Properties

Label 2600.2.d.f.1249.1
Level $2600$
Weight $2$
Character 2600.1249
Analytic conductor $20.761$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2600,2,Mod(1249,2600)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2600, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2600.1249");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2600 = 2^{3} \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2600.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(20.7611045255\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 104)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1249.1
Root \(-1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 2600.1249
Dual form 2600.2.d.f.1249.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000i q^{3} +5.00000i q^{7} +2.00000 q^{9} -2.00000 q^{11} +1.00000i q^{13} -3.00000i q^{17} +2.00000 q^{19} +5.00000 q^{21} -4.00000i q^{23} -5.00000i q^{27} +6.00000 q^{29} -4.00000 q^{31} +2.00000i q^{33} +11.0000i q^{37} +1.00000 q^{39} +8.00000 q^{41} +1.00000i q^{43} +9.00000i q^{47} -18.0000 q^{49} -3.00000 q^{51} +12.0000i q^{53} -2.00000i q^{57} -6.00000 q^{59} +10.0000i q^{63} +6.00000i q^{67} -4.00000 q^{69} +7.00000 q^{71} +2.00000i q^{73} -10.0000i q^{77} -12.0000 q^{79} +1.00000 q^{81} +16.0000i q^{83} -6.00000i q^{87} +10.0000 q^{89} -5.00000 q^{91} +4.00000i q^{93} -10.0000i q^{97} -4.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 4 q^{9} - 4 q^{11} + 4 q^{19} + 10 q^{21} + 12 q^{29} - 8 q^{31} + 2 q^{39} + 16 q^{41} - 36 q^{49} - 6 q^{51} - 12 q^{59} - 8 q^{69} + 14 q^{71} - 24 q^{79} + 2 q^{81} + 20 q^{89} - 10 q^{91} - 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2600\mathbb{Z}\right)^\times\).

\(n\) \(1301\) \(1601\) \(1951\) \(1977\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) − 1.00000i − 0.577350i −0.957427 0.288675i \(-0.906785\pi\)
0.957427 0.288675i \(-0.0932147\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 5.00000i 1.88982i 0.327327 + 0.944911i \(0.393852\pi\)
−0.327327 + 0.944911i \(0.606148\pi\)
\(8\) 0 0
\(9\) 2.00000 0.666667
\(10\) 0 0
\(11\) −2.00000 −0.603023 −0.301511 0.953463i \(-0.597491\pi\)
−0.301511 + 0.953463i \(0.597491\pi\)
\(12\) 0 0
\(13\) 1.00000i 0.277350i
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) − 3.00000i − 0.727607i −0.931476 0.363803i \(-0.881478\pi\)
0.931476 0.363803i \(-0.118522\pi\)
\(18\) 0 0
\(19\) 2.00000 0.458831 0.229416 0.973329i \(-0.426318\pi\)
0.229416 + 0.973329i \(0.426318\pi\)
\(20\) 0 0
\(21\) 5.00000 1.09109
\(22\) 0 0
\(23\) − 4.00000i − 0.834058i −0.908893 0.417029i \(-0.863071\pi\)
0.908893 0.417029i \(-0.136929\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) − 5.00000i − 0.962250i
\(28\) 0 0
\(29\) 6.00000 1.11417 0.557086 0.830455i \(-0.311919\pi\)
0.557086 + 0.830455i \(0.311919\pi\)
\(30\) 0 0
\(31\) −4.00000 −0.718421 −0.359211 0.933257i \(-0.616954\pi\)
−0.359211 + 0.933257i \(0.616954\pi\)
\(32\) 0 0
\(33\) 2.00000i 0.348155i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 11.0000i 1.80839i 0.427121 + 0.904194i \(0.359528\pi\)
−0.427121 + 0.904194i \(0.640472\pi\)
\(38\) 0 0
\(39\) 1.00000 0.160128
\(40\) 0 0
\(41\) 8.00000 1.24939 0.624695 0.780869i \(-0.285223\pi\)
0.624695 + 0.780869i \(0.285223\pi\)
\(42\) 0 0
\(43\) 1.00000i 0.152499i 0.997089 + 0.0762493i \(0.0242945\pi\)
−0.997089 + 0.0762493i \(0.975706\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 9.00000i 1.31278i 0.754420 + 0.656392i \(0.227918\pi\)
−0.754420 + 0.656392i \(0.772082\pi\)
\(48\) 0 0
\(49\) −18.0000 −2.57143
\(50\) 0 0
\(51\) −3.00000 −0.420084
\(52\) 0 0
\(53\) 12.0000i 1.64833i 0.566352 + 0.824163i \(0.308354\pi\)
−0.566352 + 0.824163i \(0.691646\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) − 2.00000i − 0.264906i
\(58\) 0 0
\(59\) −6.00000 −0.781133 −0.390567 0.920575i \(-0.627721\pi\)
−0.390567 + 0.920575i \(0.627721\pi\)
\(60\) 0 0
\(61\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(62\) 0 0
\(63\) 10.0000i 1.25988i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 6.00000i 0.733017i 0.930415 + 0.366508i \(0.119447\pi\)
−0.930415 + 0.366508i \(0.880553\pi\)
\(68\) 0 0
\(69\) −4.00000 −0.481543
\(70\) 0 0
\(71\) 7.00000 0.830747 0.415374 0.909651i \(-0.363651\pi\)
0.415374 + 0.909651i \(0.363651\pi\)
\(72\) 0 0
\(73\) 2.00000i 0.234082i 0.993127 + 0.117041i \(0.0373409\pi\)
