Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [2600,2,Mod(1249,2600)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2600, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 1, 0]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("2600.1249");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 2600 = 2^{3} \cdot 5^{2} \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 2600.d (of order \(2\), degree \(1\), not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(20.7611045255\) |
Analytic rank: | \(0\) |
Dimension: | \(2\) |
Coefficient field: | \(\Q(i)\) |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
\( x^{2} + 1 \)
|
Coefficient ring: | \(\Z[a_1, a_2, a_3]\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | no (minimal twist has level 104) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
Embedding invariants
Embedding label | 1249.1 | ||
Root | \(-1.00000i\) of defining polynomial | ||
Character | \(\chi\) | \(=\) | 2600.1249 |
Dual form | 2600.2.d.f.1249.2 |
$q$-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2600\mathbb{Z}\right)^\times\).
\(n\) | \(1301\) | \(1601\) | \(1951\) | \(1977\) |
\(\chi(n)\) | \(1\) | \(1\) | \(1\) | \(-1\) |
Coefficient data
For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
\(n\) | \(a_n\) | \(a_n / n^{(k-1)/2}\) | \( \alpha_n \) | \( \theta_n \) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
\(p\) | \(a_p\) | \(a_p / p^{(k-1)/2}\) | \( \alpha_p\) | \( \theta_p \) | ||||||
\(2\) | 0 | 0 | ||||||||
\(3\) | − 1.00000i | − 0.577350i | −0.957427 | − | 0.288675i | \(-0.906785\pi\) | ||||
0.957427 | − | 0.288675i | \(-0.0932147\pi\) | |||||||
\(4\) | 0 | 0 | ||||||||
\(5\) | 0 | 0 | ||||||||
\(6\) | 0 | 0 | ||||||||
\(7\) | 5.00000i | 1.88982i | 0.327327 | + | 0.944911i | \(0.393852\pi\) | ||||
−0.327327 | + | 0.944911i | \(0.606148\pi\) | |||||||
\(8\) | 0 | 0 | ||||||||
\(9\) | 2.00000 | 0.666667 | ||||||||
\(10\) | 0 | 0 | ||||||||
\(11\) | −2.00000 | −0.603023 | −0.301511 | − | 0.953463i | \(-0.597491\pi\) | ||||
−0.301511 | + | 0.953463i | \(0.597491\pi\) | |||||||
\(12\) | 0 | 0 | ||||||||
\(13\) | 1.00000i | 0.277350i | ||||||||
\(14\) | 0 | 0 | ||||||||
\(15\) | 0 | 0 | ||||||||
\(16\) | 0 | 0 | ||||||||
\(17\) | − 3.00000i | − 0.727607i | −0.931476 | − | 0.363803i | \(-0.881478\pi\) | ||||
0.931476 | − | 0.363803i | \(-0.118522\pi\) | |||||||
\(18\) | 0 | 0 | ||||||||
\(19\) | 2.00000 | 0.458831 | 0.229416 | − | 0.973329i | \(-0.426318\pi\) | ||||
0.229416 | + | 0.973329i | \(0.426318\pi\) | |||||||
\(20\) | 0 | 0 | ||||||||
\(21\) | 5.00000 | 1.09109 | ||||||||
\(22\) | 0 | 0 | ||||||||
\(23\) | − 4.00000i | − 0.834058i | −0.908893 | − | 0.417029i | \(-0.863071\pi\) | ||||
0.908893 | − | 0.417029i | \(-0.136929\pi\) | |||||||
\(24\) | 0 | 0 | ||||||||
\(25\) | 0 | 0 | ||||||||
\(26\) | 0 | 0 | ||||||||
\(27\) | − 5.00000i | − 0.962250i | ||||||||
\(28\) | 0 | 0 | ||||||||
\(29\) | 6.00000 | 1.11417 | 0.557086 | − | 0.830455i | \(-0.311919\pi\) | ||||
0.557086 | + | 0.830455i | \(0.311919\pi\) | |||||||
\(30\) | 0 | 0 | ||||||||
\(31\) | −4.00000 | −0.718421 | −0.359211 | − | 0.933257i | \(-0.616954\pi\) | ||||
−0.359211 | + | 0.933257i | \(0.616954\pi\) | |||||||
\(32\) | 0 | 0 | ||||||||
\(33\) | 2.00000i | 0.348155i | ||||||||
\(34\) | 0 | 0 | ||||||||
\(35\) | 0 | 0 | ||||||||
\(36\) | 0 | 0 | ||||||||
\(37\) | 11.0000i | 1.80839i | 0.427121 | + | 0.904194i | \(0.359528\pi\) | ||||
−0.427121 | + | 0.904194i | \(0.640472\pi\) | |||||||
\(38\) | 0 | 0 | ||||||||
\(39\) | 1.00000 | 0.160128 | ||||||||
\(40\) | 0 | 0 | ||||||||
\(41\) | 8.00000 | 1.24939 | 0.624695 | − | 0.780869i | \(-0.285223\pi\) | ||||
0.624695 | + | 0.780869i | \(0.285223\pi\) | |||||||
\(42\) | 0 | 0 | ||||||||
\(43\) | 1.00000i | 0.152499i | 0.997089 | + | 0.0762493i | \(0.0242945\pi\) | ||||
−0.997089 | + | 0.0762493i | \(0.975706\pi\) | |||||||
\(44\) | 0 | 0 | ||||||||
\(45\) | 0 | 0 | ||||||||
\(46\) | 0 | 0 | ||||||||
\(47\) | 9.00000i | 1.31278i | 0.754420 | + | 0.656392i | \(0.227918\pi\) | ||||
−0.754420 | + | 0.656392i | \(0.772082\pi\) | |||||||
\(48\) | 0 | 0 | ||||||||
\(49\) | −18.0000 | −2.57143 | ||||||||
\(50\) | 0 | 0 | ||||||||
\(51\) | −3.00000 | −0.420084 | ||||||||
\(52\) | 0 | 0 | ||||||||
\(53\) | 12.0000i | 1.64833i | 0.566352 | + | 0.824163i | \(0.308354\pi\) | ||||
−0.566352 | + | 0.824163i | \(0.691646\pi\) | |||||||
\(54\) | 0 | 0 | ||||||||
\(55\) | 0 | 0 | ||||||||
\(56\) | 0 | 0 | ||||||||
\(57\) | − 2.00000i | − 0.264906i | ||||||||
\(58\) | 0 | 0 | ||||||||
\(59\) | −6.00000 | −0.781133 | −0.390567 | − | 0.920575i | \(-0.627721\pi\) | ||||
−0.390567 | + | 0.920575i | \(0.627721\pi\) | |||||||
\(60\) | 0 | 0 | ||||||||
\(61\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(62\) | 0 | 0 | ||||||||
\(63\) | 10.0000i | 1.25988i | ||||||||
\(64\) | 0 | 0 | ||||||||
\(65\) | 0 | 0 | ||||||||
\(66\) | 0 | 0 | ||||||||
\(67\) | 6.00000i | 0.733017i | 0.930415 | + | 0.366508i | \(0.119447\pi\) | ||||
−0.930415 | + | 0.366508i | \(0.880553\pi\) | |||||||
\(68\) | 0 | 0 | ||||||||
\(69\) | −4.00000 | −0.481543 | ||||||||
\(70\) | 0 | 0 | ||||||||
\(71\) | 7.00000 | 0.830747 | 0.415374 | − | 0.909651i | \(-0.363651\pi\) | ||||
0.415374 | + | 0.909651i | \(0.363651\pi\) | |||||||
\(72\) | 0 | 0 | ||||||||
\(73\) | 2.00000i | 0.234082i | 0.993127 | + | 0.117041i | \(0.0373409\pi\) | ||||
−0.993127 | + | 0.117041i | \(0.962659\pi\) | |||||||
\(74\) | 0 | 0 | ||||||||
\(75\) | 0 | 0 | ||||||||
\(76\) | 0 | 0 | ||||||||
\(77\) | − 10.0000i | − 1.13961i | ||||||||
\(78\) | 0 | 0 | ||||||||
\(79\) | −12.0000 | −1.35011 | −0.675053 | − | 0.737769i | \(-0.735879\pi\) | ||||
−0.675053 | + | 0.737769i | \(0.735879\pi\) | |||||||
\(80\) | 0 | 0 | ||||||||
\(81\) | 1.00000 | 0.111111 | ||||||||
\(82\) | 0 | 0 | ||||||||
\(83\) | 16.0000i | 1.75623i | 0.478451 | + | 0.878114i | \(0.341198\pi\) | ||||
−0.478451 | + | 0.878114i | \(0.658802\pi\) | |||||||
\(84\) | 0 | 0 | ||||||||
\(85\) | 0 | 0 | ||||||||
\(86\) | 0 | 0 | ||||||||
\(87\) | − 6.00000i | − 0.643268i | ||||||||
\(88\) | 0 | 0 | ||||||||
\(89\) | 10.0000 | 1.06000 | 0.529999 | − | 0.847998i | \(-0.322192\pi\) | ||||
0.529999 | + | 0.847998i | \(0.322192\pi\) | |||||||
\(90\) | 0 | 0 | ||||||||
