Properties

Label 405.3.g.h.82.6
Level $405$
Weight $3$
Character 405.82
Analytic conductor $11.035$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [405,3,Mod(82,405)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(405, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("405.82");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 405 = 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 405.g (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.0354507066\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 2 x^{19} + 2 x^{18} + 8 x^{17} + 245 x^{16} - 440 x^{15} + 422 x^{14} + 1724 x^{13} + \cdots + 11449 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{3}\cdot 3^{4} \)
Twist minimal: no (minimal twist has level 45)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 82.6
Root \(0.531225 - 0.531225i\) of defining polynomial
Character \(\chi\) \(=\) 405.82
Dual form 405.3.g.h.163.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.531225 + 0.531225i) q^{2} -3.43560i q^{4} +(-3.56385 + 3.50699i) q^{5} +(1.31570 + 1.31570i) q^{7} +(3.94998 - 3.94998i) q^{8} +(-3.75621 - 0.0302083i) q^{10} -11.6459 q^{11} +(14.4997 - 14.4997i) q^{13} +1.39786i q^{14} -9.54575 q^{16} +(-10.0254 - 10.0254i) q^{17} -10.8032i q^{19} +(12.0486 + 12.2440i) q^{20} +(-6.18658 - 6.18658i) q^{22} +(0.985111 - 0.985111i) q^{23} +(0.402086 - 24.9968i) q^{25} +15.4052 q^{26} +(4.52021 - 4.52021i) q^{28} -24.0140i q^{29} -43.2465 q^{31} +(-20.8708 - 20.8708i) q^{32} -10.6514i q^{34} +(-9.30307 - 0.0748176i) q^{35} +(-32.5443 - 32.5443i) q^{37} +(5.73890 - 5.73890i) q^{38} +(-0.224617 + 27.9296i) q^{40} +41.0818 q^{41} +(5.86628 - 5.86628i) q^{43} +40.0106i q^{44} +1.04663 q^{46} +(-12.6335 - 12.6335i) q^{47} -45.5379i q^{49} +(13.4925 - 13.0653i) q^{50} +(-49.8152 - 49.8152i) q^{52} +(-51.3281 + 51.3281i) q^{53} +(41.5042 - 40.8419i) q^{55} +10.3939 q^{56} +(12.7568 - 12.7568i) q^{58} +28.1110i q^{59} +82.2004 q^{61} +(-22.9736 - 22.9736i) q^{62} +16.0088i q^{64} +(-0.824532 + 102.525i) q^{65} +(23.6529 + 23.6529i) q^{67} +(-34.4432 + 34.4432i) q^{68} +(-4.90228 - 4.98177i) q^{70} +99.6917 q^{71} +(-22.3583 + 22.3583i) q^{73} -34.5767i q^{74} -37.1153 q^{76} +(-15.3224 - 15.3224i) q^{77} +61.1906i q^{79} +(34.0196 - 33.4768i) q^{80} +(21.8237 + 21.8237i) q^{82} +(36.5439 - 36.5439i) q^{83} +(70.8878 + 0.570097i) q^{85} +6.23263 q^{86} +(-46.0009 + 46.0009i) q^{88} -113.914i q^{89} +38.1544 q^{91} +(-3.38445 - 3.38445i) q^{92} -13.4225i q^{94} +(37.8865 + 38.5008i) q^{95} +(21.6459 + 21.6459i) q^{97} +(24.1909 - 24.1909i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 2 q^{2} + 2 q^{5} + 2 q^{7} - 12 q^{8} - 4 q^{10} - 8 q^{11} + 2 q^{13} - 28 q^{16} + 14 q^{17} + 114 q^{20} - 14 q^{22} - 82 q^{23} + 8 q^{25} - 56 q^{26} - 44 q^{28} + 4 q^{31} + 14 q^{32} + 176 q^{35}+ \cdots - 938 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/405\mathbb{Z}\right)^\times\).

\(n\) \(82\) \(326\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.531225 + 0.531225i 0.265612 + 0.265612i 0.827329 0.561717i \(-0.189859\pi\)
−0.561717 + 0.827329i \(0.689859\pi\)
\(3\) 0 0
\(4\) 3.43560i 0.858900i
\(5\) −3.56385 + 3.50699i −0.712770 + 0.701397i
\(6\) 0 0
\(7\) 1.31570 + 1.31570i 0.187957 + 0.187957i 0.794812 0.606856i \(-0.207569\pi\)
−0.606856 + 0.794812i \(0.707569\pi\)
\(8\) 3.94998 3.94998i 0.493747 0.493747i
\(9\) 0 0
\(10\) −3.75621 0.0302083i −0.375621 0.00302083i
\(11\) −11.6459 −1.05872 −0.529358 0.848399i \(-0.677567\pi\)
−0.529358 + 0.848399i \(0.677567\pi\)
\(12\) 0 0
\(13\) 14.4997 14.4997i 1.11536 1.11536i 0.122949 0.992413i \(-0.460765\pi\)
0.992413 0.122949i \(-0.0392353\pi\)
\(14\) 1.39786i 0.0998472i
\(15\) 0 0
\(16\) −9.54575 −0.596609
\(17\) −10.0254 10.0254i −0.589728 0.589728i 0.347830 0.937558i \(-0.386919\pi\)
−0.937558 + 0.347830i \(0.886919\pi\)
\(18\) 0 0
\(19\) 10.8032i 0.568587i −0.958737 0.284294i \(-0.908241\pi\)
0.958737 0.284294i \(-0.0917590\pi\)
\(20\) 12.0486 + 12.2440i 0.602430 + 0.612199i
\(21\) 0 0
\(22\) −6.18658 6.18658i −0.281208 0.281208i
\(23\) 0.985111 0.985111i 0.0428309 0.0428309i −0.685367 0.728198i \(-0.740358\pi\)
0.728198 + 0.685367i \(0.240358\pi\)
\(24\) 0 0
\(25\) 0.402086 24.9968i 0.0160835 0.999871i
\(26\) 15.4052 0.592508
\(27\) 0 0
\(28\) 4.52021 4.52021i 0.161436 0.161436i
\(29\) 24.0140i 0.828070i −0.910261 0.414035i \(-0.864119\pi\)
0.910261 0.414035i \(-0.135881\pi\)
\(30\) 0 0
\(31\) −43.2465 −1.39505 −0.697524 0.716561i \(-0.745715\pi\)
−0.697524 + 0.716561i \(0.745715\pi\)
\(32\) −20.8708 20.8708i −0.652214 0.652214i
\(33\) 0 0
\(34\) 10.6514i 0.313278i
\(35\) −9.30307 0.0748176i −0.265802 0.00213765i
\(36\) 0 0
\(37\) −32.5443 32.5443i −0.879576 0.879576i 0.113915 0.993491i \(-0.463661\pi\)
−0.993491 + 0.113915i \(0.963661\pi\)
\(38\) 5.73890 5.73890i 0.151024 0.151024i
\(39\) 0 0
\(40\) −0.224617 + 27.9296i −0.00561543 + 0.698241i
\(41\) 41.0818 1.00199 0.500997 0.865449i \(-0.332967\pi\)
0.500997 + 0.865449i \(0.332967\pi\)
\(42\) 0 0
\(43\) 5.86628 5.86628i 0.136425 0.136425i −0.635596 0.772022i \(-0.719246\pi\)
0.772022 + 0.635596i \(0.219246\pi\)
\(44\) 40.0106i 0.909331i
\(45\) 0 0
\(46\) 1.04663 0.0227528
\(47\) −12.6335 12.6335i −0.268798 0.268798i 0.559818 0.828616i \(-0.310871\pi\)
−0.828616 + 0.559818i \(0.810871\pi\)
\(48\) 0 0
\(49\) 45.5379i 0.929345i
\(50\) 13.4925 13.0653i 0.269850 0.261306i
\(51\) 0 0
\(52\) −49.8152 49.8152i −0.957985 0.957985i
\(53\) −51.3281 + 51.3281i −0.968455 + 0.968455i −0.999517 0.0310621i \(-0.990111\pi\)
0.0310621 + 0.999517i \(0.490111\pi\)
\(54\) 0 0
\(55\) 41.5042 40.8419i 0.754621 0.742580i
\(56\) 10.3939 0.185606
\(57\) 0 0
\(58\) 12.7568 12.7568i 0.219946 0.219946i
\(59\) 28.1110i 0.476458i 0.971209 + 0.238229i \(0.0765669\pi\)
−0.971209 + 0.238229i \(0.923433\pi\)
\(60\) 0 0