−0.993127 + 0.117041i \(0.962659\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) − 10.0000i − 1.13961i
\(78\) 0 0
\(79\) −12.0000 −1.35011 −0.675053 0.737769i \(-0.735879\pi\)
−0.675053 + 0.737769i \(0.735879\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 16.0000i 1.75623i 0.478451 + 0.878114i \(0.341198\pi\)
−0.478451 + 0.878114i \(0.658802\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) − 6.00000i − 0.643268i
\(88\) 0 0
\(89\) 10.0000 1.06000 0.529999 0.847998i \(-0.322192\pi\)
0.529999 + 0.847998i \(0.322192\pi\)
\(90\) 0 0
\(91\) −5.00000 −0.524142
\(92\) 0 0
\(93\) 4.00000i 0.414781i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) − 10.0000i − 1.01535i −0.861550 0.507673i \(-0.830506\pi\)
0.861550 0.507673i \(-0.169494\pi\)
\(98\) 0 0
\(99\) −4.00000 −0.402015
\(100\) 0 0
\(101\) 4.00000 0.398015 0.199007 0.979998i \(-0.436228\pi\)
0.199007 + 0.979998i \(0.436228\pi\)
\(102\) 0 0
\(103\) 8.00000i 0.788263i 0.919054 + 0.394132i \(0.128955\pi\)
−0.919054 + 0.394132i \(0.871045\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 20.0000i 1.93347i 0.255774 + 0.966736i \(0.417670\pi\)
−0.255774 + 0.966736i \(0.582330\pi\)
\(108\) 0 0
\(109\) 5.00000 0.478913 0.239457 0.970907i \(-0.423031\pi\)
0.239457 + 0.970907i \(0.423031\pi\)
\(110\) 0 0
\(111\) 11.0000 1.04407
\(112\) 0 0
\(113\) − 2.00000i − 0.188144i −0.995565 0.0940721i \(-0.970012\pi\)
0.995565 0.0940721i \(-0.0299884\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 2.00000i 0.184900i
\(118\) 0 0
\(119\) 15.0000 1.37505
\(120\) 0 0
\(121\) −7.00000 −0.636364
\(122\) 0 0
\(123\) − 8.00000i − 0.721336i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) − 8.00000i − 0.709885i −0.934888 0.354943i \(-0.884500\pi\)
0.934888 0.354943i \(-0.115500\pi\)
\(128\) 0 0
\(129\) 1.00000 0.0880451
\(130\) 0 0
\(131\) 3.00000 0.262111 0.131056 0.991375i \(-0.458163\pi\)
0.131056 + 0.991375i \(0.458163\pi\)
\(132\) 0 0
\(133\) 10.0000i 0.867110i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) − 12.0000i − 1.02523i −0.858619 0.512615i \(-0.828677\pi\)
0.858619 0.512615i \(-0.171323\pi\)
\(138\) 0 0
\(139\) −3.00000 −0.254457 −0.127228 0.991873i \(-0.540608\pi\)
−0.127228 + 0.991873i \(0.540608\pi\)
\(140\) 0 0
\(141\) 9.00000 0.757937
\(142\) 0 0
\(143\) − 2.00000i − 0.167248i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 18.0000i 1.48461i
\(148\) 0 0
\(149\) −14.0000 −1.14692 −0.573462 0.819232i \(-0.694400\pi\)
−0.573462 + 0.819232i \(0.694400\pi\)
\(150\) 0 0
\(151\) −5.00000 −0.406894 −0.203447 0.979086i \(-0.565214\pi\)
−0.203447 + 0.979086i \(0.565214\pi\)
\(152\) 0 0
\(153\) − 6.00000i − 0.485071i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) − 2.00000i − 0.159617i −0.996810 0.0798087i \(-0.974569\pi\)
0.996810 0.0798087i \(-0.0254309\pi\)
\(158\) 0 0
\(159\) 12.0000 0.951662
\(160\) 0 0
\(161\) 20.0000 1.57622
\(162\) 0 0
\(163\) − 4.00000i − 0.313304i −0.987654 0.156652i \(-0.949930\pi\)
0.987654 0.156652i \(-0.0500701\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 8.00000i 0.619059i 0.950890 + 0.309529i \(0.100171\pi\)
−0.950890 + 0.309529i \(0.899829\pi\)
\(168\) 0 0
\(169\) −1.00000 −0.0769231
\(170\) 0 0
\(171\) 4.00000 0.305888
\(172\) 0 0
\(173\) 12.0000i 0.912343i 0.889892 + 0.456172i \(0.150780\pi\)
−0.889892 + 0.456172i \(0.849220\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 6.00000i 0.450988i
\(178\) 0 0
\(179\) −3.00000 −0.224231 −0.112115 0.993695i \(-0.535763\pi\)
−0.112115 + 0.993695i \(0.535763\pi\)
\(180\) 0 0
\(181\) 16.0000 1.18927 0.594635 0.803996i \(-0.297296\pi\)
0.594635 + 0.803996i \(0.297296\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 6.00000i 0.438763i
\(188\) 0 0
\(189\) 25.0000 1.81848
\(190\) 0 0
\(191\) 10.0000 0.723575 0.361787 0.932261i \(-0.382167\pi\)
0.361787 + 0.932261i \(0.382167\pi\)
\(192\) 0 0
\(193\) − 16.0000i − 1.15171i −0.817554 0.575853i \(-0.804670\pi\)
0.817554 0.575853i \(-0.195330\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 17.0000i 1.21120i 0.795769 + 0.605600i \(0.207067\pi\)
−0.795769 + 0.605600i \(0.792933\pi\)
\(198\) 0 0
\(199\) 18.0000 1.27599 0.637993 0.770042i \(-0.279765\pi\)
0.637993 + 0.770042i \(0.279765\pi\)
\(200\) 0 0
\(201\) 6.00000 0.423207
\(202\) 0 0
\(203\) 30.0000i 2.10559i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) − 8.00000i − 0.556038i
