Properties

Label 225.3.o.b.193.6
Level $225$
Weight $3$
Character 225.193
Analytic conductor $6.131$
Analytic rank $0$
Dimension $40$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [225,3,Mod(7,225)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(225, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([8, 3]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("225.7");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 225 = 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 225.o (of order \(12\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.13080594811\)
Analytic rank: \(0\)
Dimension: \(40\)
Relative dimension: \(10\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 45)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 193.6
Character \(\chi\) \(=\) 225.193
Dual form 225.3.o.b.7.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.725667 + 0.194442i) q^{2} +(-2.68329 + 1.34163i) q^{3} +(-2.97532 - 1.71780i) q^{4} +(-2.20804 + 0.451834i) q^{6} +(1.79727 + 0.481578i) q^{7} +(-3.94998 - 3.94998i) q^{8} +(5.40005 - 7.19996i) q^{9} +(5.82294 + 10.0856i) q^{11} +(10.2883 + 0.617573i) q^{12} +(19.8070 - 5.30726i) q^{13} +(1.21058 + 0.698930i) q^{14} +(4.77288 + 8.26686i) q^{16} +(10.0254 - 10.0254i) q^{17} +(5.31861 - 4.17477i) q^{18} +10.8032i q^{19} +(-5.46870 + 1.11907i) q^{21} +(2.26444 + 8.45102i) q^{22} +(1.34569 - 0.360576i) q^{23} +(15.8983 + 5.29951i) q^{24} +15.4052 q^{26} +(-4.83020 + 26.5644i) q^{27} +(-4.52021 - 4.52021i) q^{28} +(20.7968 - 12.0070i) q^{29} +(21.6233 - 37.4526i) q^{31} +(7.63926 + 28.5101i) q^{32} +(-29.1558 - 19.2504i) q^{33} +(9.22442 - 5.32572i) q^{34} +(-28.4350 + 12.1460i) q^{36} +(32.5443 - 32.5443i) q^{37} +(-2.10058 + 7.83949i) q^{38} +(-46.0274 + 40.8145i) q^{39} +(-20.5409 + 35.5778i) q^{41} +(-4.18605 - 0.251275i) q^{42} +(-2.14721 + 8.01349i) q^{43} -40.0106i q^{44} +1.04663 q^{46} +(-17.2577 - 4.62418i) q^{47} +(-23.8981 - 15.7789i) q^{48} +(-39.4370 - 22.7689i) q^{49} +(-13.4506 + 40.3513i) q^{51} +(-68.0488 - 18.2336i) q^{52} +(51.3281 + 51.3281i) q^{53} +(-8.67035 + 18.3377i) q^{54} +(-5.19697 - 9.00141i) q^{56} +(-14.4938 - 28.9880i) q^{57} +(17.4262 - 4.66933i) q^{58} +(24.3449 + 14.0555i) q^{59} +(-41.1002 - 71.1876i) q^{61} +(22.9736 - 22.9736i) q^{62} +(13.1727 - 10.3398i) q^{63} -16.0088i q^{64} +(-17.4143 - 19.6385i) q^{66} +(-8.65757 - 32.3105i) q^{67} +(-47.0502 + 12.6071i) q^{68} +(-3.12710 + 2.77294i) q^{69} +99.6917 q^{71} +(-49.7697 + 7.10958i) q^{72} +(22.3583 + 22.3583i) q^{73} +(29.9443 - 17.2883i) q^{74} +(18.5577 - 32.1428i) q^{76} +(5.60840 + 20.9308i) q^{77} +(-41.3366 + 20.6681i) q^{78} +(-52.9926 + 30.5953i) q^{79} +(-22.6788 - 77.7603i) q^{81} +(-21.8237 + 21.8237i) q^{82} +(-13.3760 + 49.9199i) q^{83} +(18.1935 + 6.06456i) q^{84} +(-3.11631 + 5.39761i) q^{86} +(-39.6947 + 60.1198i) q^{87} +(16.8375 - 62.8384i) q^{88} +113.914i q^{89} +38.1544 q^{91} +(-4.62324 - 1.23879i) q^{92} +(-7.77386 + 129.506i) q^{93} +(-11.6242 - 6.71123i) q^{94} +(-58.7483 - 66.2517i) q^{96} +(29.5689 + 7.92297i) q^{97} +(-24.1909 - 24.1909i) q^{98} +(104.060 + 12.5380i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40 q + 2 q^{2} + 6 q^{3} - 24 q^{6} + 2 q^{7} + 24 q^{8} + 8 q^{11} + 30 q^{12} + 2 q^{13} + 28 q^{16} - 28 q^{17} - 48 q^{18} + 12 q^{21} - 14 q^{22} - 82 q^{23} - 112 q^{26} + 198 q^{27} + 88 q^{28} - 4 q^{31}+ \cdots + 1876 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/225\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.725667 + 0.194442i 0.362833 + 0.0972209i 0.435630 0.900126i \(-0.356526\pi\)
−0.0727965 + 0.997347i \(0.523192\pi\)
\(3\) −2.68329 + 1.34163i −0.894429 + 0.447210i
\(4\) −2.97532 1.71780i −0.743829 0.429450i
\(5\) 0 0
\(6\) −2.20804 + 0.451834i −0.368007 + 0.0753056i
\(7\) 1.79727 + 0.481578i 0.256753 + 0.0687969i 0.384900 0.922958i \(-0.374236\pi\)
−0.128146 + 0.991755i \(0.540903\pi\)
\(8\) −3.94998 3.94998i −0.493747 0.493747i
\(9\) 5.40005 7.19996i 0.600006 0.799996i
\(10\) 0 0
\(11\) 5.82294 + 10.0856i 0.529358 + 0.916875i 0.999414 + 0.0342381i \(0.0109005\pi\)
−0.470056 + 0.882637i \(0.655766\pi\)
\(12\) 10.2883 + 0.617573i 0.857357 + 0.0514644i
\(13\) 19.8070 5.30726i 1.52361 0.408251i 0.602684 0.797980i \(-0.294098\pi\)
0.920930 + 0.389729i \(0.127431\pi\)
\(14\) 1.21058 + 0.698930i 0.0864702 + 0.0499236i
\(15\) 0 0
\(16\) 4.77288 + 8.26686i 0.298305 + 0.516679i
\(17\) 10.0254 10.0254i 0.589728 0.589728i −0.347830 0.937558i \(-0.613081\pi\)
0.937558 + 0.347830i \(0.113081\pi\)
\(18\) 5.31861 4.17477i 0.295478 0.231932i
\(19\) 10.8032i 0.568587i 0.958737 + 0.284294i \(0.0917590\pi\)
−0.958737 + 0.284294i \(0.908241\pi\)
\(20\) 0 0
\(21\) −5.46870 + 1.11907i −0.260414 + 0.0532889i
\(22\) 2.26444 + 8.45102i 0.102929 + 0.384137i
\(23\) 1.34569 0.360576i 0.0585081 0.0156772i −0.229446 0.973321i \(-0.573692\pi\)
0.287954 + 0.957644i \(0.407025\pi\)
\(24\) 15.8983 + 5.29951i 0.662430 + 0.220813i
\(25\) 0 0
\(26\) 15.4052 0.592508
\(27\) −4.83020 + 26.5644i −0.178896 + 0.983868i
\(28\) −4.52021 4.52021i −0.161436 0.161436i
\(29\) 20.7968 12.0070i 0.717130 0.414035i −0.0965656 0.995327i \(-0.530786\pi\)
0.813695 + 0.581292i \(0.197452\pi\)
\(30\) 0 0
\(31\) 21.6233 37.4526i 0.697524 1.20815i −0.271798 0.962354i \(-0.587618\pi\)
0.969322 0.245793i \(-0.0790484\pi\)
\(32\) 7.63926 + 28.5101i 0.238727 + 0.890941i
\(33\) −29.1558 19.2504i −0.883509 0.583345i
\(34\) 9.22442 5.32572i 0.271307 0.156639i
\(35\) 0 0
\(36\) −28.4350 + 12.1460i −0.789860 + 0.337388i
\(37\) 32.5443 32.5443i 0.879576 0.879576i −0.113915 0.993491i \(-0.536339\pi\)
0.993491 + 0.113915i \(0.0363391\pi\)
\(38\) −2.10058 + 7.83949i −0.0552785 + 0.206302i
\(39\) −46.0274 + 40.8145i −1.18019 + 1.04653i
\(40\) 0 0
\(41\) −20.5409 + 35.5778i −0.500997 + 0.867752i 0.499002 + 0.866601i \(0.333700\pi\)
−0.999999 + 0.00115173i \(0.999633\pi\)
\(42\) −4.18605 0.251275i −0.0996678 0.00598274i
\(43\) −2.14721 + 8.01349i −0.0499351 + 0.186360i −0.986388 0.164432i \(-0.947421\pi\)
0.936453 + 0.350792i \(0.114088\pi\)
\(44\) 40.0106i 0.909331i
\(45\) 0 0
\(46\) 1.04663 0.0227528
\(47\) −17.2577 4.62418i −0.367185 0.0983868i 0.0705087 0.997511i \(-0.477538\pi\)
−0.437693 + 0.899124i \(0.644204\pi\)
\(48\) −23.8981 15.7789i −0.497876 0.328728i
\(49\) −39.4370 22.7689i −0.804836 0.464672i
\(50\) 0 0
\(51\) −13.4506 + 40.3513i −0.263737 + 0.791202i
\(52\) −68.0488 18.2336i −1.30863 0.350647i
\(53\) 51.3281 + 51.3281i 0.968455 + 0.968455i 0.999517 0.0310621i \(-0.00988897\pi\)
−0.0310621 + 0.999517i \(0.509889\pi\)
\(54\) −8.67035 + 18.3377i −0.160562 + 0.339588i
\(55\) 0 0
\(56\) −5.19697 9.00141i −0.0928030 0.160739i
\(57\) −14.4938 28.9880i −0.254278 0.508561i
\(58\) 17.4262 4.66933i 0.300451 0.0805057i
\(59\) 24.3449 + 14.0555i 0.412625 + 0.238229i 0.691917 0.721977i \(-0.256766\pi\)
−0.279292 + 0.960206i \(0.590100\pi\)
\(60\) 0 0
\(61\) −41.1002 71.1876i −0.673774 1.16701i −0.976826 0.214036i \(-0.931339\pi\)