\(61\) 82.2004 1.34755 0.673774 0.738938i \(-0.264672\pi\)
0.673774 + 0.738938i \(0.264672\pi\)
\(62\) −22.9736 22.9736i −0.370542 0.370542i
\(63\) 0 0
\(64\) 16.0088i 0.250137i
\(65\) −0.824532 + 102.525i −0.0126851 + 1.57731i
\(66\) 0 0
\(67\) 23.6529 + 23.6529i 0.353029 + 0.353029i 0.861235 0.508206i \(-0.169691\pi\)
−0.508206 + 0.861235i \(0.669691\pi\)
\(68\) −34.4432 + 34.4432i −0.506517 + 0.506517i
\(69\) 0 0
\(70\) −4.90228 4.98177i −0.0700326 0.0711681i
\(71\) 99.6917 1.40411 0.702054 0.712123i \(-0.252266\pi\)
0.702054 + 0.712123i \(0.252266\pi\)
\(72\) 0 0
\(73\) −22.3583 + 22.3583i −0.306278 + 0.306278i −0.843464 0.537186i \(-0.819487\pi\)
0.537186 + 0.843464i \(0.319487\pi\)
\(74\) 34.5767i 0.467252i
\(75\) 0 0
\(76\) −37.1153 −0.488359
\(77\) −15.3224 15.3224i −0.198993 0.198993i
\(78\) 0 0
\(79\) 61.1906i 0.774565i 0.921961 + 0.387282i \(0.126586\pi\)
−0.921961 + 0.387282i \(0.873414\pi\)
\(80\) 34.0196 33.4768i 0.425246 0.418460i
\(81\) 0 0
\(82\) 21.8237 + 21.8237i 0.266142 + 0.266142i
\(83\) 36.5439 36.5439i 0.440288 0.440288i −0.451821 0.892109i \(-0.649225\pi\)
0.892109 + 0.451821i \(0.149225\pi\)
\(84\) 0 0
\(85\) 70.8878 + 0.570097i 0.833974 + 0.00670702i
\(86\) 6.23263 0.0724724
\(87\) 0 0
\(88\) −46.0009 + 46.0009i −0.522738 + 0.522738i
\(89\) 113.914i 1.27993i −0.768402 0.639967i \(-0.778948\pi\)
0.768402 0.639967i \(-0.221052\pi\)
\(90\) 0 0
\(91\) 38.1544 0.419279
\(92\) −3.38445 3.38445i −0.0367875 0.0367875i
\(93\) 0 0
\(94\) 13.4225i 0.142792i
\(95\) 37.8865 + 38.5008i 0.398805 + 0.405272i
\(96\) 0 0
\(97\) 21.6459 + 21.6459i 0.223154 + 0.223154i 0.809825 0.586671i \(-0.199562\pi\)
−0.586671 + 0.809825i \(0.699562\pi\)
\(98\) 24.1909 24.1909i 0.246845 0.246845i
\(99\) 0 0
\(100\) −85.8789 1.38141i −0.858789 0.0138141i
\(101\) −59.7840 −0.591921 −0.295961 0.955200i \(-0.595640\pi\)
−0.295961 + 0.955200i \(0.595640\pi\)
\(102\) 0 0
\(103\) 35.7928 35.7928i 0.347503 0.347503i −0.511676 0.859179i \(-0.670975\pi\)
0.859179 + 0.511676i \(0.170975\pi\)
\(104\) 114.547i 1.10141i
\(105\) 0 0
\(106\) −54.5336 −0.514468
\(107\) −14.8359 14.8359i −0.138653 0.138653i 0.634374 0.773027i \(-0.281258\pi\)
−0.773027 + 0.634374i \(0.781258\pi\)
\(108\) 0 0
\(109\) 115.290i 1.05770i 0.848714 + 0.528852i \(0.177377\pi\)
−0.848714 + 0.528852i \(0.822623\pi\)
\(110\) 43.7443 + 0.351802i 0.397675 + 0.00319820i
\(111\) 0 0
\(112\) −12.5593 12.5593i −0.112137 0.112137i
\(113\) −74.0927 + 74.0927i −0.655687 + 0.655687i −0.954357 0.298669i \(-0.903457\pi\)
0.298669 + 0.954357i \(0.403457\pi\)
\(114\) 0 0
\(115\) −0.0560187 + 6.96556i −0.000487119 + 0.0605701i
\(116\) −82.5026 −0.711229
\(117\) 0 0
\(118\) −14.9333 + 14.9333i −0.126553 + 0.126553i
\(119\) 26.3807i 0.221686i
\(120\) 0 0
\(121\) 14.6264 0.120879
\(122\) 43.6669 + 43.6669i 0.357925 + 0.357925i
\(123\) 0 0
\(124\) 148.578i 1.19821i
\(125\) 86.2304 + 90.4949i 0.689843 + 0.723959i
\(126\) 0 0
\(127\) 56.0831 + 56.0831i 0.441599 + 0.441599i 0.892549 0.450950i \(-0.148915\pi\)
−0.450950 + 0.892549i \(0.648915\pi\)
\(128\) −91.9876 + 91.9876i −0.718653 + 0.718653i
\(129\) 0 0
\(130\) −54.9019 + 54.0259i −0.422322 + 0.415584i
\(131\) 4.63463 0.0353788 0.0176894 0.999844i \(-0.494369\pi\)
0.0176894 + 0.999844i \(0.494369\pi\)
\(132\) 0 0
\(133\) 14.2137 14.2137i 0.106870 0.106870i
\(134\) 25.1300i 0.187538i
\(135\) 0 0
\(136\) −79.1999 −0.582352
\(137\) −1.68190 1.68190i −0.0122766 0.0122766i 0.700942 0.713218i \(-0.252763\pi\)
−0.713218 + 0.700942i \(0.752763\pi\)
\(138\) 0 0
\(139\) 256.257i 1.84357i 0.387699 + 0.921786i \(0.373270\pi\)
−0.387699 + 0.921786i \(0.626730\pi\)
\(140\) −0.257043 + 31.9616i −0.00183602 + 0.228297i
\(141\) 0 0
\(142\) 52.9587 + 52.9587i 0.372949 + 0.372949i
\(143\) −168.862 + 168.862i −1.18085 + 1.18085i
\(144\) 0 0
\(145\) 84.2169 + 85.5825i 0.580806 + 0.590224i
\(146\) −23.7546 −0.162703
\(147\) 0 0
\(148\) −111.809 + 111.809i −0.755468 + 0.755468i
\(149\) 94.2182i 0.632337i −0.948703 0.316168i \(-0.897604\pi\)
0.948703 0.316168i \(-0.102396\pi\)
\(150\) 0 0
\(151\) −28.0950 −0.186060 −0.0930299 0.995663i \(-0.529655\pi\)
−0.0930299 + 0.995663i \(0.529655\pi\)
\(152\) −42.6722 42.6722i −0.280738 0.280738i
\(153\) 0 0
\(154\) 16.2793i 0.105710i
\(155\) 154.124 151.665i 0.994350 0.978484i
\(156\) 0 0
\(157\) 27.2828 + 27.2828i 0.173776 + 0.173776i 0.788636 0.614860i \(-0.210788\pi\)
−0.614860 + 0.788636i \(0.710788\pi\)
\(158\) −32.5060 + 32.5060i −0.205734 + 0.205734i
\(159\) 0 0
\(160\) 147.574 + 1.18683i 0.922340 + 0.00741768i
\(161\) 2.59221 0.0161007
\(162\) 0 0
\(163\) 140.797 140.797i 0.863787 0.863787i −0.127989 0.991776i \(-0.540852\pi\)
0.991776 + 0.127989i \(0.0408522\pi\)
\(164\) 141.141i 0.860613i
\(165\) 0 0
\(166\) 38.8260 0.233892
\(167\) −200.050 200.050i −1.19790 1.19790i −0.974794 0.223108i \(-0.928380\pi\)
−0.223108 0.974794i \(-0.571620\pi\)
\(168\) 0 0
\(169\) 251.483i 1.48807i
\(170\) 37.3545 + 37.9602i 0.219732 + 0.223295i
\(171\) 0 0
\(172\) −20.1542 20.1542i −0.117176 0.117176i
\(173\) −219.189 + 219.189i −1.26699 + 1.26699i −0.319355 + 0.947635i \(0.603466\pi\)
−0.947635 + 0.319355i \(0.896534\pi\)
\(174\) 0 0
\(175\) 33.4172 32.3591i 0.190955 0.184909i
\(176\) 111.169 0.631640
\(177\) 0 0
\(178\) 60.5140 60.5140i 0.339966 0.339966i
\(179\) 151.884i 0.848512i −0.905542 0.424256i \(-0.860536\pi\)
0.905542 0.424256i \(-0.139464\pi\)
\(180\) 0 0
\(181\) 48.0978 0.265734 0.132867 0.991134i \(-0.457582\pi\)
0.132867 + 0.991134i \(0.457582\pi\)
\(182\) 20.2686 + 20.2686i 0.111366 + 0.111366i
\(183\) 0 0
\(184\) 7.78233i 0.0422953i
\(185\) 230.116 + 1.85065i 1.24387 + 0.0100035i
\(186\) 0 0
\(187\) 116.754 + 116.754i 0.624354 + 0.624354i
\(188\) −43.4036 + 43.4036i −0.230870 + 0.230870i
\(189\) 0 0
\(190\) −0.326345 + 40.5789i −0.00171761 + 0.213573i
\(191\) 363.397 1.90260 0.951300 0.308267i \(-0.0997489\pi\)