\(91\) | −5.00000 | −0.524142 | ||||||||
\(92\) | 0 | 0 | ||||||||
\(93\) | 4.00000i | 0.414781i | ||||||||
\(94\) | 0 | 0 | ||||||||
\(95\) | 0 | 0 | ||||||||
\(96\) | 0 | 0 | ||||||||
\(97\) | − 10.0000i | − 1.01535i | −0.861550 | − | 0.507673i | \(-0.830506\pi\) | ||||
0.861550 | − | 0.507673i | \(-0.169494\pi\) | |||||||
\(98\) | 0 | 0 | ||||||||
\(99\) | −4.00000 | −0.402015 | ||||||||
\(100\) | 0 | 0 | ||||||||
\(101\) | 4.00000 | 0.398015 | 0.199007 | − | 0.979998i | \(-0.436228\pi\) | ||||
0.199007 | + | 0.979998i | \(0.436228\pi\) | |||||||
\(102\) | 0 | 0 | ||||||||
\(103\) | 8.00000i | 0.788263i | 0.919054 | + | 0.394132i | \(0.128955\pi\) | ||||
−0.919054 | + | 0.394132i | \(0.871045\pi\) | |||||||
\(104\) | 0 | 0 | ||||||||
\(105\) | 0 | 0 | ||||||||
\(106\) | 0 | 0 | ||||||||
\(107\) | 20.0000i | 1.93347i | 0.255774 | + | 0.966736i | \(0.417670\pi\) | ||||
−0.255774 | + | 0.966736i | \(0.582330\pi\) | |||||||
\(108\) | 0 | 0 | ||||||||
\(109\) | 5.00000 | 0.478913 | 0.239457 | − | 0.970907i | \(-0.423031\pi\) | ||||
0.239457 | + | 0.970907i | \(0.423031\pi\) | |||||||
\(110\) | 0 | 0 | ||||||||
\(111\) | 11.0000 | 1.04407 | ||||||||
\(112\) | 0 | 0 | ||||||||
\(113\) | − 2.00000i | − 0.188144i | −0.995565 | − | 0.0940721i | \(-0.970012\pi\) | ||||
0.995565 | − | 0.0940721i | \(-0.0299884\pi\) | |||||||
\(114\) | 0 | 0 | ||||||||
\(115\) | 0 | 0 | ||||||||
\(116\) | 0 | 0 | ||||||||
\(117\) | 2.00000i | 0.184900i | ||||||||
\(118\) | 0 | 0 | ||||||||
\(119\) | 15.0000 | 1.37505 | ||||||||
\(120\) | 0 | 0 | ||||||||
\(121\) | −7.00000 | −0.636364 | ||||||||
\(122\) | 0 | 0 | ||||||||
\(123\) | − 8.00000i | − 0.721336i | ||||||||
\(124\) | 0 | 0 | ||||||||
\(125\) | 0 | 0 | ||||||||
\(126\) | 0 | 0 | ||||||||
\(127\) | − 8.00000i | − 0.709885i | −0.934888 | − | 0.354943i | \(-0.884500\pi\) | ||||
0.934888 | − | 0.354943i | \(-0.115500\pi\) | |||||||
\(128\) | 0 | 0 | ||||||||
\(129\) | 1.00000 | 0.0880451 | ||||||||
\(130\) | 0 | 0 | ||||||||
\(131\) | 3.00000 | 0.262111 | 0.131056 | − | 0.991375i | \(-0.458163\pi\) | ||||
0.131056 | + | 0.991375i | \(0.458163\pi\) | |||||||
\(132\) | 0 | 0 | ||||||||
\(133\) | 10.0000i | 0.867110i | ||||||||
\(134\) | 0 | 0 | ||||||||
\(135\) | 0 | 0 | ||||||||
\(136\) | 0 | 0 | ||||||||
\(137\) | − 12.0000i | − 1.02523i | −0.858619 | − | 0.512615i | \(-0.828677\pi\) | ||||
0.858619 | − | 0.512615i | \(-0.171323\pi\) | |||||||
\(138\) | 0 | 0 | ||||||||
\(139\) | −3.00000 | −0.254457 | −0.127228 | − | 0.991873i | \(-0.540608\pi\) | ||||
−0.127228 | + | 0.991873i | \(0.540608\pi\) | |||||||
\(140\) | 0 | 0 | ||||||||
\(141\) | 9.00000 | 0.757937 | ||||||||
\(142\) | 0 | 0 | ||||||||
\(143\) | − 2.00000i | − 0.167248i | ||||||||
\(144\) | 0 | 0 | ||||||||
\(145\) | 0 | 0 | ||||||||
\(146\) | 0 | 0 | ||||||||
\(147\) | 18.0000i | 1.48461i | ||||||||
\(148\) | 0 | 0 | ||||||||
\(149\) | −14.0000 | −1.14692 | −0.573462 | − | 0.819232i | \(-0.694400\pi\) | ||||
−0.573462 | + | 0.819232i | \(0.694400\pi\) | |||||||
\(150\) | 0 | 0 | ||||||||
\(151\) | −5.00000 | −0.406894 | −0.203447 | − | 0.979086i | \(-0.565214\pi\) | ||||
−0.203447 | + | 0.979086i | \(0.565214\pi\) | |||||||
\(152\) | 0 | 0 | ||||||||
\(153\) | − 6.00000i | − 0.485071i | ||||||||
\(154\) | 0 | 0 | ||||||||
\(155\) | 0 | 0 | ||||||||
\(156\) | 0 | 0 | ||||||||
\(157\) | − 2.00000i | − 0.159617i | −0.996810 | − | 0.0798087i | \(-0.974569\pi\) | ||||
0.996810 | − | 0.0798087i | \(-0.0254309\pi\) | |||||||
\(158\) | 0 | 0 | ||||||||
\(159\) | 12.0000 | 0.951662 | ||||||||
\(160\) | 0 | 0 | ||||||||
\(161\) | 20.0000 | 1.57622 | ||||||||
\(162\) | 0 | 0 | ||||||||
\(163\) | − 4.00000i | − 0.313304i | −0.987654 | − | 0.156652i | \(-0.949930\pi\) | ||||
0.987654 | − | 0.156652i | \(-0.0500701\pi\) | |||||||
\(164\) | 0 | 0 | ||||||||
\(165\) | 0 | 0 | ||||||||
\(166\) | 0 | 0 | ||||||||
\(167\) | 8.00000i | 0.619059i | 0.950890 | + | 0.309529i | \(0.100171\pi\) | ||||
−0.950890 | + | 0.309529i | \(0.899829\pi\) | |||||||
\(168\) | 0 | 0 | ||||||||
\(169\) | −1.00000 | −0.0769231 | ||||||||
\(170\) | 0 | 0 | ||||||||
\(171\) | 4.00000 | 0.305888 | ||||||||
\(172\) | 0 | 0 | ||||||||
\(173\) | 12.0000i | 0.912343i | 0.889892 | + | 0.456172i | \(0.150780\pi\) | ||||
−0.889892 | + | 0.456172i | \(0.849220\pi\) | |||||||
\(174\) | 0 | 0 | ||||||||
\(175\) | 0 | 0 | ||||||||
\(176\) | 0 | 0 | ||||||||
\(177\) | 6.00000i | 0.450988i | ||||||||
\(178\) | 0 | 0 | ||||||||
\(179\) | −3.00000 | −0.224231 | −0.112115 | − | 0.993695i | \(-0.535763\pi\) | ||||
−0.112115 | + | 0.993695i | \(0.535763\pi\) | |||||||
\(180\) | 0 | 0 | ||||||||
\(181\) | 16.0000 | 1.18927 | 0.594635 | − | 0.803996i | \(-0.297296\pi\) | ||||
0.594635 | + | 0.803996i | \(0.297296\pi\) | |||||||
\(182\) | 0 | 0 | ||||||||
\(183\) | 0 | 0 | ||||||||
\(184\) | 0 | 0 | ||||||||
\(185\) | 0 | 0 | ||||||||
\(186\) | 0 | 0 | ||||||||
\(187\) | 6.00000i | 0.438763i | ||||||||
\(188\) | 0 | 0 | ||||||||
\(189\) | 25.0000 | 1.81848 | ||||||||
\(190\) | 0 | 0 | ||||||||
\(191\) | 10.0000 | 0.723575 | 0.361787 | − | 0.932261i | \(-0.382167\pi\) | ||||
0.361787 | + | 0.932261i | \(0.382167\pi\) | |||||||
\(192\) | 0 | 0 | ||||||||
\(193\) | − 16.0000i | − 1.15171i | −0.817554 | − | 0.575853i | \(-0.804670\pi\) | ||||
0.817554 | − | 0.575853i | \(-0.195330\pi\) | |||||||
\(194\) | 0 | 0 | ||||||||
\(195\) | 0 | 0 | ||||||||
\(196\) | 0 | 0 | ||||||||
\(197\) | 17.0000i | 1.21120i | 0.795769 | + | 0.605600i | \(0.207067\pi\) | ||||
−0.795769 | + | 0.605600i | \(0.792933\pi\) | |||||||
\(198\) | 0 | 0 | ||||||||
\(199\) | 18.0000 | 1.27599 | 0.637993 | − | 0.770042i | \(-0.279765\pi\) | ||||
0.637993 | + | 0.770042i | \(0.279765\pi\) | |||||||
\(200\) | 0 | 0 | ||||||||
\(201\) | 6.00000 | 0.423207 | ||||||||
\(202\) | 0 | 0 | ||||||||
\(203\) | 30.0000i | 2.10559i | ||||||||
\(204\) | 0 | 0 | ||||||||
\(205\) | 0 | 0 | ||||||||
\(206\) | 0 | 0 | ||||||||
\(207\) | − 8.00000i | − 0.556038i | ||||||||
\(208\) | 0 | 0 | ||||||||
\(209\) | −4.00000 | −0.276686 | ||||||||
\(210\) | 0 | 0 | ||||||||
\(211\) | −5.00000 | −0.344214 | −0.172107 | − | 0.985078i | \(-0.555058\pi\) | ||||
−0.172107 | + | 0.985078i | \(0.555058\pi\) | |||||||
\(212\) | 0 | 0 | ||||||||