0.303052 0.952974i \(-0.401994\pi\)
\(62\) 22.9736 22.9736i 0.370542 0.370542i
\(63\) 13.1727 10.3398i 0.209091 0.164123i
\(64\) 16.0088i 0.250137i
\(65\) 0 0
\(66\) −17.4143 19.6385i −0.263853 0.297552i
\(67\) −8.65757 32.3105i −0.129217 0.482246i 0.870737 0.491748i \(-0.163642\pi\)
−0.999955 + 0.00950210i \(0.996975\pi\)
\(68\) −47.0502 + 12.6071i −0.691915 + 0.185398i
\(69\) −3.12710 + 2.77294i −0.0453203 + 0.0401876i
\(70\) 0 0
\(71\) 99.6917 1.40411 0.702054 0.712123i \(-0.252266\pi\)
0.702054 + 0.712123i \(0.252266\pi\)
\(72\) −49.7697 + 7.10958i −0.691246 + 0.0987442i
\(73\) 22.3583 + 22.3583i 0.306278 + 0.306278i 0.843464 0.537186i \(-0.180513\pi\)
−0.537186 + 0.843464i \(0.680513\pi\)
\(74\) 29.9443 17.2883i 0.404653 0.233626i
\(75\) 0 0
\(76\) 18.5577 32.1428i 0.244180 0.422932i
\(77\) 5.60840 + 20.9308i 0.0728363 + 0.271829i
\(78\) −41.3366 + 20.6681i −0.529956 + 0.264976i
\(79\) −52.9926 + 30.5953i −0.670793 + 0.387282i −0.796377 0.604801i \(-0.793253\pi\)
0.125584 + 0.992083i \(0.459919\pi\)
\(80\) 0 0
\(81\) −22.6788 77.7603i −0.279986 0.960004i
\(82\) −21.8237 + 21.8237i −0.266142 + 0.266142i
\(83\) −13.3760 + 49.9199i −0.161157 + 0.601444i 0.837343 + 0.546678i \(0.184108\pi\)
−0.998499 + 0.0547660i \(0.982559\pi\)
\(84\) 18.1935 + 6.06456i 0.216589 + 0.0721971i
\(85\) 0 0
\(86\) −3.11631 + 5.39761i −0.0362362 + 0.0627630i
\(87\) −39.6947 + 60.1198i −0.456261 + 0.691033i
\(88\) 16.8375 62.8384i 0.191335 0.714073i
\(89\) 113.914i 1.27993i 0.768402 + 0.639967i \(0.221052\pi\)
−0.768402 + 0.639967i \(0.778948\pi\)
\(90\) 0 0
\(91\) 38.1544 0.419279
\(92\) −4.62324 1.23879i −0.0502526 0.0134651i
\(93\) −7.77386 + 129.506i −0.0835899 + 1.39254i
\(94\) −11.6242 6.71123i −0.123662 0.0713960i
\(95\) 0 0
\(96\) −58.7483 66.2517i −0.611962 0.690122i
\(97\) 29.5689 + 7.92297i 0.304834 + 0.0816801i 0.407994 0.912985i \(-0.366229\pi\)
−0.103160 + 0.994665i \(0.532895\pi\)
\(98\) −24.1909 24.1909i −0.246845 0.246845i
\(99\) 104.060 + 12.5380i 1.05111 + 0.126646i
\(100\) 0 0
\(101\) 29.8920 + 51.7745i 0.295961 + 0.512619i 0.975208 0.221291i \(-0.0710270\pi\)
−0.679247 + 0.733909i \(0.737694\pi\)
\(102\) −17.6066 + 26.6662i −0.172614 + 0.261433i
\(103\) 48.8939 13.1011i 0.474698 0.127195i −0.0135348 0.999908i \(-0.504308\pi\)
0.488233 + 0.872713i \(0.337642\pi\)
\(104\) −99.2006 57.2735i −0.953852 0.550707i
\(105\) 0 0
\(106\) 27.2668 + 47.2274i 0.257234 + 0.445542i
\(107\) 14.8359 14.8359i 0.138653 0.138653i −0.634374 0.773027i \(-0.718742\pi\)
0.773027 + 0.634374i \(0.218742\pi\)
\(108\) 60.0038 70.7403i 0.555591 0.655003i
\(109\) 115.290i 1.05770i −0.848714 0.528852i \(-0.822623\pi\)
0.848714 0.528852i \(-0.177377\pi\)
\(110\) 0 0
\(111\) −43.6633 + 130.988i −0.393363 + 1.18007i
\(112\) 4.59703 + 17.1563i 0.0410449 + 0.153182i
\(113\) −101.212 + 27.1198i −0.895686 + 0.239998i −0.677163 0.735833i \(-0.736791\pi\)
−0.218523 + 0.975832i \(0.570124\pi\)
\(114\) −4.88123 23.8538i −0.0428178 0.209244i
\(115\) 0 0
\(116\) −82.5026 −0.711229
\(117\) 68.7466 171.269i 0.587578 1.46384i
\(118\) 14.9333 + 14.9333i 0.126553 + 0.126553i
\(119\) 22.8463 13.1903i 0.191986 0.110843i
\(120\) 0 0
\(121\) −7.31319 + 12.6668i −0.0604396 + 0.104684i
\(122\) −15.9832 59.6501i −0.131010 0.488935i
\(123\) 7.38473 123.024i 0.0600385 1.00019i
\(124\) −128.672 + 74.2889i −1.03768 + 0.599104i
\(125\) 0 0
\(126\) 11.5695 4.94189i 0.0918213 0.0392213i
\(127\) −56.0831 + 56.0831i −0.441599 + 0.441599i −0.892549 0.450950i \(-0.851085\pi\)
0.450950 + 0.892549i \(0.351085\pi\)
\(128\) 33.6698 125.657i 0.263045 0.981699i
\(129\) −4.98957 24.3832i −0.0386788 0.189017i
\(130\) 0 0
\(131\) −2.31731 + 4.01371i −0.0176894 + 0.0306390i −0.874735 0.484602i \(-0.838964\pi\)
0.857045 + 0.515241i \(0.172298\pi\)
\(132\) 53.6794 + 107.360i 0.406662 + 0.813332i
\(133\) −5.20256 + 19.4162i −0.0391170 + 0.145987i
\(134\) 25.1300i 0.187538i
\(135\) 0 0
\(136\) −79.1999 −0.582352
\(137\) −2.29751 0.615617i −0.0167702 0.00449355i 0.250424 0.968136i \(-0.419430\pi\)
−0.267194 + 0.963643i \(0.586097\pi\)
\(138\) −2.80841 + 1.40419i −0.0203508 + 0.0101753i
\(139\) 221.925 + 128.128i 1.59658 + 0.921786i 0.992140 + 0.125136i \(0.0399367\pi\)
0.604441 + 0.796650i \(0.293397\pi\)
\(140\) 0 0
\(141\) 52.5112 10.7454i 0.372420 0.0762087i
\(142\) 72.3429 + 19.3842i 0.509457 + 0.136509i
\(143\) 168.862 + 168.862i 1.18085 + 1.18085i
\(144\) 85.2949 + 10.2770i 0.592325 + 0.0713680i
\(145\) 0 0
\(146\) 11.8773 + 20.5721i 0.0813513 + 0.140905i
\(147\) 136.368 + 8.18575i 0.927675 + 0.0556854i
\(148\) −152.734 + 40.9250i −1.03199 + 0.276520i
\(149\) −81.5954 47.1091i −0.547620 0.316168i 0.200542 0.979685i \(-0.435730\pi\)
−0.748161 + 0.663517i \(0.769063\pi\)
\(150\) 0 0
\(151\) 14.0475 + 24.3310i 0.0930299 + 0.161133i 0.908785 0.417265i \(-0.137011\pi\)
−0.815755 + 0.578398i \(0.803678\pi\)
\(152\) 42.6722 42.6722i 0.280738 0.280738i
\(153\) −18.0447 126.320i −0.117939 0.825619i
\(154\) 16.2793i 0.105710i
\(155\) 0 0
\(156\) 207.057 42.3704i 1.32729 0.271605i
\(157\) −9.98621 37.2690i −0.0636064 0.237382i 0.926803 0.375549i \(-0.122546\pi\)
−0.990409 + 0.138166i \(0.955879\pi\)
\(158\) −44.4040 + 11.8980i −0.281038 + 0.0753039i
\(159\) −206.591 68.8647i −1.29932 0.433111i
\(160\) 0 0
\(161\) 2.59221 0.0161007
\(162\) −1.33742 60.8378i −0.00825566 0.375542i
\(163\) −140.797 140.797i −0.863787 0.863787i 0.127989 0.991776i \(-0.459148\pi\)
−0.991776 + 0.127989i \(0.959148\pi\)
\(164\) 122.231 70.5703i 0.745313 0.430306i
\(165\) 0 0
\(166\) −19.4130 + 33.6243i −0.116946 + 0.202556i
\(167\) 73.2232 + 273.273i 0.438462 + 1.63636i 0.732642 + 0.680614i \(0.238287\pi\)
−0.294180 + 0.955750i \(0.595047\pi\)
\(168\) 26.0215 + 17.1810i 0.154890 + 0.102268i
\(169\) 217.791 125.742i 1.28870 0.744033i
\(170\) 0 0
\(171\) 77.7823 + 58.3376i 0.454867 + 0.341156i
\(172\) 20.1542 20.1542i 0.117176 0.117176i
\(173\) 80.2289 299.418i 0.463751 1.73074i −0.197248 0.980354i \(-0.563200\pi\)
0.660998 0.750387i \(-0.270133\pi\)
\(174\) −40.4949 + 35.9087i −0.232729 + 0.206372i
\(175\) 0 0
\(176\) −55.5843 + 96.2748i −0.315820 + 0.547016i
\(177\) −84.1816 5.05315i −0.475602 0.0285489i
\(178\) −22.1497 + 82.6637i −0.124436 + 0.464403i
\(179\) 151.884i 0.848512i 0.905542 + 0.424256i \(0.139464\pi\)
−0.905542 + 0.424256i \(0.860536\pi\)
\(180\) 0 0
\(181\) 48.0978 0.265734 0.132867 0.991134i \(-0.457582\pi\)
0.132867 + 0.991134i \(0.457582\pi\)
\(182\) 27.6874 + 7.41881i 0.152128 + 0.0407627i
\(183\) 205.791 + 135.876i 1.12454 + 0.742489i
\(184\) −6.73969 3.89116i −0.0366288 0.0211476i
\(185\) 0 0
\(186\) −30.8227 + 92.4669i −0.165713 + 0.497134i
\(187\) 159.489 + 42.7350i 0.852883 + 0.228529i
\(188\) 43.4036 + 43.4036i 0.230870 + 0.230870i
\(189\) −21.4741 + 45.4174i −0.113619 + 0.240304i
\(190\) 0 0
\(191\) −181.698 314.711i −0.951300 1.64770i −0.742617 0.669717i \(-0.766416\pi\)
−0.208683 0.977983i \(-0.566918\pi\)
\(192\) 21.4779 + 42.9562i 0.111864 + 0.223730i
