Properties

Label 1352.2.i.c.1329.1
Level $1352$
Weight $2$
Character 1352.1329
Analytic conductor $10.796$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1352,2,Mod(529,1352)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1352, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1352.529");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1352 = 2^{3} \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1352.i (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.7957743533\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 104)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 1329.1
Root \(0.500000 - 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 1352.1329
Dual form 1352.2.i.c.529.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.500000 - 0.866025i) q^{3} +1.00000 q^{5} +(2.50000 - 4.33013i) q^{7} +(1.00000 - 1.73205i) q^{9} +(-1.00000 - 1.73205i) q^{11} +(-0.500000 - 0.866025i) q^{15} +(1.50000 - 2.59808i) q^{17} +(-1.00000 + 1.73205i) q^{19} -5.00000 q^{21} +(-2.00000 - 3.46410i) q^{23} -4.00000 q^{25} -5.00000 q^{27} +(3.00000 + 5.19615i) q^{29} +4.00000 q^{31} +(-1.00000 + 1.73205i) q^{33} +(2.50000 - 4.33013i) q^{35} +(5.50000 + 9.52628i) q^{37} +(4.00000 + 6.92820i) q^{41} +(0.500000 - 0.866025i) q^{43} +(1.00000 - 1.73205i) q^{45} -9.00000 q^{47} +(-9.00000 - 15.5885i) q^{49} -3.00000 q^{51} -12.0000 q^{53} +(-1.00000 - 1.73205i) q^{55} +2.00000 q^{57} +(3.00000 - 5.19615i) q^{59} +(-5.00000 - 8.66025i) q^{63} +(3.00000 + 5.19615i) q^{67} +(-2.00000 + 3.46410i) q^{69} +(3.50000 - 6.06218i) q^{71} +2.00000 q^{73} +(2.00000 + 3.46410i) q^{75} -10.0000 q^{77} +12.0000 q^{79} +(-0.500000 - 0.866025i) q^{81} +16.0000 q^{83} +(1.50000 - 2.59808i) q^{85} +(3.00000 - 5.19615i) q^{87} +(-5.00000 - 8.66025i) q^{89} +(-2.00000 - 3.46410i) q^{93} +(-1.00000 + 1.73205i) q^{95} +(-5.00000 + 8.66025i) q^{97} -4.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - q^{3} + 2 q^{5} + 5 q^{7} + 2 q^{9} - 2 q^{11} - q^{15} + 3 q^{17} - 2 q^{19} - 10 q^{21} - 4 q^{23} - 8 q^{25} - 10 q^{27} + 6 q^{29} + 8 q^{31} - 2 q^{33} + 5 q^{35} + 11 q^{37} + 8 q^{41} + q^{43}+ \cdots - 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1352\mathbb{Z}\right)^\times\).

\(n\) \(677\) \(1015\) \(1185\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.500000 0.866025i −0.288675 0.500000i 0.684819 0.728714i \(-0.259881\pi\)
−0.973494 + 0.228714i \(0.926548\pi\)
\(4\) 0 0
\(5\) 1.00000 0.447214 0.223607 0.974679i \(-0.428217\pi\)
0.223607 + 0.974679i \(0.428217\pi\)
\(6\) 0 0
\(7\) 2.50000 4.33013i 0.944911 1.63663i 0.188982 0.981981i \(-0.439481\pi\)
0.755929 0.654654i \(-0.227186\pi\)
\(8\) 0 0
\(9\) 1.00000 1.73205i 0.333333 0.577350i
\(10\) 0 0
\(11\) −1.00000 1.73205i −0.301511 0.522233i 0.674967 0.737848i \(-0.264158\pi\)
−0.976478 + 0.215615i \(0.930824\pi\)
\(12\) 0 0
\(13\) 0 0
\(14\) 0 0
\(15\) −0.500000 0.866025i −0.129099 0.223607i
\(16\) 0 0
\(17\) 1.50000 2.59808i 0.363803 0.630126i −0.624780 0.780801i \(-0.714811\pi\)
0.988583 + 0.150675i \(0.0481447\pi\)
\(18\) 0 0
\(19\) −1.00000 + 1.73205i −0.229416 + 0.397360i −0.957635 0.287984i \(-0.907015\pi\)
0.728219 + 0.685344i \(0.240348\pi\)
\(20\) 0 0
\(21\) −5.00000 −1.09109
\(22\) 0 0
\(23\) −2.00000 3.46410i −0.417029 0.722315i 0.578610 0.815604i \(-0.303595\pi\)
−0.995639 + 0.0932891i \(0.970262\pi\)
\(24\) 0 0
\(25\) −4.00000 −0.800000
\(26\) 0 0
\(27\) −5.00000 −0.962250
\(28\) 0 0
\(29\) 3.00000 + 5.19615i 0.557086 + 0.964901i 0.997738 + 0.0672232i \(0.0214140\pi\)
−0.440652 + 0.897678i \(0.645253\pi\)
\(30\) 0 0
\(31\) 4.00000 0.718421 0.359211 0.933257i \(-0.383046\pi\)
0.359211 + 0.933257i \(0.383046\pi\)
\(32\) 0 0
\(33\) −1.00000 + 1.73205i −0.174078 + 0.301511i
\(34\) 0 0
\(35\) 2.50000 4.33013i 0.422577 0.731925i
\(36\) 0 0
\(37\) 5.50000 + 9.52628i 0.904194 + 1.56611i 0.821995 + 0.569495i \(0.192861\pi\)
0.0821995 + 0.996616i \(0.473806\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 4.00000 + 6.92820i 0.624695 + 1.08200i 0.988600 + 0.150567i \(0.0481100\pi\)
−0.363905 + 0.931436i \(0.618557\pi\)
\(42\) 0 0
\(43\) 0.500000 0.866025i 0.0762493 0.132068i −0.825380 0.564578i \(-0.809039\pi\)
0.901629 + 0.432511i \(0.142372\pi\)
\(44\) 0 0
\(45\) 1.00000 1.73205i 0.149071 0.258199i
\(46\) 0 0
\(47\) −9.00000 −1.31278 −0.656392 0.754420i \(-0.727918\pi\)
−0.656392 + 0.754420i \(0.727918\pi\)
\(48\) 0 0
\(49\) −9.00000 15.5885i −1.28571 2.22692i
\(50\) 0 0
\(51\) −3.00000 −0.420084
\(52\) 0 0
\(53\) −12.0000 −1.64833 −0.824163 0.566352i \(-0.808354\pi\)
−0.824163 + 0.566352i \(0.808354\pi\)
\(54\) 0 0
\(55\) −1.00000 1.73205i −0.134840 0.233550i
\(56\) 0 0
\(57\) 2.00000 0.264906
\(58\) 0 0
\(59\) 3.00000 5.19615i 0.390567 0.676481i −0.601958 0.798528i \(-0.705612\pi\)
0.992524 + 0.122047i \(0.0389457\pi\)
\(60\) 0 0
\(61\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(62\) 0 0
\(63\) −5.00000 8.66025i −0.629941 1.09109i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 3.00000 + 5.19615i 0.366508 + 0.634811i 0.989017 0.147802i \(-0.0472198\pi\)
−0.622509 + 0.782613i \(0.713886\pi\)
\(68\) 0 0
\(69\) −2.00000 + 3.46410i −0.240772 + 0.417029i
\(70\) 0 0