\(213\) | − 7.00000i | − 0.479632i | ||||||||
\(214\) | 0 | 0 | ||||||||
\(215\) | 0 | 0 | ||||||||
\(216\) | 0 | 0 | ||||||||
\(217\) | − 20.0000i | − 1.35769i | ||||||||
\(218\) | 0 | 0 | ||||||||
\(219\) | 2.00000 | 0.135147 | ||||||||
\(220\) | 0 | 0 | ||||||||
\(221\) | 3.00000 | 0.201802 | ||||||||
\(222\) | 0 | 0 | ||||||||
\(223\) | 17.0000i | 1.13840i | 0.822198 | + | 0.569202i | \(0.192748\pi\) | ||||
−0.822198 | + | 0.569202i | \(0.807252\pi\) | |||||||
\(224\) | 0 | 0 | ||||||||
\(225\) | 0 | 0 | ||||||||
\(226\) | 0 | 0 | ||||||||
\(227\) | − 16.0000i | − 1.06196i | −0.847385 | − | 0.530979i | \(-0.821824\pi\) | ||||
0.847385 | − | 0.530979i | \(-0.178176\pi\) | |||||||
\(228\) | 0 | 0 | ||||||||
\(229\) | 15.0000 | 0.991228 | 0.495614 | − | 0.868543i | \(-0.334943\pi\) | ||||
0.495614 | + | 0.868543i | \(0.334943\pi\) | |||||||
\(230\) | 0 | 0 | ||||||||
\(231\) | −10.0000 | −0.657952 | ||||||||
\(232\) | 0 | 0 | ||||||||
\(233\) | − 13.0000i | − 0.851658i | −0.904804 | − | 0.425829i | \(-0.859982\pi\) | ||||
0.904804 | − | 0.425829i | \(-0.140018\pi\) | |||||||
\(234\) | 0 | 0 | ||||||||
\(235\) | 0 | 0 | ||||||||
\(236\) | 0 | 0 | ||||||||
\(237\) | 12.0000i | 0.779484i | ||||||||
\(238\) | 0 | 0 | ||||||||
\(239\) | 3.00000 | 0.194054 | 0.0970269 | − | 0.995282i | \(-0.469067\pi\) | ||||
0.0970269 | + | 0.995282i | \(0.469067\pi\) | |||||||
\(240\) | 0 | 0 | ||||||||
\(241\) | 2.00000 | 0.128831 | 0.0644157 | − | 0.997923i | \(-0.479482\pi\) | ||||
0.0644157 | + | 0.997923i | \(0.479482\pi\) | |||||||
\(242\) | 0 | 0 | ||||||||
\(243\) | − 16.0000i | − 1.02640i | ||||||||
\(244\) | 0 | 0 | ||||||||
\(245\) | 0 | 0 | ||||||||
\(246\) | 0 | 0 | ||||||||
\(247\) | 2.00000i | 0.127257i | ||||||||
\(248\) | 0 | 0 | ||||||||
\(249\) | 16.0000 | 1.01396 | ||||||||
\(250\) | 0 | 0 | ||||||||
\(251\) | 8.00000 | 0.504956 | 0.252478 | − | 0.967603i | \(-0.418755\pi\) | ||||
0.252478 | + | 0.967603i | \(0.418755\pi\) | |||||||
\(252\) | 0 | 0 | ||||||||
\(253\) | 8.00000i | 0.502956i | ||||||||
\(254\) | 0 | 0 | ||||||||
\(255\) | 0 | 0 | ||||||||
\(256\) | 0 | 0 | ||||||||
\(257\) | − 31.0000i | − 1.93373i | −0.255294 | − | 0.966863i | \(-0.582172\pi\) | ||||
0.255294 | − | 0.966863i | \(-0.417828\pi\) | |||||||
\(258\) | 0 | 0 | ||||||||
\(259\) | −55.0000 | −3.41753 | ||||||||
\(260\) | 0 | 0 | ||||||||
\(261\) | 12.0000 | 0.742781 | ||||||||
\(262\) | 0 | 0 | ||||||||
\(263\) | − 20.0000i | − 1.23325i | −0.787256 | − | 0.616626i | \(-0.788499\pi\) | ||||
0.787256 | − | 0.616626i | \(-0.211501\pi\) | |||||||
\(264\) | 0 | 0 | ||||||||
\(265\) | 0 | 0 | ||||||||
\(266\) | 0 | 0 | ||||||||
\(267\) | − 10.0000i | − 0.611990i | ||||||||
\(268\) | 0 | 0 | ||||||||
\(269\) | −16.0000 | −0.975537 | −0.487769 | − | 0.872973i | \(-0.662189\pi\) | ||||
−0.487769 | + | 0.872973i | \(0.662189\pi\) | |||||||
\(270\) | 0 | 0 | ||||||||
\(271\) | −7.00000 | −0.425220 | −0.212610 | − | 0.977137i | \(-0.568196\pi\) | ||||
−0.212610 | + | 0.977137i | \(0.568196\pi\) | |||||||
\(272\) | 0 | 0 | ||||||||
\(273\) | 5.00000i | 0.302614i | ||||||||
\(274\) | 0 | 0 | ||||||||
\(275\) | 0 | 0 | ||||||||
\(276\) | 0 | 0 | ||||||||
\(277\) | − 12.0000i | − 0.721010i | −0.932757 | − | 0.360505i | \(-0.882604\pi\) | ||||
0.932757 | − | 0.360505i | \(-0.117396\pi\) | |||||||
\(278\) | 0 | 0 | ||||||||
\(279\) | −8.00000 | −0.478947 | ||||||||
\(280\) | 0 | 0 | ||||||||
\(281\) | −10.0000 | −0.596550 | −0.298275 | − | 0.954480i | \(-0.596411\pi\) | ||||
−0.298275 | + | 0.954480i | \(0.596411\pi\) | |||||||
\(282\) | 0 | 0 | ||||||||
\(283\) | 20.0000i | 1.18888i | 0.804141 | + | 0.594438i | \(0.202626\pi\) | ||||
−0.804141 | + | 0.594438i | \(0.797374\pi\) | |||||||
\(284\) | 0 | 0 | ||||||||
\(285\) | 0 | 0 | ||||||||
\(286\) | 0 | 0 | ||||||||
\(287\) | 40.0000i | 2.36113i | ||||||||
\(288\) | 0 | 0 | ||||||||
\(289\) | 8.00000 | 0.470588 | ||||||||
\(290\) | 0 | 0 | ||||||||
\(291\) | −10.0000 | −0.586210 | ||||||||
\(292\) | 0 | 0 | ||||||||
\(293\) | − 15.0000i | − 0.876309i | −0.898900 | − | 0.438155i | \(-0.855632\pi\) | ||||
0.898900 | − | 0.438155i | \(-0.144368\pi\) | |||||||
\(294\) | 0 | 0 | ||||||||
\(295\) | 0 | 0 | ||||||||
\(296\) | 0 | 0 | ||||||||
\(297\) | 10.0000i | 0.580259i | ||||||||
\(298\) | 0 | 0 | ||||||||
\(299\) | 4.00000 | 0.231326 | ||||||||
\(300\) | 0 | 0 | ||||||||
\(301\) | −5.00000 | −0.288195 | ||||||||
\(302\) | 0 | 0 | ||||||||
\(303\) | − 4.00000i | − 0.229794i | ||||||||
\(304\) | 0 | 0 | ||||||||
\(305\) | 0 | 0 | ||||||||
\(306\) | 0 | 0 | ||||||||
\(307\) | − 2.00000i | − 0.114146i | −0.998370 | − | 0.0570730i | \(-0.981823\pi\) | ||||
0.998370 | − | 0.0570730i | \(-0.0181768\pi\) | |||||||
\(308\) | 0 | 0 | ||||||||
\(309\) | 8.00000 | 0.455104 | ||||||||
\(310\) | 0 | 0 | ||||||||
\(311\) | −22.0000 | −1.24751 | −0.623753 | − | 0.781622i | \(-0.714393\pi\) | ||||
−0.623753 | + | 0.781622i | \(0.714393\pi\) | |||||||
\(312\) | 0 | 0 | ||||||||
\(313\) | 9.00000i | 0.508710i | 0.967111 | + | 0.254355i | \(0.0818632\pi\) | ||||
−0.967111 | + | 0.254355i | \(0.918137\pi\) | |||||||
\(314\) | 0 | 0 | ||||||||
\(315\) | 0 | 0 | ||||||||
\(316\) | 0 | 0 | ||||||||
\(317\) | − 2.00000i | − 0.112331i | −0.998421 | − | 0.0561656i | \(-0.982113\pi\) | ||||
0.998421 | − | 0.0561656i | \(-0.0178875\pi\) | |||||||
\(318\) | 0 | 0 | ||||||||
\(319\) | −12.0000 | −0.671871 | ||||||||
\(320\) | 0 | 0 | ||||||||
\(321\) | 20.0000 | 1.11629 | ||||||||
\(322\) | 0 | 0 | ||||||||
\(323\) | − 6.00000i | − 0.333849i | ||||||||
\(324\) | 0 | 0 | ||||||||
\(325\) | 0 | 0 | ||||||||
\(326\) | 0 | 0 | ||||||||
\(327\) | − 5.00000i | − 0.276501i | ||||||||
\(328\) | 0 | 0 | ||||||||
\(329\) | −45.0000 | −2.48093 | ||||||||
\(330\) | 0 | 0 | ||||||||
\(331\) | 12.0000 | 0.659580 | 0.329790 | − | 0.944054i | \(-0.393022\pi\) | ||||
0.329790 | + | 0.944054i | \(0.393022\pi\) | |||||||
\(332\) | 0 | 0 | ||||||||
\(333\) | 22.0000i | 1.20559i | ||||||||
\(334\) | 0 | 0 | ||||||||
\(335\) | 0 | 0 | ||||||||
\(336\) | 0 | 0 | ||||||||
\(337\) | 15.0000i | 0.817102i | 0.912735 | + | 0.408551i | \(0.133966\pi\) | ||||
−0.912735 | + | 0.408551i | \(0.866034\pi\) | |||||||
\(338\) | 0 | 0 | ||||||||
\(339\) | −2.00000 | −0.108625 | ||||||||
\(340\) | 0 | 0 | ||||||||