\(193\) −11.5607 + 3.09769i −0.0599001 + 0.0160502i −0.288645 0.957436i \(-0.593205\pi\)
0.228745 + 0.973486i \(0.426538\pi\)
\(194\) 19.9166 + 11.4989i 0.102663 + 0.0592725i
\(195\) 0 0
\(196\) 78.2250 + 135.490i 0.399107 + 0.691274i
\(197\) −45.3414 + 45.3414i −0.230159 + 0.230159i −0.812759 0.582600i \(-0.802036\pi\)
0.582600 + 0.812759i \(0.302036\pi\)
\(198\) 73.0751 + 29.3321i 0.369066 + 0.148142i
\(199\) 17.0082i 0.0854685i 0.999086 + 0.0427343i \(0.0136069\pi\)
−0.999086 + 0.0427343i \(0.986393\pi\)
\(200\) 0 0
\(201\) 66.5795 + 75.0831i 0.331241 + 0.373548i
\(202\) 11.6245 + 43.3833i 0.0575471 + 0.214769i
\(203\) 43.1598 11.5646i 0.212610 0.0569686i
\(204\) 109.335 96.9524i 0.535957 0.475257i
\(205\) 0 0
\(206\) 38.0281 0.184602
\(207\) 4.67065 11.6360i 0.0225635 0.0562126i
\(208\) 138.411 + 138.411i 0.665436 + 0.665436i
\(209\) −108.957 + 62.9061i −0.521323 + 0.300986i
\(210\) 0 0
\(211\) −148.887 + 257.879i −0.705624 + 1.22218i 0.260842 + 0.965382i \(0.416000\pi\)
−0.966466 + 0.256795i \(0.917333\pi\)
\(212\) −64.5460 240.889i −0.304462 1.13627i
\(213\) −267.501 + 133.749i −1.25588 + 0.627932i
\(214\) 13.6506 7.88119i 0.0637879 0.0368280i
\(215\) 0 0
\(216\) 124.008 85.8497i 0.574111 0.397452i
\(217\) 56.8993 56.8993i 0.262209 0.262209i
\(218\) 22.4172 83.6620i 0.102831 0.383771i
\(219\) −89.9903 29.9971i −0.410915 0.136973i
\(220\) 0 0
\(221\) 145.365 251.779i 0.657760 1.13927i
\(222\) −57.1545 + 86.5638i −0.257453 + 0.389927i
\(223\) 8.27356 30.8773i 0.0371012 0.138463i −0.944891 0.327385i \(-0.893833\pi\)
0.981992 + 0.188922i \(0.0604992\pi\)
\(224\) 54.9194i 0.245176i
\(225\) 0 0
\(226\) −78.7197 −0.348317
\(227\) −377.838 101.241i −1.66449 0.445997i −0.700870 0.713289i \(-0.747205\pi\)
−0.963616 + 0.267292i \(0.913871\pi\)
\(228\) −6.67174 + 111.146i −0.0292620 + 0.487482i
\(229\) −217.228 125.417i −0.948594 0.547671i −0.0559502 0.998434i \(-0.517819\pi\)
−0.892644 + 0.450762i \(0.851152\pi\)
\(230\) 0 0
\(231\) −43.1304 48.6390i −0.186712 0.210558i
\(232\) −129.574 34.7193i −0.558509 0.149652i
\(233\) −239.086 239.086i −1.02612 1.02612i −0.999650 0.0264709i \(-0.991573\pi\)
−0.0264709 0.999650i \(-0.508427\pi\)
\(234\) 83.1890 110.917i 0.355508 0.474004i
\(235\) 0 0
\(236\) −48.2891 83.6392i −0.204615 0.354404i
\(237\) 101.147 153.193i 0.426780 0.646382i
\(238\) 19.1436 5.12950i 0.0804352 0.0215525i
\(239\) 33.8483 + 19.5423i 0.141625 + 0.0817672i 0.569138 0.822242i \(-0.307277\pi\)
−0.427513 + 0.904009i \(0.640610\pi\)
\(240\) 0 0
\(241\) −41.8525 72.4907i −0.173662 0.300791i 0.766036 0.642798i \(-0.222227\pi\)
−0.939697 + 0.342007i \(0.888893\pi\)
\(242\) −7.76989 + 7.76989i −0.0321070 + 0.0321070i
\(243\) 165.179 + 178.227i 0.679751 + 0.733443i
\(244\) 282.408i 1.15741i
\(245\) 0 0
\(246\) 29.2798 87.8384i 0.119024 0.357067i
\(247\) 57.3352 + 213.978i 0.232126 + 0.866307i
\(248\) −233.348 + 62.5254i −0.940920 + 0.252119i
\(249\) −31.0824 151.895i −0.124829 0.610020i
\(250\) 0 0
\(251\) −116.674 −0.464837 −0.232418 0.972616i \(-0.574664\pi\)
−0.232418 + 0.972616i \(0.574664\pi\)
\(252\) −56.9546 + 8.13594i −0.226011 + 0.0322855i
\(253\) 11.4725 + 11.4725i 0.0453458 + 0.0453458i
\(254\) −51.6025 + 29.7927i −0.203159 + 0.117294i
\(255\) 0 0
\(256\) 16.8485 29.1825i 0.0658146 0.113994i
\(257\) 1.23843 + 4.62189i 0.00481880 + 0.0179840i 0.968293 0.249816i \(-0.0803701\pi\)
−0.963475 + 0.267800i \(0.913703\pi\)
\(258\) 1.12036 18.6643i 0.00434247 0.0723422i
\(259\) 74.1637 42.8184i 0.286346 0.165322i
\(260\) 0 0
\(261\) 25.8536 214.574i 0.0990559 0.822124i
\(262\) −2.46203 + 2.46203i −0.00939706 + 0.00939706i
\(263\) 25.3145 94.4750i 0.0962529 0.359221i −0.900954 0.433916i \(-0.857132\pi\)
0.997206 + 0.0746949i \(0.0237983\pi\)
\(264\) 39.1261 + 191.203i 0.148205 + 0.724255i
\(265\) 0 0
\(266\) −7.55065 + 13.0781i −0.0283859 + 0.0491658i
\(267\) −152.831 305.664i −0.572400 1.14481i
\(268\) −29.7440 + 111.006i −0.110985 + 0.414201i
\(269\) 212.871i 0.791340i 0.918393 + 0.395670i \(0.129488\pi\)
−0.918393 + 0.395670i \(0.870512\pi\)
\(270\) 0 0
\(271\) −180.243 −0.665102 −0.332551 0.943085i \(-0.607909\pi\)
−0.332551 + 0.943085i \(0.607909\pi\)
\(272\) 130.728 + 35.0285i 0.480618 + 0.128781i
\(273\) −102.379 + 51.1891i −0.375016 + 0.187506i
\(274\) −1.54753 0.893465i −0.00564791 0.00326082i
\(275\) 0 0
\(276\) 14.0675 2.87864i 0.0509691 0.0104299i
\(277\) −316.123 84.7048i −1.14124 0.305794i −0.361789 0.932260i \(-0.617834\pi\)
−0.779448 + 0.626467i \(0.784501\pi\)
\(278\) 136.130 + 136.130i 0.489676 + 0.489676i
\(279\) −152.890 357.932i −0.547994 1.28291i
\(280\) 0 0
\(281\) −15.6356 27.0816i −0.0556426 0.0963758i 0.836862 0.547413i \(-0.184387\pi\)
−0.892505 + 0.451037i \(0.851054\pi\)
\(282\) 40.1950 + 2.41278i 0.142535 + 0.00855596i
\(283\) −195.826 + 52.4715i −0.691966 + 0.185412i −0.587629 0.809130i \(-0.699939\pi\)
−0.104337 + 0.994542i \(0.533272\pi\)
\(284\) −296.614 171.250i −1.04442 0.602995i
\(285\) 0 0
\(286\) 89.7036 + 155.371i 0.313649 + 0.543256i
\(287\) −54.0511 + 54.0511i −0.188331 + 0.188331i
\(288\) 246.524 + 98.9537i 0.855986 + 0.343589i
\(289\) 87.9840i 0.304443i
\(290\) 0 0
\(291\) −89.9715 + 18.4110i −0.309181 + 0.0632679i
\(292\) −28.1159 104.930i −0.0962875 0.359350i
\(293\) 37.6696 10.0935i 0.128565 0.0344490i −0.193963 0.981009i \(-0.562134\pi\)
0.322528 + 0.946560i \(0.395467\pi\)
\(294\) 97.3662 + 32.4558i 0.331178 + 0.110394i
\(295\) 0 0
\(296\) −257.098 −0.868576
\(297\) −296.045 + 105.967i −0.996784 + 0.356793i
\(298\) −50.0510 50.0510i −0.167957 0.167957i
\(299\) 24.7403 14.2838i 0.0827435 0.0477720i
\(300\) 0 0
\(301\) −7.71824 + 13.3684i −0.0256420 + 0.0444132i
\(302\) 5.46285 + 20.3876i 0.0180889 + 0.0675087i
\(303\) −149.671 98.8217i −0.493964 0.326144i
\(304\) −89.3082 + 51.5621i −0.293777 + 0.169612i
\(305\) 0 0
\(306\) 11.4674 95.1747i 0.0374751 0.311028i
\(307\) 28.4359 28.4359i 0.0926251 0.0926251i −0.659276 0.751901i \(-0.729137\pi\)
0.751901 + 0.659276i \(0.229137\pi\)
\(308\) 19.2682 71.9100i 0.0625591 0.233474i
\(309\) −113.619 + 100.751i −0.367701 + 0.326057i
\(310\) 0 0
\(311\) −215.953 + 374.041i −0.694381 + 1.20270i 0.276007 + 0.961156i \(0.410989\pi\)
−0.970389 + 0.241548i \(0.922345\pi\)
\(312\) 343.024 + 20.5906i 1.09943 + 0.0659956i
\(313\) −53.6933 + 200.386i −0.171544 + 0.640211i 0.825571 + 0.564299i \(0.190853\pi\)
−0.997115 + 0.0759119i \(0.975813\pi\)
\(314\) 28.9866i 0.0923141i
\(315\) 0 0
\(316\) 210.226 0.665274
\(317\) −342.998 91.9060i −1.08201 0.289924i −0.326593 0.945165i \(-0.605900\pi\)
−0.755420 + 0.655241i \(0.772567\pi\)
\(318\) −136.526 90.1428i −0.429328 0.283468i
\(319\) 242.196 + 139.832i 0.759237 + 0.438345i
\(320\) 0 0
\(321\) −19.9046 + 59.7132i −0.0620082 + 0.186022i
\(322\) 1.88108 + 0.504034i 0.00584187 + 0.00156532i
\(323\) 108.306 + 108.306i 0.335311 + 0.335311i
\(324\) −66.1000 + 270.319i −0.204012 + 0.834319i
\(325\) 0 0
\(326\) −74.7950 129.549i −0.229432 0.397389i
\(327\) 154.676 + 309.356i 0.473016 + 0.946042i