\(208\) 0 0
\(209\) −4.00000 −0.276686
\(210\) 0 0
\(211\) −5.00000 −0.344214 −0.172107 0.985078i \(-0.555058\pi\)
−0.172107 + 0.985078i \(0.555058\pi\)
\(212\) 0 0
\(213\) − 7.00000i − 0.479632i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) − 20.0000i − 1.35769i
\(218\) 0 0
\(219\) 2.00000 0.135147
\(220\) 0 0
\(221\) 3.00000 0.201802
\(222\) 0 0
\(223\) 17.0000i 1.13840i 0.822198 + 0.569202i \(0.192748\pi\)
−0.822198 + 0.569202i \(0.807252\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) − 16.0000i − 1.06196i −0.847385 0.530979i \(-0.821824\pi\)
0.847385 0.530979i \(-0.178176\pi\)
\(228\) 0 0
\(229\) 15.0000 0.991228 0.495614 0.868543i \(-0.334943\pi\)
0.495614 + 0.868543i \(0.334943\pi\)
\(230\) 0 0
\(231\) −10.0000 −0.657952
\(232\) 0 0
\(233\) − 13.0000i − 0.851658i −0.904804 0.425829i \(-0.859982\pi\)
0.904804 0.425829i \(-0.140018\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 12.0000i 0.779484i
\(238\) 0 0
\(239\) 3.00000 0.194054 0.0970269 0.995282i \(-0.469067\pi\)
0.0970269 + 0.995282i \(0.469067\pi\)
\(240\) 0 0
\(241\) 2.00000 0.128831 0.0644157 0.997923i \(-0.479482\pi\)
0.0644157 + 0.997923i \(0.479482\pi\)
\(242\) 0 0
\(243\) − 16.0000i − 1.02640i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 2.00000i 0.127257i
\(248\) 0 0
\(249\) 16.0000 1.01396
\(250\) 0 0
\(251\) 8.00000 0.504956 0.252478 0.967603i \(-0.418755\pi\)
0.252478 + 0.967603i \(0.418755\pi\)
\(252\) 0 0
\(253\) 8.00000i 0.502956i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) − 31.0000i − 1.93373i −0.255294 0.966863i \(-0.582172\pi\)
0.255294 0.966863i \(-0.417828\pi\)
\(258\) 0 0
\(259\) −55.0000 −3.41753
\(260\) 0 0
\(261\) 12.0000 0.742781
\(262\) 0 0
\(263\) − 20.0000i − 1.23325i −0.787256 0.616626i \(-0.788499\pi\)
0.787256 0.616626i \(-0.211501\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) − 10.0000i − 0.611990i
\(268\) 0 0
\(269\) −16.0000 −0.975537 −0.487769 0.872973i \(-0.662189\pi\)
−0.487769 + 0.872973i \(0.662189\pi\)
\(270\) 0 0
\(271\) −7.00000 −0.425220 −0.212610 0.977137i \(-0.568196\pi\)
−0.212610 + 0.977137i \(0.568196\pi\)
\(272\) 0 0
\(273\) 5.00000i 0.302614i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) − 12.0000i − 0.721010i −0.932757 0.360505i \(-0.882604\pi\)
0.932757 0.360505i \(-0.117396\pi\)
\(278\) 0 0
\(279\) −8.00000 −0.478947
\(280\) 0 0
\(281\) −10.0000 −0.596550 −0.298275 0.954480i \(-0.596411\pi\)
−0.298275 + 0.954480i \(0.596411\pi\)
\(282\) 0 0
\(283\) 20.0000i 1.18888i 0.804141 + 0.594438i \(0.202626\pi\)
−0.804141 + 0.594438i \(0.797374\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 40.0000i 2.36113i
\(288\) 0 0
\(289\) 8.00000 0.470588
\(290\) 0 0
\(291\) −10.0000 −0.586210
\(292\) 0 0
\(293\) − 15.0000i − 0.876309i −0.898900 0.438155i \(-0.855632\pi\)
0.898900 0.438155i \(-0.144368\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 10.0000i 0.580259i
\(298\) 0 0
\(299\) 4.00000 0.231326
\(300\) 0 0
\(301\) −5.00000 −0.288195
\(302\) 0 0
\(303\) − 4.00000i − 0.229794i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) − 2.00000i − 0.114146i −0.998370 0.0570730i \(-0.981823\pi\)
0.998370 0.0570730i \(-0.0181768\pi\)
\(308\) 0 0
\(309\) 8.00000 0.455104
\(310\) 0 0
\(311\) −22.0000 −1.24751 −0.623753 0.781622i \(-0.714393\pi\)
−0.623753 + 0.781622i \(0.714393\pi\)
\(312\) 0 0
\(313\) 9.00000i 0.508710i 0.967111 + 0.254355i \(0.0818632\pi\)
−0.967111 + 0.254355i \(0.918137\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) − 2.00000i − 0.112331i −0.998421 0.0561656i \(-0.982113\pi\)
0.998421 0.0561656i \(-0.0178875\pi\)
\(318\) 0 0
\(319\) −12.0000 −0.671871
\(320\) 0 0
\(321\) 20.0000 1.11629
\(322\) 0 0
\(323\) − 6.00000i − 0.333849i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) − 5.00000i − 0.276501i
\(328\) 0 0
\(329\) −45.0000 −2.48093
\(330\) 0 0
\(331\) 12.0000 0.659580 0.329790 0.944054i \(-0.393022\pi\)
0.329790 + 0.944054i \(0.393022\pi\)
\(332\) 0 0
\(333\) 22.0000i 1.20559i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 15.0000i 0.817102i 0.912735 + 0.408551i \(0.133966\pi\)
−0.912735 + 0.408551i \(0.866034\pi\)
\(338\) 0 0
\(339\) −2.00000 −0.108625
\(340\) 0 0
\(341\) 8.00000 0.433224
\(342\) 0 0
\(343\) − 55.0000i − 2.96972i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 3.00000i 0.161048i 0.996753 + 0.0805242i \(0.0256594\pi\)