\(341\) | 8.00000 | 0.433224 | ||||||||
\(342\) | 0 | 0 | ||||||||
\(343\) | − 55.0000i | − 2.96972i | ||||||||
\(344\) | 0 | 0 | ||||||||
\(345\) | 0 | 0 | ||||||||
\(346\) | 0 | 0 | ||||||||
\(347\) | 3.00000i | 0.161048i | 0.996753 | + | 0.0805242i | \(0.0256594\pi\) | ||||
−0.996753 | + | 0.0805242i | \(0.974341\pi\) | |||||||
\(348\) | 0 | 0 | ||||||||
\(349\) | 9.00000 | 0.481759 | 0.240879 | − | 0.970555i | \(-0.422564\pi\) | ||||
0.240879 | + | 0.970555i | \(0.422564\pi\) | |||||||
\(350\) | 0 | 0 | ||||||||
\(351\) | 5.00000 | 0.266880 | ||||||||
\(352\) | 0 | 0 | ||||||||
\(353\) | 28.0000i | 1.49029i | 0.666903 | + | 0.745145i | \(0.267620\pi\) | ||||
−0.666903 | + | 0.745145i | \(0.732380\pi\) | |||||||
\(354\) | 0 | 0 | ||||||||
\(355\) | 0 | 0 | ||||||||
\(356\) | 0 | 0 | ||||||||
\(357\) | − 15.0000i | − 0.793884i | ||||||||
\(358\) | 0 | 0 | ||||||||
\(359\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(360\) | 0 | 0 | ||||||||
\(361\) | −15.0000 | −0.789474 | ||||||||
\(362\) | 0 | 0 | ||||||||
\(363\) | 7.00000i | 0.367405i | ||||||||
\(364\) | 0 | 0 | ||||||||
\(365\) | 0 | 0 | ||||||||
\(366\) | 0 | 0 | ||||||||
\(367\) | − 18.0000i | − 0.939592i | −0.882775 | − | 0.469796i | \(-0.844327\pi\) | ||||
0.882775 | − | 0.469796i | \(-0.155673\pi\) | |||||||
\(368\) | 0 | 0 | ||||||||
\(369\) | 16.0000 | 0.832927 | ||||||||
\(370\) | 0 | 0 | ||||||||
\(371\) | −60.0000 | −3.11504 | ||||||||
\(372\) | 0 | 0 | ||||||||
\(373\) | 4.00000i | 0.207112i | 0.994624 | + | 0.103556i | \(0.0330221\pi\) | ||||
−0.994624 | + | 0.103556i | \(0.966978\pi\) | |||||||
\(374\) | 0 | 0 | ||||||||
\(375\) | 0 | 0 | ||||||||
\(376\) | 0 | 0 | ||||||||
\(377\) | 6.00000i | 0.309016i | ||||||||
\(378\) | 0 | 0 | ||||||||
\(379\) | −24.0000 | −1.23280 | −0.616399 | − | 0.787434i | \(-0.711409\pi\) | ||||
−0.616399 | + | 0.787434i | \(0.711409\pi\) | |||||||
\(380\) | 0 | 0 | ||||||||
\(381\) | −8.00000 | −0.409852 | ||||||||
\(382\) | 0 | 0 | ||||||||
\(383\) | − 15.0000i | − 0.766464i | −0.923652 | − | 0.383232i | \(-0.874811\pi\) | ||||
0.923652 | − | 0.383232i | \(-0.125189\pi\) | |||||||
\(384\) | 0 | 0 | ||||||||
\(385\) | 0 | 0 | ||||||||
\(386\) | 0 | 0 | ||||||||
\(387\) | 2.00000i | 0.101666i | ||||||||
\(388\) | 0 | 0 | ||||||||
\(389\) | 6.00000 | 0.304212 | 0.152106 | − | 0.988364i | \(-0.451394\pi\) | ||||
0.152106 | + | 0.988364i | \(0.451394\pi\) | |||||||
\(390\) | 0 | 0 | ||||||||
\(391\) | −12.0000 | −0.606866 | ||||||||
\(392\) | 0 | 0 | ||||||||
\(393\) | − 3.00000i | − 0.151330i | ||||||||
\(394\) | 0 | 0 | ||||||||
\(395\) | 0 | 0 | ||||||||
\(396\) | 0 | 0 | ||||||||
\(397\) | 10.0000i | 0.501886i | 0.968002 | + | 0.250943i | \(0.0807406\pi\) | ||||
−0.968002 | + | 0.250943i | \(0.919259\pi\) | |||||||
\(398\) | 0 | 0 | ||||||||
\(399\) | 10.0000 | 0.500626 | ||||||||
\(400\) | 0 | 0 | ||||||||
\(401\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(402\) | 0 | 0 | ||||||||
\(403\) | − 4.00000i | − 0.199254i | ||||||||
\(404\) | 0 | 0 | ||||||||
\(405\) | 0 | 0 | ||||||||
\(406\) | 0 | 0 | ||||||||
\(407\) | − 22.0000i | − 1.09050i | ||||||||
\(408\) | 0 | 0 | ||||||||
\(409\) | 4.00000 | 0.197787 | 0.0988936 | − | 0.995098i | \(-0.468470\pi\) | ||||
0.0988936 | + | 0.995098i | \(0.468470\pi\) | |||||||
\(410\) | 0 | 0 | ||||||||
\(411\) | −12.0000 | −0.591916 | ||||||||
\(412\) | 0 | 0 | ||||||||
\(413\) | − 30.0000i | − 1.47620i | ||||||||
\(414\) | 0 | 0 | ||||||||
\(415\) | 0 | 0 | ||||||||
\(416\) | 0 | 0 | ||||||||
\(417\) | 3.00000i | 0.146911i | ||||||||
\(418\) | 0 | 0 | ||||||||
\(419\) | 39.0000 | 1.90527 | 0.952637 | − | 0.304109i | \(-0.0983586\pi\) | ||||
0.952637 | + | 0.304109i | \(0.0983586\pi\) | |||||||
\(420\) | 0 | 0 | ||||||||
\(421\) | 11.0000 | 0.536107 | 0.268054 | − | 0.963404i | \(-0.413620\pi\) | ||||
0.268054 | + | 0.963404i | \(0.413620\pi\) | |||||||
\(422\) | 0 | 0 | ||||||||
\(423\) | 18.0000i | 0.875190i | ||||||||
\(424\) | 0 | 0 | ||||||||
\(425\) | 0 | 0 | ||||||||
\(426\) | 0 | 0 | ||||||||
\(427\) | 0 | 0 | ||||||||
\(428\) | 0 | 0 | ||||||||
\(429\) | −2.00000 | −0.0965609 | ||||||||
\(430\) | 0 | 0 | ||||||||
\(431\) | −11.0000 | −0.529851 | −0.264926 | − | 0.964269i | \(-0.585347\pi\) | ||||
−0.264926 | + | 0.964269i | \(0.585347\pi\) | |||||||
\(432\) | 0 | 0 | ||||||||
\(433\) | 17.0000i | 0.816968i | 0.912766 | + | 0.408484i | \(0.133942\pi\) | ||||
−0.912766 | + | 0.408484i | \(0.866058\pi\) | |||||||
\(434\) | 0 | 0 | ||||||||
\(435\) | 0 | 0 | ||||||||
\(436\) | 0 | 0 | ||||||||
\(437\) | − 8.00000i | − 0.382692i | ||||||||
\(438\) | 0 | 0 | ||||||||
\(439\) | −10.0000 | −0.477274 | −0.238637 | − | 0.971109i | \(-0.576701\pi\) | ||||
−0.238637 | + | 0.971109i | \(0.576701\pi\) | |||||||
\(440\) | 0 | 0 | ||||||||
\(441\) | −36.0000 | −1.71429 | ||||||||
\(442\) | 0 | 0 | ||||||||
\(443\) | 27.0000i | 1.28281i | 0.767203 | + | 0.641404i | \(0.221648\pi\) | ||||
−0.767203 | + | 0.641404i | \(0.778352\pi\) | |||||||
\(444\) | 0 | 0 | ||||||||
\(445\) | 0 | 0 | ||||||||
\(446\) | 0 | 0 | ||||||||
\(447\) | 14.0000i | 0.662177i | ||||||||
\(448\) | 0 | 0 | ||||||||
\(449\) | 18.0000 | 0.849473 | 0.424736 | − | 0.905317i | \(-0.360367\pi\) | ||||
0.424736 | + | 0.905317i | \(0.360367\pi\) | |||||||
\(450\) | 0 | 0 | ||||||||
\(451\) | −16.0000 | −0.753411 | ||||||||
\(452\) | 0 | 0 | ||||||||
\(453\) | 5.00000i | 0.234920i | ||||||||
\(454\) | 0 | 0 | ||||||||
\(455\) | 0 | 0 | ||||||||
\(456\) | 0 | 0 | ||||||||
\(457\) | 10.0000i | 0.467780i | 0.972263 | + | 0.233890i | \(0.0751456\pi\) | ||||
−0.972263 | + | 0.233890i | \(0.924854\pi\) | |||||||
\(458\) | 0 | 0 | ||||||||
\(459\) | −15.0000 | −0.700140 | ||||||||
\(460\) | 0 | 0 | ||||||||
\(461\) | 3.00000 | 0.139724 | 0.0698620 | − | 0.997557i | \(-0.477744\pi\) | ||||
0.0698620 | + | 0.997557i | \(0.477744\pi\) | |||||||
\(462\) | 0 | 0 | ||||||||
\(463\) | − 24.0000i | − 1.11537i | −0.830051 | − | 0.557687i | \(-0.811689\pi\) | ||||
0.830051 | − | 0.557687i | \(-0.188311\pi\) | |||||||
\(464\) | 0 | 0 | ||||||||
\(465\) | 0 | 0 | ||||||||
\(466\) | 0 | 0 | ||||||||
\(467\) | − 20.0000i | − 0.925490i | −0.886492 | − | 0.462745i | \(-0.846865\pi\) | ||||
0.886492 | − | 0.462745i | \(-0.153135\pi\) | |||||||