\(328\) 221.668 59.3957i 0.675816 0.181084i
\(329\) −28.7899 16.6218i −0.0875072 0.0505223i
\(330\) 0 0
\(331\) −187.451 324.675i −0.566318 0.980891i −0.996926 0.0783519i \(-0.975034\pi\)
0.430608 0.902539i \(-0.358299\pi\)
\(332\) 125.550 125.550i 0.378163 0.378163i
\(333\) −58.5767 410.059i −0.175906 1.23141i
\(334\) 212.543i 0.636355i
\(335\) 0 0
\(336\) −35.3526 39.8678i −0.105216 0.118654i
\(337\) 38.4732 + 143.584i 0.114164 + 0.426065i 0.999223 0.0394135i \(-0.0125490\pi\)
−0.885059 + 0.465478i \(0.845882\pi\)
\(338\) 182.493 48.8988i 0.539920 0.144671i
\(339\) 235.197 208.560i 0.693797 0.615221i
\(340\) 0 0
\(341\) 503.643 1.47696
\(342\) 45.1007 + 57.4578i 0.131873 + 0.168005i
\(343\) −124.383 124.383i −0.362633 0.362633i
\(344\) 40.1345 23.1717i 0.116670 0.0673595i
\(345\) 0 0
\(346\) 116.439 201.678i 0.336528 0.582884i
\(347\) 62.5014 + 233.258i 0.180119 + 0.672214i 0.995623 + 0.0934622i \(0.0297934\pi\)
−0.815504 + 0.578752i \(0.803540\pi\)
\(348\) 221.378 110.688i 0.636144 0.318069i
\(349\) 331.191 191.213i 0.948971 0.547889i 0.0562101 0.998419i \(-0.482098\pi\)
0.892761 + 0.450530i \(0.148765\pi\)
\(350\) 0 0
\(351\) 45.3127 + 551.796i 0.129096 + 1.57207i
\(352\) −243.059 + 243.059i −0.690509 + 0.690509i
\(353\) −134.782 + 503.013i −0.381819 + 1.42497i 0.461302 + 0.887243i \(0.347382\pi\)
−0.843121 + 0.537724i \(0.819284\pi\)
\(354\) −60.1052 20.0353i −0.169789 0.0565969i
\(355\) 0 0
\(356\) 195.682 338.931i 0.549668 0.952052i
\(357\) −43.6067 + 66.0448i −0.122148 + 0.184999i
\(358\) −29.5325 + 110.217i −0.0824931 + 0.307868i
\(359\) 326.956i 0.910741i −0.890302 0.455370i \(-0.849507\pi\)
0.890302 0.455370i \(-0.150493\pi\)
\(360\) 0 0
\(361\) 244.292 0.676709
\(362\) 34.9030 + 9.35222i 0.0964170 + 0.0258349i
\(363\) 2.62919 43.8003i 0.00724296 0.120662i
\(364\) −113.521 65.5417i −0.311872 0.180060i
\(365\) 0 0
\(366\) 122.916 + 138.615i 0.335836 + 0.378729i
\(367\) 505.039 + 135.325i 1.37613 + 0.368733i 0.869713 0.493557i \(-0.164304\pi\)
0.506415 + 0.862290i \(0.330970\pi\)
\(368\) 9.40362 + 9.40362i 0.0255533 + 0.0255533i
\(369\) 145.237 + 340.016i 0.393597 + 0.921452i
\(370\) 0 0
\(371\) 67.5322 + 116.969i 0.182028 + 0.315281i
\(372\) 245.596 371.969i 0.660204 0.999916i
\(373\) 23.4631 6.28693i 0.0629039 0.0168550i −0.227230 0.973841i \(-0.572967\pi\)
0.290134 + 0.956986i \(0.406300\pi\)
\(374\) 107.426 + 62.0227i 0.287237 + 0.165836i
\(375\) 0 0
\(376\) 49.9020 + 86.4328i 0.132718 + 0.229874i
\(377\) 348.197 348.197i 0.923598 0.923598i
\(378\) −24.4141 + 28.7825i −0.0645874 + 0.0761441i
\(379\) 364.939i 0.962900i −0.876474 0.481450i \(-0.840110\pi\)
0.876474 0.481450i \(-0.159890\pi\)
\(380\) 0 0
\(381\) 75.2442 225.730i 0.197491 0.592466i
\(382\) −70.6595 263.705i −0.184972 0.690327i
\(383\) −3.24720 + 0.870084i −0.00847832 + 0.00227176i −0.263056 0.964781i \(-0.584730\pi\)
0.254577 + 0.967052i \(0.418064\pi\)
\(384\) 78.2401 + 382.347i 0.203750 + 0.995696i
\(385\) 0 0
\(386\) −8.99155 −0.0232942
\(387\) 46.1018 + 58.7331i 0.119126 + 0.151765i
\(388\) −74.3668 74.3668i −0.191667 0.191667i
\(389\) 131.808 76.0995i 0.338838 0.195628i −0.320920 0.947106i \(-0.603992\pi\)
0.659758 + 0.751478i \(0.270659\pi\)
\(390\) 0 0
\(391\) 9.87610 17.1059i 0.0252586 0.0437491i
\(392\) 65.8383 + 245.712i 0.167955 + 0.626816i
\(393\) 0.833107 13.8789i 0.00211986 0.0353153i
\(394\) −41.7190 + 24.0865i −0.105886 + 0.0611332i
\(395\) 0 0
\(396\) −288.074 216.059i −0.727461 0.545604i
\(397\) 275.868 275.868i 0.694882 0.694882i −0.268420 0.963302i \(-0.586502\pi\)
0.963302 + 0.268420i \(0.0865016\pi\)
\(398\) −3.30711 + 12.3423i −0.00830933 + 0.0310108i
\(399\) −12.0894 59.0792i −0.0302994 0.148068i
\(400\) 0 0
\(401\) −337.489 + 584.548i −0.841618 + 1.45773i 0.0469080 + 0.998899i \(0.485063\pi\)
−0.888526 + 0.458826i \(0.848270\pi\)
\(402\) 33.7152 + 67.4311i 0.0838688 + 0.167739i
\(403\) 229.521 856.582i 0.569530 2.12551i
\(404\) 205.394i 0.508401i
\(405\) 0 0
\(406\) 33.5683 0.0826805
\(407\) 517.733 + 138.726i 1.27207 + 0.340850i
\(408\) 212.516 106.257i 0.520873 0.260434i
\(409\) −375.213 216.629i −0.917390 0.529655i −0.0345887 0.999402i \(-0.511012\pi\)
−0.882802 + 0.469746i \(0.844345\pi\)
\(410\) 0 0
\(411\) 6.99082 1.43054i 0.0170093 0.00348063i
\(412\) −167.980 45.0101i −0.407718 0.109248i
\(413\) 36.9856 + 36.9856i 0.0895534 + 0.0895534i
\(414\) 5.65186 7.53570i 0.0136518 0.0182022i
\(415\) 0 0
\(416\) 302.621 + 524.155i 0.727455 + 1.25999i
\(417\) −767.388 46.0639i −1.84026 0.110465i
\(418\) −91.2977 + 24.4631i −0.218416 + 0.0585243i
\(419\) 432.869 + 249.917i 1.03310 + 0.596461i 0.917871 0.396878i \(-0.129907\pi\)
0.115229 + 0.993339i \(0.463240\pi\)
\(420\) 0 0
\(421\) 15.0425 + 26.0544i 0.0357304 + 0.0618869i 0.883338 0.468737i \(-0.155291\pi\)
−0.847607 + 0.530624i \(0.821958\pi\)
\(422\) −158.185 + 158.185i −0.374845 + 0.374845i
\(423\) −126.486 + 99.2837i −0.299022 + 0.234713i
\(424\) 405.490i 0.956344i
\(425\) 0 0
\(426\) −220.123 + 45.0441i −0.516721 + 0.105737i
\(427\) −39.5859 147.737i −0.0927071 0.345987i
\(428\) −69.6265 + 18.6564i −0.162679 + 0.0435896i
\(429\) −679.655 226.554i −1.58428 0.528099i
\(430\) 0 0
\(431\) 515.749 1.19663 0.598316 0.801260i \(-0.295837\pi\)
0.598316 + 0.801260i \(0.295837\pi\)
\(432\) −242.659 + 86.8581i −0.561710 + 0.201060i
\(433\) 305.797 + 305.797i 0.706229 + 0.706229i 0.965740 0.259511i \(-0.0835613\pi\)
−0.259511 + 0.965740i \(0.583561\pi\)
\(434\) 52.3535 30.2263i 0.120630 0.0696458i
\(435\) 0 0
\(436\) −198.045 + 343.024i −0.454231 + 0.786752i
\(437\) 3.89535 + 14.5377i 0.00891385 + 0.0332669i
\(438\) −59.4703 39.2658i −0.135777 0.0896480i
\(439\) −437.591 + 252.643i −0.996790 + 0.575497i −0.907297 0.420491i \(-0.861858\pi\)
−0.0894929 + 0.995987i \(0.528525\pi\)
\(440\) 0 0
\(441\) −376.897 + 160.991i −0.854642 + 0.365059i
\(442\) 154.443 154.443i 0.349418 0.349418i
\(443\) 52.3076 195.215i 0.118076 0.440665i −0.881423 0.472328i \(-0.843414\pi\)
0.999499 + 0.0316632i \(0.0100804\pi\)
\(444\) 354.923 314.726i 0.799377 0.708843i
\(445\) 0 0
\(446\) 12.0077 20.7979i 0.0269231 0.0466321i
\(447\) 282.147 + 16.9364i 0.631201 + 0.0378890i
\(448\) 7.70948 28.7722i 0.0172087 0.0642236i
\(449\) 145.089i 0.323138i 0.986861 + 0.161569i \(0.0516554\pi\)
−0.986861 + 0.161569i \(0.948345\pi\)
\(450\) 0 0
\(451\) −478.433 −1.06083
\(452\) 347.726 + 93.1728i 0.769305 + 0.206135i
\(453\) −70.3367 46.4405i −0.155269 0.102518i
\(454\) −254.499 146.935i −0.560570 0.323645i
\(455\) 0 0
\(456\) −57.2514 + 171.752i −0.125551 + 0.376649i
\(457\) 286.527 + 76.7746i 0.626973 + 0.167997i 0.558296 0.829642i \(-0.311455\pi\)
0.0686775 + 0.997639i \(0.478122\pi\)
\(458\) −133.249 133.249i −0.290936 0.290936i
\(459\) 217.894 + 314.743i 0.474714 + 0.685714i
\(460\) 0 0
\(461\) 143.044 + 247.759i 0.310291 + 0.537439i 0.978425 0.206601i \(-0.0662403\pi\)
−0.668135 + 0.744040i \(0.732907\pi\)
\(462\) −21.8408 43.6821i −0.0472745 0.0945499i
