\pi\)
0.945048 0.326933i \(-0.106015\pi\)
\(920\) 37.6655 9.76848i 0.0409408 0.0106179i
\(921\) 0 0
\(922\) −55.6275 + 207.604i −0.0603335 + 0.225168i
\(923\) 1974.59 + 529.090i 2.13932 + 0.573229i
\(924\) 0 0
\(925\) −279.887 1116.05i −0.302581 1.20655i
\(926\) −187.992 −0.203015
\(927\) 0 0
\(928\) −501.193 + 501.193i −0.540079 + 0.540079i
\(929\) −435.996 251.722i −0.469318 0.270961i 0.246636 0.969108i \(-0.420675\pi\)
−0.715954 + 0.698147i \(0.754008\pi\)
\(930\) 0 0
\(931\) 245.976 + 426.044i 0.264207 + 0.457619i
\(932\) 300.655 1122.06i 0.322591 1.20393i
\(933\) 0 0
\(934\) 65.6305 + 37.8918i 0.0702682 + 0.0405694i
\(935\) 825.550 + 6.63928i 0.882941 + 0.00710083i
\(936\) 0 0
\(937\) 1181.10 + 1181.10i 1.26051 + 1.26051i 0.950847 + 0.309660i \(0.100215\pi\)
0.309660 + 0.950847i \(0.399785\pi\)
\(938\) 12.1021 + 45.1656i 0.0129020 + 0.0481509i
\(939\) 0 0
\(940\) −267.017 + 151.313i −0.284061 + 0.160971i
\(941\) 576.616 + 998.729i 0.612770 + 1.06135i 0.990771 + 0.135543i \(0.0432780\pi\)
−0.378002 + 0.925805i \(0.623389\pi\)
\(942\) 0 0
\(943\) 14.8131 + 55.2832i 0.0157085 + 0.0586248i
\(944\) 268.341i 0.284259i
\(945\) 0 0
\(946\) −72.5844 −0.0767277
\(947\) −1323.45 + 354.616i −1.39751 + 0.374463i −0.877451 0.479665i \(-0.840758\pi\)
−0.520063 + 0.854128i \(0.674091\pi\)
\(948\) 0 0
\(949\) 561.512 324.189i 0.591688 0.341611i
\(950\) 55.6600 195.117i 0.0585894 0.205387i
\(951\) 0 0
\(952\) 142.344 38.1409i 0.149521 0.0400640i
\(953\) −77.4456 + 77.4456i −0.0812650 + 0.0812650i −0.746571 0.665306i \(-0.768301\pi\)
0.665306 + 0.746571i \(0.268301\pi\)
\(954\) 0 0
\(955\) −1295.09 + 1274.43i −1.35612 + 1.33448i
\(956\) 67.1397 116.289i 0.0702298 0.121642i
\(957\) 0 0
\(958\) 142.282 + 38.1245i 0.148520 + 0.0397959i
\(959\) 3.83279 2.21286i 0.00399666 0.00230747i
\(960\) 0 0
\(961\) −454.630 + 787.443i −0.473080 + 0.819399i
\(962\) 501.352 + 501.352i 0.521156 + 0.521156i
\(963\) 0 0
\(964\) 287.577i 0.298316i
\(965\) −51.5830 30.3372i −0.0534539 0.0314375i
\(966\) 0 0
\(967\) 417.733 1559.00i 0.431989 1.61220i −0.316183 0.948698i \(-0.602401\pi\)
0.748172 0.663505i \(-0.230932\pi\)
\(968\) 78.9205 + 21.1467i 0.0815295 + 0.0218458i
\(969\) 0 0
\(970\) 111.306 28.8671i 0.114749 0.0297599i
\(971\) −158.612 −0.163349 −0.0816745 0.996659i \(-0.526027\pi\)
−0.0816745 + 0.996659i \(0.526027\pi\)
\(972\) 0 0
\(973\) −337.156 + 337.156i −0.346511 + 0.346511i
\(974\) 607.386 + 350.674i 0.623599 + 0.360035i
\(975\) 0 0
\(976\) 392.332 + 679.539i 0.401980 + 0.696249i
\(977\) −2.86555 + 10.6944i −0.00293301 + 0.0109461i −0.967377 0.253342i \(-0.918470\pi\)
0.964444 + 0.264288i \(0.0851369\pi\)
\(978\) 0 0
\(979\) −1148.89 663.315i −1.17354 0.677543i
\(980\) −557.565 + 548.668i −0.568944 + 0.559865i
\(981\) 0 0
\(982\) −418.604 418.604i −0.426277 0.426277i
\(983\) −295.182 1101.63i −0.300287 1.12069i −0.936927 0.349525i \(-0.886343\pi\)
0.636640 0.771161i \(-0.280324\pi\)
\(984\) 0 0
\(985\) 158.068 + 278.938i 0.160475 + 0.283186i
\(986\) −127.892 221.516i −0.129708 0.224661i
\(987\) 0 0
\(988\) −196.981 735.142i −0.199373 0.744071i
\(989\) 11.5579i 0.0116864i
\(990\) 0 0
\(991\) −95.8581 −0.0967287 −0.0483643 0.998830i \(-0.515401\pi\)
−0.0483643 + 0.998830i \(0.515401\pi\)
\(992\) 1232.96 330.371i 1.24291 0.333036i
\(993\) 0 0
\(994\) 120.685 69.6776i 0.121414 0.0700982i
\(995\) −22.6702 + 81.9638i −0.0227841 + 0.0823757i
\(996\) 0 0
\(997\) −850.093 + 227.782i −0.852651 + 0.228467i −0.658571 0.752518i \(-0.728839\pi\)
−0.194080 + 0.980986i \(0.562172\pi\)
\(998\) 88.7943 88.7943i 0.0889723 0.0889723i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 135.3.l.a.127.6 40
3.2 odd 2 45.3.k.a.7.5 40
5.3 odd 4 inner 135.3.l.a.73.5 40
9.2 odd 6 405.3.g.h.82.6 20
9.4 even 3 inner 135.3.l.a.37.5 40
9.5 odd 6 45.3.k.a.22.6 yes 40
9.7 even 3 405.3.g.g.82.5 20
15.2 even 4 225.3.o.b.43.5 40
15.8 even 4 45.3.k.a.43.6 yes 40
15.14 odd 2 225.3.o.b.7.6 40
45.13 odd 12 inner 135.3.l.a.118.6 40
45.14 odd 6 225.3.o.b.157.5 40
45.23 even 12 45.3.k.a.13.5 yes 40
45.32 even 12 225.3.o.b.193.6 40
45.38 even 12 405.3.g.h.163.6 20
45.43 odd 12 405.3.g.g.163.5 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
45.3.k.a.7.5 40 3.2 odd 2
45.3.k.a.13.5 yes 40 45.23 even 12
45.3.k.a.22.6 yes 40 9.5 odd 6
45.3.k.a.43.6 yes 40 15.8 even 4
135.3.l.a.37.5 40 9.4 even 3 inner
135.3.l.a.73.5 40 5.3 odd 4 inner
135.3.l.a.118.6 40 45.13 odd 12 inner
135.3.l.a.127.6 40 1.1 even 1 trivial
225.3.o.b.7.6 40 15.14 odd 2
225.3.o.b.43.5 40 15.2 even 4
225.3.o.b.157.5 40 45.14 odd 6
225.3.o.b.193.6 40 45.32 even 12
405.3.g.g.82.5 20 9.7 even 3
405.3.g.g.163.5 20 45.43 odd 12
405.3.g.h.82.6 20 9.2 odd 6
405.3.g.h.163.6 20 45.38 even 12