\(468\) | 0 | 0 | ||||||||
\(469\) | −30.0000 | −1.38527 | ||||||||
\(470\) | 0 | 0 | ||||||||
\(471\) | −2.00000 | −0.0921551 | ||||||||
\(472\) | 0 | 0 | ||||||||
\(473\) | − 2.00000i | − 0.0919601i | ||||||||
\(474\) | 0 | 0 | ||||||||
\(475\) | 0 | 0 | ||||||||
\(476\) | 0 | 0 | ||||||||
\(477\) | 24.0000i | 1.09888i | ||||||||
\(478\) | 0 | 0 | ||||||||
\(479\) | −9.00000 | −0.411220 | −0.205610 | − | 0.978634i | \(-0.565918\pi\) | ||||
−0.205610 | + | 0.978634i | \(0.565918\pi\) | |||||||
\(480\) | 0 | 0 | ||||||||
\(481\) | −11.0000 | −0.501557 | ||||||||
\(482\) | 0 | 0 | ||||||||
\(483\) | − 20.0000i | − 0.910032i | ||||||||
\(484\) | 0 | 0 | ||||||||
\(485\) | 0 | 0 | ||||||||
\(486\) | 0 | 0 | ||||||||
\(487\) | 8.00000i | 0.362515i | 0.983436 | + | 0.181257i | \(0.0580167\pi\) | ||||
−0.983436 | + | 0.181257i | \(0.941983\pi\) | |||||||
\(488\) | 0 | 0 | ||||||||
\(489\) | −4.00000 | −0.180886 | ||||||||
\(490\) | 0 | 0 | ||||||||
\(491\) | 15.0000 | 0.676941 | 0.338470 | − | 0.940977i | \(-0.390091\pi\) | ||||
0.338470 | + | 0.940977i | \(0.390091\pi\) | |||||||
\(492\) | 0 | 0 | ||||||||
\(493\) | − 18.0000i | − 0.810679i | ||||||||
\(494\) | 0 | 0 | ||||||||
\(495\) | 0 | 0 | ||||||||
\(496\) | 0 | 0 | ||||||||
\(497\) | 35.0000i | 1.56996i | ||||||||
\(498\) | 0 | 0 | ||||||||
\(499\) | 24.0000 | 1.07439 | 0.537194 | − | 0.843459i | \(-0.319484\pi\) | ||||
0.537194 | + | 0.843459i | \(0.319484\pi\) | |||||||
\(500\) | 0 | 0 | ||||||||
\(501\) | 8.00000 | 0.357414 | ||||||||
\(502\) | 0 | 0 | ||||||||
\(503\) | − 26.0000i | − 1.15928i | −0.814872 | − | 0.579641i | \(-0.803193\pi\) | ||||
0.814872 | − | 0.579641i | \(-0.196807\pi\) | |||||||
\(504\) | 0 | 0 | ||||||||
\(505\) | 0 | 0 | ||||||||
\(506\) | 0 | 0 | ||||||||
\(507\) | 1.00000i | 0.0444116i | ||||||||
\(508\) | 0 | 0 | ||||||||
\(509\) | −2.00000 | −0.0886484 | −0.0443242 | − | 0.999017i | \(-0.514113\pi\) | ||||
−0.0443242 | + | 0.999017i | \(0.514113\pi\) | |||||||
\(510\) | 0 | 0 | ||||||||
\(511\) | −10.0000 | −0.442374 | ||||||||
\(512\) | 0 | 0 | ||||||||
\(513\) | − 10.0000i | − 0.441511i | ||||||||
\(514\) | 0 | 0 | ||||||||
\(515\) | 0 | 0 | ||||||||
\(516\) | 0 | 0 | ||||||||
\(517\) | − 18.0000i | − 0.791639i | ||||||||
\(518\) | 0 | 0 | ||||||||
\(519\) | 12.0000 | 0.526742 | ||||||||
\(520\) | 0 | 0 | ||||||||
\(521\) | 15.0000 | 0.657162 | 0.328581 | − | 0.944476i | \(-0.393430\pi\) | ||||
0.328581 | + | 0.944476i | \(0.393430\pi\) | |||||||
\(522\) | 0 | 0 | ||||||||
\(523\) | − 20.0000i | − 0.874539i | −0.899331 | − | 0.437269i | \(-0.855946\pi\) | ||||
0.899331 | − | 0.437269i | \(-0.144054\pi\) | |||||||
\(524\) | 0 | 0 | ||||||||
\(525\) | 0 | 0 | ||||||||
\(526\) | 0 | 0 | ||||||||
\(527\) | 12.0000i | 0.522728i | ||||||||
\(528\) | 0 | 0 | ||||||||
\(529\) | 7.00000 | 0.304348 | ||||||||
\(530\) | 0 | 0 | ||||||||
\(531\) | −12.0000 | −0.520756 | ||||||||
\(532\) | 0 | 0 | ||||||||
\(533\) | 8.00000i | 0.346518i | ||||||||
\(534\) | 0 | 0 | ||||||||
\(535\) | 0 | 0 | ||||||||
\(536\) | 0 | 0 | ||||||||
\(537\) | 3.00000i | 0.129460i | ||||||||
\(538\) | 0 | 0 | ||||||||
\(539\) | 36.0000 | 1.55063 | ||||||||
\(540\) | 0 | 0 | ||||||||
\(541\) | 9.00000 | 0.386940 | 0.193470 | − | 0.981106i | \(-0.438026\pi\) | ||||
0.193470 | + | 0.981106i | \(0.438026\pi\) | |||||||
\(542\) | 0 | 0 | ||||||||
\(543\) | − 16.0000i | − 0.686626i | ||||||||
\(544\) | 0 | 0 | ||||||||
\(545\) | 0 | 0 | ||||||||
\(546\) | 0 | 0 | ||||||||
\(547\) | − 39.0000i | − 1.66752i | −0.552127 | − | 0.833760i | \(-0.686184\pi\) | ||||
0.552127 | − | 0.833760i | \(-0.313816\pi\) | |||||||
\(548\) | 0 | 0 | ||||||||
\(549\) | 0 | 0 | ||||||||
\(550\) | 0 | 0 | ||||||||
\(551\) | 12.0000 | 0.511217 | ||||||||
\(552\) | 0 | 0 | ||||||||
\(553\) | − 60.0000i | − 2.55146i | ||||||||
\(554\) | 0 | 0 | ||||||||
\(555\) | 0 | 0 | ||||||||
\(556\) | 0 | 0 | ||||||||
\(557\) | − 23.0000i | − 0.974541i | −0.873251 | − | 0.487271i | \(-0.837993\pi\) | ||||
0.873251 | − | 0.487271i | \(-0.162007\pi\) | |||||||
\(558\) | 0 | 0 | ||||||||
\(559\) | −1.00000 | −0.0422955 | ||||||||
\(560\) | 0 | 0 | ||||||||
\(561\) | 6.00000 | 0.253320 | ||||||||
\(562\) | 0 | 0 | ||||||||
\(563\) | − 39.0000i | − 1.64365i | −0.569737 | − | 0.821827i | \(-0.692955\pi\) | ||||
0.569737 | − | 0.821827i | \(-0.307045\pi\) | |||||||
\(564\) | 0 | 0 | ||||||||
\(565\) | 0 | 0 | ||||||||
\(566\) | 0 | 0 | ||||||||
\(567\) | 5.00000i | 0.209980i | ||||||||
\(568\) | 0 | 0 | ||||||||
\(569\) | 17.0000 | 0.712677 | 0.356339 | − | 0.934357i | \(-0.384025\pi\) | ||||
0.356339 | + | 0.934357i | \(0.384025\pi\) | |||||||
\(570\) | 0 | 0 | ||||||||
\(571\) | 37.0000 | 1.54840 | 0.774201 | − | 0.632940i | \(-0.218152\pi\) | ||||
0.774201 | + | 0.632940i | \(0.218152\pi\) | |||||||
\(572\) | 0 | 0 | ||||||||
\(573\) | − 10.0000i | − 0.417756i | ||||||||
\(574\) | 0 | 0 | ||||||||
\(575\) | 0 | 0 | ||||||||
\(576\) | 0 | 0 | ||||||||
\(577\) | − 38.0000i | − 1.58196i | −0.611842 | − | 0.790980i | \(-0.709571\pi\) | ||||
0.611842 | − | 0.790980i | \(-0.290429\pi\) | |||||||
\(578\) | 0 | 0 | ||||||||
\(579\) | −16.0000 | −0.664937 | ||||||||
\(580\) | 0 | 0 | ||||||||
\(581\) | −80.0000 | −3.31896 | ||||||||
\(582\) | 0 | 0 | ||||||||
\(583\) | − 24.0000i | − 0.993978i | ||||||||
\(584\) | 0 | 0 | ||||||||
\(585\) | 0 | 0 | ||||||||
\(586\) | 0 | 0 | ||||||||
\(587\) | 12.0000i | 0.495293i | 0.968850 | + | 0.247647i | \(0.0796572\pi\) | ||||
−0.968850 | + | 0.247647i | \(0.920343\pi\) | |||||||
\(588\) | 0 | 0 | ||||||||
\(589\) | −8.00000 | −0.329634 | ||||||||
\(590\) | 0 | 0 | ||||||||
\(591\) | 17.0000 | 0.699287 | ||||||||
\(592\) | 0 | 0 | ||||||||
\(593\) | − 2.00000i | − 0.0821302i | −0.999156 | − | 0.0410651i | \(-0.986925\pi\) | ||||
0.999156 | − | 0.0410651i | \(-0.0130751\pi\) | |||||||
\(594\) | 0 | 0 | ||||||||
\(595\) | 0 | 0 | ||||||||
\(596\) | 0 | 0 | ||||||||
\(597\) | − 18.0000i | − 0.736691i | ||||||||
\(598\) | 0 | 0 | ||||||||
\(599\) | 2.00000 | 0.0817178 | 0.0408589 | − | 0.999165i | \(-0.486991\pi\) | ||||
0.0408589 | + | 0.999165i | \(0.486991\pi\) | |||||||
\(600\) | 0 | 0 | ||||||||
\(601\) | −3.00000 | −0.122373 | −0.0611863 | − | 0.998126i | \(-0.519488\pi\) | ||||