\(463\) 241.707 64.7653i 0.522046 0.139882i 0.0118333 0.999930i \(-0.496233\pi\)
0.510213 + 0.860048i \(0.329567\pi\)
\(464\) 198.521 + 114.616i 0.427846 + 0.247017i
\(465\) 0 0
\(466\) −127.008 219.985i −0.272550 0.472071i
\(467\) 71.3291 71.3291i 0.152739 0.152739i −0.626601 0.779340i \(-0.715554\pi\)
0.779340 + 0.626601i \(0.215554\pi\)
\(468\) −498.749 + 391.486i −1.06570 + 0.836509i
\(469\) 62.2401i 0.132708i
\(470\) 0 0
\(471\) 76.7972 + 86.6057i 0.163051 + 0.183876i
\(472\) −40.6427 151.681i −0.0861074 0.321357i
\(473\) −93.3241 + 25.0061i −0.197302 + 0.0528670i
\(474\) 103.186 91.4995i 0.217692 0.193037i
\(475\) 0 0
\(476\) −90.6334 −0.190406
\(477\) 646.735 92.3858i 1.35584 0.193681i
\(478\) 20.7628 + 20.7628i 0.0434367 + 0.0434367i
\(479\) −169.803 + 98.0357i −0.354494 + 0.204667i −0.666663 0.745359i \(-0.732278\pi\)
0.312169 + 0.950027i \(0.398945\pi\)
\(480\) 0 0
\(481\) 471.883 817.325i 0.981046 1.69922i
\(482\) −16.2758 60.7419i −0.0337671 0.126021i
\(483\) −6.95565 + 3.47779i −0.0144009 + 0.00720040i
\(484\) 43.5181 25.1252i 0.0899135 0.0519116i
\(485\) 0 0
\(486\) 85.2105 + 161.451i 0.175330 + 0.332204i
\(487\) −660.124 + 660.124i −1.35549 + 1.35549i −0.476100 + 0.879391i \(0.657950\pi\)
−0.879391 + 0.476100i \(0.842050\pi\)
\(488\) −118.845 + 443.534i −0.243534 + 0.908882i
\(489\) 566.697 + 188.901i 1.15889 + 0.386301i
\(490\) 0 0
\(491\) 393.999 682.426i 0.802442 1.38987i −0.115562 0.993300i \(-0.536867\pi\)
0.918004 0.396570i \(-0.129800\pi\)
\(492\) −233.302 + 353.349i −0.474192 + 0.718190i
\(493\) 88.1204 328.870i 0.178743 0.667079i
\(494\) 166.425i 0.336892i
\(495\) 0 0
\(496\) 412.820 0.832299
\(497\) 179.173 + 48.0093i 0.360510 + 0.0965983i
\(498\) 6.97925 116.269i 0.0140146 0.233472i
\(499\) 144.756 + 83.5751i 0.290093 + 0.167485i 0.637984 0.770050i \(-0.279769\pi\)
−0.347891 + 0.937535i \(0.613102\pi\)
\(500\) 0 0
\(501\) −563.110 635.031i −1.12397 1.26753i
\(502\) −84.6664 22.6863i −0.168658 0.0451918i
\(503\) −249.990 249.990i −0.496998 0.496998i 0.413504 0.910502i \(-0.364305\pi\)
−0.910502 + 0.413504i \(0.864305\pi\)
\(504\) −92.8737 11.1901i −0.184273 0.0222027i
\(505\) 0 0
\(506\) 6.09446 + 10.5559i 0.0120444 + 0.0208615i
\(507\) −415.696 + 629.596i −0.819914 + 1.24181i
\(508\) 263.204 70.5254i 0.518119 0.138830i
\(509\) 95.6645 + 55.2319i 0.187946 + 0.108511i 0.591021 0.806656i \(-0.298725\pi\)
−0.403075 + 0.915167i \(0.632059\pi\)
\(510\) 0 0
\(511\) 29.4167 + 50.9513i 0.0575670 + 0.0997089i
\(512\) −350.050 + 350.050i −0.683691 + 0.683691i
\(513\) −286.980 52.1814i −0.559415 0.101718i
\(514\) 3.59475i 0.00699368i
\(515\) 0 0
\(516\) −27.0400 + 81.1190i −0.0524031 + 0.157207i
\(517\) −53.8526 200.981i −0.104164 0.388744i
\(518\) 62.1438 16.6514i 0.119969 0.0321455i
\(519\) 186.432 + 911.062i 0.359213 + 1.75542i
\(520\) 0 0
\(521\) −415.088 −0.796715 −0.398357 0.917230i \(-0.630420\pi\)
−0.398357 + 0.917230i \(0.630420\pi\)
\(522\) 60.4833 150.682i 0.115868 0.288664i
\(523\) 384.585 + 384.585i 0.735344 + 0.735344i 0.971673 0.236329i \(-0.0759444\pi\)
−0.236329 + 0.971673i \(0.575944\pi\)
\(524\) 13.7895 7.96136i 0.0263158 0.0151934i
\(525\) 0 0
\(526\) 36.7398 63.6352i 0.0698475 0.120979i
\(527\) −158.695 592.257i −0.301129 1.12383i
\(528\) 19.9833 332.907i 0.0378472 0.630505i
\(529\) −456.447 + 263.530i −0.862848 + 0.498166i
\(530\) 0 0
\(531\) 232.663 99.3815i 0.438160 0.187159i
\(532\) 48.8325 48.8325i 0.0917904 0.0917904i
\(533\) −218.032 + 813.705i −0.409065 + 1.52665i
\(534\) −51.4702 251.527i −0.0963862 0.471024i
\(535\) 0 0
\(536\) −93.4285 + 161.823i −0.174307 + 0.301908i
\(537\) −203.772 407.547i −0.379463 0.758933i
\(538\) −41.3909 + 154.473i −0.0769348 + 0.287125i
\(539\) 530.329i 0.983912i
\(540\) 0 0
\(541\) 251.489 0.464859 0.232430 0.972613i \(-0.425332\pi\)
0.232430 + 0.972613i \(0.425332\pi\)
\(542\) −130.796 35.0467i −0.241321 0.0646618i
\(543\) −129.060 + 64.5295i −0.237680 + 0.118839i
\(544\) 362.411 + 209.238i 0.666196 + 0.384628i
\(545\) 0 0
\(546\) −84.2465 + 17.2394i −0.154298 + 0.0315741i
\(547\) −539.479 144.553i −0.986251 0.264265i −0.270576 0.962699i \(-0.587214\pi\)
−0.715675 + 0.698433i \(0.753881\pi\)
\(548\) 5.77833 + 5.77833i 0.0105444 + 0.0105444i
\(549\) −734.491 88.4973i −1.33787 0.161197i
\(550\) 0 0
\(551\) 129.714 + 224.671i 0.235415 + 0.407751i
\(552\) 23.3050 + 1.39893i 0.0422193 + 0.00253429i
\(553\) −109.976 + 29.4681i −0.198872 + 0.0532876i
\(554\) −212.930 122.935i −0.384349 0.221904i
\(555\) 0 0
\(556\) −440.197 762.444i −0.791722 1.37130i
\(557\) −302.419 + 302.419i −0.542943 + 0.542943i −0.924391 0.381447i \(-0.875426\pi\)
0.381447 + 0.924391i \(0.375426\pi\)
\(558\) −41.3504 289.468i −0.0741046 0.518760i
\(559\) 170.119i 0.304327i
\(560\) 0 0
\(561\) −485.290 + 99.3053i −0.865044 + 0.177015i
\(562\) −6.08041 22.6924i −0.0108192 0.0403780i
\(563\) 874.123 234.221i 1.55262 0.416022i 0.622300 0.782779i \(-0.286198\pi\)
0.930317 + 0.366756i \(0.119532\pi\)
\(564\) −174.696 58.2327i −0.309745 0.103250i
\(565\) 0 0
\(566\) −152.307 −0.269094
\(567\) −3.31241 150.678i −0.00584199 0.265747i
\(568\) −393.780 393.780i −0.693274 0.693274i
\(569\) 194.081 112.053i 0.341092 0.196929i −0.319663 0.947531i \(-0.603570\pi\)
0.660755 + 0.750602i \(0.270236\pi\)
\(570\) 0 0
\(571\) −28.3061 + 49.0275i −0.0495728 + 0.0858626i −0.889747 0.456454i \(-0.849119\pi\)
0.840174 + 0.542317i \(0.182453\pi\)
\(572\) −212.347 792.488i −0.371235 1.38547i
\(573\) 909.774 + 600.687i 1.58774 + 1.04832i
\(574\) −49.7329 + 28.7133i −0.0866426 + 0.0500232i
\(575\) 0 0
\(576\) −115.263 86.4483i −0.200109 0.150084i
\(577\) 450.543 450.543i 0.780838 0.780838i −0.199135 0.979972i \(-0.563813\pi\)
0.979972 + 0.199135i \(0.0638131\pi\)
\(578\) −17.1078 + 63.8471i −0.0295982 + 0.110462i
\(579\) 26.8648 23.8222i 0.0463986 0.0411437i
\(580\) 0 0
\(581\) −48.0806 + 83.2781i −0.0827550 + 0.143336i
\(582\) −68.8692 4.13400i −0.118332 0.00710309i
\(583\) −218.796 + 816.557i −0.375293 + 1.40061i
\(584\) 176.630i 0.302448i
\(585\) 0 0
\(586\) 29.2982 0.0499969
\(587\) −335.371 89.8623i −0.571330 0.153087i −0.0384234 0.999262i \(-0.512234\pi\)
−0.532906 + 0.846174i \(0.678900\pi\)
\(588\) −391.677 258.609i −0.666118 0.439810i
\(589\) 404.606 + 233.599i 0.686937 + 0.396603i
\(590\) 0 0
\(591\) 60.8326 182.495i 0.102932 0.308791i
\(592\) 424.369 + 113.709i 0.716840 + 0.192077i
\(593\) 235.628 + 235.628i 0.397350 + 0.397350i 0.877297 0.479948i \(-0.159344\pi\)
−0.479948 + 0.877297i \(0.659344\pi\)
\(594\) −235.434 + 19.3335i −0.396354 + 0.0325480i
\(595\) 0 0
\(596\) 161.848 + 280.329i 0.271557 + 0.470351i
\(597\) −22.8188 45.6380i −0.0382224 0.0764455i
\(598\) 20.7306 5.55474i 0.0346665 0.00928887i
\(599\) −513.829 296.659i −0.857811 0.495258i 0.00546746 0.999985i \(-0.498260\pi\)
−0.863279 + 0.504727i \(0.831593\pi\)
\(600\) 0 0
\(601\) 269.249 + 466.354i 0.448002 + 0.775963i 0.998256 0.0590349i \(-0.0188023\pi\)
−0.550254 + 0.834998i \(0.685469\pi\)