−0.996753 + 0.0805242i \(0.974341\pi\)
\(348\) 0 0
\(349\) 9.00000 0.481759 0.240879 0.970555i \(-0.422564\pi\)
0.240879 + 0.970555i \(0.422564\pi\)
\(350\) 0 0
\(351\) 5.00000 0.266880
\(352\) 0 0
\(353\) 28.0000i 1.49029i 0.666903 + 0.745145i \(0.267620\pi\)
−0.666903 + 0.745145i \(0.732380\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) − 15.0000i − 0.793884i
\(358\) 0 0
\(359\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(360\) 0 0
\(361\) −15.0000 −0.789474
\(362\) 0 0
\(363\) 7.00000i 0.367405i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) − 18.0000i − 0.939592i −0.882775 0.469796i \(-0.844327\pi\)
0.882775 0.469796i \(-0.155673\pi\)
\(368\) 0 0
\(369\) 16.0000 0.832927
\(370\) 0 0
\(371\) −60.0000 −3.11504
\(372\) 0 0
\(373\) 4.00000i 0.207112i 0.994624 + 0.103556i \(0.0330221\pi\)
−0.994624 + 0.103556i \(0.966978\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 6.00000i 0.309016i
\(378\) 0 0
\(379\) −24.0000 −1.23280 −0.616399 0.787434i \(-0.711409\pi\)
−0.616399 + 0.787434i \(0.711409\pi\)
\(380\) 0 0
\(381\) −8.00000 −0.409852
\(382\) 0 0
\(383\) − 15.0000i − 0.766464i −0.923652 0.383232i \(-0.874811\pi\)
0.923652 0.383232i \(-0.125189\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 2.00000i 0.101666i
\(388\) 0 0
\(389\) 6.00000 0.304212 0.152106 0.988364i \(-0.451394\pi\)
0.152106 + 0.988364i \(0.451394\pi\)
\(390\) 0 0
\(391\) −12.0000 −0.606866
\(392\) 0 0
\(393\) − 3.00000i − 0.151330i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 10.0000i 0.501886i 0.968002 + 0.250943i \(0.0807406\pi\)
−0.968002 + 0.250943i \(0.919259\pi\)
\(398\) 0 0
\(399\) 10.0000 0.500626
\(400\) 0 0
\(401\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(402\) 0 0
\(403\) − 4.00000i − 0.199254i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) − 22.0000i − 1.09050i
\(408\) 0 0
\(409\) 4.00000 0.197787 0.0988936 0.995098i \(-0.468470\pi\)
0.0988936 + 0.995098i \(0.468470\pi\)
\(410\) 0 0
\(411\) −12.0000 −0.591916
\(412\) 0 0
\(413\) − 30.0000i − 1.47620i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 3.00000i 0.146911i
\(418\) 0 0
\(419\) 39.0000 1.90527 0.952637 0.304109i \(-0.0983586\pi\)
0.952637 + 0.304109i \(0.0983586\pi\)
\(420\) 0 0
\(421\) 11.0000 0.536107 0.268054 0.963404i \(-0.413620\pi\)
0.268054 + 0.963404i \(0.413620\pi\)
\(422\) 0 0
\(423\) 18.0000i 0.875190i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) −2.00000 −0.0965609
\(430\) 0 0
\(431\) −11.0000 −0.529851 −0.264926 0.964269i \(-0.585347\pi\)
−0.264926 + 0.964269i \(0.585347\pi\)
\(432\) 0 0
\(433\) 17.0000i 0.816968i 0.912766 + 0.408484i \(0.133942\pi\)
−0.912766 + 0.408484i \(0.866058\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) − 8.00000i − 0.382692i
\(438\) 0 0
\(439\) −10.0000 −0.477274 −0.238637 0.971109i \(-0.576701\pi\)
−0.238637 + 0.971109i \(0.576701\pi\)
\(440\) 0 0
\(441\) −36.0000 −1.71429
\(442\) 0 0
\(443\) 27.0000i 1.28281i 0.767203 + 0.641404i \(0.221648\pi\)
−0.767203 + 0.641404i \(0.778352\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 14.0000i 0.662177i
\(448\) 0 0
\(449\) 18.0000 0.849473 0.424736 0.905317i \(-0.360367\pi\)
0.424736 + 0.905317i \(0.360367\pi\)
\(450\) 0 0
\(451\) −16.0000 −0.753411
\(452\) 0 0
\(453\) 5.00000i 0.234920i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 10.0000i 0.467780i 0.972263 + 0.233890i \(0.0751456\pi\)
−0.972263 + 0.233890i \(0.924854\pi\)
\(458\) 0 0
\(459\) −15.0000 −0.700140
\(460\) 0 0
\(461\) 3.00000 0.139724 0.0698620 0.997557i \(-0.477744\pi\)
0.0698620 + 0.997557i \(0.477744\pi\)
\(462\) 0 0
\(463\) − 24.0000i − 1.11537i −0.830051 0.557687i \(-0.811689\pi\)
0.830051 0.557687i \(-0.188311\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) − 20.0000i − 0.925490i −0.886492 0.462745i \(-0.846865\pi\)
0.886492 0.462745i \(-0.153135\pi\)
\(468\) 0 0
\(469\) −30.0000 −1.38527
\(470\) 0 0
\(471\) −2.00000 −0.0921551
\(472\) 0 0
\(473\) − 2.00000i − 0.0919601i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 24.0000i 1.09888i
\(478\) 0 0
\(479\) −9.00000 −0.411220 −0.205610 0.978634i \(-0.565918\pi\)
−0.205610 + 0.978634i \(0.565918\pi\)
\(480\) 0 0
\(481\) −11.0000 −0.501557
\(482\) 0 0
\(483\) − 20.0000i − 0.910032i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 8.00000i 0.362515i 0.983436 + 0.181257i \(0.0580167\pi\)