−0.0611863 | + | 0.998126i | \(0.519488\pi\) | |||||||
\(602\) | 0 | 0 | ||||||||
\(603\) | 12.0000i | 0.488678i | ||||||||
\(604\) | 0 | 0 | ||||||||
\(605\) | 0 | 0 | ||||||||
\(606\) | 0 | 0 | ||||||||
\(607\) | − 10.0000i | − 0.405887i | −0.979190 | − | 0.202944i | \(-0.934949\pi\) | ||||
0.979190 | − | 0.202944i | \(-0.0650509\pi\) | |||||||
\(608\) | 0 | 0 | ||||||||
\(609\) | 30.0000 | 1.21566 | ||||||||
\(610\) | 0 | 0 | ||||||||
\(611\) | −9.00000 | −0.364101 | ||||||||
\(612\) | 0 | 0 | ||||||||
\(613\) | 6.00000i | 0.242338i | 0.992632 | + | 0.121169i | \(0.0386643\pi\) | ||||
−0.992632 | + | 0.121169i | \(0.961336\pi\) | |||||||
\(614\) | 0 | 0 | ||||||||
\(615\) | 0 | 0 | ||||||||
\(616\) | 0 | 0 | ||||||||
\(617\) | 32.0000i | 1.28827i | 0.764911 | + | 0.644136i | \(0.222783\pi\) | ||||
−0.764911 | + | 0.644136i | \(0.777217\pi\) | |||||||
\(618\) | 0 | 0 | ||||||||
\(619\) | −28.0000 | −1.12542 | −0.562708 | − | 0.826656i | \(-0.690240\pi\) | ||||
−0.562708 | + | 0.826656i | \(0.690240\pi\) | |||||||
\(620\) | 0 | 0 | ||||||||
\(621\) | −20.0000 | −0.802572 | ||||||||
\(622\) | 0 | 0 | ||||||||
\(623\) | 50.0000i | 2.00321i | ||||||||
\(624\) | 0 | 0 | ||||||||
\(625\) | 0 | 0 | ||||||||
\(626\) | 0 | 0 | ||||||||
\(627\) | 4.00000i | 0.159745i | ||||||||
\(628\) | 0 | 0 | ||||||||
\(629\) | 33.0000 | 1.31580 | ||||||||
\(630\) | 0 | 0 | ||||||||
\(631\) | 15.0000 | 0.597141 | 0.298570 | − | 0.954388i | \(-0.403490\pi\) | ||||
0.298570 | + | 0.954388i | \(0.403490\pi\) | |||||||
\(632\) | 0 | 0 | ||||||||
\(633\) | 5.00000i | 0.198732i | ||||||||
\(634\) | 0 | 0 | ||||||||
\(635\) | 0 | 0 | ||||||||
\(636\) | 0 | 0 | ||||||||
\(637\) | − 18.0000i | − 0.713186i | ||||||||
\(638\) | 0 | 0 | ||||||||
\(639\) | 14.0000 | 0.553831 | ||||||||
\(640\) | 0 | 0 | ||||||||
\(641\) | −34.0000 | −1.34292 | −0.671460 | − | 0.741041i | \(-0.734332\pi\) | ||||
−0.671460 | + | 0.741041i | \(0.734332\pi\) | |||||||
\(642\) | 0 | 0 | ||||||||
\(643\) | 26.0000i | 1.02534i | 0.858586 | + | 0.512670i | \(0.171344\pi\) | ||||
−0.858586 | + | 0.512670i | \(0.828656\pi\) | |||||||
\(644\) | 0 | 0 | ||||||||
\(645\) | 0 | 0 | ||||||||
\(646\) | 0 | 0 | ||||||||
\(647\) | 42.0000i | 1.65119i | 0.564263 | + | 0.825595i | \(0.309160\pi\) | ||||
−0.564263 | + | 0.825595i | \(0.690840\pi\) | |||||||
\(648\) | 0 | 0 | ||||||||
\(649\) | 12.0000 | 0.471041 | ||||||||
\(650\) | 0 | 0 | ||||||||
\(651\) | −20.0000 | −0.783862 | ||||||||
\(652\) | 0 | 0 | ||||||||
\(653\) | − 24.0000i | − 0.939193i | −0.882881 | − | 0.469596i | \(-0.844399\pi\) | ||||
0.882881 | − | 0.469596i | \(-0.155601\pi\) | |||||||
\(654\) | 0 | 0 | ||||||||
\(655\) | 0 | 0 | ||||||||
\(656\) | 0 | 0 | ||||||||
\(657\) | 4.00000i | 0.156055i | ||||||||
\(658\) | 0 | 0 | ||||||||
\(659\) | −28.0000 | −1.09073 | −0.545363 | − | 0.838200i | \(-0.683608\pi\) | ||||
−0.545363 | + | 0.838200i | \(0.683608\pi\) | |||||||
\(660\) | 0 | 0 | ||||||||
\(661\) | 38.0000 | 1.47803 | 0.739014 | − | 0.673690i | \(-0.235292\pi\) | ||||
0.739014 | + | 0.673690i | \(0.235292\pi\) | |||||||
\(662\) | 0 | 0 | ||||||||
\(663\) | − 3.00000i | − 0.116510i | ||||||||
\(664\) | 0 | 0 | ||||||||
\(665\) | 0 | 0 | ||||||||
\(666\) | 0 | 0 | ||||||||
\(667\) | − 24.0000i | − 0.929284i | ||||||||
\(668\) | 0 | 0 | ||||||||
\(669\) | 17.0000 | 0.657258 | ||||||||
\(670\) | 0 | 0 | ||||||||
\(671\) | 0 | 0 | ||||||||
\(672\) | 0 | 0 | ||||||||
\(673\) | − 21.0000i | − 0.809491i | −0.914429 | − | 0.404745i | \(-0.867360\pi\) | ||||
0.914429 | − | 0.404745i | \(-0.132640\pi\) | |||||||
\(674\) | 0 | 0 | ||||||||
\(675\) | 0 | 0 | ||||||||
\(676\) | 0 | 0 | ||||||||
\(677\) | − 36.0000i | − 1.38359i | −0.722093 | − | 0.691796i | \(-0.756820\pi\) | ||||
0.722093 | − | 0.691796i | \(-0.243180\pi\) | |||||||
\(678\) | 0 | 0 | ||||||||
\(679\) | 50.0000 | 1.91882 | ||||||||
\(680\) | 0 | 0 | ||||||||
\(681\) | −16.0000 | −0.613121 | ||||||||
\(682\) | 0 | 0 | ||||||||
\(683\) | 12.0000i | 0.459167i | 0.973289 | + | 0.229584i | \(0.0737364\pi\) | ||||
−0.973289 | + | 0.229584i | \(0.926264\pi\) | |||||||
\(684\) | 0 | 0 | ||||||||
\(685\) | 0 | 0 | ||||||||
\(686\) | 0 | 0 | ||||||||
\(687\) | − 15.0000i | − 0.572286i | ||||||||
\(688\) | 0 | 0 | ||||||||
\(689\) | −12.0000 | −0.457164 | ||||||||
\(690\) | 0 | 0 | ||||||||
\(691\) | 40.0000 | 1.52167 | 0.760836 | − | 0.648944i | \(-0.224789\pi\) | ||||
0.760836 | + | 0.648944i | \(0.224789\pi\) | |||||||
\(692\) | 0 | 0 | ||||||||
\(693\) | − 20.0000i | − 0.759737i | ||||||||
\(694\) | 0 | 0 | ||||||||
\(695\) | 0 | 0 | ||||||||
\(696\) | 0 | 0 | ||||||||
\(697\) | − 24.0000i | − 0.909065i | ||||||||
\(698\) | 0 | 0 | ||||||||
\(699\) | −13.0000 | −0.491705 | ||||||||
\(700\) | 0 | 0 | ||||||||
\(701\) | −4.00000 | −0.151078 | −0.0755390 | − | 0.997143i | \(-0.524068\pi\) | ||||
−0.0755390 | + | 0.997143i | \(0.524068\pi\) | |||||||
\(702\) | 0 | 0 | ||||||||
\(703\) | 22.0000i | 0.829746i | ||||||||
\(704\) | 0 | 0 | ||||||||
\(705\) | 0 | 0 | ||||||||
\(706\) | 0 | 0 | ||||||||
\(707\) | 20.0000i | 0.752177i | ||||||||
\(708\) | 0 | 0 | ||||||||
\(709\) | −22.0000 | −0.826227 | −0.413114 | − | 0.910679i | \(-0.635559\pi\) | ||||
−0.413114 | + | 0.910679i | \(0.635559\pi\) | |||||||
\(710\) | 0 | 0 | ||||||||
\(711\) | −24.0000 | −0.900070 | ||||||||
\(712\) | 0 | 0 | ||||||||
\(713\) | 16.0000i | 0.599205i | ||||||||
\(714\) | 0 | 0 | ||||||||
\(715\) | 0 | 0 | ||||||||
\(716\) | 0 | 0 | ||||||||
\(717\) | − 3.00000i | − 0.112037i | ||||||||
\(718\) | 0 | 0 | ||||||||
\(719\) | 30.0000 | 1.11881 | 0.559406 | − | 0.828894i | \(-0.311029\pi\) | ||||
0.559406 | + | 0.828894i | \(0.311029\pi\) | |||||||
\(720\) | 0 | 0 | ||||||||
\(721\) | −40.0000 | −1.48968 | ||||||||
\(722\) | 0 | 0 | ||||||||
\(723\) | − 2.00000i | − 0.0743808i | ||||||||
\(724\) | 0 | 0 | ||||||||
\(725\) | 0 | 0 | ||||||||
\(726\) | 0 | 0 | ||||||||
\(727\) | − 14.0000i | − 0.519231i | −0.965712 | − | 0.259616i | \(-0.916404\pi\) | ||||
0.965712 | − | 0.259616i | \(-0.0835959\pi\) | |||||||
\(728\) | 0 | 0 | ||||||||
\(729\) | −13.0000 | −0.481481 | ||||||||
\(730\) | 0 | 0 | ||||||||
\(731\) | 3.00000 | 0.110959 | ||||||||
\(732\) | 0 | 0 | ||||||||
\(733\) | − 37.0000i | − 1.36663i | −0.730125 | − | 0.683313i | \(-0.760538\pi\) | ||||