\(602\) −8.20024 + 8.20024i −0.0136217 + 0.0136217i
\(603\) −279.386 112.144i −0.463326 0.185977i
\(604\) 96.5233i 0.159807i
\(605\) 0 0
\(606\) −89.3962 100.814i −0.147519 0.166360i
\(607\) −105.915 395.280i −0.174489 0.651203i −0.996638 0.0819303i \(-0.973892\pi\)
0.822149 0.569273i \(-0.192775\pi\)
\(608\) −307.999 + 82.5281i −0.506577 + 0.135737i
\(609\) −100.295 + 88.9357i −0.164687 + 0.146036i
\(610\) 0 0
\(611\) −366.364 −0.599614
\(612\) −163.303 + 406.839i −0.266836 + 0.664769i
\(613\) 10.5026 + 10.5026i 0.0171331 + 0.0171331i 0.715621 0.698488i \(-0.246144\pi\)
−0.698488 + 0.715621i \(0.746144\pi\)
\(614\) 26.1641 15.1059i 0.0426126 0.0246024i
\(615\) 0 0
\(616\) 60.5232 104.829i 0.0982520 0.170177i
\(617\) 113.048 + 421.900i 0.183222 + 0.683793i 0.995004 + 0.0998331i \(0.0318309\pi\)
−0.811782 + 0.583960i \(0.801502\pi\)
\(618\) −102.040 + 51.0196i −0.165114 + 0.0825560i
\(619\) −8.91186 + 5.14527i −0.0143972 + 0.00831222i −0.507181 0.861839i \(-0.669313\pi\)
0.492784 + 0.870152i \(0.335979\pi\)
\(620\) 0 0
\(621\) 3.07855 + 37.4890i 0.00495740 + 0.0603688i
\(622\) −229.439 + 229.439i −0.368873 + 0.368873i
\(623\) −54.8585 + 204.735i −0.0880554 + 0.328627i
\(624\) −557.091 185.699i −0.892775 0.297595i
\(625\) 0 0
\(626\) −77.9268 + 134.973i −0.124484 + 0.215612i
\(627\) 207.965 314.975i 0.331682 0.502352i
\(628\) −34.3086 + 128.042i −0.0546316 + 0.203888i
\(629\) 652.537i 1.03742i
\(630\) 0 0
\(631\) 154.559 0.244943 0.122472 0.992472i \(-0.460918\pi\)
0.122472 + 0.992472i \(0.460918\pi\)
\(632\) 330.170 + 88.4689i 0.522421 + 0.139982i
\(633\) 53.5268 891.715i 0.0845606 1.40871i
\(634\) −231.032 133.386i −0.364403 0.210388i
\(635\) 0 0
\(636\) 496.379 + 559.777i 0.780471 + 0.880153i
\(637\) −901.968 241.682i −1.41596 0.379406i
\(638\) 148.565 + 148.565i 0.232860 + 0.232860i
\(639\) 538.341 717.776i 0.842474 1.12328i
\(640\) 0 0
\(641\) −302.816 524.493i −0.472412 0.818242i 0.527089 0.849810i \(-0.323283\pi\)
−0.999502 + 0.0315680i \(0.989950\pi\)
\(642\) −26.0549 + 39.4616i −0.0405839 + 0.0614666i
\(643\) −450.687 + 120.761i −0.700912 + 0.187809i −0.591639 0.806203i \(-0.701519\pi\)
−0.109273 + 0.994012i \(0.534852\pi\)
\(644\) −7.71265 4.45290i −0.0119762 0.00691444i
\(645\) 0 0
\(646\) 57.5346 + 99.6529i 0.0890629 + 0.154261i
\(647\) 117.084 117.084i 0.180965 0.180965i −0.610811 0.791776i \(-0.709157\pi\)
0.791776 + 0.610811i \(0.209157\pi\)
\(648\) −217.571 + 396.732i −0.335757 + 0.612241i
\(649\) 327.378i 0.504434i
\(650\) 0 0
\(651\) −76.3392 + 229.015i −0.117265 + 0.351789i
\(652\) 177.055 + 660.778i 0.271557 + 1.01346i
\(653\) −322.638 + 86.4506i −0.494086 + 0.132390i −0.497254 0.867605i \(-0.665658\pi\)
0.00316798 + 0.999995i \(0.498992\pi\)
\(654\) 52.0918 + 254.565i 0.0796511 + 0.389242i
\(655\) 0 0
\(656\) −392.156 −0.597799
\(657\) 281.715 40.2428i 0.428790 0.0612524i
\(658\) −17.6599 17.6599i −0.0268387 0.0268387i
\(659\) −1062.27 + 613.303i −1.61195 + 0.930657i −0.623027 + 0.782200i \(0.714097\pi\)
−0.988919 + 0.148457i \(0.952569\pi\)
\(660\) 0 0
\(661\) 79.8777 138.352i 0.120844 0.209307i −0.799257 0.600989i \(-0.794773\pi\)
0.920101 + 0.391682i \(0.128107\pi\)
\(662\) −72.8967 272.054i −0.110116 0.410958i
\(663\) −52.2607 + 870.622i −0.0788246 + 1.31316i
\(664\) 250.017 144.347i 0.376532 0.217391i
\(665\) 0 0
\(666\) 37.2254 308.956i 0.0558940 0.463897i
\(667\) 23.6565 23.6565i 0.0354670 0.0354670i
\(668\) 251.566 938.856i 0.376595 1.40547i
\(669\) 19.2257 + 93.9528i 0.0287379 + 0.140438i
\(670\) 0 0
\(671\) 478.648 829.042i 0.713335 1.23553i
\(672\) −73.6815 147.364i −0.109645 0.219292i
\(673\) −12.3181 + 45.9717i −0.0183032 + 0.0683086i −0.974473 0.224503i \(-0.927924\pi\)
0.956170 + 0.292811i \(0.0945908\pi\)
\(674\) 111.675i 0.165690i
\(675\) 0 0
\(676\) −863.996 −1.27810
\(677\) 141.633 + 37.9504i 0.209206 + 0.0560567i 0.361900 0.932217i \(-0.382128\pi\)
−0.152694 + 0.988274i \(0.548795\pi\)
\(678\) 211.228 105.613i 0.311545 0.155771i
\(679\) 49.3279 + 28.4795i 0.0726479 + 0.0419433i
\(680\) 0 0
\(681\) 1149.68 235.260i 1.68822 0.345462i
\(682\) 365.477 + 97.9293i 0.535890 + 0.143591i
\(683\) −882.608 882.608i −1.29225 1.29225i −0.933391 0.358860i \(-0.883165\pi\)
−0.358860 0.933391i \(-0.616835\pi\)
\(684\) −131.215 307.187i −0.191834 0.449104i
\(685\) 0 0
\(686\) −66.0754 114.446i −0.0963198 0.166831i
\(687\) 751.148 + 45.0890i 1.09337 + 0.0656318i
\(688\) −76.4948 + 20.4967i −0.111184 + 0.0297917i
\(689\) 1289.07 + 744.243i 1.87092 + 1.08018i
\(690\) 0 0
\(691\) 253.832 + 439.650i 0.367340 + 0.636252i 0.989149 0.146917i \(-0.0469351\pi\)
−0.621808 + 0.783169i \(0.713602\pi\)
\(692\) −753.047 + 753.047i −1.08822 + 1.08822i
\(693\) 180.987 + 72.6473i 0.261164 + 0.104830i
\(694\) 181.421i 0.261413i
\(695\) 0 0
\(696\) 394.265 80.6788i 0.566473 0.115918i
\(697\) 150.751 + 562.611i 0.216286 + 0.807189i
\(698\) 277.514 74.3597i 0.397585 0.106532i
\(699\) 962.302 + 320.771i 1.37668 + 0.458900i
\(700\) 0 0
\(701\) 194.042 0.276807 0.138403 0.990376i \(-0.455803\pi\)
0.138403 + 0.990376i \(0.455803\pi\)
\(702\) −74.4103 + 409.231i −0.105998 + 0.582950i
\(703\) 351.581 + 351.581i 0.500115 + 0.500115i
\(704\) 161.459 93.2182i 0.229345 0.132412i
\(705\) 0 0
\(706\) −195.614 + 338.813i −0.277073 + 0.479905i
\(707\) 28.7907 + 107.448i 0.0407223 + 0.151978i
\(708\) 241.787 + 159.642i 0.341506 + 0.225483i
\(709\) 414.499 239.311i 0.584625 0.337534i −0.178344 0.983968i \(-0.557074\pi\)
0.762969 + 0.646435i \(0.223741\pi\)
\(710\) 0 0
\(711\) −65.8781 + 546.761i −0.0926555 + 0.769003i
\(712\) 449.958 449.958i 0.631963 0.631963i
\(713\) 15.5936 58.1962i 0.0218705 0.0816216i
\(714\) −44.4858 + 39.4475i −0.0623050 + 0.0552486i
\(715\) 0 0
\(716\) 260.906 451.902i 0.364393 0.631148i
\(717\) −117.043 7.02575i −0.163240 0.00979881i
\(718\) 63.5739 237.261i 0.0885430 0.330447i
\(719\) 443.536i 0.616879i 0.951244 + 0.308439i \(0.0998067\pi\)
−0.951244 + 0.308439i \(0.900193\pi\)
\(720\) 0 0
\(721\) 94.1849 0.130631
\(722\) 177.274 + 47.5005i 0.245532 + 0.0657902i
\(723\) 209.558 + 138.363i 0.289845 + 0.191373i
\(724\) −143.106 82.6224i −0.197660 0.114119i
\(725\) 0 0
\(726\) 10.4245 31.2732i 0.0143588 0.0430760i
\(727\) 280.010 + 75.0285i 0.385158 + 0.103203i 0.446202 0.894932i \(-0.352776\pi\)
−0.0610438 + 0.998135i \(0.519443\pi\)
\(728\) −150.709 150.709i −0.207018 0.207018i
\(729\) −682.338 256.623i −0.935992 0.352021i
\(730\) 0 0
\(731\) 58.8116 + 101.865i 0.0804536 + 0.139350i
\(732\) −378.887 757.781i −0.517605 1.03522i
\(733\) 987.435 264.583i 1.34712 0.360958i 0.488046 0.872818i \(-0.337710\pi\)
0.859069 + 0.511859i \(0.171043\pi\)
\(734\) 340.177 + 196.401i 0.463457 + 0.267577i
\(735\) 0 0
\(736\) 20.5601 + 35.6111i 0.0279349 + 0.0483847i
\(737\) 275.459 275.459i 0.373757 0.373757i
\(738\) 39.2805 + 274.978i 0.0532256 + 0.372599i
\(739\) 153.917i 0.208277i −0.994563 0.104138i \(-0.966791\pi\)
0.994563 0.104138i \(-0.0332085\pi\)
\(740\) 0 0
\(741\) −440.926 497.241i −0.595042 0.671041i