−0.983436 + 0.181257i \(0.941983\pi\)
\(488\) 0 0
\(489\) −4.00000 −0.180886
\(490\) 0 0
\(491\) 15.0000 0.676941 0.338470 0.940977i \(-0.390091\pi\)
0.338470 + 0.940977i \(0.390091\pi\)
\(492\) 0 0
\(493\) − 18.0000i − 0.810679i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 35.0000i 1.56996i
\(498\) 0 0
\(499\) 24.0000 1.07439 0.537194 0.843459i \(-0.319484\pi\)
0.537194 + 0.843459i \(0.319484\pi\)
\(500\) 0 0
\(501\) 8.00000 0.357414
\(502\) 0 0
\(503\) − 26.0000i − 1.15928i −0.814872 0.579641i \(-0.803193\pi\)
0.814872 0.579641i \(-0.196807\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 1.00000i 0.0444116i
\(508\) 0 0
\(509\) −2.00000 −0.0886484 −0.0443242 0.999017i \(-0.514113\pi\)
−0.0443242 + 0.999017i \(0.514113\pi\)
\(510\) 0 0
\(511\) −10.0000 −0.442374
\(512\) 0 0
\(513\) − 10.0000i − 0.441511i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) − 18.0000i − 0.791639i
\(518\) 0 0
\(519\) 12.0000 0.526742
\(520\) 0 0
\(521\) 15.0000 0.657162 0.328581 0.944476i \(-0.393430\pi\)
0.328581 + 0.944476i \(0.393430\pi\)
\(522\) 0 0
\(523\) − 20.0000i − 0.874539i −0.899331 0.437269i \(-0.855946\pi\)
0.899331 0.437269i \(-0.144054\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 12.0000i 0.522728i
\(528\) 0 0
\(529\) 7.00000 0.304348
\(530\) 0 0
\(531\) −12.0000 −0.520756
\(532\) 0 0
\(533\) 8.00000i 0.346518i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 3.00000i 0.129460i
\(538\) 0 0
\(539\) 36.0000 1.55063
\(540\) 0 0
\(541\) 9.00000 0.386940 0.193470 0.981106i \(-0.438026\pi\)
0.193470 + 0.981106i \(0.438026\pi\)
\(542\) 0 0
\(543\) − 16.0000i − 0.686626i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) − 39.0000i − 1.66752i −0.552127 0.833760i \(-0.686184\pi\)
0.552127 0.833760i \(-0.313816\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 12.0000 0.511217
\(552\) 0 0
\(553\) − 60.0000i − 2.55146i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) − 23.0000i − 0.974541i −0.873251 0.487271i \(-0.837993\pi\)
0.873251 0.487271i \(-0.162007\pi\)
\(558\) 0 0
\(559\) −1.00000 −0.0422955
\(560\) 0 0
\(561\) 6.00000 0.253320
\(562\) 0 0
\(563\) − 39.0000i − 1.64365i −0.569737 0.821827i \(-0.692955\pi\)
0.569737 0.821827i \(-0.307045\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 5.00000i 0.209980i
\(568\) 0 0
\(569\) 17.0000 0.712677 0.356339 0.934357i \(-0.384025\pi\)
0.356339 + 0.934357i \(0.384025\pi\)
\(570\) 0 0
\(571\) 37.0000 1.54840 0.774201 0.632940i \(-0.218152\pi\)
0.774201 + 0.632940i \(0.218152\pi\)
\(572\) 0 0
\(573\) − 10.0000i − 0.417756i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) − 38.0000i − 1.58196i −0.611842 0.790980i \(-0.709571\pi\)
0.611842 0.790980i \(-0.290429\pi\)
\(578\) 0 0
\(579\) −16.0000 −0.664937
\(580\) 0 0
\(581\) −80.0000 −3.31896
\(582\) 0 0
\(583\) − 24.0000i − 0.993978i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 12.0000i 0.495293i 0.968850 + 0.247647i \(0.0796572\pi\)
−0.968850 + 0.247647i \(0.920343\pi\)
\(588\) 0 0
\(589\) −8.00000 −0.329634
\(590\) 0 0
\(591\) 17.0000 0.699287
\(592\) 0 0
\(593\) − 2.00000i − 0.0821302i −0.999156 0.0410651i \(-0.986925\pi\)
0.999156 0.0410651i \(-0.0130751\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) − 18.0000i − 0.736691i
\(598\) 0 0
\(599\) 2.00000 0.0817178 0.0408589 0.999165i \(-0.486991\pi\)
0.0408589 + 0.999165i \(0.486991\pi\)
\(600\) 0 0
\(601\) −3.00000 −0.122373 −0.0611863 0.998126i \(-0.519488\pi\)
−0.0611863 + 0.998126i \(0.519488\pi\)
\(602\) 0 0
\(603\) 12.0000i 0.488678i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) − 10.0000i − 0.405887i −0.979190 0.202944i \(-0.934949\pi\)
0.979190 0.202944i \(-0.0650509\pi\)
\(608\) 0 0
\(609\) 30.0000 1.21566
\(610\) 0 0
\(611\) −9.00000 −0.364101
\(612\) 0 0
\(613\) 6.00000i 0.242338i 0.992632 + 0.121169i \(0.0386643\pi\)
−0.992632 + 0.121169i \(0.961336\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 32.0000i 1.28827i 0.764911 + 0.644136i \(0.222783\pi\)
−0.764911 + 0.644136i \(0.777217\pi\)
\(618\) 0 0
\(619\) −28.0000 −1.12542 −0.562708 0.826656i \(-0.690240\pi\)
−0.562708 + 0.826656i \(0.690240\pi\)
\(620\) 0 0
\(621\) −20.0000 −0.802572
\(622\) 0 0
\(623\) 50.0000i 2.00321i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 4.00000i 0.159745i
\(628\) 0 0
\(629\) 33.0000 1.31580