0.951300 + 0.308267i \(0.0997489\pi\)
\(192\) 0 0
\(193\) −8.46304 + 8.46304i −0.0438499 + 0.0438499i −0.728692 0.684842i \(-0.759871\pi\)
0.684842 + 0.728692i \(0.259871\pi\)
\(194\) 22.9977i 0.118545i
\(195\) 0 0
\(196\) −156.450 −0.798214
\(197\) 45.3414 + 45.3414i 0.230159 + 0.230159i 0.812759 0.582600i \(-0.197964\pi\)
−0.582600 + 0.812759i \(0.697964\pi\)
\(198\) 0 0
\(199\) 17.0082i 0.0854685i −0.999086 0.0427343i \(-0.986393\pi\)
0.999086 0.0427343i \(-0.0136069\pi\)
\(200\) −97.1484 100.325i −0.485742 0.501624i
\(201\) 0 0
\(202\) −31.7588 31.7588i −0.157222 0.157222i
\(203\) 31.5952 31.5952i 0.155641 0.155641i
\(204\) 0 0
\(205\) −146.409 + 144.073i −0.714192 + 0.702796i
\(206\) 38.0281 0.184602
\(207\) 0 0
\(208\) −138.411 + 138.411i −0.665436 + 0.665436i
\(209\) 125.812i 0.601972i
\(210\) 0 0
\(211\) 297.773 1.41125 0.705624 0.708586i \(-0.250667\pi\)
0.705624 + 0.708586i \(0.250667\pi\)
\(212\) 176.343 + 176.343i 0.831806 + 0.831806i
\(213\) 0 0
\(214\) 15.7624i 0.0736559i
\(215\) −0.333589 + 41.4795i −0.00155157 + 0.192928i
\(216\) 0 0
\(217\) −56.8993 56.8993i −0.262209 0.262209i
\(218\) −61.2448 + 61.2448i −0.280940 + 0.280940i
\(219\) 0 0
\(220\) −140.317 142.592i −0.637802 0.648144i
\(221\) −290.730 −1.31552
\(222\) 0 0
\(223\) −22.6038 + 22.6038i −0.101362 + 0.101362i −0.755969 0.654607i \(-0.772834\pi\)
0.654607 + 0.755969i \(0.272834\pi\)
\(224\) 54.9194i 0.245176i
\(225\) 0 0
\(226\) −78.7197 −0.348317
\(227\) −276.597 276.597i −1.21849 1.21849i −0.968162 0.250326i \(-0.919462\pi\)
−0.250326 0.968162i \(-0.580538\pi\)
\(228\) 0 0
\(229\) 250.833i 1.09534i −0.836694 0.547671i \(-0.815515\pi\)
0.836694 0.547671i \(-0.184485\pi\)
\(230\) −3.73004 + 3.67052i −0.0162176 + 0.0159588i
\(231\) 0 0
\(232\) −94.8548 94.8548i −0.408857 0.408857i
\(233\) 239.086 239.086i 1.02612 1.02612i 0.0264709 0.999650i \(-0.491573\pi\)
0.999650 0.0264709i \(-0.00842693\pi\)
\(234\) 0 0
\(235\) 89.3294 + 0.718409i 0.380125 + 0.00305706i
\(236\) 96.5783 0.409230
\(237\) 0 0
\(238\) 14.0141 14.0141i 0.0588826 0.0588826i
\(239\) 39.0847i 0.163534i 0.996651 + 0.0817672i \(0.0260564\pi\)
−0.996651 + 0.0817672i \(0.973944\pi\)
\(240\) 0 0
\(241\) 83.7050 0.347324 0.173662 0.984805i \(-0.444440\pi\)
0.173662 + 0.984805i \(0.444440\pi\)
\(242\) 7.76989 + 7.76989i 0.0321070 + 0.0321070i
\(243\) 0 0
\(244\) 282.408i 1.15741i
\(245\) 159.701 + 162.290i 0.651840 + 0.662409i
\(246\) 0 0
\(247\) −156.643 156.643i −0.634181 0.634181i
\(248\) −170.823 + 170.823i −0.688801 + 0.688801i
\(249\) 0 0
\(250\) −2.26543 + 93.8808i −0.00906172 + 0.375523i
\(251\) −116.674 −0.464837 −0.232418 0.972616i \(-0.574664\pi\)
−0.232418 + 0.972616i \(0.574664\pi\)
\(252\) 0 0
\(253\) −11.4725 + 11.4725i −0.0453458 + 0.0453458i
\(254\) 59.5854i 0.234588i
\(255\) 0 0
\(256\) −33.6971 −0.131629
\(257\) −3.38346 3.38346i −0.0131652 0.0131652i 0.700494 0.713659i \(-0.252963\pi\)
−0.713659 + 0.700494i \(0.752963\pi\)
\(258\) 0 0
\(259\) 85.6368i 0.330644i
\(260\) 352.235 + 2.83276i 1.35475 + 0.0108952i
\(261\) 0 0
\(262\) 2.46203 + 2.46203i 0.00939706 + 0.00939706i
\(263\) −69.1605 + 69.1605i −0.262968 + 0.262968i −0.826259 0.563291i \(-0.809535\pi\)
0.563291 + 0.826259i \(0.309535\pi\)
\(264\) 0 0
\(265\) 2.91880 362.933i 0.0110143 1.36956i
\(266\) 15.1013 0.0567718
\(267\) 0 0
\(268\) 81.2620 81.2620i 0.303216 0.303216i
\(269\) 212.871i 0.791340i −0.918393 0.395670i \(-0.870512\pi\)
0.918393 0.395670i \(-0.129488\pi\)
\(270\) 0 0
\(271\) −180.243 −0.665102 −0.332551 0.943085i \(-0.607909\pi\)
−0.332551 + 0.943085i \(0.607909\pi\)
\(272\) 95.6997 + 95.6997i 0.351837 + 0.351837i
\(273\) 0 0
\(274\) 1.78693i 0.00652165i
\(275\) −4.68265 + 291.109i −0.0170278 + 1.05858i
\(276\) 0 0
\(277\) −231.418 231.418i −0.835444 0.835444i 0.152812 0.988255i \(-0.451167\pi\)
−0.988255 + 0.152812i \(0.951167\pi\)
\(278\) −136.130 + 136.130i −0.489676 + 0.489676i
\(279\) 0 0
\(280\) −37.0424 + 36.4514i −0.132294 + 0.130184i
\(281\) 31.2711 0.111285 0.0556426 0.998451i \(-0.482279\pi\)
0.0556426 + 0.998451i \(0.482279\pi\)
\(282\) 0 0
\(283\) −143.355 + 143.355i −0.506554 + 0.506554i −0.913467 0.406913i \(-0.866605\pi\)
0.406913 + 0.913467i \(0.366605\pi\)
\(284\) 342.501i 1.20599i
\(285\) 0 0
\(286\) −179.407 −0.627298
\(287\) 54.0511 + 54.0511i 0.188331 + 0.188331i
\(288\) 0 0
\(289\) 87.9840i 0.304443i
\(290\) −0.725424 + 90.2016i −0.00250146 + 0.311040i
\(291\) 0 0
\(292\) 76.8142 + 76.8142i 0.263062 + 0.263062i
\(293\) 27.5761 27.5761i 0.0941163 0.0941163i −0.658481 0.752597i \(-0.728801\pi\)
0.752597 + 0.658481i \(0.228801\pi\)
\(294\) 0 0
\(295\) −98.5850 100.184i −0.334187 0.339605i
\(296\) −257.098 −0.868576
\(297\) 0 0
\(298\) 50.0510 50.0510i 0.167957 0.167957i
\(299\) 28.5676i 0.0955439i
\(300\) 0 0
\(301\) 15.4365 0.0512840
\(302\) −14.9248 14.9248i −0.0494198 0.0494198i
\(303\) 0 0
\(304\) 103.124i 0.339224i
\(305\) −292.950 + 288.276i −0.960492 + 0.945166i
\(306\) 0 0
\(307\) −28.4359 28.4359i −0.0926251 0.0926251i 0.659276 0.751901i \(-0.270863\pi\)
−0.751901 + 0.659276i \(0.770863\pi\)
\(308\) −52.6417 + 52.6417i −0.170915 + 0.170915i
\(309\) 0 0
\(310\) 162.443 + 1.30640i 0.524009 + 0.00421421i
\(311\) 431.905 1.38876 0.694381 0.719607i \(-0.255678\pi\)
0.694381 + 0.719607i \(0.255678\pi\)
\(312\) 0 0
\(313\) 146.693 146.693i 0.468667 0.468667i −0.432816 0.901482i \(-0.642480\pi\)
0.901482 + 0.432816i \(0.142480\pi\)
\(314\) 28.9866i 0.0923141i
\(315\) 0 0
\(316\) 210.226 0.665274
\(317\) −251.092 251.092i −0.792088 0.792088i 0.189745 0.981833i \(-0.439234\pi\)
−0.981833 + 0.189745i \(0.939234\pi\)
\(318\) 0 0
\(319\) 279.664i 0.876691i
\(320\) −56.1426 57.0530i −0.175446 0.178290i
\(321\) 0 0
\(322\) 1.37705 + 1.37705i 0.00427654 + 0.00427654i
\(323\) −108.306 + 108.306i −0.335311 + 0.335311i
\(324\) 0 0