\(742\) 26.2622 + 98.0117i 0.0353938 + 0.132091i
\(743\) 1261.02 337.889i 1.69720 0.454763i 0.724966 0.688784i \(-0.241855\pi\)
0.972231 + 0.234021i \(0.0751886\pi\)
\(744\) 542.254 480.841i 0.728836 0.646291i
\(745\) 0 0
\(746\) 18.2489 0.0244623
\(747\) 287.190 + 365.877i 0.384458 + 0.489795i
\(748\) −401.121 401.121i −0.536258 0.536258i
\(749\) 33.8088 19.5195i 0.0451385 0.0260607i
\(750\) 0 0
\(751\) −728.908 + 1262.51i −0.970583 + 1.68110i −0.276783 + 0.960933i \(0.589268\pi\)
−0.693801 + 0.720167i \(0.744065\pi\)
\(752\) −44.1413 164.737i −0.0586985 0.219066i
\(753\) 313.070 156.533i 0.415763 0.207880i
\(754\) 320.379 184.971i 0.424905 0.245319i
\(755\) 0 0
\(756\) 141.910 98.2432i 0.187712 0.129951i
\(757\) 575.216 575.216i 0.759863 0.759863i −0.216434 0.976297i \(-0.569443\pi\)
0.976297 + 0.216434i \(0.0694426\pi\)
\(758\) 70.9594 264.824i 0.0936140 0.349372i
\(759\) −46.1758 15.3921i −0.0608376 0.0202795i
\(760\) 0 0
\(761\) −506.722 + 877.668i −0.665863 + 1.15331i 0.313187 + 0.949691i \(0.398603\pi\)
−0.979051 + 0.203618i \(0.934730\pi\)
\(762\) 98.4935 149.174i 0.129257 0.195766i
\(763\) 55.5211 207.207i 0.0727668 0.271569i
\(764\) 1248.49i 1.63414i
\(765\) 0 0
\(766\) −2.52556 −0.00329708
\(767\) 556.794 + 149.193i 0.725938 + 0.194515i
\(768\) −6.05728 + 100.910i −0.00788709 + 0.131393i
\(769\) −486.081 280.639i −0.632095 0.364940i 0.149468 0.988767i \(-0.452244\pi\)
−0.781563 + 0.623827i \(0.785577\pi\)
\(770\) 0 0
\(771\) −9.52393 10.7403i −0.0123527 0.0139304i
\(772\) 39.7180 + 10.6424i 0.0514482 + 0.0137855i
\(773\) −445.834 445.834i −0.576758 0.576758i 0.357251 0.934008i \(-0.383714\pi\)
−0.934008 + 0.357251i \(0.883714\pi\)
\(774\) 22.0343 + 51.5847i 0.0284681 + 0.0666469i
\(775\) 0 0
\(776\) −85.5009 148.092i −0.110182 0.190840i
\(777\) −141.556 + 214.394i −0.182183 + 0.275926i
\(778\) 110.446 29.5938i 0.141961 0.0380383i
\(779\) −384.353 221.906i −0.493393 0.284860i
\(780\) 0 0
\(781\) 580.499 + 1005.45i 0.743276 + 1.28739i
\(782\) 10.4929 10.4929i 0.0134180 0.0134180i
\(783\) 218.507 + 610.451i 0.279064 + 0.779630i
\(784\) 434.693i 0.554456i
\(785\) 0 0
\(786\) 3.30320 9.90946i 0.00420254 0.0126075i
\(787\) 362.598 + 1353.23i 0.460734 + 1.71948i 0.670659 + 0.741766i \(0.266011\pi\)
−0.209925 + 0.977717i \(0.567322\pi\)
\(788\) 212.793 57.0176i 0.270041 0.0723573i
\(789\) 58.8245 + 287.466i 0.0745558 + 0.364343i
\(790\) 0 0
\(791\) −194.967 −0.246482
\(792\) −361.511 460.560i −0.456453 0.581515i
\(793\) −1191.88 1191.88i −1.50300 1.50300i
\(794\) 253.828 146.548i 0.319683 0.184569i
\(795\) 0 0
\(796\) 29.2167 50.6049i 0.0367045 0.0635740i
\(797\) 122.829 + 458.403i 0.154114 + 0.575160i 0.999180 + 0.0404981i \(0.0128945\pi\)
−0.845066 + 0.534662i \(0.820439\pi\)
\(798\) 2.71456 45.2225i 0.00340171 0.0566698i
\(799\) −219.374 + 126.655i −0.274560 + 0.158517i
\(800\) 0 0
\(801\) 820.177 + 615.142i 1.02394 + 0.767968i
\(802\) −358.565 + 358.565i −0.447088 + 0.447088i
\(803\) −95.3064 + 355.688i −0.118688 + 0.442949i
\(804\) −69.1175 337.766i −0.0859670 0.420107i
\(805\) 0 0
\(806\) 333.111 576.965i 0.413289 0.715837i
\(807\) −285.594 571.193i −0.353895 0.707798i
\(808\) 86.4352 322.581i 0.106974 0.399234i
\(809\) 806.321i 0.996689i −0.866979 0.498344i \(-0.833941\pi\)
0.866979 0.498344i \(-0.166059\pi\)
\(810\) 0 0
\(811\) −928.637 −1.14505 −0.572526 0.819887i \(-0.694036\pi\)
−0.572526 + 0.819887i \(0.694036\pi\)
\(812\) −148.280 39.7315i −0.182611 0.0489304i
\(813\) 483.642 241.819i 0.594886 0.297440i
\(814\) 348.727 + 201.338i 0.428412 + 0.247344i
\(815\) 0 0
\(816\) −397.776 + 81.3974i −0.487471 + 0.0997517i
\(817\) −86.5709 23.1966i −0.105962 0.0283924i
\(818\) −230.158 230.158i −0.281366 0.281366i
\(819\) 206.036 274.710i 0.251570 0.335422i
\(820\) 0 0
\(821\) −259.589 449.622i −0.316187 0.547652i 0.663502 0.748174i \(-0.269069\pi\)
−0.979689 + 0.200523i \(0.935736\pi\)
\(822\) 5.35116 + 0.321213i 0.00650993 + 0.000390770i
\(823\) −1245.48 + 333.724i −1.51334 + 0.405497i −0.917542 0.397639i \(-0.869830\pi\)
−0.595795 + 0.803136i \(0.703163\pi\)
\(824\) −244.879 141.381i −0.297183 0.171579i
\(825\) 0 0
\(826\) 19.6477 + 34.0307i 0.0237865 + 0.0411994i
\(827\) 380.149 380.149i 0.459672 0.459672i −0.438876 0.898548i \(-0.644623\pi\)
0.898548 + 0.438876i \(0.144623\pi\)
\(828\) −33.8850 + 26.5976i −0.0409239 + 0.0321227i
\(829\) 511.167i 0.616606i 0.951288 + 0.308303i \(0.0997611\pi\)
−0.951288 + 0.308303i \(0.900239\pi\)
\(830\) 0 0
\(831\) 961.890 196.833i 1.15751 0.236862i
\(832\) −84.9628 317.086i −0.102119 0.381113i
\(833\) −623.637 + 167.103i −0.748664 + 0.200604i
\(834\) −547.911 182.639i −0.656968 0.218992i
\(835\) 0 0
\(836\) 432.240 0.517034
\(837\) 890.462 + 755.313i 1.06387 + 0.902405i
\(838\) 265.524 + 265.524i 0.316855 + 0.316855i
\(839\) −889.044 + 513.290i −1.05965 + 0.611788i −0.925335 0.379151i \(-0.876216\pi\)
−0.134313 + 0.990939i \(0.542883\pi\)
\(840\) 0 0
\(841\) −132.163 + 228.913i −0.157150 + 0.272192i
\(842\) 5.84978 + 21.8317i 0.00694749 + 0.0259284i
\(843\) 78.2882 + 51.6905i 0.0928686 + 0.0613173i
\(844\) 885.970 511.515i 1.04973 0.606061i
\(845\) 0 0
\(846\) −111.092 + 47.4527i −0.131314 + 0.0560906i
\(847\) −19.2439 + 19.2439i −0.0227200 + 0.0227200i
\(848\) −179.340 + 669.305i −0.211486 + 0.789275i
\(849\) 455.061 403.523i 0.535996 0.475292i
\(850\) 0 0
\(851\) 32.0597 55.5291i 0.0376730 0.0652516i
\(852\) 1025.66 + 61.5669i 1.20382 + 0.0722616i
\(853\) −360.478 + 1345.32i −0.422600 + 1.57717i 0.346508 + 0.938047i \(0.387367\pi\)
−0.769108 + 0.639119i \(0.779299\pi\)
\(854\) 114.905i 0.134549i
\(855\) 0 0
\(856\) −117.203 −0.136919
\(857\) −319.058 85.4914i −0.372297 0.0997566i 0.0678191 0.997698i \(-0.478396\pi\)
−0.440116 + 0.897941i \(0.645063\pi\)
\(858\) −449.151 296.556i −0.523486 0.345637i
\(859\) 264.795 + 152.879i 0.308259 + 0.177974i 0.646147 0.763213i \(-0.276379\pi\)
−0.337888 + 0.941186i \(0.609713\pi\)
\(860\) 0 0
\(861\) 72.5180 217.551i 0.0842253 0.252673i
\(862\) 374.262 + 100.283i 0.434178 + 0.116338i
\(863\) −386.017 386.017i −0.447297 0.447297i 0.447158 0.894455i \(-0.352436\pi\)
−0.894455 + 0.447158i \(0.852436\pi\)
\(864\) −794.254 + 65.2230i −0.919275 + 0.0754895i
\(865\) 0 0
\(866\) 162.447 + 281.367i 0.187583 + 0.324904i
\(867\) −118.042 236.086i −0.136150 0.272303i
\(868\) −267.035 + 71.5518i −0.307644 + 0.0824329i
\(869\) −617.145 356.309i −0.710179 0.410022i
\(870\) 0 0
\(871\) −342.961 594.025i −0.393755 0.682004i
\(872\) −455.392 + 455.392i −0.522238 + 0.522238i
\(873\) 216.719 170.111i 0.248246 0.194857i
\(874\) 11.3069i 0.0129370i
\(875\) 0 0
\(876\) 216.221 + 243.836i 0.246827 + 0.278352i
\(877\) −108.142 403.592i −0.123309 0.460196i 0.876465 0.481466i \(-0.159896\pi\)
−0.999774 + 0.0212701i \(0.993229\pi\)
\(878\) −366.669 + 98.2488i −0.417619 + 0.111901i
\(879\) −87.5366 + 77.6226i −0.0995865 + 0.0883078i
\(880\) 0 0
\(881\) −1495.93 −1.69799 −0.848993 0.528403i \(-0.822791\pi\)