\(71\) 3.50000 6.06218i 0.415374 0.719448i −0.580094 0.814550i \(-0.696984\pi\)
0.995468 + 0.0951014i \(0.0303175\pi\)
\(72\) 0 0
\(73\) 2.00000 0.234082 0.117041 0.993127i \(-0.462659\pi\)
0.117041 + 0.993127i \(0.462659\pi\)
\(74\) 0 0
\(75\) 2.00000 + 3.46410i 0.230940 + 0.400000i
\(76\) 0 0
\(77\) −10.0000 −1.13961
\(78\) 0 0
\(79\) 12.0000 1.35011 0.675053 0.737769i \(-0.264121\pi\)
0.675053 + 0.737769i \(0.264121\pi\)
\(80\) 0 0
\(81\) −0.500000 0.866025i −0.0555556 0.0962250i
\(82\) 0 0
\(83\) 16.0000 1.75623 0.878114 0.478451i \(-0.158802\pi\)
0.878114 + 0.478451i \(0.158802\pi\)
\(84\) 0 0
\(85\) 1.50000 2.59808i 0.162698 0.281801i
\(86\) 0 0
\(87\) 3.00000 5.19615i 0.321634 0.557086i
\(88\) 0 0
\(89\) −5.00000 8.66025i −0.529999 0.917985i −0.999388 0.0349934i \(-0.988859\pi\)
0.469389 0.882992i \(-0.344474\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) −2.00000 3.46410i −0.207390 0.359211i
\(94\) 0 0
\(95\) −1.00000 + 1.73205i −0.102598 + 0.177705i
\(96\) 0 0
\(97\) −5.00000 + 8.66025i −0.507673 + 0.879316i 0.492287 + 0.870433i \(0.336161\pi\)
−0.999961 + 0.00888289i \(0.997172\pi\)
\(98\) 0 0
\(99\) −4.00000 −0.402015
\(100\) 0 0
\(101\) −2.00000 3.46410i −0.199007 0.344691i 0.749199 0.662344i \(-0.230438\pi\)
−0.948207 + 0.317653i \(0.897105\pi\)
\(102\) 0 0
\(103\) −8.00000 −0.788263 −0.394132 0.919054i \(-0.628955\pi\)
−0.394132 + 0.919054i \(0.628955\pi\)
\(104\) 0 0
\(105\) −5.00000 −0.487950
\(106\) 0 0
\(107\) −10.0000 17.3205i −0.966736 1.67444i −0.704875 0.709331i \(-0.748997\pi\)
−0.261861 0.965106i \(-0.584336\pi\)
\(108\) 0 0
\(109\) 5.00000 0.478913 0.239457 0.970907i \(-0.423031\pi\)
0.239457 + 0.970907i \(0.423031\pi\)
\(110\) 0 0
\(111\) 5.50000 9.52628i 0.522037 0.904194i
\(112\) 0 0
\(113\) −1.00000 + 1.73205i −0.0940721 + 0.162938i −0.909221 0.416314i \(-0.863322\pi\)
0.815149 + 0.579252i \(0.196655\pi\)
\(114\) 0 0
\(115\) −2.00000 3.46410i −0.186501 0.323029i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −7.50000 12.9904i −0.687524 1.19083i
\(120\) 0 0
\(121\) 3.50000 6.06218i 0.318182 0.551107i
\(122\) 0 0
\(123\) 4.00000 6.92820i 0.360668 0.624695i
\(124\) 0 0
\(125\) −9.00000 −0.804984
\(126\) 0 0
\(127\) 4.00000 + 6.92820i 0.354943 + 0.614779i 0.987108 0.160055i \(-0.0511671\pi\)
−0.632166 + 0.774833i \(0.717834\pi\)
\(128\) 0 0
\(129\) −1.00000 −0.0880451
\(130\) 0 0
\(131\) 3.00000 0.262111 0.131056 0.991375i \(-0.458163\pi\)
0.131056 + 0.991375i \(0.458163\pi\)
\(132\) 0 0
\(133\) 5.00000 + 8.66025i 0.433555 + 0.750939i
\(134\) 0 0
\(135\) −5.00000 −0.430331
\(136\) 0 0
\(137\) −6.00000 + 10.3923i −0.512615 + 0.887875i 0.487278 + 0.873247i \(0.337990\pi\)
−0.999893 + 0.0146279i \(0.995344\pi\)
\(138\) 0 0
\(139\) −1.50000 + 2.59808i −0.127228 + 0.220366i −0.922602 0.385754i \(-0.873941\pi\)
0.795373 + 0.606120i \(0.207275\pi\)
\(140\) 0 0
\(141\) 4.50000 + 7.79423i 0.378968 + 0.656392i
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 3.00000 + 5.19615i 0.249136 + 0.431517i
\(146\) 0 0
\(147\) −9.00000 + 15.5885i −0.742307 + 1.28571i
\(148\) 0 0
\(149\) 7.00000 12.1244i 0.573462 0.993266i −0.422744 0.906249i \(-0.638933\pi\)
0.996207 0.0870170i \(-0.0277334\pi\)
\(150\) 0 0
\(151\) 5.00000 0.406894 0.203447 0.979086i \(-0.434786\pi\)
0.203447 + 0.979086i \(0.434786\pi\)
\(152\) 0 0
\(153\) −3.00000 5.19615i −0.242536 0.420084i
\(154\) 0 0
\(155\) 4.00000 0.321288
\(156\) 0 0
\(157\) −2.00000 −0.159617 −0.0798087 0.996810i \(-0.525431\pi\)
−0.0798087 + 0.996810i \(0.525431\pi\)
\(158\) 0 0
\(159\) 6.00000 + 10.3923i 0.475831 + 0.824163i
\(160\) 0 0
\(161\) −20.0000 −1.57622
\(162\) 0 0
\(163\) 2.00000 3.46410i 0.156652 0.271329i −0.777007 0.629492i \(-0.783263\pi\)
0.933659 + 0.358162i \(0.116597\pi\)
\(164\) 0 0
\(165\) −1.00000 + 1.73205i −0.0778499 + 0.134840i
\(166\) 0 0
\(167\) 4.00000 + 6.92820i 0.309529 + 0.536120i 0.978259 0.207385i \(-0.0664952\pi\)
−0.668730 + 0.743505i \(0.733162\pi\)
\(168\) 0 0
\(169\) 0 0
\(170\) 0 0
\(171\) 2.00000 + 3.46410i 0.152944 + 0.264906i
\(172\) 0 0
\(173\) 6.00000 10.3923i 0.456172 0.790112i −0.542583 0.840002i \(-0.682554\pi\)
0.998755 + 0.0498898i \(0.0158870\pi\)
\(174\) 0 0
\(175\) −10.0000 + 17.3205i −0.755929 + 1.30931i
\(176\) 0 0
\(177\) −6.00000 −0.450988
\(178\) 0 0
\(179\) −1.50000 2.59808i −0.112115 0.194189i 0.804508 0.593942i \(-0.202429\pi\)
−0.916623 + 0.399753i \(0.869096\pi\)
\(180\) 0 0
\(181\) 16.0000 1.18927 0.594635 0.803996i \(-0.297296\pi\)
0.594635 + 0.803996i \(0.297296\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 5.50000 + 9.52628i 0.404368 + 0.700386i
\(186\) 0 0
\(187\) −6.00000 −0.438763
\(188\) 0 0
\(189\) −12.5000 + 21.6506i −0.909241 + 1.57485i
\(190\) 0 0
\(191\) −5.00000 + 8.66025i −0.361787 + 0.626634i −0.988255 0.152813i \(-0.951167\pi\)
0.626468 + 0.779447i \(0.284500\pi\)
\(192\) 0 0
\(193\) 8.00000 + 13.8564i 0.575853 + 0.997406i 0.995948 + 0.0899262i \(0.0286631\pi\)
−0.420096 + 0.907480i \(0.638004\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 8.50000 + 14.7224i 0.605600 + 1.04893i 0.991956 + 0.126580i \(0.0404001\pi\)
−0.386356 + 0.922350i \(0.626267\pi\)
\(198\) 0 0
\(199\) 9.00000 15.5885i 0.637993 1.10504i −0.347879 0.937539i \(-0.613098\pi\)