\(325\) −356.616 368.276i −1.09728 1.13316i
\(326\) 149.590 0.458865
\(327\) 0 0
\(328\) 162.272 162.272i 0.494732 0.494732i
\(329\) 33.2437i 0.101045i
\(330\) 0 0
\(331\) 374.902 1.13264 0.566318 0.824187i \(-0.308368\pi\)
0.566318 + 0.824187i \(0.308368\pi\)
\(332\) −125.550 125.550i −0.378163 0.378163i
\(333\) 0 0
\(334\) 212.543i 0.636355i
\(335\) −167.246 1.34503i −0.499242 0.00401503i
\(336\) 0 0
\(337\) −105.111 105.111i −0.311901 0.311901i 0.533745 0.845646i \(-0.320784\pi\)
−0.845646 + 0.533745i \(0.820784\pi\)
\(338\) 133.594 133.594i 0.395249 0.395249i
\(339\) 0 0
\(340\) 1.95862 243.542i 0.00576066 0.716300i
\(341\) 503.643 1.47696
\(342\) 0 0
\(343\) 124.383 124.383i 0.362633 0.362633i
\(344\) 46.3433i 0.134719i
\(345\) 0 0
\(346\) −232.878 −0.673057
\(347\) −170.757 170.757i −0.492095 0.492095i 0.416871 0.908966i \(-0.363127\pi\)
−0.908966 + 0.416871i \(0.863127\pi\)
\(348\) 0 0
\(349\) 382.426i 1.09578i −0.836551 0.547889i \(-0.815432\pi\)
0.836551 0.547889i \(-0.184568\pi\)
\(350\) 34.9420 + 0.562061i 0.0998343 + 0.00160589i
\(351\) 0 0
\(352\) 243.059 + 243.059i 0.690509 + 0.690509i
\(353\) 368.231 368.231i 1.04315 1.04315i 0.0441221 0.999026i \(-0.485951\pi\)
0.999026 0.0441221i \(-0.0140491\pi\)
\(354\) 0 0
\(355\) −355.287 + 349.618i −1.00081 + 0.984838i
\(356\) −391.363 −1.09934
\(357\) 0 0
\(358\) 80.6843 80.6843i 0.225375 0.225375i
\(359\) 326.956i 0.910741i 0.890302 + 0.455370i \(0.150493\pi\)
−0.890302 + 0.455370i \(0.849507\pi\)
\(360\) 0 0
\(361\) 244.292 0.676709
\(362\) 25.5507 + 25.5507i 0.0705822 + 0.0705822i
\(363\) 0 0
\(364\) 131.083i 0.360119i
\(365\) 1.27141 158.092i 0.00348333 0.433129i
\(366\) 0 0
\(367\) 369.714 + 369.714i 1.00740 + 1.00740i 0.999972 + 0.00742355i \(0.00236301\pi\)
0.00742355 + 0.999972i \(0.497637\pi\)
\(368\) −9.40362 + 9.40362i −0.0255533 + 0.0255533i
\(369\) 0 0
\(370\) 121.260 + 123.226i 0.327730 + 0.333044i
\(371\) −135.064 −0.364055
\(372\) 0 0
\(373\) 17.1762 17.1762i 0.0460488 0.0460488i −0.683707 0.729756i \(-0.739634\pi\)
0.729756 + 0.683707i \(0.239634\pi\)
\(374\) 124.045i 0.331672i
\(375\) 0 0
\(376\) −99.8040 −0.265436
\(377\) −348.197 348.197i −0.923598 0.923598i
\(378\) 0 0
\(379\) 364.939i 0.962900i 0.876474 + 0.481450i \(0.159890\pi\)
−0.876474 + 0.481450i \(0.840110\pi\)
\(380\) 132.274 130.163i 0.348088 0.342534i
\(381\) 0 0
\(382\) 193.045 + 193.045i 0.505354 + 0.505354i
\(383\) −2.37711 + 2.37711i −0.00620656 + 0.00620656i −0.710203 0.703997i \(-0.751397\pi\)
0.703997 + 0.710203i \(0.251397\pi\)
\(384\) 0 0
\(385\) 108.342 + 0.871316i 0.281409 + 0.00226316i
\(386\) −8.99155 −0.0232942
\(387\) 0 0
\(388\) 74.3668 74.3668i 0.191667 0.191667i
\(389\) 152.199i 0.391257i −0.980678 0.195628i \(-0.937325\pi\)
0.980678 0.195628i \(-0.0626747\pi\)
\(390\) 0 0
\(391\) −19.7522 −0.0505171
\(392\) −179.874 179.874i −0.458861 0.458861i
\(393\) 0 0
\(394\) 48.1730i 0.122266i
\(395\) −214.595 218.074i −0.543278 0.552087i
\(396\) 0 0
\(397\) −275.868 275.868i −0.694882 0.694882i 0.268420 0.963302i \(-0.413498\pi\)
−0.963302 + 0.268420i \(0.913498\pi\)
\(398\) 9.03520 9.03520i 0.0227015 0.0227015i
\(399\) 0 0
\(400\) −3.83822 + 238.613i −0.00959554 + 0.596532i
\(401\) 674.978 1.68324 0.841618 0.540073i \(-0.181603\pi\)
0.841618 + 0.540073i \(0.181603\pi\)
\(402\) 0 0
\(403\) −627.062 + 627.062i −1.55598 + 1.55598i
\(404\) 205.394i 0.508401i
\(405\) 0 0
\(406\) 33.5683 0.0826805
\(407\) 379.007 + 379.007i 0.931221 + 0.931221i
\(408\) 0 0
\(409\) 433.258i 1.05931i −0.848213 0.529655i \(-0.822321\pi\)
0.848213 0.529655i \(-0.177679\pi\)
\(410\) −154.312 1.24101i −0.376370 0.00302686i
\(411\) 0 0
\(412\) −122.970 122.970i −0.298470 0.298470i
\(413\) −36.9856 + 36.9856i −0.0895534 + 0.0895534i
\(414\) 0 0
\(415\) −2.07808 + 258.396i −0.00500743 + 0.622641i
\(416\) −605.242 −1.45491
\(417\) 0 0
\(418\) −66.8346 + 66.8346i −0.159891 + 0.159891i
\(419\) 499.834i 1.19292i 0.802642 + 0.596461i \(0.203427\pi\)
−0.802642 + 0.596461i \(0.796573\pi\)
\(420\) 0 0
\(421\) −30.0850 −0.0714608 −0.0357304 0.999361i \(-0.511376\pi\)
−0.0357304 + 0.999361i \(0.511376\pi\)
\(422\) 158.185 + 158.185i 0.374845 + 0.374845i
\(423\) 0 0
\(424\) 405.490i 0.956344i
\(425\) −254.633 + 246.571i −0.599136 + 0.580166i
\(426\) 0 0
\(427\) 108.151 + 108.151i 0.253280 + 0.253280i
\(428\) −50.9701 + 50.9701i −0.119089 + 0.119089i
\(429\) 0 0
\(430\) −22.2122 + 21.8577i −0.0516562 + 0.0508320i
\(431\) 515.749 1.19663 0.598316 0.801260i \(-0.295837\pi\)
0.598316 + 0.801260i \(0.295837\pi\)
\(432\) 0 0
\(433\) −305.797 + 305.797i −0.706229 + 0.706229i −0.965740 0.259511i \(-0.916439\pi\)
0.259511 + 0.965740i \(0.416439\pi\)
\(434\) 60.4526i 0.139292i
\(435\) 0 0
\(436\) 396.090 0.908463
\(437\) −10.6423 10.6423i −0.0243531 0.0243531i
\(438\) 0 0
\(439\) 505.286i 1.15099i 0.817804 + 0.575497i \(0.195191\pi\)
−0.817804 + 0.575497i \(0.804809\pi\)
\(440\) 2.61586 325.265i 0.00594514 0.739239i
\(441\) 0 0
\(442\) −154.443 154.443i −0.349418 0.349418i
\(443\) −142.907 + 142.907i −0.322589 + 0.322589i −0.849760 0.527170i \(-0.823253\pi\)
0.527170 + 0.849760i \(0.323253\pi\)
\(444\) 0 0
\(445\) 399.495 + 405.973i 0.897742 + 0.912299i
\(446\) −24.0154 −0.0538462
\(447\) 0 0
\(448\) −21.0627 + 21.0627i −0.0470149 + 0.0470149i
\(449\) 145.089i 0.323138i −0.986861 0.161569i \(-0.948345\pi\)
0.986861 0.161569i \(-0.0516554\pi\)
\(450\) 0 0
\(451\) −478.433 −1.06083
\(452\) 254.553 + 254.553i 0.563170 + 0.563170i
\(453\) 0 0
\(454\) 293.870i 0.647291i
\(455\) −135.977 + 133.807i −0.298850 + 0.294081i
\(456\) 0 0
\(457\) 209.752 + 209.752i 0.458976 + 0.458976i 0.898319 0.439343i \(-0.144789\pi\)
−0.439343 + 0.898319i \(0.644789\pi\)
\(458\) 133.249 133.249i 0.290936 0.290936i
\(459\) 0 0
\(460\) 23.9309 + 0.192458i 0.0520236 + 0.000418387i
\(461\) −286.088 −0.620581 −0.310291 0.950642i \(-0.600426\pi\)