\(630\) 0 0
\(631\) 15.0000 0.597141 0.298570 0.954388i \(-0.403490\pi\)
0.298570 + 0.954388i \(0.403490\pi\)
\(632\) 0 0
\(633\) 5.00000i 0.198732i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) − 18.0000i − 0.713186i
\(638\) 0 0
\(639\) 14.0000 0.553831
\(640\) 0 0
\(641\) −34.0000 −1.34292 −0.671460 0.741041i \(-0.734332\pi\)
−0.671460 + 0.741041i \(0.734332\pi\)
\(642\) 0 0
\(643\) 26.0000i 1.02534i 0.858586 + 0.512670i \(0.171344\pi\)
−0.858586 + 0.512670i \(0.828656\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 42.0000i 1.65119i 0.564263 + 0.825595i \(0.309160\pi\)
−0.564263 + 0.825595i \(0.690840\pi\)
\(648\) 0 0
\(649\) 12.0000 0.471041
\(650\) 0 0
\(651\) −20.0000 −0.783862
\(652\) 0 0
\(653\) − 24.0000i − 0.939193i −0.882881 0.469596i \(-0.844399\pi\)
0.882881 0.469596i \(-0.155601\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 4.00000i 0.156055i
\(658\) 0 0
\(659\) −28.0000 −1.09073 −0.545363 0.838200i \(-0.683608\pi\)
−0.545363 + 0.838200i \(0.683608\pi\)
\(660\) 0 0
\(661\) 38.0000 1.47803 0.739014 0.673690i \(-0.235292\pi\)
0.739014 + 0.673690i \(0.235292\pi\)
\(662\) 0 0
\(663\) − 3.00000i − 0.116510i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) − 24.0000i − 0.929284i
\(668\) 0 0
\(669\) 17.0000 0.657258
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) − 21.0000i − 0.809491i −0.914429 0.404745i \(-0.867360\pi\)
0.914429 0.404745i \(-0.132640\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) − 36.0000i − 1.38359i −0.722093 0.691796i \(-0.756820\pi\)
0.722093 0.691796i \(-0.243180\pi\)
\(678\) 0 0
\(679\) 50.0000 1.91882
\(680\) 0 0
\(681\) −16.0000 −0.613121
\(682\) 0 0
\(683\) 12.0000i 0.459167i 0.973289 + 0.229584i \(0.0737364\pi\)
−0.973289 + 0.229584i \(0.926264\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) − 15.0000i − 0.572286i
\(688\) 0 0
\(689\) −12.0000 −0.457164
\(690\) 0 0
\(691\) 40.0000 1.52167 0.760836 0.648944i \(-0.224789\pi\)
0.760836 + 0.648944i \(0.224789\pi\)
\(692\) 0 0
\(693\) − 20.0000i − 0.759737i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) − 24.0000i − 0.909065i
\(698\) 0 0
\(699\) −13.0000 −0.491705
\(700\) 0 0
\(701\) −4.00000 −0.151078 −0.0755390 0.997143i \(-0.524068\pi\)
−0.0755390 + 0.997143i \(0.524068\pi\)
\(702\) 0 0
\(703\) 22.0000i 0.829746i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 20.0000i 0.752177i
\(708\) 0 0
\(709\) −22.0000 −0.826227 −0.413114 0.910679i \(-0.635559\pi\)
−0.413114 + 0.910679i \(0.635559\pi\)
\(710\) 0 0
\(711\) −24.0000 −0.900070
\(712\) 0 0
\(713\) 16.0000i 0.599205i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) − 3.00000i − 0.112037i
\(718\) 0 0
\(719\) 30.0000 1.11881 0.559406 0.828894i \(-0.311029\pi\)
0.559406 + 0.828894i \(0.311029\pi\)
\(720\) 0 0
\(721\) −40.0000 −1.48968
\(722\) 0 0
\(723\) − 2.00000i − 0.0743808i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) − 14.0000i − 0.519231i −0.965712 0.259616i \(-0.916404\pi\)
0.965712 0.259616i \(-0.0835959\pi\)
\(728\) 0 0
\(729\) −13.0000 −0.481481
\(730\) 0 0
\(731\) 3.00000 0.110959
\(732\) 0 0
\(733\) − 37.0000i − 1.36663i −0.730125 0.683313i \(-0.760538\pi\)
0.730125 0.683313i \(-0.239462\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) − 12.0000i − 0.442026i
\(738\) 0 0
\(739\) −52.0000 −1.91285 −0.956425 0.291977i \(-0.905687\pi\)
−0.956425 + 0.291977i \(0.905687\pi\)
\(740\) 0 0
\(741\) 2.00000 0.0734718
\(742\) 0 0
\(743\) − 29.0000i − 1.06391i −0.846774 0.531953i \(-0.821458\pi\)
0.846774 0.531953i \(-0.178542\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 32.0000i 1.17082i
\(748\) 0 0
\(749\) −100.000 −3.65392
\(750\) 0 0
\(751\) 32.0000 1.16770 0.583848 0.811863i \(-0.301546\pi\)
0.583848 + 0.811863i \(0.301546\pi\)
\(752\) 0 0
\(753\) − 8.00000i − 0.291536i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) − 52.0000i − 1.88997i −0.327111 0.944986i \(-0.606075\pi\)
0.327111 0.944986i \(-0.393925\pi\)
\(758\) 0 0
\(759\) 8.00000 0.290382
\(760\) 0 0
\(761\) 30.0000 1.08750 0.543750 0.839248i \(-0.317004\pi\)
0.543750 + 0.839248i \(0.317004\pi\)
\(762\) 0 0
\(763\) 25.0000i 0.905061i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) − 6.00000i − 0.216647i
\(768\) 0 0
\(769\) −16.0000 −0.576975 −0.288487 0.957484i \(-0.593152\pi\)
−0.288487 + 0.957484i \(0.593152\pi\)
\(770\) 0 0
\(771\) −31.0000 −1.11644