−0.848993 + 0.528403i \(0.822791\pi\)
\(882\) −304.805 + 43.5413i −0.345584 + 0.0493665i
\(883\) 158.383 + 158.383i 0.179369 + 0.179369i 0.791081 0.611712i \(-0.209519\pi\)
−0.611712 + 0.791081i \(0.709519\pi\)
\(884\) −865.014 + 499.416i −0.978522 + 0.564950i
\(885\) 0 0
\(886\) 75.9157 131.490i 0.0856837 0.148408i
\(887\) −355.206 1325.65i −0.400458 1.49453i −0.812281 0.583266i \(-0.801775\pi\)
0.411823 0.911264i \(-0.364892\pi\)
\(888\) 689.869 344.931i 0.776879 0.388436i
\(889\) −127.805 + 73.7883i −0.143763 + 0.0830014i
\(890\) 0 0
\(891\) 652.204 681.524i 0.731991 0.764898i
\(892\) −77.6576 + 77.6576i −0.0870601 + 0.0870601i
\(893\) 49.9557 186.437i 0.0559415 0.208776i
\(894\) 201.451 + 67.1513i 0.225337 + 0.0751133i
\(895\) 0 0
\(896\) 121.028 209.626i 0.135076 0.233958i
\(897\) −47.2217 + 71.5199i −0.0526440 + 0.0797324i
\(898\) −28.2113 + 105.286i −0.0314157 + 0.117245i
\(899\) 1038.52i 1.15520i
\(900\) 0 0
\(901\) 1029.17 1.14225
\(902\) −347.183 93.0274i −0.384903 0.103135i
\(903\) 2.77482 46.2262i 0.00307288 0.0511918i
\(904\) 506.909 + 292.664i 0.560741 + 0.323744i
\(905\) 0 0
\(906\) −42.0111 47.3767i −0.0463698 0.0522922i
\(907\) −535.743 143.552i −0.590676 0.158271i −0.0489140 0.998803i \(-0.515576\pi\)
−0.541762 + 0.840532i \(0.682243\pi\)
\(908\) 950.276 + 950.276i 1.04656 + 1.04656i
\(909\) 534.193 + 64.3637i 0.587671 + 0.0708072i
\(910\) 0 0
\(911\) −484.409 839.021i −0.531733 0.920989i −0.999314 0.0370382i \(-0.988208\pi\)
0.467581 0.883950i \(-0.345126\pi\)
\(912\) 170.462 258.175i 0.186910 0.283086i
\(913\) −581.361 + 155.775i −0.636759 + 0.170619i
\(914\) 192.995 + 111.426i 0.211154 + 0.121910i
\(915\) 0 0
\(916\) 430.882 + 746.309i 0.470395 + 0.814748i
\(917\) −6.09776 + 6.09776i −0.00664968 + 0.00664968i
\(918\) 96.9190 + 270.766i 0.105576 + 0.294952i
\(919\) 600.903i 0.653866i 0.945048 + 0.326933i \(0.106015\pi\)
−0.945048 + 0.326933i \(0.893985\pi\)
\(920\) 0 0
\(921\) −38.1512 + 114.452i −0.0414237 + 0.124270i
\(922\) 55.6275 + 207.604i 0.0603335 + 0.225168i
\(923\) 1974.59 529.090i 2.13932 0.573229i
\(924\) 44.7745 + 218.806i 0.0484572 + 0.236803i
\(925\) 0 0
\(926\) 187.992 0.203015
\(927\) 169.702 422.780i 0.183066 0.456074i
\(928\) 501.193 + 501.193i 0.540079 + 0.540079i
\(929\) 435.996 251.722i 0.469318 0.270961i −0.246636 0.969108i \(-0.579325\pi\)
0.715954 + 0.698147i \(0.245992\pi\)
\(930\) 0 0
\(931\) 245.976 426.044i 0.264207 0.457619i
\(932\) 300.655 + 1122.06i 0.322591 + 1.20393i
\(933\) 77.6380 1293.39i 0.0832133 1.38627i
\(934\) 65.6305 37.8918i 0.0702682 0.0405694i
\(935\) 0 0
\(936\) −948.056 + 404.960i −1.01288 + 0.432650i
\(937\) −1181.10 + 1181.10i −1.26051 + 1.26051i −0.309660 + 0.950847i \(0.600215\pi\)
−0.950847 + 0.309660i \(0.899785\pi\)
\(938\) 12.1021 45.1656i 0.0129020 0.0481509i
\(939\) −124.770 609.730i −0.132875 0.649339i
\(940\) 0 0
\(941\) −576.616 + 998.729i −0.612770 + 1.06135i 0.378002 + 0.925805i \(0.376611\pi\)
−0.990771 + 0.135543i \(0.956722\pi\)
\(942\) 38.8894 + 77.7795i 0.0412838 + 0.0825684i
\(943\) −14.8131 + 55.2832i −0.0157085 + 0.0586248i
\(944\) 268.341i 0.284259i
\(945\) 0 0
\(946\) −72.5844 −0.0767277
\(947\) −1323.45 354.616i −1.39751 0.374463i −0.520063 0.854128i \(-0.674091\pi\)
−0.877451 + 0.479665i \(0.840758\pi\)
\(948\) −564.098 + 282.046i −0.595040 + 0.297517i
\(949\) 561.512 + 324.189i 0.591688 + 0.341611i
\(950\) 0 0
\(951\) 1043.67 213.566i 1.09744 0.224570i
\(952\) −142.344 38.1409i −0.149521 0.0400640i
\(953\) −77.4456 77.4456i −0.0812650 0.0812650i 0.665306 0.746571i \(-0.268301\pi\)
−0.746571 + 0.665306i \(0.768301\pi\)
\(954\) 487.278 + 58.7110i 0.510773 + 0.0615420i
\(955\) 0 0
\(956\) −67.1397 116.289i −0.0702298 0.121642i
\(957\) −837.486 50.2716i −0.875116 0.0525304i
\(958\) −142.282 + 38.1245i −0.148520 + 0.0397959i
\(959\) −3.83279 2.21286i −0.00399666 0.00230747i
\(960\) 0 0
\(961\) −454.630 787.443i −0.473080 0.819399i
\(962\) 501.352 501.352i 0.521156 0.521156i
\(963\) −26.7032 186.932i −0.0277292 0.194114i
\(964\) 287.577i 0.298316i
\(965\) 0 0
\(966\) −5.72371 + 1.17125i −0.00592517 + 0.00121247i
\(967\) −417.733 1559.00i −0.431989 1.61220i −0.748172 0.663505i \(-0.769068\pi\)
0.316183 0.948698i \(-0.397599\pi\)
\(968\) 78.9205 21.1467i 0.0815295 0.0218458i
\(969\) −435.921 145.309i −0.449867 0.149958i
\(970\) 0 0
\(971\) 158.612 0.163349 0.0816745 0.996659i \(-0.473973\pi\)
0.0816745 + 0.996659i \(0.473973\pi\)
\(972\) −185.304 814.026i −0.190642 0.837475i
\(973\) 337.156 + 337.156i 0.346511 + 0.346511i
\(974\) −607.386 + 350.674i −0.623599 + 0.360035i
\(975\) 0 0
\(976\) 392.332 679.539i 0.401980 0.696249i
\(977\) −2.86555 10.6944i −0.00293301 0.0109461i 0.964444 0.264288i \(-0.0851369\pi\)
−0.967377 + 0.253342i \(0.918470\pi\)
\(978\) 374.503 + 247.269i 0.382927 + 0.252831i
\(979\) −1148.89 + 663.315i −1.17354 + 0.677543i
\(980\) 0 0
\(981\) −830.082 622.571i −0.846159 0.634629i
\(982\) 418.604 418.604i 0.426277 0.426277i
\(983\) −295.182 + 1101.63i −0.300287 + 1.12069i 0.636640 + 0.771161i \(0.280324\pi\)
−0.936927 + 0.349525i \(0.886343\pi\)
\(984\) −515.111 + 456.772i −0.523486 + 0.464199i
\(985\) 0 0
\(986\) 127.892 221.516i 0.129708 0.224661i
\(987\) 99.5518 + 5.97578i 0.100863 + 0.00605449i
\(988\) 196.981 735.142i 0.199373 0.744071i
\(989\) 11.5579i 0.0116864i
\(990\) 0 0
\(991\) −95.8581 −0.0967287 −0.0483643 0.998830i \(-0.515401\pi\)
−0.0483643 + 0.998830i \(0.515401\pi\)
\(992\) 1232.96 + 330.371i 1.24291 + 0.333036i
\(993\) 938.579 + 619.706i 0.945195 + 0.624074i
\(994\) 120.685 + 69.6776i 0.121414 + 0.0700982i
\(995\) 0 0
\(996\) −168.445 + 505.329i −0.169122 + 0.507359i
\(997\) 850.093 + 227.782i 0.852651 + 0.228467i 0.658571 0.752518i \(-0.271161\pi\)
0.194080 + 0.980986i \(0.437828\pi\)
\(998\) 88.7943 + 88.7943i 0.0889723 + 0.0889723i
\(999\) 707.325 + 1021.72i 0.708033 + 1.02274i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 225.3.o.b.193.6 40
5.2 odd 4 inner 225.3.o.b.157.5 40
5.3 odd 4 45.3.k.a.22.6 yes 40
5.4 even 2 45.3.k.a.13.5 yes 40
9.7 even 3 inner 225.3.o.b.43.5 40
15.8 even 4 135.3.l.a.37.5 40
15.14 odd 2 135.3.l.a.118.6 40
45.4 even 6 405.3.g.h.163.6 20
45.7 odd 12 inner 225.3.o.b.7.6 40
45.13 odd 12 405.3.g.h.82.6 20
45.14 odd 6 405.3.g.g.163.5 20
45.23 even 12 405.3.g.g.82.5 20
45.29 odd 6 135.3.l.a.73.5 40
45.34 even 6 45.3.k.a.43.6 yes 40
45.38 even 12 135.3.l.a.127.6 40
45.43 odd 12 45.3.k.a.7.5 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
45.3.k.a.7.5 40 45.43 odd 12
45.3.k.a.13.5 yes 40 5.4 even 2
45.3.k.a.22.6 yes 40 5.3 odd 4
45.3.k.a.43.6 yes 40 45.34 even 6
135.3.l.a.37.5 40 15.8 even 4
135.3.l.a.73.5 40 45.29 odd 6
135.3.l.a.118.6 40 15.14 odd 2
135.3.l.a.127.6 40 45.38 even 12
225.3.o.b.7.6 40 45.7 odd 12 inner
225.3.o.b.43.5 40 9.7 even 3 inner
225.3.o.b.157.5 40 5.2 odd 4 inner
225.3.o.b.193.6 40 1.1 even 1 trivial
405.3.g.g.82.5 20 45.23 even 12
405.3.g.g.163.5 20 45.14 odd 6
405.3.g.h.82.6 20 45.13 odd 12
405.3.g.h.163.6 20 45.4 even 6