0.985873 0.167497i \(-0.0535685\pi\)
\(200\) 0 0
\(201\) 3.00000 5.19615i 0.211604 0.366508i
\(202\) 0 0
\(203\) 30.0000 2.10559
\(204\) 0 0
\(205\) 4.00000 + 6.92820i 0.279372 + 0.483887i
\(206\) 0 0
\(207\) −8.00000 −0.556038
\(208\) 0 0
\(209\) 4.00000 0.276686
\(210\) 0 0
\(211\) 2.50000 + 4.33013i 0.172107 + 0.298098i 0.939156 0.343490i \(-0.111609\pi\)
−0.767049 + 0.641588i \(0.778276\pi\)
\(212\) 0 0
\(213\) −7.00000 −0.479632
\(214\) 0 0
\(215\) 0.500000 0.866025i 0.0340997 0.0590624i
\(216\) 0 0
\(217\) 10.0000 17.3205i 0.678844 1.17579i
\(218\) 0 0
\(219\) −1.00000 1.73205i −0.0675737 0.117041i
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) −8.50000 14.7224i −0.569202 0.985887i −0.996645 0.0818447i \(-0.973919\pi\)
0.427443 0.904042i \(-0.359414\pi\)
\(224\) 0 0
\(225\) −4.00000 + 6.92820i −0.266667 + 0.461880i
\(226\) 0 0
\(227\) −8.00000 + 13.8564i −0.530979 + 0.919682i 0.468368 + 0.883534i \(0.344842\pi\)
−0.999346 + 0.0361484i \(0.988491\pi\)
\(228\) 0 0
\(229\) 15.0000 0.991228 0.495614 0.868543i \(-0.334943\pi\)
0.495614 + 0.868543i \(0.334943\pi\)
\(230\) 0 0
\(231\) 5.00000 + 8.66025i 0.328976 + 0.569803i
\(232\) 0 0
\(233\) 13.0000 0.851658 0.425829 0.904804i \(-0.359982\pi\)
0.425829 + 0.904804i \(0.359982\pi\)
\(234\) 0 0
\(235\) −9.00000 −0.587095
\(236\) 0 0
\(237\) −6.00000 10.3923i −0.389742 0.675053i
\(238\) 0 0
\(239\) 3.00000 0.194054 0.0970269 0.995282i \(-0.469067\pi\)
0.0970269 + 0.995282i \(0.469067\pi\)
\(240\) 0 0
\(241\) 1.00000 1.73205i 0.0644157 0.111571i −0.832019 0.554747i \(-0.812815\pi\)
0.896435 + 0.443176i \(0.146148\pi\)
\(242\) 0 0
\(243\) −8.00000 + 13.8564i −0.513200 + 0.888889i
\(244\) 0 0
\(245\) −9.00000 15.5885i −0.574989 0.995910i
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) −8.00000 13.8564i −0.506979 0.878114i
\(250\) 0 0
\(251\) −4.00000 + 6.92820i −0.252478 + 0.437304i −0.964207 0.265149i \(-0.914579\pi\)
0.711730 + 0.702454i \(0.247912\pi\)
\(252\) 0 0
\(253\) −4.00000 + 6.92820i −0.251478 + 0.435572i
\(254\) 0 0
\(255\) −3.00000 −0.187867
\(256\) 0 0
\(257\) 15.5000 + 26.8468i 0.966863 + 1.67466i 0.704523 + 0.709681i \(0.251161\pi\)
0.262341 + 0.964975i \(0.415506\pi\)
\(258\) 0 0
\(259\) 55.0000 3.41753
\(260\) 0 0
\(261\) 12.0000 0.742781
\(262\) 0 0
\(263\) −10.0000 17.3205i −0.616626 1.06803i −0.990097 0.140386i \(-0.955166\pi\)
0.373470 0.927642i \(-0.378168\pi\)
\(264\) 0 0
\(265\) −12.0000 −0.737154
\(266\) 0 0
\(267\) −5.00000 + 8.66025i −0.305995 + 0.529999i
\(268\) 0 0
\(269\) −8.00000 + 13.8564i −0.487769 + 0.844840i −0.999901 0.0140665i \(-0.995522\pi\)
0.512132 + 0.858906i \(0.328856\pi\)
\(270\) 0 0
\(271\) −3.50000 6.06218i −0.212610 0.368251i 0.739921 0.672694i \(-0.234863\pi\)
−0.952531 + 0.304443i \(0.901530\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 4.00000 + 6.92820i 0.241209 + 0.417786i
\(276\) 0 0
\(277\) 6.00000 10.3923i 0.360505 0.624413i −0.627539 0.778585i \(-0.715938\pi\)
0.988044 + 0.154172i \(0.0492710\pi\)
\(278\) 0 0
\(279\) 4.00000 6.92820i 0.239474 0.414781i
\(280\) 0 0
\(281\) 10.0000 0.596550 0.298275 0.954480i \(-0.403589\pi\)
0.298275 + 0.954480i \(0.403589\pi\)
\(282\) 0 0
\(283\) 10.0000 + 17.3205i 0.594438 + 1.02960i 0.993626 + 0.112728i \(0.0359589\pi\)
−0.399188 + 0.916869i \(0.630708\pi\)
\(284\) 0 0
\(285\) 2.00000 0.118470
\(286\) 0 0
\(287\) 40.0000 2.36113
\(288\) 0 0
\(289\) 4.00000 + 6.92820i 0.235294 + 0.407541i
\(290\) 0 0
\(291\) 10.0000 0.586210
\(292\) 0 0
\(293\) 7.50000 12.9904i 0.438155 0.758906i −0.559393 0.828903i \(-0.688966\pi\)
0.997547 + 0.0699967i \(0.0222989\pi\)
\(294\) 0 0
\(295\) 3.00000 5.19615i 0.174667 0.302532i
\(296\) 0 0
\(297\) 5.00000 + 8.66025i 0.290129 + 0.502519i
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) −2.50000 4.33013i −0.144098 0.249584i
\(302\) 0 0
\(303\) −2.00000 + 3.46410i −0.114897 + 0.199007i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 2.00000 0.114146 0.0570730 0.998370i \(-0.481823\pi\)
0.0570730 + 0.998370i \(0.481823\pi\)
\(308\) 0 0
\(309\) 4.00000 + 6.92820i 0.227552 + 0.394132i
\(310\) 0 0
\(311\) −22.0000 −1.24751 −0.623753 0.781622i \(-0.714393\pi\)
−0.623753 + 0.781622i \(0.714393\pi\)
\(312\) 0 0
\(313\) −9.00000 −0.508710 −0.254355 0.967111i \(-0.581863\pi\)
−0.254355 + 0.967111i \(0.581863\pi\)
\(314\) 0 0
\(315\) −5.00000 8.66025i −0.281718 0.487950i
\(316\) 0 0
\(317\) 2.00000 0.112331 0.0561656 0.998421i \(-0.482113\pi\)
0.0561656 + 0.998421i \(0.482113\pi\)
\(318\) 0 0
\(319\) 6.00000 10.3923i 0.335936 0.581857i
\(320\) 0 0
\(321\) −10.0000 + 17.3205i −0.558146 + 0.966736i
\(322\) 0 0
\(323\) 3.00000 + 5.19615i 0.166924 + 0.289122i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) −2.50000 4.33013i −0.138250 0.239457i
\(328\) 0 0
\(329\) −22.5000 + 38.9711i −1.24047 + 2.14855i
\(330\) 0 0
\(331\) 6.00000 10.3923i 0.329790 0.571213i −0.652680 0.757634i \(-0.726355\pi\)
0.982470 + 0.186421i \(0.0596888\pi\)
\(332\) 0 0
\(333\) 22.0000 1.20559
\(334\) 0 0
\(335\) 3.00000 + 5.19615i 0.163908 + 0.283896i
\(336\) 0 0
\(337\) 15.0000 0.817102 0.408551 0.912735i \(-0.366034\pi\)
0.408551 + 0.912735i \(0.366034\pi\)
\(338\) 0 0
\(339\) 2.00000 0.108625