\(772\) 0 0
\(773\) − 27.0000i − 0.971123i −0.874203 0.485561i \(-0.838615\pi\)
0.874203 0.485561i \(-0.161385\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 55.0000i 1.97311i
\(778\) 0 0
\(779\) 16.0000 0.573259
\(780\) 0 0
\(781\) −14.0000 −0.500959
\(782\) 0 0
\(783\) − 30.0000i − 1.07211i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) − 24.0000i − 0.855508i −0.903895 0.427754i \(-0.859305\pi\)
0.903895 0.427754i \(-0.140695\pi\)
\(788\) 0 0
\(789\) −20.0000 −0.712019
\(790\) 0 0
\(791\) 10.0000 0.355559
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 38.0000i 1.34603i 0.739629 + 0.673015i \(0.235001\pi\)
−0.739629 + 0.673015i \(0.764999\pi\)
\(798\) 0 0
\(799\) 27.0000 0.955191
\(800\) 0 0
\(801\) 20.0000 0.706665
\(802\) 0 0
\(803\) − 4.00000i − 0.141157i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 16.0000i 0.563227i
\(808\) 0 0
\(809\) −15.0000 −0.527372 −0.263686 0.964609i \(-0.584938\pi\)
−0.263686 + 0.964609i \(0.584938\pi\)
\(810\) 0 0
\(811\) −28.0000 −0.983213 −0.491606 0.870817i \(-0.663590\pi\)
−0.491606 + 0.870817i \(0.663590\pi\)
\(812\) 0 0
\(813\) 7.00000i 0.245501i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 2.00000i 0.0699711i
\(818\) 0 0
\(819\) −10.0000 −0.349428
\(820\) 0 0
\(821\) −41.0000 −1.43091 −0.715455 0.698659i \(-0.753781\pi\)
−0.715455 + 0.698659i \(0.753781\pi\)
\(822\) 0 0
\(823\) 26.0000i 0.906303i 0.891434 + 0.453152i \(0.149700\pi\)
−0.891434 + 0.453152i \(0.850300\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) − 10.0000i − 0.347734i −0.984769 0.173867i \(-0.944374\pi\)
0.984769 0.173867i \(-0.0556263\pi\)
\(828\) 0 0
\(829\) 6.00000 0.208389 0.104194 0.994557i \(-0.466774\pi\)
0.104194 + 0.994557i \(0.466774\pi\)
\(830\) 0 0
\(831\) −12.0000 −0.416275
\(832\) 0 0
\(833\) 54.0000i 1.87099i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 20.0000i 0.691301i
\(838\) 0 0
\(839\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(840\) 0 0
\(841\) 7.00000 0.241379
\(842\) 0 0
\(843\) 10.0000i 0.344418i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) − 35.0000i − 1.20261i
\(848\) 0 0
\(849\) 20.0000 0.686398
\(850\) 0 0
\(851\) 44.0000 1.50830
\(852\) 0 0
\(853\) 47.0000i 1.60925i 0.593784 + 0.804625i \(0.297633\pi\)
−0.593784 + 0.804625i \(0.702367\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 30.0000i 1.02478i 0.858753 + 0.512390i \(0.171240\pi\)
−0.858753 + 0.512390i \(0.828760\pi\)
\(858\) 0 0
\(859\) −44.0000 −1.50126 −0.750630 0.660722i \(-0.770250\pi\)
−0.750630 + 0.660722i \(0.770250\pi\)
\(860\) 0 0
\(861\) 40.0000 1.36320
\(862\) 0 0
\(863\) 7.00000i 0.238283i 0.992877 + 0.119141i \(0.0380142\pi\)
−0.992877 + 0.119141i \(0.961986\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) − 8.00000i − 0.271694i
\(868\) 0 0
\(869\) 24.0000 0.814144
\(870\) 0 0
\(871\) −6.00000 −0.203302
\(872\) 0 0
\(873\) − 20.0000i − 0.676897i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) − 7.00000i − 0.236373i −0.992991 0.118187i \(-0.962292\pi\)
0.992991 0.118187i \(-0.0377081\pi\)
\(878\) 0 0
\(879\) −15.0000 −0.505937
\(880\) 0 0
\(881\) −27.0000 −0.909653 −0.454827 0.890580i \(-0.650299\pi\)
−0.454827 + 0.890580i \(0.650299\pi\)
\(882\) 0 0
\(883\) 51.0000i 1.71629i 0.513410 + 0.858143i \(0.328382\pi\)
−0.513410 + 0.858143i \(0.671618\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) − 48.0000i − 1.61168i −0.592132 0.805841i \(-0.701714\pi\)
0.592132 0.805841i \(-0.298286\pi\)
\(888\) 0 0
\(889\) 40.0000 1.34156
\(890\) 0 0
\(891\) −2.00000 −0.0670025
\(892\) 0 0
\(893\) 18.0000i 0.602347i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) − 4.00000i − 0.133556i
\(898\) 0 0
\(899\) −24.0000 −0.800445
\(900\) 0 0
\(901\) 36.0000 1.19933
\(902\) 0 0
\(903\) 5.00000i 0.166390i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) − 5.00000i − 0.166022i −0.996549 0.0830111i \(-0.973546\pi\)
0.996549 0.0830111i \(-0.0264537\pi\)
\(908\) 0 0
\(909\) 8.00000 0.265343
\(910\) 0 0
\(911\) 26.0000 0.861418 0.430709 0.902491i \(-0.358263\pi\)
0.430709 + 0.902491i \(0.358263\pi\)
\(912\) 0 0
\(913\) − 32.0000i − 1.05905i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 15.0000i 0.495344i
\(918\) 0 0
\(919\) 24.0000 0.791687 0.395843 0.918318i \(-0.370452\pi\)
0.395843 + 0.918318i \(0.370452\pi\)
\(920\) 0 0
\(921\) −2.00000 −0.0659022