−0.310291 + 0.950642i \(0.600426\pi\)
\(462\) 0 0
\(463\) 176.942 176.942i 0.382164 0.382164i −0.489717 0.871881i \(-0.662900\pi\)
0.871881 + 0.489717i \(0.162900\pi\)
\(464\) 229.232i 0.494034i
\(465\) 0 0
\(466\) 254.017 0.545101
\(467\) −71.3291 71.3291i −0.152739 0.152739i 0.626601 0.779340i \(-0.284446\pi\)
−0.779340 + 0.626601i \(0.784446\pi\)
\(468\) 0 0
\(469\) 62.2401i 0.132708i
\(470\) 47.0724 + 47.8356i 0.100154 + 0.101778i
\(471\) 0 0
\(472\) 111.038 + 111.038i 0.235250 + 0.235250i
\(473\) −68.3180 + 68.3180i −0.144435 + 0.144435i
\(474\) 0 0
\(475\) −270.044 4.34380i −0.568514 0.00914484i
\(476\) −90.6334 −0.190406
\(477\) 0 0
\(478\) −20.7628 + 20.7628i −0.0434367 + 0.0434367i
\(479\) 196.071i 0.409335i 0.978832 + 0.204667i \(0.0656113\pi\)
−0.978832 + 0.204667i \(0.934389\pi\)
\(480\) 0 0
\(481\) −943.766 −1.96209
\(482\) 44.4662 + 44.4662i 0.0922535 + 0.0922535i
\(483\) 0 0
\(484\) 50.2504i 0.103823i
\(485\) −153.055 1.23091i −0.315577 0.00253795i
\(486\) 0 0
\(487\) 660.124 + 660.124i 1.35549 + 1.35549i 0.879391 + 0.476100i \(0.157950\pi\)
0.476100 + 0.879391i \(0.342050\pi\)
\(488\) 324.690 324.690i 0.665347 0.665347i
\(489\) 0 0
\(490\) −1.37562 + 171.050i −0.00280739 + 0.349081i
\(491\) −787.998 −1.60488 −0.802442 0.596730i \(-0.796466\pi\)
−0.802442 + 0.596730i \(0.796466\pi\)
\(492\) 0 0
\(493\) −240.750 + 240.750i −0.488336 + 0.488336i
\(494\) 166.425i 0.336892i
\(495\) 0 0
\(496\) 412.820 0.832299
\(497\) 131.164 + 131.164i 0.263911 + 0.263911i
\(498\) 0 0
\(499\) 167.150i 0.334970i 0.985875 + 0.167485i \(0.0535646\pi\)
−0.985875 + 0.167485i \(0.946435\pi\)
\(500\) 310.904 296.253i 0.621809 0.592506i
\(501\) 0 0
\(502\) −61.9801 61.9801i −0.123466 0.123466i
\(503\) 249.990 249.990i 0.496998 0.496998i −0.413504 0.910502i \(-0.635695\pi\)
0.910502 + 0.413504i \(0.135695\pi\)
\(504\) 0 0
\(505\) 213.061 209.662i 0.421904 0.415172i
\(506\) −12.1889 −0.0240888
\(507\) 0 0
\(508\) 192.679 192.679i 0.379289 0.379289i
\(509\) 110.464i 0.217021i 0.994095 + 0.108511i \(0.0346082\pi\)
−0.994095 + 0.108511i \(0.965392\pi\)
\(510\) 0 0
\(511\) −58.8335 −0.115134
\(512\) 350.050 + 350.050i 0.683691 + 0.683691i
\(513\) 0 0
\(514\) 3.59475i 0.00699368i
\(515\) −2.03537 + 253.085i −0.00395218 + 0.491428i
\(516\) 0 0
\(517\) 147.128 + 147.128i 0.284580 + 0.284580i
\(518\) 45.4924 45.4924i 0.0878232 0.0878232i
\(519\) 0 0
\(520\) 401.715 + 408.229i 0.772529 + 0.785055i
\(521\) −415.088 −0.796715 −0.398357 0.917230i \(-0.630420\pi\)
−0.398357 + 0.917230i \(0.630420\pi\)
\(522\) 0 0
\(523\) −384.585 + 384.585i −0.735344 + 0.735344i −0.971673 0.236329i \(-0.924056\pi\)
0.236329 + 0.971673i \(0.424056\pi\)
\(524\) 15.9227i 0.0303869i
\(525\) 0 0
\(526\) −73.4796 −0.139695
\(527\) 433.562 + 433.562i 0.822699 + 0.822699i
\(528\) 0 0
\(529\) 527.059i 0.996331i
\(530\) 194.350 191.248i 0.366697 0.360846i
\(531\) 0 0
\(532\) −48.8325 48.8325i −0.0917904 0.0917904i
\(533\) 595.674 595.674i 1.11759 1.11759i
\(534\) 0 0
\(535\) 104.902 + 0.843648i 0.196079 + 0.00157691i
\(536\) 186.857 0.348614
\(537\) 0 0
\(538\) 113.082 113.082i 0.210190 0.210190i
\(539\) 530.329i 0.983912i
\(540\) 0 0
\(541\) 251.489 0.464859 0.232430 0.972613i \(-0.425332\pi\)
0.232430 + 0.972613i \(0.425332\pi\)
\(542\) −95.7493 95.7493i −0.176659 0.176659i
\(543\) 0 0
\(544\) 418.476i 0.769257i
\(545\) −404.320 410.876i −0.741871 0.753901i
\(546\) 0 0
\(547\) −394.926 394.926i −0.721986 0.721986i 0.247024 0.969009i \(-0.420548\pi\)
−0.969009 + 0.247024i \(0.920548\pi\)
\(548\) −5.77833 + 5.77833i −0.0105444 + 0.0105444i
\(549\) 0 0
\(550\) −157.132 + 152.157i −0.285694 + 0.276649i
\(551\) −259.427 −0.470830
\(552\) 0 0
\(553\) −80.5082 + 80.5082i −0.145585 + 0.145585i
\(554\) 245.870i 0.443808i
\(555\) 0 0
\(556\) 880.395 1.58344
\(557\) 302.419 + 302.419i 0.542943 + 0.542943i 0.924391 0.381447i \(-0.124574\pi\)
−0.381447 + 0.924391i \(0.624574\pi\)
\(558\) 0 0
\(559\) 170.119i 0.304327i
\(560\) 88.8048 + 0.714190i 0.158580 + 0.00127534i
\(561\) 0 0
\(562\) 16.6120 + 16.6120i 0.0295587 + 0.0295587i
\(563\) 639.903 639.903i 1.13659 1.13659i 0.147538 0.989056i \(-0.452865\pi\)
0.989056 0.147538i \(-0.0471349\pi\)
\(564\) 0 0
\(565\) 4.21331 523.897i 0.00745719 0.927252i
\(566\) −152.307 −0.269094
\(567\) 0 0
\(568\) 393.780 393.780i 0.693274 0.693274i
\(569\) 224.106i 0.393859i −0.980418 0.196929i \(-0.936903\pi\)
0.980418 0.196929i \(-0.0630970\pi\)
\(570\) 0 0
\(571\) 56.6121 0.0991456 0.0495728 0.998771i \(-0.484214\pi\)
0.0495728 + 0.998771i \(0.484214\pi\)
\(572\) 580.142 + 580.142i 1.01423 + 1.01423i
\(573\) 0 0
\(574\) 57.4266i 0.100046i
\(575\) −24.2285 25.0207i −0.0421365 0.0435142i
\(576\) 0 0
\(577\) −450.543 450.543i −0.780838 0.780838i 0.199135 0.979972i \(-0.436187\pi\)
−0.979972 + 0.199135i \(0.936187\pi\)
\(578\) 46.7393 46.7393i 0.0808638 0.0808638i
\(579\) 0 0
\(580\) 294.027 289.336i 0.506943 0.498854i
\(581\) 96.1613 0.165510
\(582\) 0 0
\(583\) 597.761 597.761i 1.02532 1.02532i
\(584\) 176.630i 0.302448i
\(585\) 0 0
\(586\) 29.2982 0.0499969
\(587\) −245.508 245.508i −0.418242 0.418242i 0.466355 0.884598i \(-0.345567\pi\)
−0.884598 + 0.466355i \(0.845567\pi\)
\(588\) 0 0
\(589\) 467.199i 0.793207i
\(590\) 0.849187 105.591i 0.00143930 0.178967i
\(591\) 0 0
\(592\) 310.660 + 310.660i 0.524763 + 0.524763i
\(593\) −235.628 + 235.628i −0.397350 + 0.397350i −0.877297 0.479948i \(-0.840656\pi\)
0.479948 + 0.877297i \(0.340656\pi\)
\(594\) 0 0
\(595\) 92.5167 + 94.0168i 0.155490 + 0.158011i
\(596\) −323.696 −0.543114
\(597\) 0 0
\(598\) 15.1758 15.1758i 0.0253777 0.0253777i
\(599\) 593.319i 0.990515i −0.868746 0.495258i \(-0.835074\pi\)
0.868746 0.495258i \(-0.164926\pi\)
\(600\) 0 0
\(601\) −538.499 −0.896004 −0.448002 0.894032i \(-0.647864\pi\)
−0.448002 + 0.894032i \(0.647864\pi\)