0.730125 | − | 0.683313i | \(-0.239462\pi\) | |||||||
\(734\) | 0 | 0 | ||||||||
\(735\) | 0 | 0 | ||||||||
\(736\) | 0 | 0 | ||||||||
\(737\) | − 12.0000i | − 0.442026i | ||||||||
\(738\) | 0 | 0 | ||||||||
\(739\) | −52.0000 | −1.91285 | −0.956425 | − | 0.291977i | \(-0.905687\pi\) | ||||
−0.956425 | + | 0.291977i | \(0.905687\pi\) | |||||||
\(740\) | 0 | 0 | ||||||||
\(741\) | 2.00000 | 0.0734718 | ||||||||
\(742\) | 0 | 0 | ||||||||
\(743\) | − 29.0000i | − 1.06391i | −0.846774 | − | 0.531953i | \(-0.821458\pi\) | ||||
0.846774 | − | 0.531953i | \(-0.178542\pi\) | |||||||
\(744\) | 0 | 0 | ||||||||
\(745\) | 0 | 0 | ||||||||
\(746\) | 0 | 0 | ||||||||
\(747\) | 32.0000i | 1.17082i | ||||||||
\(748\) | 0 | 0 | ||||||||
\(749\) | −100.000 | −3.65392 | ||||||||
\(750\) | 0 | 0 | ||||||||
\(751\) | 32.0000 | 1.16770 | 0.583848 | − | 0.811863i | \(-0.301546\pi\) | ||||
0.583848 | + | 0.811863i | \(0.301546\pi\) | |||||||
\(752\) | 0 | 0 | ||||||||
\(753\) | − 8.00000i | − 0.291536i | ||||||||
\(754\) | 0 | 0 | ||||||||
\(755\) | 0 | 0 | ||||||||
\(756\) | 0 | 0 | ||||||||
\(757\) | − 52.0000i | − 1.88997i | −0.327111 | − | 0.944986i | \(-0.606075\pi\) | ||||
0.327111 | − | 0.944986i | \(-0.393925\pi\) | |||||||
\(758\) | 0 | 0 | ||||||||
\(759\) | 8.00000 | 0.290382 | ||||||||
\(760\) | 0 | 0 | ||||||||
\(761\) | 30.0000 | 1.08750 | 0.543750 | − | 0.839248i | \(-0.317004\pi\) | ||||
0.543750 | + | 0.839248i | \(0.317004\pi\) | |||||||
\(762\) | 0 | 0 | ||||||||
\(763\) | 25.0000i | 0.905061i | ||||||||
\(764\) | 0 | 0 | ||||||||
\(765\) | 0 | 0 | ||||||||
\(766\) | 0 | 0 | ||||||||
\(767\) | − 6.00000i | − 0.216647i | ||||||||
\(768\) | 0 | 0 | ||||||||
\(769\) | −16.0000 | −0.576975 | −0.288487 | − | 0.957484i | \(-0.593152\pi\) | ||||
−0.288487 | + | 0.957484i | \(0.593152\pi\) | |||||||
\(770\) | 0 | 0 | ||||||||
\(771\) | −31.0000 | −1.11644 | ||||||||
\(772\) | 0 | 0 | ||||||||
\(773\) | − 27.0000i | − 0.971123i | −0.874203 | − | 0.485561i | \(-0.838615\pi\) | ||||
0.874203 | − | 0.485561i | \(-0.161385\pi\) | |||||||
\(774\) | 0 | 0 | ||||||||
\(775\) | 0 | 0 | ||||||||
\(776\) | 0 | 0 | ||||||||
\(777\) | 55.0000i | 1.97311i | ||||||||
\(778\) | 0 | 0 | ||||||||
\(779\) | 16.0000 | 0.573259 | ||||||||
\(780\) | 0 | 0 | ||||||||
\(781\) | −14.0000 | −0.500959 | ||||||||
\(782\) | 0 | 0 | ||||||||
\(783\) | − 30.0000i | − 1.07211i | ||||||||
\(784\) | 0 | 0 | ||||||||
\(785\) | 0 | 0 | ||||||||
\(786\) | 0 | 0 | ||||||||
\(787\) | − 24.0000i | − 0.855508i | −0.903895 | − | 0.427754i | \(-0.859305\pi\) | ||||
0.903895 | − | 0.427754i | \(-0.140695\pi\) | |||||||
\(788\) | 0 | 0 | ||||||||
\(789\) | −20.0000 | −0.712019 | ||||||||
\(790\) | 0 | 0 | ||||||||
\(791\) | 10.0000 | 0.355559 | ||||||||
\(792\) | 0 | 0 | ||||||||
\(793\) | 0 | 0 | ||||||||
\(794\) | 0 | 0 | ||||||||
\(795\) | 0 | 0 | ||||||||
\(796\) | 0 | 0 | ||||||||
\(797\) | 38.0000i | 1.34603i | 0.739629 | + | 0.673015i | \(0.235001\pi\) | ||||
−0.739629 | + | 0.673015i | \(0.764999\pi\) | |||||||
\(798\) | 0 | 0 | ||||||||
\(799\) | 27.0000 | 0.955191 | ||||||||
\(800\) | 0 | 0 | ||||||||
\(801\) | 20.0000 | 0.706665 | ||||||||
\(802\) | 0 | 0 | ||||||||
\(803\) | − 4.00000i | − 0.141157i | ||||||||
\(804\) | 0 | 0 | ||||||||
\(805\) | 0 | 0 | ||||||||
\(806\) | 0 | 0 | ||||||||
\(807\) | 16.0000i | 0.563227i | ||||||||
\(808\) | 0 | 0 | ||||||||
\(809\) | −15.0000 | −0.527372 | −0.263686 | − | 0.964609i | \(-0.584938\pi\) | ||||
−0.263686 | + | 0.964609i | \(0.584938\pi\) | |||||||
\(810\) | 0 | 0 | ||||||||
\(811\) | −28.0000 | −0.983213 | −0.491606 | − | 0.870817i | \(-0.663590\pi\) | ||||
−0.491606 | + | 0.870817i | \(0.663590\pi\) | |||||||
\(812\) | 0 | 0 | ||||||||
\(813\) | 7.00000i | 0.245501i | ||||||||
\(814\) | 0 | 0 | ||||||||
\(815\) | 0 | 0 | ||||||||
\(816\) | 0 | 0 | ||||||||
\(817\) | 2.00000i | 0.0699711i | ||||||||
\(818\) | 0 | 0 | ||||||||
\(819\) | −10.0000 | −0.349428 | ||||||||
\(820\) | 0 | 0 | ||||||||
\(821\) | −41.0000 | −1.43091 | −0.715455 | − | 0.698659i | \(-0.753781\pi\) | ||||
−0.715455 | + | 0.698659i | \(0.753781\pi\) | |||||||
\(822\) | 0 | 0 | ||||||||
\(823\) | 26.0000i | 0.906303i | 0.891434 | + | 0.453152i | \(0.149700\pi\) | ||||
−0.891434 | + | 0.453152i | \(0.850300\pi\) | |||||||
\(824\) | 0 | 0 | ||||||||
\(825\) | 0 | 0 | ||||||||
\(826\) | 0 | 0 | ||||||||
\(827\) | − 10.0000i | − 0.347734i | −0.984769 | − | 0.173867i | \(-0.944374\pi\) | ||||
0.984769 | − | 0.173867i | \(-0.0556263\pi\) | |||||||
\(828\) | 0 | 0 | ||||||||
\(829\) | 6.00000 | 0.208389 | 0.104194 | − | 0.994557i | \(-0.466774\pi\) | ||||
0.104194 | + | 0.994557i | \(0.466774\pi\) | |||||||
\(830\) | 0 | 0 | ||||||||
\(831\) | −12.0000 | −0.416275 | ||||||||
\(832\) | 0 | 0 | ||||||||
\(833\) | 54.0000i | 1.87099i | ||||||||
\(834\) | 0 | 0 | ||||||||
\(835\) | 0 | 0 | ||||||||
\(836\) | 0 | 0 | ||||||||
\(837\) | 20.0000i | 0.691301i | ||||||||
\(838\) | 0 | 0 | ||||||||
\(839\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(840\) | 0 | 0 | ||||||||
\(841\) | 7.00000 | 0.241379 | ||||||||
\(842\) | 0 | 0 | ||||||||
\(843\) | 10.0000i | 0.344418i | ||||||||
\(844\) | 0 | 0 | ||||||||
\(845\) | 0 | 0 | ||||||||
\(846\) | 0 | 0 | ||||||||
\(847\) | − 35.0000i | − 1.20261i | ||||||||
\(848\) | 0 | 0 | ||||||||
\(849\) | 20.0000 | 0.686398 | ||||||||
\(850\) | 0 | 0 | ||||||||
\(851\) | 44.0000 | 1.50830 | ||||||||
\(852\) | 0 | 0 | ||||||||
\(853\) | 47.0000i | 1.60925i | 0.593784 | + | 0.804625i | \(0.297633\pi\) | ||||
−0.593784 | + | 0.804625i | \(0.702367\pi\) | |||||||
\(854\) | 0 | 0 | ||||||||
\(855\) | 0 | 0 | ||||||||
\(856\) | 0 | 0 | ||||||||
\(857\) | 30.0000i | 1.02478i | 0.858753 | + | 0.512390i | \(0.171240\pi\) | ||||
−0.858753 | + | 0.512390i | \(0.828760\pi\) | |||||||
\(858\) | 0 | 0 | ||||||||
\(859\) | −44.0000 | −1.50126 | −0.750630 | − | 0.660722i | \(-0.770250\pi\) | ||||
−0.750630 | + | 0.660722i | \(0.770250\pi\) | |||||||
\(860\) | 0 | 0 | ||||||||
\(861\) | 40.0000 | 1.36320 | ||||||||
\(862\) | 0 | 0 | ||||||||
\(863\) | 7.00000i | 0.238283i | 0.992877 | + | 0.119141i | \(0.0380142\pi\) | ||||
−0.992877 | + | 0.119141i | \(0.961986\pi\) | |||||||
\(864\) | 0 | 0 | ||||||||