\(340\) 0 0
\(341\) −4.00000 6.92820i −0.216612 0.375183i
\(342\) 0 0
\(343\) −55.0000 −2.96972
\(344\) 0 0
\(345\) −2.00000 + 3.46410i −0.107676 + 0.186501i
\(346\) 0 0
\(347\) −1.50000 + 2.59808i −0.0805242 + 0.139472i −0.903475 0.428640i \(-0.858993\pi\)
0.822951 + 0.568112i \(0.192326\pi\)
\(348\) 0 0
\(349\) −4.50000 7.79423i −0.240879 0.417215i 0.720086 0.693885i \(-0.244103\pi\)
−0.960965 + 0.276670i \(0.910769\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −14.0000 24.2487i −0.745145 1.29063i −0.950127 0.311863i \(-0.899047\pi\)
0.204982 0.978766i \(-0.434286\pi\)
\(354\) 0 0
\(355\) 3.50000 6.06218i 0.185761 0.321747i
\(356\) 0 0
\(357\) −7.50000 + 12.9904i −0.396942 + 0.687524i
\(358\) 0 0
\(359\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(360\) 0 0
\(361\) 7.50000 + 12.9904i 0.394737 + 0.683704i
\(362\) 0 0
\(363\) −7.00000 −0.367405
\(364\) 0 0
\(365\) 2.00000 0.104685
\(366\) 0 0
\(367\) 9.00000 + 15.5885i 0.469796 + 0.813711i 0.999404 0.0345320i \(-0.0109941\pi\)
−0.529607 + 0.848243i \(0.677661\pi\)
\(368\) 0 0
\(369\) 16.0000 0.832927
\(370\) 0 0
\(371\) −30.0000 + 51.9615i −1.55752 + 2.69771i
\(372\) 0 0
\(373\) 2.00000 3.46410i 0.103556 0.179364i −0.809591 0.586994i \(-0.800311\pi\)
0.913147 + 0.407630i \(0.133645\pi\)
\(374\) 0 0
\(375\) 4.50000 + 7.79423i 0.232379 + 0.402492i
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 12.0000 + 20.7846i 0.616399 + 1.06763i 0.990137 + 0.140100i \(0.0447423\pi\)
−0.373739 + 0.927534i \(0.621924\pi\)
\(380\) 0 0
\(381\) 4.00000 6.92820i 0.204926 0.354943i
\(382\) 0 0
\(383\) 7.50000 12.9904i 0.383232 0.663777i −0.608290 0.793715i \(-0.708144\pi\)
0.991522 + 0.129937i \(0.0414776\pi\)
\(384\) 0 0
\(385\) −10.0000 −0.509647
\(386\) 0 0
\(387\) −1.00000 1.73205i −0.0508329 0.0880451i
\(388\) 0 0
\(389\) −6.00000 −0.304212 −0.152106 0.988364i \(-0.548606\pi\)
−0.152106 + 0.988364i \(0.548606\pi\)
\(390\) 0 0
\(391\) −12.0000 −0.606866
\(392\) 0 0
\(393\) −1.50000 2.59808i −0.0756650 0.131056i
\(394\) 0 0
\(395\) 12.0000 0.603786
\(396\) 0 0
\(397\) 5.00000 8.66025i 0.250943 0.434646i −0.712843 0.701324i \(-0.752593\pi\)
0.963786 + 0.266678i \(0.0859261\pi\)
\(398\) 0 0
\(399\) 5.00000 8.66025i 0.250313 0.433555i
\(400\) 0 0
\(401\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) −0.500000 0.866025i −0.0248452 0.0430331i
\(406\) 0 0
\(407\) 11.0000 19.0526i 0.545250 0.944400i
\(408\) 0 0
\(409\) −2.00000 + 3.46410i −0.0988936 + 0.171289i −0.911227 0.411905i \(-0.864864\pi\)
0.812333 + 0.583193i \(0.198197\pi\)
\(410\) 0 0
\(411\) 12.0000 0.591916
\(412\) 0 0
\(413\) −15.0000 25.9808i −0.738102 1.27843i
\(414\) 0 0
\(415\) 16.0000 0.785409
\(416\) 0 0
\(417\) 3.00000 0.146911
\(418\) 0 0
\(419\) 19.5000 + 33.7750i 0.952637 + 1.65002i 0.739685 + 0.672954i \(0.234975\pi\)
0.212953 + 0.977062i \(0.431692\pi\)
\(420\) 0 0
\(421\) −11.0000 −0.536107 −0.268054 0.963404i \(-0.586380\pi\)
−0.268054 + 0.963404i \(0.586380\pi\)
\(422\) 0 0
\(423\) −9.00000 + 15.5885i −0.437595 + 0.757937i
\(424\) 0 0
\(425\) −6.00000 + 10.3923i −0.291043 + 0.504101i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −5.50000 9.52628i −0.264926 0.458865i 0.702618 0.711567i \(-0.252014\pi\)
−0.967544 + 0.252702i \(0.918681\pi\)
\(432\) 0 0
\(433\) 8.50000 14.7224i 0.408484 0.707515i −0.586236 0.810140i \(-0.699391\pi\)
0.994720 + 0.102625i \(0.0327243\pi\)
\(434\) 0 0
\(435\) 3.00000 5.19615i 0.143839 0.249136i
\(436\) 0 0
\(437\) 8.00000 0.382692
\(438\) 0 0
\(439\) −5.00000 8.66025i −0.238637 0.413331i 0.721686 0.692220i \(-0.243367\pi\)
−0.960323 + 0.278889i \(0.910034\pi\)
\(440\) 0 0
\(441\) −36.0000 −1.71429
\(442\) 0 0
\(443\) −27.0000 −1.28281 −0.641404 0.767203i \(-0.721648\pi\)
−0.641404 + 0.767203i \(0.721648\pi\)
\(444\) 0 0
\(445\) −5.00000 8.66025i −0.237023 0.410535i
\(446\) 0 0
\(447\) −14.0000 −0.662177
\(448\) 0 0
\(449\) −9.00000 + 15.5885i −0.424736 + 0.735665i −0.996396 0.0848262i \(-0.972967\pi\)
0.571660 + 0.820491i \(0.306300\pi\)
\(450\) 0 0
\(451\) 8.00000 13.8564i 0.376705 0.652473i
\(452\) 0 0
\(453\) −2.50000 4.33013i −0.117460 0.203447i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 5.00000 + 8.66025i 0.233890 + 0.405110i 0.958950 0.283577i \(-0.0915211\pi\)
−0.725059 + 0.688686i \(0.758188\pi\)
\(458\) 0 0
\(459\) −7.50000 + 12.9904i −0.350070 + 0.606339i
\(460\) 0 0
\(461\) 1.50000 2.59808i 0.0698620 0.121004i −0.828978 0.559281i \(-0.811077\pi\)
0.898840 + 0.438276i \(0.144411\pi\)
\(462\) 0 0
\(463\) −24.0000 −1.11537 −0.557687 0.830051i \(-0.688311\pi\)
−0.557687 + 0.830051i \(0.688311\pi\)
\(464\) 0 0
\(465\) −2.00000 3.46410i −0.0927478 0.160644i
\(466\) 0 0
\(467\) −20.0000 −0.925490 −0.462745 0.886492i \(-0.653135\pi\)
−0.462745 + 0.886492i \(0.653135\pi\)
\(468\) 0 0
\(469\) 30.0000 1.38527
\(470\) 0 0
\(471\) 1.00000 + 1.73205i 0.0460776 + 0.0798087i
\(472\) 0 0
\(473\) −2.00000 −0.0919601
\(474\) 0 0
\(475\) 4.00000 6.92820i 0.183533 0.317888i
\(476\) 0 0
\(477\) −12.0000 + 20.7846i −0.549442 + 0.951662i
\(478\) 0 0
\(479\) 4.50000 + 7.79423i 0.205610 + 0.356127i 0.950327 0.311253i \(-0.100749\pi\)
−0.744717 + 0.667381i \(0.767415\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 10.0000 + 17.3205i 0.455016 + 0.788110i