\(602\) 8.20024 + 8.20024i 0.0136217 + 0.0136217i
\(603\) 0 0
\(604\) 96.5233i 0.159807i
\(605\) −52.1262 + 51.2945i −0.0861591 + 0.0847843i
\(606\) 0 0
\(607\) 289.365 + 289.365i 0.476714 + 0.476714i 0.904079 0.427365i \(-0.140558\pi\)
−0.427365 + 0.904079i \(0.640558\pi\)
\(608\) −225.471 + 225.471i −0.370840 + 0.370840i
\(609\) 0 0
\(610\) −308.762 2.48314i −0.506166 0.00407072i
\(611\) −366.364 −0.599614
\(612\) 0 0
\(613\) −10.5026 + 10.5026i −0.0171331 + 0.0171331i −0.715621 0.698488i \(-0.753856\pi\)
0.698488 + 0.715621i \(0.253856\pi\)
\(614\) 30.2117i 0.0492048i
\(615\) 0 0
\(616\) −121.046 −0.196504
\(617\) −308.853 308.853i −0.500571 0.500571i 0.411044 0.911615i \(-0.365164\pi\)
−0.911615 + 0.411044i \(0.865164\pi\)
\(618\) 0 0
\(619\) 10.2905i 0.0166244i 0.999965 + 0.00831222i \(0.00264589\pi\)
−0.999965 + 0.00831222i \(0.997354\pi\)
\(620\) −521.060 529.509i −0.840420 0.854047i
\(621\) 0 0
\(622\) 229.439 + 229.439i 0.368873 + 0.368873i
\(623\) 149.876 149.876i 0.240572 0.240572i
\(624\) 0 0
\(625\) −624.677 20.1017i −0.999483 0.0321627i
\(626\) 155.854 0.248967
\(627\) 0 0
\(628\) 93.7329 93.7329i 0.149256 0.149256i
\(629\) 652.537i 1.03742i
\(630\) 0 0
\(631\) 154.559 0.244943 0.122472 0.992472i \(-0.460918\pi\)
0.122472 + 0.992472i \(0.460918\pi\)
\(632\) 241.701 + 241.701i 0.382439 + 0.382439i
\(633\) 0 0
\(634\) 266.773i 0.420777i
\(635\) −396.554 3.18919i −0.624495 0.00502234i
\(636\) 0 0
\(637\) −660.286 660.286i −1.03656 1.03656i
\(638\) −148.565 + 148.565i −0.232860 + 0.232860i
\(639\) 0 0
\(640\) 5.23092 650.430i 0.00817331 1.01630i
\(641\) 605.632 0.944824 0.472412 0.881378i \(-0.343383\pi\)
0.472412 + 0.881378i \(0.343383\pi\)
\(642\) 0 0
\(643\) −329.925 + 329.925i −0.513103 + 0.513103i −0.915476 0.402373i \(-0.868186\pi\)
0.402373 + 0.915476i \(0.368186\pi\)
\(644\) 8.90581i 0.0138289i
\(645\) 0 0
\(646\) −115.069 −0.178126
\(647\) −117.084 117.084i −0.180965 0.180965i 0.610811 0.791776i \(-0.290843\pi\)
−0.791776 + 0.610811i \(0.790843\pi\)
\(648\) 0 0
\(649\) 327.378i 0.504434i
\(650\) 6.19422 385.080i 0.00952958 0.592432i
\(651\) 0 0
\(652\) −483.723 483.723i −0.741906 0.741906i
\(653\) −236.188 + 236.188i −0.361696 + 0.361696i −0.864437 0.502741i \(-0.832325\pi\)
0.502741 + 0.864437i \(0.332325\pi\)
\(654\) 0 0
\(655\) −16.5171 + 16.2536i −0.0252170 + 0.0248146i
\(656\) −392.156 −0.597799
\(657\) 0 0
\(658\) 17.6599 17.6599i 0.0268387 0.0268387i
\(659\) 1226.61i 1.86131i 0.365892 + 0.930657i \(0.380764\pi\)
−0.365892 + 0.930657i \(0.619236\pi\)
\(660\) 0 0
\(661\) −159.755 −0.241687 −0.120844 0.992672i \(-0.538560\pi\)
−0.120844 + 0.992672i \(0.538560\pi\)
\(662\) 199.157 + 199.157i 0.300842 + 0.300842i
\(663\) 0 0
\(664\) 288.695i 0.434782i
\(665\) −0.808266 + 100.503i −0.00121544 + 0.151132i
\(666\) 0 0
\(667\) −23.6565 23.6565i −0.0354670 0.0354670i
\(668\) −687.290 + 687.290i −1.02888 + 1.02888i
\(669\) 0 0
\(670\) −88.1307 89.5598i −0.131538 0.133671i
\(671\) −957.295 −1.42667
\(672\) 0 0
\(673\) 33.6536 33.6536i 0.0500054 0.0500054i −0.681662 0.731667i \(-0.738742\pi\)
0.731667 + 0.681662i \(0.238742\pi\)
\(674\) 111.675i 0.165690i
\(675\) 0 0
\(676\) −863.996 −1.27810
\(677\) 103.682 + 103.682i 0.153150 + 0.153150i 0.779523 0.626373i \(-0.215461\pi\)
−0.626373 + 0.779523i \(0.715461\pi\)
\(678\) 0 0
\(679\) 56.9590i 0.0838865i
\(680\) 282.257 277.753i 0.415084 0.408460i
\(681\) 0 0
\(682\) 267.548 + 267.548i 0.392299 + 0.392299i
\(683\) 882.608 882.608i 1.29225 1.29225i 0.358860 0.933391i \(-0.383165\pi\)
0.933391 0.358860i \(-0.116835\pi\)
\(684\) 0 0
\(685\) 11.8924 + 0.0956418i 0.0173612 + 0.000139623i
\(686\) 132.151 0.192640
\(687\) 0 0
\(688\) −55.9981 + 55.9981i −0.0813925 + 0.0813925i
\(689\) 1488.49i 2.16036i
\(690\) 0 0
\(691\) −507.664 −0.734681 −0.367340 0.930087i \(-0.619732\pi\)
−0.367340 + 0.930087i \(0.619732\pi\)
\(692\) 753.047 + 753.047i 1.08822 + 1.08822i
\(693\) 0 0
\(694\) 181.421i 0.261413i
\(695\) −898.688 913.260i −1.29308 1.31404i
\(696\) 0 0
\(697\) −411.860 411.860i −0.590904 0.590904i
\(698\) 203.154 203.154i 0.291052 0.291052i
\(699\) 0 0
\(700\) −111.173 114.808i −0.158819 0.164011i
\(701\) 194.042 0.276807 0.138403 0.990376i \(-0.455803\pi\)
0.138403 + 0.990376i \(0.455803\pi\)
\(702\) 0 0
\(703\) −351.581 + 351.581i −0.500115 + 0.500115i
\(704\) 186.436i 0.264824i
\(705\) 0 0
\(706\) 391.227 0.554146
\(707\) −78.6576 78.6576i −0.111255 0.111255i
\(708\) 0 0
\(709\) 478.623i 0.675067i −0.941313 0.337534i \(-0.890407\pi\)
0.941313 0.337534i \(-0.109593\pi\)
\(710\) −374.463 3.01152i −0.527412 0.00424158i
\(711\) 0 0
\(712\) −449.958 449.958i −0.631963 0.631963i
\(713\) −42.6026 + 42.6026i −0.0597512 + 0.0597512i
\(714\) 0 0
\(715\) 9.60240 1193.99i 0.0134299 1.66992i
\(716\) −521.811 −0.728787
\(717\) 0 0
\(718\) −173.687 + 173.687i −0.241904 + 0.241904i
\(719\) 443.536i 0.616879i −0.951244 0.308439i \(-0.900193\pi\)
0.951244 0.308439i \(-0.0998067\pi\)
\(720\) 0 0
\(721\) 94.1849 0.130631
\(722\) 129.774 + 129.774i 0.179742 + 0.179742i
\(723\) 0 0
\(724\) 165.245i 0.228239i
\(725\) −600.273 9.65571i −0.827963 0.0133182i
\(726\) 0 0
\(727\) 204.982 + 204.982i 0.281955 + 0.281955i 0.833888 0.551933i \(-0.186110\pi\)
−0.551933 + 0.833888i \(0.686110\pi\)
\(728\) 150.709 150.709i 0.207018 0.207018i
\(729\) 0 0
\(730\) 84.6578 83.3070i 0.115970 0.114119i
\(731\) −117.623 −0.160907
\(732\) 0 0
\(733\) 722.853 722.853i 0.986157 0.986157i −0.0137487 0.999905i \(-0.504376\pi\)
0.999905 + 0.0137487i \(0.00437648\pi\)
\(734\) 392.803i 0.535154i
\(735\) 0 0
\(736\) −41.1202 −0.0558698
\(737\) −275.459 275.459i −0.373757 0.373757i
\(738\) 0 0
\(739\) 153.917i 0.208277i 0.994563 + 0.104138i \(0.0332085\pi\)
−0.994563 + 0.104138i \(0.966791\pi\)
\(740\) 6.35808 790.585i 0.00859200 1.06836i
\(741\) 0 0
\(742\) −71.7496 71.7496i −0.0966975 0.0966975i