\(865\) | 0 | 0 | ||||||||
\(866\) | 0 | 0 | ||||||||
\(867\) | − 8.00000i | − 0.271694i | ||||||||
\(868\) | 0 | 0 | ||||||||
\(869\) | 24.0000 | 0.814144 | ||||||||
\(870\) | 0 | 0 | ||||||||
\(871\) | −6.00000 | −0.203302 | ||||||||
\(872\) | 0 | 0 | ||||||||
\(873\) | − 20.0000i | − 0.676897i | ||||||||
\(874\) | 0 | 0 | ||||||||
\(875\) | 0 | 0 | ||||||||
\(876\) | 0 | 0 | ||||||||
\(877\) | − 7.00000i | − 0.236373i | −0.992991 | − | 0.118187i | \(-0.962292\pi\) | ||||
0.992991 | − | 0.118187i | \(-0.0377081\pi\) | |||||||
\(878\) | 0 | 0 | ||||||||
\(879\) | −15.0000 | −0.505937 | ||||||||
\(880\) | 0 | 0 | ||||||||
\(881\) | −27.0000 | −0.909653 | −0.454827 | − | 0.890580i | \(-0.650299\pi\) | ||||
−0.454827 | + | 0.890580i | \(0.650299\pi\) | |||||||
\(882\) | 0 | 0 | ||||||||
\(883\) | 51.0000i | 1.71629i | 0.513410 | + | 0.858143i | \(0.328382\pi\) | ||||
−0.513410 | + | 0.858143i | \(0.671618\pi\) | |||||||
\(884\) | 0 | 0 | ||||||||
\(885\) | 0 | 0 | ||||||||
\(886\) | 0 | 0 | ||||||||
\(887\) | − 48.0000i | − 1.61168i | −0.592132 | − | 0.805841i | \(-0.701714\pi\) | ||||
0.592132 | − | 0.805841i | \(-0.298286\pi\) | |||||||
\(888\) | 0 | 0 | ||||||||
\(889\) | 40.0000 | 1.34156 | ||||||||
\(890\) | 0 | 0 | ||||||||
\(891\) | −2.00000 | −0.0670025 | ||||||||
\(892\) | 0 | 0 | ||||||||
\(893\) | 18.0000i | 0.602347i | ||||||||
\(894\) | 0 | 0 | ||||||||
\(895\) | 0 | 0 | ||||||||
\(896\) | 0 | 0 | ||||||||
\(897\) | − 4.00000i | − 0.133556i | ||||||||
\(898\) | 0 | 0 | ||||||||
\(899\) | −24.0000 | −0.800445 | ||||||||
\(900\) | 0 | 0 | ||||||||
\(901\) | 36.0000 | 1.19933 | ||||||||
\(902\) | 0 | 0 | ||||||||
\(903\) | 5.00000i | 0.166390i | ||||||||
\(904\) | 0 | 0 | ||||||||
\(905\) | 0 | 0 | ||||||||
\(906\) | 0 | 0 | ||||||||
\(907\) | − 5.00000i | − 0.166022i | −0.996549 | − | 0.0830111i | \(-0.973546\pi\) | ||||
0.996549 | − | 0.0830111i | \(-0.0264537\pi\) | |||||||
\(908\) | 0 | 0 | ||||||||
\(909\) | 8.00000 | 0.265343 | ||||||||
\(910\) | 0 | 0 | ||||||||
\(911\) | 26.0000 | 0.861418 | 0.430709 | − | 0.902491i | \(-0.358263\pi\) | ||||
0.430709 | + | 0.902491i | \(0.358263\pi\) | |||||||
\(912\) | 0 | 0 | ||||||||
\(913\) | − 32.0000i | − 1.05905i | ||||||||
\(914\) | 0 | 0 | ||||||||
\(915\) | 0 | 0 | ||||||||
\(916\) | 0 | 0 | ||||||||
\(917\) | 15.0000i | 0.495344i | ||||||||
\(918\) | 0 | 0 | ||||||||
\(919\) | 24.0000 | 0.791687 | 0.395843 | − | 0.918318i | \(-0.370452\pi\) | ||||
0.395843 | + | 0.918318i | \(0.370452\pi\) | |||||||
\(920\) | 0 | 0 | ||||||||
\(921\) | −2.00000 | −0.0659022 | ||||||||
\(922\) | 0 | 0 | ||||||||
\(923\) | 7.00000i | 0.230408i | ||||||||
\(924\) | 0 | 0 | ||||||||
\(925\) | 0 | 0 | ||||||||
\(926\) | 0 | 0 | ||||||||
\(927\) | 16.0000i | 0.525509i | ||||||||
\(928\) | 0 | 0 | ||||||||
\(929\) | 20.0000 | 0.656179 | 0.328089 | − | 0.944647i | \(-0.393595\pi\) | ||||
0.328089 | + | 0.944647i | \(0.393595\pi\) | |||||||
\(930\) | 0 | 0 | ||||||||
\(931\) | −36.0000 | −1.17985 | ||||||||
\(932\) | 0 | 0 | ||||||||
\(933\) | 22.0000i | 0.720248i | ||||||||
\(934\) | 0 | 0 | ||||||||
\(935\) | 0 | 0 | ||||||||
\(936\) | 0 | 0 | ||||||||
\(937\) | 22.0000i | 0.718709i | 0.933201 | + | 0.359354i | \(0.117003\pi\) | ||||
−0.933201 | + | 0.359354i | \(0.882997\pi\) | |||||||
\(938\) | 0 | 0 | ||||||||
\(939\) | 9.00000 | 0.293704 | ||||||||
\(940\) | 0 | 0 | ||||||||
\(941\) | −7.00000 | −0.228193 | −0.114097 | − | 0.993470i | \(-0.536397\pi\) | ||||
−0.114097 | + | 0.993470i | \(0.536397\pi\) | |||||||
\(942\) | 0 | 0 | ||||||||
\(943\) | − 32.0000i | − 1.04206i | ||||||||
\(944\) | 0 | 0 | ||||||||
\(945\) | 0 | 0 | ||||||||
\(946\) | 0 | 0 | ||||||||
\(947\) | − 18.0000i | − 0.584921i | −0.956278 | − | 0.292461i | \(-0.905526\pi\) | ||||
0.956278 | − | 0.292461i | \(-0.0944741\pi\) | |||||||
\(948\) | 0 | 0 | ||||||||
\(949\) | −2.00000 | −0.0649227 | ||||||||
\(950\) | 0 | 0 | ||||||||
\(951\) | −2.00000 | −0.0648544 | ||||||||
\(952\) | 0 | 0 | ||||||||
\(953\) | 9.00000i | 0.291539i | 0.989319 | + | 0.145769i | \(0.0465657\pi\) | ||||
−0.989319 | + | 0.145769i | \(0.953434\pi\) | |||||||
\(954\) | 0 | 0 | ||||||||
\(955\) | 0 | 0 | ||||||||
\(956\) | 0 | 0 | ||||||||
\(957\) | 12.0000i | 0.387905i | ||||||||
\(958\) | 0 | 0 | ||||||||
\(959\) | 60.0000 | 1.93750 | ||||||||
\(960\) | 0 | 0 | ||||||||
\(961\) | −15.0000 | −0.483871 | ||||||||
\(962\) | 0 | 0 | ||||||||
\(963\) | 40.0000i | 1.28898i | ||||||||
\(964\) | 0 | 0 | ||||||||
\(965\) | 0 | 0 | ||||||||
\(966\) | 0 | 0 | ||||||||
\(967\) | − 13.0000i | − 0.418052i | −0.977910 | − | 0.209026i | \(-0.932971\pi\) | ||||
0.977910 | − | 0.209026i | \(-0.0670293\pi\) | |||||||
\(968\) | 0 | 0 | ||||||||
\(969\) | −6.00000 | −0.192748 | ||||||||
\(970\) | 0 | 0 | ||||||||
\(971\) | 45.0000 | 1.44412 | 0.722059 | − | 0.691831i | \(-0.243196\pi\) | ||||
0.722059 | + | 0.691831i | \(0.243196\pi\) | |||||||
\(972\) | 0 | 0 | ||||||||
\(973\) | − 15.0000i | − 0.480878i | ||||||||
\(974\) | 0 | 0 | ||||||||
\(975\) | 0 | 0 | ||||||||
\(976\) | 0 | 0 | ||||||||
\(977\) | − 30.0000i | − 0.959785i | −0.877327 | − | 0.479893i | \(-0.840676\pi\) | ||||
0.877327 | − | 0.479893i | \(-0.159324\pi\) | |||||||
\(978\) | 0 | 0 | ||||||||
\(979\) | −20.0000 | −0.639203 | ||||||||
\(980\) | 0 | 0 | ||||||||
\(981\) | 10.0000 | 0.319275 | ||||||||
\(982\) | 0 | 0 | ||||||||
\(983\) | − 5.00000i | − 0.159475i | −0.996816 | − | 0.0797376i | \(-0.974592\pi\) | ||||
0.996816 | − | 0.0797376i | \(-0.0254082\pi\) | |||||||
\(984\) | 0 | 0 | ||||||||
\(985\) | 0 | 0 | ||||||||
\(986\) | 0 | 0 | ||||||||
\(987\) | 45.0000i | 1.43237i | ||||||||
\(988\) | 0 | 0 | ||||||||
\(989\) | 4.00000 | 0.127193 | ||||||||
\(990\) | 0 | 0 | ||||||||
\(991\) | 58.0000 | 1.84243 | 0.921215 | − | 0.389053i | \(-0.127198\pi\) | ||||
0.921215 | + | 0.389053i | \(0.127198\pi\) | |||||||
\(992\) | 0 | 0 | ||||||||
\(993\) | − 12.0000i | − 0.380808i | ||||||||
\(994\) | 0 | 0 | ||||||||
\(995\) | 0 | 0 | ||||||||
\(996\) | 0 | 0 | ||||||||
\(997\) | 14.0000i | 0.443384i | 0.975117 | + | 0.221692i | \(0.0711580\pi\) | ||||
−0.975117 | + | 0.221692i | \(0.928842\pi\) | |||||||
\(998\) | 0 | 0 | ||||||||
\(999\) | 55.0000 | 1.74012 |
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))