\(922\) 0 0
\(923\) 7.00000i 0.230408i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 16.0000i 0.525509i
\(928\) 0 0
\(929\) 20.0000 0.656179 0.328089 0.944647i \(-0.393595\pi\)
0.328089 + 0.944647i \(0.393595\pi\)
\(930\) 0 0
\(931\) −36.0000 −1.17985
\(932\) 0 0
\(933\) 22.0000i 0.720248i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 22.0000i 0.718709i 0.933201 + 0.359354i \(0.117003\pi\)
−0.933201 + 0.359354i \(0.882997\pi\)
\(938\) 0 0
\(939\) 9.00000 0.293704
\(940\) 0 0
\(941\) −7.00000 −0.228193 −0.114097 0.993470i \(-0.536397\pi\)
−0.114097 + 0.993470i \(0.536397\pi\)
\(942\) 0 0
\(943\) − 32.0000i − 1.04206i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) − 18.0000i − 0.584921i −0.956278 0.292461i \(-0.905526\pi\)
0.956278 0.292461i \(-0.0944741\pi\)
\(948\) 0 0
\(949\) −2.00000 −0.0649227
\(950\) 0 0
\(951\) −2.00000 −0.0648544
\(952\) 0 0
\(953\) 9.00000i 0.291539i 0.989319 + 0.145769i \(0.0465657\pi\)
−0.989319 + 0.145769i \(0.953434\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 12.0000i 0.387905i
\(958\) 0 0
\(959\) 60.0000 1.93750
\(960\) 0 0
\(961\) −15.0000 −0.483871
\(962\) 0 0
\(963\) 40.0000i 1.28898i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) − 13.0000i − 0.418052i −0.977910 0.209026i \(-0.932971\pi\)
0.977910 0.209026i \(-0.0670293\pi\)
\(968\) 0 0
\(969\) −6.00000 −0.192748
\(970\) 0 0
\(971\) 45.0000 1.44412 0.722059 0.691831i \(-0.243196\pi\)
0.722059 + 0.691831i \(0.243196\pi\)
\(972\) 0 0
\(973\) − 15.0000i − 0.480878i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) − 30.0000i − 0.959785i −0.877327 0.479893i \(-0.840676\pi\)
0.877327 0.479893i \(-0.159324\pi\)
\(978\) 0 0
\(979\) −20.0000 −0.639203
\(980\) 0 0
\(981\) 10.0000 0.319275
\(982\) 0 0
\(983\) − 5.00000i − 0.159475i −0.996816 0.0797376i \(-0.974592\pi\)
0.996816 0.0797376i \(-0.0254082\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 45.0000i 1.43237i
\(988\) 0 0
\(989\) 4.00000 0.127193
\(990\) 0 0
\(991\) 58.0000 1.84243 0.921215 0.389053i \(-0.127198\pi\)
0.921215 + 0.389053i \(0.127198\pi\)
\(992\) 0 0
\(993\) − 12.0000i − 0.380808i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 14.0000i 0.443384i 0.975117 + 0.221692i \(0.0711580\pi\)
−0.975117 + 0.221692i \(0.928842\pi\)
\(998\) 0 0
\(999\) 55.0000 1.74012
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2600.2.d.f.1249.1 2
5.2 odd 4 2600.2.a.e.1.1 1
5.3 odd 4 104.2.a.a.1.1 1
5.4 even 2 inner 2600.2.d.f.1249.2 2
15.8 even 4 936.2.a.f.1.1 1
20.3 even 4 208.2.a.b.1.1 1
20.7 even 4 5200.2.a.bb.1.1 1
35.13 even 4 5096.2.a.c.1.1 1
40.3 even 4 832.2.a.h.1.1 1
40.13 odd 4 832.2.a.c.1.1 1
60.23 odd 4 1872.2.a.l.1.1 1
65.3 odd 12 1352.2.i.b.529.1 2
65.8 even 4 1352.2.f.b.337.1 2
65.18 even 4 1352.2.f.b.337.2 2
65.23 odd 12 1352.2.i.c.529.1 2
65.28 even 12 1352.2.o.a.1161.2 4
65.33 even 12 1352.2.o.a.361.1 4
65.38 odd 4 1352.2.a.b.1.1 1
65.43 odd 12 1352.2.i.c.1329.1 2
65.48 odd 12 1352.2.i.b.1329.1 2
65.58 even 12 1352.2.o.a.361.2 4
65.63 even 12 1352.2.o.a.1161.1 4
80.3 even 4 3328.2.b.t.1665.1 2
80.13 odd 4 3328.2.b.a.1665.2 2
80.43 even 4 3328.2.b.t.1665.2 2
80.53 odd 4 3328.2.b.a.1665.1 2
120.53 even 4 7488.2.a.x.1.1 1
120.83 odd 4 7488.2.a.u.1.1 1
260.83 odd 4 2704.2.f.e.337.2 2
260.103 even 4 2704.2.a.d.1.1 1
260.203 odd 4 2704.2.f.e.337.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
104.2.a.a.1.1 1 5.3 odd 4
208.2.a.b.1.1 1 20.3 even 4
832.2.a.c.1.1 1 40.13 odd 4
832.2.a.h.1.1 1 40.3 even 4
936.2.a.f.1.1 1 15.8 even 4
1352.2.a.b.1.1 1 65.38 odd 4
1352.2.f.b.337.1 2 65.8 even 4
1352.2.f.b.337.2 2 65.18 even 4
1352.2.i.b.529.1 2 65.3 odd 12
1352.2.i.b.1329.1 2 65.48 odd 12
1352.2.i.c.529.1 2 65.23 odd 12
1352.2.i.c.1329.1 2 65.43 odd 12
1352.2.o.a.361.1 4 65.33 even 12
1352.2.o.a.361.2 4 65.58 even 12
1352.2.o.a.1161.1 4 65.63 even 12
1352.2.o.a.1161.2 4 65.28 even 12
1872.2.a.l.1.1 1 60.23 odd 4
2600.2.a.e.1.1 1 5.2 odd 4
2600.2.d.f.1249.1 2 1.1 even 1 trivial
2600.2.d.f.1249.2 2 5.4 even 2 inner
2704.2.a.d.1.1 1 260.103 even 4
2704.2.f.e.337.1 2 260.203 odd 4
2704.2.f.e.337.2 2 260.83 odd 4
3328.2.b.a.1665.1 2 80.53 odd 4
3328.2.b.a.1665.2 2 80.13 odd 4
3328.2.b.t.1665.1 2 80.3 even 4
3328.2.b.t.1665.2 2 80.43 even 4
5096.2.a.c.1.1 1 35.13 even 4
5200.2.a.bb.1.1 1 20.7 even 4
7488.2.a.u.1.1 1 120.83 odd 4
7488.2.a.x.1.1 1 120.53 even 4