\(484\) 0 0
\(485\) −5.00000 + 8.66025i −0.227038 + 0.393242i
\(486\) 0 0
\(487\) 4.00000 6.92820i 0.181257 0.313947i −0.761052 0.648691i \(-0.775317\pi\)
0.942309 + 0.334744i \(0.108650\pi\)
\(488\) 0 0
\(489\) −4.00000 −0.180886
\(490\) 0 0
\(491\) −7.50000 12.9904i −0.338470 0.586248i 0.645675 0.763612i \(-0.276576\pi\)
−0.984145 + 0.177365i \(0.943243\pi\)
\(492\) 0 0
\(493\) 18.0000 0.810679
\(494\) 0 0
\(495\) −4.00000 −0.179787
\(496\) 0 0
\(497\) −17.5000 30.3109i −0.784982 1.35963i
\(498\) 0 0
\(499\) 24.0000 1.07439 0.537194 0.843459i \(-0.319484\pi\)
0.537194 + 0.843459i \(0.319484\pi\)
\(500\) 0 0
\(501\) 4.00000 6.92820i 0.178707 0.309529i
\(502\) 0 0
\(503\) −13.0000 + 22.5167i −0.579641 + 1.00397i 0.415879 + 0.909420i \(0.363474\pi\)
−0.995520 + 0.0945483i \(0.969859\pi\)
\(504\) 0 0
\(505\) −2.00000 3.46410i −0.0889988 0.154150i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 1.00000 + 1.73205i 0.0443242 + 0.0767718i 0.887336 0.461123i \(-0.152553\pi\)
−0.843012 + 0.537895i \(0.819220\pi\)
\(510\) 0 0
\(511\) 5.00000 8.66025i 0.221187 0.383107i
\(512\) 0 0
\(513\) 5.00000 8.66025i 0.220755 0.382360i
\(514\) 0 0
\(515\) −8.00000 −0.352522
\(516\) 0 0
\(517\) 9.00000 + 15.5885i 0.395820 + 0.685580i
\(518\) 0 0
\(519\) −12.0000 −0.526742
\(520\) 0 0
\(521\) 15.0000 0.657162 0.328581 0.944476i \(-0.393430\pi\)
0.328581 + 0.944476i \(0.393430\pi\)
\(522\) 0 0
\(523\) −10.0000 17.3205i −0.437269 0.757373i 0.560208 0.828352i \(-0.310721\pi\)
−0.997478 + 0.0709788i \(0.977388\pi\)
\(524\) 0 0
\(525\) 20.0000 0.872872
\(526\) 0 0
\(527\) 6.00000 10.3923i 0.261364 0.452696i
\(528\) 0 0
\(529\) 3.50000 6.06218i 0.152174 0.263573i
\(530\) 0 0
\(531\) −6.00000 10.3923i −0.260378 0.450988i
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) −10.0000 17.3205i −0.432338 0.748831i
\(536\) 0 0
\(537\) −1.50000 + 2.59808i −0.0647298 + 0.112115i
\(538\) 0 0
\(539\) −18.0000 + 31.1769i −0.775315 + 1.34288i
\(540\) 0 0
\(541\) −9.00000 −0.386940 −0.193470 0.981106i \(-0.561974\pi\)
−0.193470 + 0.981106i \(0.561974\pi\)
\(542\) 0 0
\(543\) −8.00000 13.8564i −0.343313 0.594635i
\(544\) 0 0
\(545\) 5.00000 0.214176
\(546\) 0 0
\(547\) −39.0000 −1.66752 −0.833760 0.552127i \(-0.813816\pi\)
−0.833760 + 0.552127i \(0.813816\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −12.0000 −0.511217
\(552\) 0 0
\(553\) 30.0000 51.9615i 1.27573 2.20963i
\(554\) 0 0
\(555\) 5.50000 9.52628i 0.233462 0.404368i
\(556\) 0 0
\(557\) −11.5000 19.9186i −0.487271 0.843978i 0.512622 0.858614i \(-0.328674\pi\)
−0.999893 + 0.0146368i \(0.995341\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 3.00000 + 5.19615i 0.126660 + 0.219382i
\(562\) 0 0
\(563\) −19.5000 + 33.7750i −0.821827 + 1.42345i 0.0824933 + 0.996592i \(0.473712\pi\)
−0.904320 + 0.426855i \(0.859622\pi\)
\(564\) 0 0
\(565\) −1.00000 + 1.73205i −0.0420703 + 0.0728679i
\(566\) 0 0
\(567\) −5.00000 −0.209980
\(568\) 0 0
\(569\) 8.50000 + 14.7224i 0.356339 + 0.617196i 0.987346 0.158580i \(-0.0506917\pi\)
−0.631008 + 0.775777i \(0.717358\pi\)
\(570\) 0 0
\(571\) 37.0000 1.54840 0.774201 0.632940i \(-0.218152\pi\)
0.774201 + 0.632940i \(0.218152\pi\)
\(572\) 0 0
\(573\) 10.0000 0.417756
\(574\) 0 0
\(575\) 8.00000 + 13.8564i 0.333623 + 0.577852i
\(576\) 0 0
\(577\) 38.0000 1.58196 0.790980 0.611842i \(-0.209571\pi\)
0.790980 + 0.611842i \(0.209571\pi\)
\(578\) 0 0
\(579\) 8.00000 13.8564i 0.332469 0.575853i
\(580\) 0 0
\(581\) 40.0000 69.2820i 1.65948 2.87430i
\(582\) 0 0
\(583\) 12.0000 + 20.7846i 0.496989 + 0.860811i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 6.00000 + 10.3923i 0.247647 + 0.428936i 0.962872 0.269957i \(-0.0870095\pi\)
−0.715226 + 0.698893i \(0.753676\pi\)
\(588\) 0 0
\(589\) −4.00000 + 6.92820i −0.164817 + 0.285472i
\(590\) 0 0
\(591\) 8.50000 14.7224i 0.349643 0.605600i
\(592\) 0 0
\(593\) −2.00000 −0.0821302 −0.0410651 0.999156i \(-0.513075\pi\)
−0.0410651 + 0.999156i \(0.513075\pi\)
\(594\) 0 0
\(595\) −7.50000 12.9904i −0.307470 0.532554i
\(596\) 0 0
\(597\) −18.0000 −0.736691
\(598\) 0 0
\(599\) −2.00000 −0.0817178 −0.0408589 0.999165i \(-0.513009\pi\)
−0.0408589 + 0.999165i \(0.513009\pi\)
\(600\) 0 0
\(601\) 1.50000 + 2.59808i 0.0611863 + 0.105978i 0.894996 0.446074i \(-0.147178\pi\)
−0.833810 + 0.552052i \(0.813845\pi\)
\(602\) 0 0
\(603\) 12.0000 0.488678
\(604\) 0 0
\(605\) 3.50000 6.06218i 0.142295 0.246463i
\(606\) 0 0
\(607\) 5.00000 8.66025i 0.202944 0.351509i −0.746532 0.665350i \(-0.768282\pi\)
0.949476 + 0.313841i \(0.101616\pi\)
\(608\) 0 0
\(609\) −15.0000 25.9808i −0.607831 1.05279i
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) −3.00000 5.19615i −0.121169 0.209871i 0.799060 0.601251i \(-0.205331\pi\)
−0.920229 + 0.391381i \(0.871998\pi\)
\(614\) 0 0
\(615\) 4.00000 6.92820i 0.161296 0.279372i
\(616\) 0 0
\(617\) 16.0000 27.7128i 0.644136 1.11568i −0.340365 0.940294i \(-0.610551\pi\)
0.984500 0.175382i \(-0.0561162\pi\)
\(618\) 0 0
\(619\) −28.0000 −1.12542 −0.562708 0.826656i \(-0.690240\pi\)
−0.562708 + 0.826656i \(0.690240\pi\)
\(620\) 0 0
\(621\) 10.0000 + 17.3205i 0.401286 + 0.695048i
\(622\) 0 0
\(623\) −50.0000 −2.00321