\(743\) 923.129 923.129i 1.24244 1.24244i 0.283447 0.958988i \(-0.408522\pi\)
0.958988 0.283447i \(-0.0914781\pi\)
\(744\) 0 0
\(745\) 330.422 + 335.780i 0.443519 + 0.450711i
\(746\) 18.2489 0.0244623
\(747\) 0 0
\(748\) 401.121 401.121i 0.536258 0.536258i
\(749\) 39.0390i 0.0521215i
\(750\) 0 0
\(751\) 1457.82 1.94117 0.970583 0.240765i \(-0.0773984\pi\)
0.970583 + 0.240765i \(0.0773984\pi\)
\(752\) 120.596 + 120.596i 0.160367 + 0.160367i
\(753\) 0 0
\(754\) 369.941i 0.490638i
\(755\) 100.127 98.5289i 0.132618 0.130502i
\(756\) 0 0
\(757\) −575.216 575.216i −0.759863 0.759863i 0.216434 0.976297i \(-0.430557\pi\)
−0.976297 + 0.216434i \(0.930557\pi\)
\(758\) −193.865 + 193.865i −0.255758 + 0.255758i
\(759\) 0 0
\(760\) 301.728 + 2.42657i 0.397011 + 0.00319286i
\(761\) 1013.44 1.33173 0.665863 0.746074i \(-0.268063\pi\)
0.665863 + 0.746074i \(0.268063\pi\)
\(762\) 0 0
\(763\) −151.686 + 151.686i −0.198803 + 0.198803i
\(764\) 1248.49i 1.63414i
\(765\) 0 0
\(766\) −2.52556 −0.00329708
\(767\) 407.602 + 407.602i 0.531424 + 0.531424i
\(768\) 0 0
\(769\) 561.278i 0.729880i −0.931031 0.364940i \(-0.881089\pi\)
0.931031 0.364940i \(-0.118911\pi\)
\(770\) 57.0913 + 58.0171i 0.0741446 + 0.0753468i
\(771\) 0 0
\(772\) 29.0756 + 29.0756i 0.0376627 + 0.0376627i
\(773\) 445.834 445.834i 0.576758 0.576758i −0.357251 0.934008i \(-0.616286\pi\)
0.934008 + 0.357251i \(0.116286\pi\)
\(774\) 0 0
\(775\) −17.3888 + 1081.02i −0.0224372 + 1.39487i
\(776\) 171.002 0.220363
\(777\) 0 0
\(778\) 80.8518 80.8518i 0.103923 0.103923i
\(779\) 443.813i 0.569721i
\(780\) 0 0
\(781\) −1161.00 −1.48655
\(782\) −10.4929 10.4929i −0.0134180 0.0134180i
\(783\) 0 0
\(784\) 434.693i 0.554456i
\(785\) −192.913 1.55145i −0.245748 0.00197637i
\(786\) 0 0
\(787\) −990.635 990.635i −1.25875 1.25875i −0.951691 0.307058i \(-0.900655\pi\)
−0.307058 0.951691i \(-0.599345\pi\)
\(788\) 155.775 155.775i 0.197684 0.197684i
\(789\) 0 0
\(790\) 1.84847 229.844i 0.00233983 0.290942i
\(791\) −194.967 −0.246482
\(792\) 0 0
\(793\) 1191.88 1191.88i 1.50300 1.50300i
\(794\) 293.096i 0.369138i
\(795\) 0 0
\(796\) −58.4335 −0.0734089
\(797\) −335.574 335.574i −0.421047 0.421047i 0.464517 0.885564i \(-0.346228\pi\)
−0.885564 + 0.464517i \(0.846228\pi\)
\(798\) 0 0
\(799\) 253.311i 0.317035i
\(800\) −530.095 + 513.312i −0.662619 + 0.641640i
\(801\) 0 0
\(802\) 358.565 + 358.565i 0.447088 + 0.447088i
\(803\) 260.382 260.382i 0.324262 0.324262i
\(804\) 0 0
\(805\) −9.23826 + 9.09085i −0.0114761 + 0.0112930i
\(806\) −666.222 −0.826578
\(807\) 0 0
\(808\) −236.145 + 236.145i −0.292259 + 0.292259i
\(809\) 806.321i 0.996689i 0.866979 + 0.498344i \(0.166059\pi\)
−0.866979 + 0.498344i \(0.833941\pi\)
\(810\) 0 0
\(811\) −928.637 −1.14505 −0.572526 0.819887i \(-0.694036\pi\)
−0.572526 + 0.819887i \(0.694036\pi\)
\(812\) −108.548 108.548i −0.133680 0.133680i
\(813\) 0 0
\(814\) 402.676i 0.494688i
\(815\) −8.00649 + 995.555i −0.00982392 + 1.22154i
\(816\) 0 0
\(817\) −63.3743 63.3743i −0.0775696 0.0775696i
\(818\) 230.158 230.158i 0.281366 0.281366i
\(819\) 0 0
\(820\) 494.978 + 503.004i 0.603632 + 0.613419i
\(821\) 519.179 0.632374 0.316187 0.948697i \(-0.397597\pi\)
0.316187 + 0.948697i \(0.397597\pi\)
\(822\) 0 0
\(823\) −911.752 + 911.752i −1.10784 + 1.10784i −0.114406 + 0.993434i \(0.536496\pi\)
−0.993434 + 0.114406i \(0.963504\pi\)
\(824\) 282.761i 0.343157i
\(825\) 0 0
\(826\) −39.2953 −0.0475730
\(827\) −380.149 380.149i −0.459672 0.459672i 0.438876 0.898548i \(-0.355377\pi\)
−0.898548 + 0.438876i \(0.855377\pi\)
\(828\) 0 0
\(829\) 511.167i 0.616606i −0.951288 0.308303i \(-0.900239\pi\)
0.951288 0.308303i \(-0.0997611\pi\)
\(830\) −138.370 + 136.162i −0.166711 + 0.164051i
\(831\) 0 0
\(832\) 232.123 + 232.123i 0.278994 + 0.278994i
\(833\) −456.534 + 456.534i −0.548060 + 0.548060i
\(834\) 0 0
\(835\) 1414.52 + 11.3759i 1.69403 + 0.0136238i
\(836\) 432.240 0.517034
\(837\) 0 0
\(838\) −265.524 + 265.524i −0.316855 + 0.316855i
\(839\) 1026.58i 1.22358i 0.791022 + 0.611788i \(0.209549\pi\)
−0.791022 + 0.611788i \(0.790451\pi\)
\(840\) 0 0
\(841\) 264.326 0.314300
\(842\) −15.9819 15.9819i −0.0189809 0.0189809i
\(843\) 0 0
\(844\) 1023.03i 1.21212i
\(845\) 881.948 + 896.249i 1.04373 + 1.06065i
\(846\) 0 0
\(847\) 19.2439 + 19.2439i 0.0227200 + 0.0227200i
\(848\) 489.966 489.966i 0.577790 0.577790i
\(849\) 0 0
\(850\) −266.252 4.28280i −0.313237 0.00503859i
\(851\) −64.1195 −0.0753460
\(852\) 0 0
\(853\) 984.844 984.844i 1.15457 1.15457i 0.168939 0.985627i \(-0.445966\pi\)
0.985627 0.168939i \(-0.0540341\pi\)
\(854\) 114.905i 0.134549i
\(855\) 0 0
\(856\) −117.203 −0.136919
\(857\) −233.567 233.567i −0.272540 0.272540i 0.557582 0.830122i \(-0.311729\pi\)
−0.830122 + 0.557582i \(0.811729\pi\)
\(858\) 0 0
\(859\) 305.759i 0.355947i 0.984035 + 0.177974i \(0.0569542\pi\)
−0.984035 + 0.177974i \(0.943046\pi\)
\(860\) 142.507 + 1.14608i 0.165706 + 0.00133265i
\(861\) 0 0
\(862\) 273.979 + 273.979i 0.317841 + 0.317841i
\(863\) 386.017 386.017i 0.447297 0.447297i −0.447158 0.894455i \(-0.647564\pi\)
0.894455 + 0.447158i \(0.147564\pi\)
\(864\) 0 0
\(865\) 12.4643 1549.85i 0.0144096 1.79174i
\(866\) −324.894 −0.375167
\(867\) 0 0
\(868\) −195.483 + 195.483i −0.225211 + 0.225211i
\(869\) 712.618i 0.820044i
\(870\) 0 0
\(871\) 685.921 0.787510
\(872\) 455.392 + 455.392i 0.522238 + 0.522238i
\(873\) 0 0
\(874\) 11.3069i 0.0129370i
\(875\) −5.61084 + 232.517i −0.00641238 + 0.265733i
\(876\) 0 0
\(877\) 295.450 + 295.450i 0.336887 + 0.336887i 0.855194 0.518307i \(-0.173438\pi\)
−0.518307 + 0.855194i \(0.673438\pi\)
\(878\) −268.421 + 268.421i −0.305718 + 0.305718i
\(879\) 0 0
\(880\) −396.189 + 389.867i −0.450214 + 0.443031i
\(881\) −1495.93 −1.69799 −0.848993 0.528403i \(-0.822791\pi\)
−0.848993 + 0.528403i \(0.822791\pi\)
\(882\) 0 0