\(624\) 0 0
\(625\) 11.0000 0.440000
\(626\) 0 0
\(627\) −2.00000 3.46410i −0.0798723 0.138343i
\(628\) 0 0
\(629\) 33.0000 1.31580
\(630\) 0 0
\(631\) 7.50000 12.9904i 0.298570 0.517139i −0.677239 0.735763i \(-0.736824\pi\)
0.975809 + 0.218624i \(0.0701569\pi\)
\(632\) 0 0
\(633\) 2.50000 4.33013i 0.0993661 0.172107i
\(634\) 0 0
\(635\) 4.00000 + 6.92820i 0.158735 + 0.274937i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) −7.00000 12.1244i −0.276916 0.479632i
\(640\) 0 0
\(641\) 17.0000 29.4449i 0.671460 1.16300i −0.306031 0.952022i \(-0.599001\pi\)
0.977490 0.210981i \(-0.0676657\pi\)
\(642\) 0 0
\(643\) −13.0000 + 22.5167i −0.512670 + 0.887970i 0.487222 + 0.873278i \(0.338010\pi\)
−0.999892 + 0.0146923i \(0.995323\pi\)
\(644\) 0 0
\(645\) −1.00000 −0.0393750
\(646\) 0 0
\(647\) −21.0000 36.3731i −0.825595 1.42997i −0.901464 0.432855i \(-0.857506\pi\)
0.0758684 0.997118i \(-0.475827\pi\)
\(648\) 0 0
\(649\) −12.0000 −0.471041
\(650\) 0 0
\(651\) −20.0000 −0.783862
\(652\) 0 0
\(653\) −12.0000 20.7846i −0.469596 0.813365i 0.529799 0.848123i \(-0.322267\pi\)
−0.999396 + 0.0347583i \(0.988934\pi\)
\(654\) 0 0
\(655\) 3.00000 0.117220
\(656\) 0 0
\(657\) 2.00000 3.46410i 0.0780274 0.135147i
\(658\) 0 0
\(659\) −14.0000 + 24.2487i −0.545363 + 0.944596i 0.453221 + 0.891398i \(0.350275\pi\)
−0.998584 + 0.0531977i \(0.983059\pi\)
\(660\) 0 0
\(661\) 19.0000 + 32.9090i 0.739014 + 1.28001i 0.952940 + 0.303160i \(0.0980418\pi\)
−0.213925 + 0.976850i \(0.568625\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 5.00000 + 8.66025i 0.193892 + 0.335830i
\(666\) 0 0
\(667\) 12.0000 20.7846i 0.464642 0.804783i
\(668\) 0 0
\(669\) −8.50000 + 14.7224i −0.328629 + 0.569202i
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) −10.5000 18.1865i −0.404745 0.701039i 0.589547 0.807734i \(-0.299306\pi\)
−0.994292 + 0.106695i \(0.965973\pi\)
\(674\) 0 0
\(675\) 20.0000 0.769800
\(676\) 0 0
\(677\) −36.0000 −1.38359 −0.691796 0.722093i \(-0.743180\pi\)
−0.691796 + 0.722093i \(0.743180\pi\)
\(678\) 0 0
\(679\) 25.0000 + 43.3013i 0.959412 + 1.66175i
\(680\) 0 0
\(681\) 16.0000 0.613121
\(682\) 0 0
\(683\) −6.00000 + 10.3923i −0.229584 + 0.397650i −0.957685 0.287819i \(-0.907070\pi\)
0.728101 + 0.685470i \(0.240403\pi\)
\(684\) 0 0
\(685\) −6.00000 + 10.3923i −0.229248 + 0.397070i
\(686\) 0 0
\(687\) −7.50000 12.9904i −0.286143 0.495614i
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 20.0000 + 34.6410i 0.760836 + 1.31781i 0.942420 + 0.334431i \(0.108544\pi\)
−0.181584 + 0.983375i \(0.558123\pi\)
\(692\) 0 0
\(693\) −10.0000 + 17.3205i −0.379869 + 0.657952i
\(694\) 0 0
\(695\) −1.50000 + 2.59808i −0.0568982 + 0.0985506i
\(696\) 0 0
\(697\) 24.0000 0.909065
\(698\) 0 0
\(699\) −6.50000 11.2583i −0.245853 0.425829i
\(700\) 0 0
\(701\) −4.00000 −0.151078 −0.0755390 0.997143i \(-0.524068\pi\)
−0.0755390 + 0.997143i \(0.524068\pi\)
\(702\) 0 0
\(703\) −22.0000 −0.829746
\(704\) 0 0
\(705\) 4.50000 + 7.79423i 0.169480 + 0.293548i
\(706\) 0 0
\(707\) −20.0000 −0.752177
\(708\) 0 0
\(709\) 11.0000 19.0526i 0.413114 0.715534i −0.582115 0.813107i \(-0.697775\pi\)
0.995228 + 0.0975728i \(0.0311079\pi\)
\(710\) 0 0
\(711\) 12.0000 20.7846i 0.450035 0.779484i
\(712\) 0 0
\(713\) −8.00000 13.8564i −0.299602 0.518927i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −1.50000 2.59808i −0.0560185 0.0970269i
\(718\) 0 0
\(719\) 15.0000 25.9808i 0.559406 0.968919i −0.438141 0.898906i \(-0.644363\pi\)
0.997546 0.0700124i \(-0.0223039\pi\)
\(720\) 0 0
\(721\) −20.0000 + 34.6410i −0.744839 + 1.29010i
\(722\) 0 0
\(723\) −2.00000 −0.0743808
\(724\) 0 0
\(725\) −12.0000 20.7846i −0.445669 0.771921i
\(726\) 0 0
\(727\) −14.0000 −0.519231 −0.259616 0.965712i \(-0.583596\pi\)
−0.259616 + 0.965712i \(0.583596\pi\)
\(728\) 0 0
\(729\) 13.0000 0.481481
\(730\) 0 0
\(731\) −1.50000 2.59808i −0.0554795 0.0960933i
\(732\) 0 0
\(733\) −37.0000 −1.36663 −0.683313 0.730125i \(-0.739462\pi\)
−0.683313 + 0.730125i \(0.739462\pi\)
\(734\) 0 0
\(735\) −9.00000 + 15.5885i −0.331970 + 0.574989i
\(736\) 0 0
\(737\) 6.00000 10.3923i 0.221013 0.382805i
\(738\) 0 0
\(739\) 26.0000 + 45.0333i 0.956425 + 1.65658i 0.731072 + 0.682300i \(0.239020\pi\)
0.225354 + 0.974277i \(0.427646\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 14.5000 + 25.1147i 0.531953 + 0.921370i 0.999304 + 0.0372984i \(0.0118752\pi\)
−0.467351 + 0.884072i \(0.654791\pi\)
\(744\) 0 0
\(745\) 7.00000 12.1244i 0.256460 0.444202i
\(746\) 0 0
\(747\) 16.0000 27.7128i 0.585409 1.01396i
\(748\) 0 0
\(749\) −100.000 −3.65392
\(750\) 0 0
\(751\) −16.0000 27.7128i −0.583848 1.01125i −0.995018 0.0996961i \(-0.968213\pi\)
0.411170 0.911559i \(-0.365120\pi\)
\(752\) 0 0
\(753\) 8.00000 0.291536
\(754\) 0 0
\(755\) 5.00000 0.181969
\(756\) 0 0
\(757\) 26.0000 + 45.0333i 0.944986 + 1.63676i 0.755779 + 0.654827i \(0.227258\pi\)
0.189207 + 0.981937i \(0.439408\pi\)
\(758\) 0 0
\(759\) 8.00000 0.290382
\(760\) 0 0
\(761\) 15.0000 25.9808i 0.543750 0.941802i −0.454935 0.890525i \(-0.650337\pi\)
0.998684 0.0512772i \(-0.0163292\pi\)
\(762\) 0 0
\(763\) 12.5000 21.6506i 0.452530 0.783806i
\(764\) 0 0
\(765\) −3.00000 5.19615i −0.108465 0.187867i
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 8.00000 + 13.8564i 0.288487 + 0.499675i 0.973449 0.228904i \(-0.0735143\pi\)
−0.684962 + 0.728579i \(0.740181\pi\)
\(770\) 0 0
\(771\) 15.5000 26.8468i 0.558219 0.966863i
\(772\) 0 0
\(773\) 13.5000 23.3827i 0.485561 0.841017i −0.514301 0.857610i \(-0.671949\pi\)
0.999862 + 0.0165929i \(0.00528194\pi\)
\(774\) 0 0
\(775\) −16.0000 −0.574737
\(776\) 0 0
\(777\) −27.5000 47.6314i −0.986557 1.70877i
\(778\) 0 0
\(779\) −16.0000 −0.573259
\(780\) 0 0
\(781\) −14.0000 −0.500959
\(782\) 0 0
\(783\) −15.0000 25.9808i −0.536056 0.928477i
\(784\) 0 0
\(785\) −2.00000 −0.0713831
\(786\) 0 0
\(787\) −12.0000 + 20.7846i −0.427754 + 0.740891i −0.996673 0.0815020i \(-0.974028\pi\)
0.568919 + 0.822393i \(0.307362\pi\)
\(788\) 0 0
\(789\) −10.0000 + 17.3205i −0.356009 + 0.616626i
\(790\) 0 0
\(791\) 5.00000 + 8.66025i 0.177780 + 0.307923i
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 6.00000 + 10.3923i 0.212798 + 0.368577i
\(796\) 0 0
\(797\) −19.0000 + 32.9090i −0.673015 + 1.16570i 0.304030 + 0.952662i \(0.401668\pi\)
−0.977045 + 0.213033i \(0.931666\pi\)
\(798\) 0 0
\(799\) −13.5000 + 23.3827i −0.477596 + 0.827220i
\(800\) 0 0
\(801\) −20.0000 −0.706665
\(802\) 0 0
\(803\) −2.00000 3.46410i −0.0705785 0.122245i
\(804\) 0 0
\(805\) −20.0000 −0.704907
\(806\) 0 0
\(807\) 16.0000 0.563227
\(808\) 0 0
\(809\) −7.50000 12.9904i −0.263686 0.456717i 0.703533 0.710663i \(-0.251605\pi\)
−0.967219 + 0.253946i \(0.918272\pi\)
\(810\) 0 0
\(811\) 28.0000 0.983213 0.491606 0.870817i \(-0.336410\pi\)
0.491606 + 0.870817i \(0.336410\pi\)
\(812\) 0 0
\(813\) −3.50000 + 6.06218i −0.122750 + 0.212610i
\(814\) 0 0
\(815\) 2.00000 3.46410i 0.0700569 0.121342i
\(816\) 0 0
\(817\) 1.00000 + 1.73205i 0.0349856 + 0.0605968i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −20.5000 35.5070i −0.715455 1.23920i −0.962784 0.270273i \(-0.912886\pi\)
0.247329 0.968932i \(-0.420447\pi\)
\(822\) 0 0
\(823\) 13.0000 22.5167i 0.453152 0.784881i −0.545428 0.838157i \(-0.683633\pi\)
0.998580 + 0.0532760i \(0.0169663\pi\)
\(824\) 0 0
\(825\) 4.00000 6.92820i 0.139262 0.241209i
\(826\) 0 0
\(827\) 10.0000 0.347734 0.173867 0.984769i \(-0.444374\pi\)
0.173867 + 0.984769i \(0.444374\pi\)
\(828\) 0 0
\(829\) 3.00000 + 5.19615i 0.104194 + 0.180470i 0.913409 0.407044i \(-0.133440\pi\)
−0.809214 + 0.587513i \(0.800107\pi\)
\(830\) 0 0
\(831\) −12.0000 −0.416275
\(832\) 0 0
\(833\) −54.0000 −1.87099
\(834\) 0 0
\(835\) 4.00000 + 6.92820i 0.138426 + 0.239760i
\(836\) 0 0
\(837\) −20.0000 −0.691301
\(838\) 0 0
\(839\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(840\) 0 0
\(841\) −3.50000 + 6.06218i −0.120690 + 0.209041i
\(842\) 0 0
\(843\) −5.00000 8.66025i −0.172209 0.298275i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −17.5000 30.3109i −0.601307 1.04149i
\(848\) 0 0
\(849\) 10.0000 17.3205i 0.343199 0.594438i
\(850\) 0 0
\(851\) 22.0000 38.1051i 0.754150 1.30623i
\(852\) 0 0
\(853\) 47.0000 1.60925 0.804625 0.593784i \(-0.202367\pi\)
0.804625 + 0.593784i \(0.202367\pi\)
\(854\) 0 0
\(855\) 2.00000 + 3.46410i 0.0683986 + 0.118470i
\(856\) 0 0
\(857\) 30.0000 1.02478 0.512390 0.858753i \(-0.328760\pi\)
0.512390 + 0.858753i \(0.328760\pi\)
\(858\) 0 0
\(859\) 44.0000 1.50126 0.750630 0.660722i \(-0.229750\pi\)
0.750630 + 0.660722i \(0.229750\pi\)
\(860\) 0 0
\(861\) −20.0000 34.6410i −0.681598 1.18056i
\(862\) 0 0
\(863\) 7.00000 0.238283 0.119141 0.992877i \(-0.461986\pi\)
0.119141 + 0.992877i \(0.461986\pi\)
\(864\) 0 0
\(865\) 6.00000 10.3923i 0.204006 0.353349i
\(866\) 0 0
\(867\) 4.00000 6.92820i 0.135847 0.235294i
\(868\) 0 0
\(869\) −12.0000 20.7846i −0.407072 0.705070i
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 10.0000 + 17.3205i 0.338449 + 0.586210i
\(874\) 0 0
\(875\) −22.5000 + 38.9711i −0.760639 + 1.31747i
\(876\) 0 0
\(877\) −3.50000 + 6.06218i −0.118187 + 0.204705i −0.919049 0.394143i \(-0.871041\pi\)
0.800862 + 0.598848i \(0.204375\pi\)
\(878\) 0 0
\(879\) −15.0000 −0.505937
\(880\) 0 0
\(881\) 13.5000 + 23.3827i 0.454827 + 0.787783i 0.998678 0.0513987i \(-0.0163679\pi\)
−0.543852 + 0.839181i \(0.683035\pi\)
\(882\) 0 0
\(883\) −51.0000 −1.71629 −0.858143 0.513410i \(-0.828382\pi\)
−0.858143 + 0.513410i \(0.828382\pi\)
\(884\) 0 0
\(885\) −6.00000 −0.201688
\(886\) 0 0
\(887\) 24.0000 + 41.5692i 0.805841 + 1.39576i 0.915722 + 0.401813i \(0.131620\pi\)
−0.109881 + 0.993945i \(0.535047\pi\)
\(888\) 0 0
\(889\) 40.0000 1.34156
\(890\) 0 0
\(891\) −1.00000 + 1.73205i −0.0335013 + 0.0580259i
\(892\) 0 0
\(893\) 9.00000 15.5885i 0.301174 0.521648i
\(894\) 0 0
\(895\) −1.50000 2.59808i −0.0501395 0.0868441i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 12.0000 + 20.7846i 0.400222 + 0.693206i
\(900\) 0 0
\(901\) −18.0000 + 31.1769i −0.599667 + 1.03865i
\(902\) 0 0
\(903\) −2.50000 + 4.33013i −0.0831948 + 0.144098i
\(904\) 0 0
\(905\) 16.0000 0.531858
\(906\) 0 0
\(907\) 2.50000 + 4.33013i 0.0830111 + 0.143780i 0.904542 0.426385i \(-0.140213\pi\)
−0.821531 + 0.570164i \(0.806880\pi\)
\(908\) 0 0
\(909\) −8.00000 −0.265343
\(910\) 0 0
\(911\) 26.0000 0.861418 0.430709 0.902491i \(-0.358263\pi\)
0.430709 + 0.902491i \(0.358263\pi\)
\(912\) 0 0