\(883\) −158.383 + 158.383i −0.179369 + 0.179369i −0.791081 0.611712i \(-0.790481\pi\)
0.611712 + 0.791081i \(0.290481\pi\)
\(884\) 998.832i 1.12990i
\(885\) 0 0
\(886\) −151.831 −0.171367
\(887\) 970.442 + 970.442i 1.09407 + 1.09407i 0.995089 + 0.0989824i \(0.0315588\pi\)
0.0989824 + 0.995089i \(0.468441\pi\)
\(888\) 0 0
\(889\) 147.577i 0.166003i
\(890\) −3.44115 + 427.885i −0.00386647 + 0.480769i
\(891\) 0 0
\(892\) 77.6576 + 77.6576i 0.0870601 + 0.0870601i
\(893\) −136.482 + 136.482i −0.152835 + 0.152835i
\(894\) 0 0
\(895\) 532.654 + 541.291i 0.595144 + 0.604794i
\(896\) −242.056 −0.270151
\(897\) 0 0
\(898\) 77.0748 77.0748i 0.0858294 0.0858294i
\(899\) 1038.52i 1.15520i
\(900\) 0 0
\(901\) 1029.17 1.14225
\(902\) −254.155 254.155i −0.281769 0.281769i
\(903\) 0 0
\(904\) 585.329i 0.647487i
\(905\) −171.413 + 168.678i −0.189407 + 0.186385i
\(906\) 0 0
\(907\) −392.191 392.191i −0.432405 0.432405i 0.457041 0.889446i \(-0.348909\pi\)
−0.889446 + 0.457041i \(0.848909\pi\)
\(908\) −950.276 + 950.276i −1.04656 + 1.04656i
\(909\) 0 0
\(910\) −143.316 1.15258i −0.157490 0.00126657i
\(911\) 968.817 1.06347 0.531733 0.846912i \(-0.321541\pi\)
0.531733 + 0.846912i \(0.321541\pi\)
\(912\) 0 0
\(913\) −425.586 + 425.586i −0.466140 + 0.466140i
\(914\) 222.851i 0.243820i
\(915\) 0 0
\(916\) −861.763 −0.940790
\(917\) 6.09776 + 6.09776i 0.00664968 + 0.00664968i
\(918\) 0 0
\(919\) 600.903i 0.653866i −0.945048 0.326933i \(-0.893985\pi\)
0.945048 0.326933i \(-0.106015\pi\)
\(920\) 27.2925 + 27.7351i 0.0296658 + 0.0301468i
\(921\) 0 0
\(922\) −151.977 151.977i −0.164834 0.164834i
\(923\) 1445.50 1445.50i 1.56609 1.56609i
\(924\) 0 0
\(925\) −826.588 + 800.417i −0.893609 + 0.865315i
\(926\) 187.992 0.203015
\(927\) 0 0
\(928\) −501.193 + 501.193i −0.540079 + 0.540079i
\(929\) 503.445i 0.541921i −0.962590 0.270961i \(-0.912659\pi\)
0.962590 0.270961i \(-0.0873413\pi\)
\(930\) 0 0
\(931\) −491.953 −0.528413
\(932\) −821.404 821.404i −0.881335 0.881335i
\(933\) 0 0
\(934\) 75.7835i 0.0811387i
\(935\) −825.550 6.63928i −0.882941 0.00710083i
\(936\) 0 0
\(937\) 1181.10 + 1181.10i 1.26051 + 1.26051i 0.950847 + 0.309660i \(0.100215\pi\)
0.309660 + 0.950847i \(0.399785\pi\)
\(938\) −33.0635 + 33.0635i −0.0352489 + 0.0352489i
\(939\) 0 0
\(940\) 2.46817 306.900i 0.00262571 0.326490i
\(941\) 1153.23 1.22554 0.612770 0.790262i \(-0.290055\pi\)
0.612770 + 0.790262i \(0.290055\pi\)
\(942\) 0 0
\(943\) 40.4701 40.4701i 0.0429163 0.0429163i
\(944\) 268.341i 0.284259i
\(945\) 0 0
\(946\) −72.5844 −0.0767277
\(947\) −968.830 968.830i −1.02305 1.02305i −0.999728 0.0233233i \(-0.992575\pi\)
−0.0233233 0.999728i \(-0.507425\pi\)
\(948\) 0 0
\(949\) 648.378i 0.683222i
\(950\) −141.147 145.762i −0.148575 0.153433i
\(951\) 0 0
\(952\) −104.203 104.203i −0.109457 0.109457i
\(953\) 77.4456 77.4456i 0.0812650 0.0812650i −0.665306 0.746571i \(-0.731699\pi\)
0.746571 + 0.665306i \(0.231699\pi\)
\(954\) 0 0
\(955\) −1295.09 + 1274.43i −1.35612 + 1.33448i
\(956\) 134.279 0.140460
\(957\) 0 0
\(958\) −104.158 + 104.158i −0.108724 + 0.108724i
\(959\) 4.42573i 0.00461494i
\(960\) 0 0
\(961\) 909.261 0.946161
\(962\) −501.352 501.352i −0.521156 0.521156i
\(963\) 0 0
\(964\) 287.577i 0.298316i
\(965\) 0.481254 59.8408i 0.000498709 0.0620112i
\(966\) 0 0
\(967\) 1141.27 + 1141.27i 1.18021 + 1.18021i 0.979688 + 0.200527i \(0.0642653\pi\)
0.200527 + 0.979688i \(0.435735\pi\)
\(968\) 57.7738 57.7738i 0.0596837 0.0596837i
\(969\) 0 0
\(970\) −80.6527 81.9605i −0.0831471 0.0844954i
\(971\) 158.612 0.163349 0.0816745 0.996659i \(-0.473973\pi\)
0.0816745 + 0.996659i \(0.473973\pi\)
\(972\) 0 0
\(973\) −337.156 + 337.156i −0.346511 + 0.346511i
\(974\) 701.349i 0.720070i
\(975\) 0 0
\(976\) −784.665 −0.803960
\(977\) 7.82882 + 7.82882i 0.00801312 + 0.00801312i 0.711102 0.703089i \(-0.248196\pi\)
−0.703089 + 0.711102i \(0.748196\pi\)
\(978\) 0 0
\(979\) 1326.63i 1.35509i
\(980\) 557.565 548.668i 0.568944 0.559865i
\(981\) 0 0
\(982\) −418.604 418.604i −0.426277 0.426277i
\(983\) 806.453 806.453i 0.820399 0.820399i −0.165766 0.986165i \(-0.553010\pi\)
0.986165 + 0.165766i \(0.0530095\pi\)
\(984\) 0 0
\(985\) −320.602 2.57836i −0.325484 0.00261762i
\(986\) −255.784 −0.259416
\(987\) 0 0
\(988\) −538.161 + 538.161i −0.544698 + 0.544698i
\(989\) 11.5579i 0.0116864i
\(990\) 0 0
\(991\) −95.8581 −0.0967287 −0.0483643 0.998830i \(-0.515401\pi\)
−0.0483643 + 0.998830i \(0.515401\pi\)
\(992\) 902.591 + 902.591i 0.909870 + 0.909870i
\(993\) 0 0
\(994\) 139.355i 0.140196i
\(995\) 59.6477 + 60.6148i 0.0599474 + 0.0609194i
\(996\) 0 0
\(997\) 622.312 + 622.312i 0.624184 + 0.624184i 0.946599 0.322414i \(-0.104494\pi\)
−0.322414 + 0.946599i \(0.604494\pi\)
\(998\) −88.7943 + 88.7943i −0.0889723 + 0.0889723i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 405.3.g.h.82.6 20
3.2 odd 2 405.3.g.g.82.5 20
5.3 odd 4 inner 405.3.g.h.163.6 20
9.2 odd 6 135.3.l.a.37.5 40
9.4 even 3 45.3.k.a.7.5 40
9.5 odd 6 135.3.l.a.127.6 40
9.7 even 3 45.3.k.a.22.6 yes 40
15.8 even 4 405.3.g.g.163.5 20
45.4 even 6 225.3.o.b.7.6 40
45.7 odd 12 225.3.o.b.193.6 40
45.13 odd 12 45.3.k.a.43.6 yes 40
45.22 odd 12 225.3.o.b.43.5 40
45.23 even 12 135.3.l.a.73.5 40
45.34 even 6 225.3.o.b.157.5 40
45.38 even 12 135.3.l.a.118.6 40
45.43 odd 12 45.3.k.a.13.5 yes 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
45.3.k.a.7.5 40 9.4 even 3
45.3.k.a.13.5 yes 40 45.43 odd 12
45.3.k.a.22.6 yes 40 9.7 even 3
45.3.k.a.43.6 yes 40 45.13 odd 12
135.3.l.a.37.5 40 9.2 odd 6
135.3.l.a.73.5 40 45.23 even 12
135.3.l.a.118.6 40 45.38 even 12
135.3.l.a.127.6 40 9.5 odd 6
225.3.o.b.7.6 40 45.4 even 6
225.3.o.b.43.5 40 45.22 odd 12
225.3.o.b.157.5 40 45.34 even 6
225.3.o.b.193.6 40 45.7 odd 12
405.3.g.g.82.5 20 3.2 odd 2
405.3.g.g.163.5 20 15.8 even 4
405.3.g.h.82.6 20 1.1 even 1 trivial
405.3.g.h.163.6 20 5.3 odd 4 inner