\(913\) −16.0000 27.7128i −0.529523 0.917160i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 7.50000 12.9904i 0.247672 0.428980i
\(918\) 0 0
\(919\) 12.0000 20.7846i 0.395843 0.685621i −0.597365 0.801970i \(-0.703786\pi\)
0.993208 + 0.116348i \(0.0371189\pi\)
\(920\) 0 0
\(921\) −1.00000 1.73205i −0.0329511 0.0570730i
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) −22.0000 38.1051i −0.723356 1.25289i
\(926\) 0 0
\(927\) −8.00000 + 13.8564i −0.262754 + 0.455104i
\(928\) 0 0
\(929\) −10.0000 + 17.3205i −0.328089 + 0.568267i −0.982133 0.188190i \(-0.939738\pi\)
0.654043 + 0.756457i \(0.273071\pi\)
\(930\) 0 0
\(931\) 36.0000 1.17985
\(932\) 0 0
\(933\) 11.0000 + 19.0526i 0.360124 + 0.623753i
\(934\) 0 0
\(935\) −6.00000 −0.196221
\(936\) 0 0
\(937\) 22.0000 0.718709 0.359354 0.933201i \(-0.382997\pi\)
0.359354 + 0.933201i \(0.382997\pi\)
\(938\) 0 0
\(939\) 4.50000 + 7.79423i 0.146852 + 0.254355i
\(940\) 0 0
\(941\) 7.00000 0.228193 0.114097 0.993470i \(-0.463603\pi\)
0.114097 + 0.993470i \(0.463603\pi\)
\(942\) 0 0
\(943\) 16.0000 27.7128i 0.521032 0.902453i
\(944\) 0 0
\(945\) −12.5000 + 21.6506i −0.406625 + 0.704295i
\(946\) 0 0
\(947\) −9.00000 15.5885i −0.292461 0.506557i 0.681930 0.731417i \(-0.261141\pi\)
−0.974391 + 0.224860i \(0.927807\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) −1.00000 1.73205i −0.0324272 0.0561656i
\(952\) 0 0
\(953\) 4.50000 7.79423i 0.145769 0.252480i −0.783890 0.620899i \(-0.786768\pi\)
0.929660 + 0.368419i \(0.120101\pi\)
\(954\) 0 0
\(955\) −5.00000 + 8.66025i −0.161796 + 0.280239i
\(956\) 0 0
\(957\) −12.0000 −0.387905
\(958\) 0 0
\(959\) 30.0000 + 51.9615i 0.968751 + 1.67793i
\(960\) 0 0
\(961\) −15.0000 −0.483871
\(962\) 0 0
\(963\) −40.0000 −1.28898
\(964\) 0 0
\(965\) 8.00000 + 13.8564i 0.257529 + 0.446054i
\(966\) 0 0
\(967\) 13.0000 0.418052 0.209026 0.977910i \(-0.432971\pi\)
0.209026 + 0.977910i \(0.432971\pi\)
\(968\) 0 0
\(969\) 3.00000 5.19615i 0.0963739 0.166924i
\(970\) 0 0
\(971\) −22.5000 + 38.9711i −0.722059 + 1.25064i 0.238114 + 0.971237i \(0.423471\pi\)
−0.960173 + 0.279406i \(0.909862\pi\)
\(972\) 0 0
\(973\) 7.50000 + 12.9904i 0.240439 + 0.416452i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −15.0000 25.9808i −0.479893 0.831198i 0.519841 0.854263i \(-0.325991\pi\)
−0.999734 + 0.0230645i \(0.992658\pi\)
\(978\) 0 0
\(979\) −10.0000 + 17.3205i −0.319601 + 0.553566i
\(980\) 0 0
\(981\) 5.00000 8.66025i 0.159638 0.276501i
\(982\) 0 0
\(983\) −5.00000 −0.159475 −0.0797376 0.996816i \(-0.525408\pi\)
−0.0797376 + 0.996816i \(0.525408\pi\)
\(984\) 0 0
\(985\) 8.50000 + 14.7224i 0.270833 + 0.469096i
\(986\) 0 0
\(987\) 45.0000 1.43237
\(988\) 0 0
\(989\) −4.00000 −0.127193
\(990\) 0 0
\(991\) −29.0000 50.2295i −0.921215 1.59559i −0.797537 0.603269i \(-0.793864\pi\)
−0.123678 0.992322i \(-0.539469\pi\)
\(992\) 0 0
\(993\) −12.0000 −0.380808
\(994\) 0 0
\(995\) 9.00000 15.5885i 0.285319 0.494187i
\(996\) 0 0
\(997\) −7.00000 + 12.1244i −0.221692 + 0.383982i −0.955322 0.295567i \(-0.904491\pi\)
0.733630 + 0.679549i \(0.237825\pi\)
\(998\) 0 0
\(999\) −27.5000 47.6314i −0.870061 1.50699i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1352.2.i.c.1329.1 2
13.2 odd 12 1352.2.f.b.337.1 2
13.3 even 3 1352.2.a.b.1.1 1
13.4 even 6 1352.2.i.b.529.1 2
13.5 odd 4 1352.2.o.a.361.1 4
13.6 odd 12 1352.2.o.a.1161.1 4
13.7 odd 12 1352.2.o.a.1161.2 4
13.8 odd 4 1352.2.o.a.361.2 4
13.9 even 3 inner 1352.2.i.c.529.1 2
13.10 even 6 104.2.a.a.1.1 1
13.11 odd 12 1352.2.f.b.337.2 2
13.12 even 2 1352.2.i.b.1329.1 2
39.23 odd 6 936.2.a.f.1.1 1
52.3 odd 6 2704.2.a.d.1.1 1
52.11 even 12 2704.2.f.e.337.2 2
52.15 even 12 2704.2.f.e.337.1 2
52.23 odd 6 208.2.a.b.1.1 1
65.23 odd 12 2600.2.d.f.1249.2 2
65.49 even 6 2600.2.a.e.1.1 1
65.62 odd 12 2600.2.d.f.1249.1 2
91.62 odd 6 5096.2.a.c.1.1 1
104.75 odd 6 832.2.a.h.1.1 1
104.101 even 6 832.2.a.c.1.1 1
156.23 even 6 1872.2.a.l.1.1 1
208.75 odd 12 3328.2.b.t.1665.2 2
208.101 even 12 3328.2.b.a.1665.1 2
208.179 odd 12 3328.2.b.t.1665.1 2
208.205 even 12 3328.2.b.a.1665.2 2
260.179 odd 6 5200.2.a.bb.1.1 1
312.101 odd 6 7488.2.a.x.1.1 1
312.179 even 6 7488.2.a.u.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
104.2.a.a.1.1 1 13.10 even 6
208.2.a.b.1.1 1 52.23 odd 6
832.2.a.c.1.1 1 104.101 even 6
832.2.a.h.1.1 1 104.75 odd 6
936.2.a.f.1.1 1 39.23 odd 6
1352.2.a.b.1.1 1 13.3 even 3
1352.2.f.b.337.1 2 13.2 odd 12
1352.2.f.b.337.2 2 13.11 odd 12
1352.2.i.b.529.1 2 13.4 even 6
1352.2.i.b.1329.1 2 13.12 even 2
1352.2.i.c.529.1 2 13.9 even 3 inner
1352.2.i.c.1329.1 2 1.1 even 1 trivial
1352.2.o.a.361.1 4 13.5 odd 4
1352.2.o.a.361.2 4 13.8 odd 4
1352.2.o.a.1161.1 4 13.6 odd 12
1352.2.o.a.1161.2 4 13.7 odd 12
1872.2.a.l.1.1 1 156.23 even 6
2600.2.a.e.1.1 1 65.49 even 6
2600.2.d.f.1249.1 2 65.62 odd 12
2600.2.d.f.1249.2 2 65.23 odd 12
2704.2.a.d.1.1 1 52.3 odd 6
2704.2.f.e.337.1 2 52.15 even 12
2704.2.f.e.337.2 2 52.11 even 12
3328.2.b.a.1665.1 2 208.101 even 12
3328.2.b.a.1665.2 2 208.205 even 12
3328.2.b.t.1665.1 2 208.179 odd 12
3328.2.b.t.1665.2 2 208.75 odd 12
5096.2.a.c.1.1 1 91.62 odd 6
5200.2.a.bb.1.1 1 260.179 odd 6
7488.2.a.u.1.1 1 312.179 even 6
7488.2.a.x.1.1 1 312.101 odd 6