Properties

Label 136.2.n.c.121.3
Level $136$
Weight $2$
Character 136.121
Analytic conductor $1.086$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [136,2,Mod(9,136)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(136, base_ring=CyclotomicField(8))
 
chi = DirichletCharacter(H, H._module([0, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("136.9");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 136 = 2^{3} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 136.n (of order \(8\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.08596546749\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(3\) over \(\Q(\zeta_{8})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 28x^{10} + 258x^{8} + 880x^{6} + 1033x^{4} + 132x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

Embedding invariants

Embedding label 121.3
Root \(3.49562i\) of defining polynomial
Character \(\chi\) \(=\) 136.121
Dual form 136.2.n.c.9.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.47178 - 1.02384i) q^{3} +(-0.392531 - 0.947653i) q^{5} +(-0.893542 + 2.15720i) q^{7} +(2.94010 - 2.94010i) q^{9} +(-4.81196 - 1.99318i) q^{11} +4.35777i q^{13} +(-1.94050 - 1.94050i) q^{15} +(3.77648 + 1.65476i) q^{17} +(-1.89281 - 1.89281i) q^{19} +6.24696i q^{21} +(3.79373 + 1.57141i) q^{23} +(2.79157 - 2.79157i) q^{25} +(1.18554 - 2.86215i) q^{27} +(-1.46962 - 3.54797i) q^{29} +(-10.1411 + 4.20057i) q^{31} -13.9348 q^{33} +2.39502 q^{35} +(1.02168 - 0.423195i) q^{37} +(4.46167 + 10.7714i) q^{39} +(-1.00448 + 2.42504i) q^{41} +(-2.86647 + 2.86647i) q^{43} +(-3.94028 - 1.63212i) q^{45} -10.4047i q^{47} +(1.09465 + 1.09465i) q^{49} +(11.0288 + 0.223677i) q^{51} +(-5.49867 - 5.49867i) q^{53} +5.34245i q^{55} +(-6.61654 - 2.74066i) q^{57} +(7.69489 - 7.69489i) q^{59} +(3.04576 - 7.35311i) q^{61} +(3.71528 + 8.96949i) q^{63} +(4.12965 - 1.71056i) q^{65} +6.44882 q^{67} +10.9861 q^{69} +(1.73561 - 0.718913i) q^{71} +(5.05217 + 12.1970i) q^{73} +(4.04200 - 9.75826i) q^{75} +(8.59937 - 8.59937i) q^{77} +(2.31129 + 0.957366i) q^{79} +4.18540i q^{81} +(0.0232879 + 0.0232879i) q^{83} +(0.0857556 - 4.22833i) q^{85} +(-7.26512 - 7.26512i) q^{87} +7.34936i q^{89} +(-9.40057 - 3.89384i) q^{91} +(-20.7657 + 20.7657i) q^{93} +(-1.05074 + 2.53671i) q^{95} +(-6.98779 - 16.8700i) q^{97} +(-20.0078 + 8.28750i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 4 q^{5} - 8 q^{9} - 12 q^{11} + 20 q^{15} + 4 q^{17} - 4 q^{19} - 8 q^{23} - 16 q^{25} + 24 q^{27} + 8 q^{29} - 32 q^{31} - 24 q^{33} - 32 q^{35} + 4 q^{37} - 8 q^{39} + 16 q^{41} + 8 q^{43} - 64 q^{45}+ \cdots - 68 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/136\mathbb{Z}\right)^\times\).

\(n\) \(69\) \(103\) \(105\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{7}{8}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.47178 1.02384i 1.42708 0.591116i 0.470452 0.882426i \(-0.344091\pi\)
0.956629 + 0.291310i \(0.0940910\pi\)
\(4\) 0 0
\(5\) −0.392531 0.947653i −0.175545 0.423803i 0.811478 0.584383i \(-0.198664\pi\)
−0.987023 + 0.160580i \(0.948664\pi\)
\(6\) 0 0
\(7\) −0.893542 + 2.15720i −0.337727 + 0.815345i 0.660206 + 0.751084i \(0.270469\pi\)
−0.997933 + 0.0642606i \(0.979531\pi\)
\(8\) 0 0
\(9\) 2.94010 2.94010i 0.980034 0.980034i
\(10\) 0 0
\(11\) −4.81196 1.99318i −1.45086 0.600966i −0.488457 0.872588i \(-0.662440\pi\)
−0.962404 + 0.271622i \(0.912440\pi\)
\(12\) 0 0
\(13\) 4.35777i 1.20863i 0.796747 + 0.604313i \(0.206552\pi\)
−0.796747 + 0.604313i \(0.793448\pi\)
\(14\) 0 0
\(15\) −1.94050 1.94050i −0.501034 0.501034i
\(16\) 0 0
\(17\) 3.77648 + 1.65476i 0.915930 + 0.401338i
\(18\) 0 0
\(19\) −1.89281 1.89281i −0.434240 0.434240i 0.455828 0.890068i \(-0.349343\pi\)
−0.890068 + 0.455828i \(0.849343\pi\)
\(20\) 0 0
\(21\) 6.24696i 1.36320i
\(22\) 0 0
\(23\) 3.79373 + 1.57141i 0.791047 + 0.327662i 0.741364 0.671103i \(-0.234179\pi\)
0.0496826 + 0.998765i \(0.484179\pi\)
\(24\) 0 0
\(25\) 2.79157 2.79157i 0.558314 0.558314i
\(26\) 0 0
\(27\) 1.18554 2.86215i 0.228157 0.550820i
\(28\) 0 0
\(29\) −1.46962 3.54797i −0.272901 0.658841i 0.726704 0.686951i \(-0.241051\pi\)
−0.999605 + 0.0281099i \(0.991051\pi\)
\(30\) 0 0
\(31\) −10.1411 + 4.20057i −1.82139 + 0.754444i −0.846272 + 0.532751i \(0.821158\pi\)
−0.975117 + 0.221693i \(0.928842\pi\)
\(32\) 0 0
\(33\) −13.9348 −2.42574
\(34\) 0 0
\(35\) 2.39502 0.404832
\(36\) 0 0
\(37\) 1.02168 0.423195i 0.167964 0.0695728i −0.297117 0.954841i \(-0.596025\pi\)
0.465081 + 0.885268i \(0.346025\pi\)
\(38\) 0 0
\(39\) 4.46167 + 10.7714i 0.714439 + 1.72481i
\(40\) 0 0
\(41\) −1.00448 + 2.42504i −0.156874 + 0.378728i −0.982702 0.185195i \(-0.940708\pi\)
0.825828 + 0.563923i \(0.190708\pi\)
\(42\) 0 0
\(43\) −2.86647 + 2.86647i −0.437132 + 0.437132i −0.891046 0.453914i \(-0.850027\pi\)
0.453914 + 0.891046i \(0.350027\pi\)
\(44\) 0 0
\(45\) −3.94028 1.63212i −0.587382 0.243302i
\(46\) 0 0
\(47\) 10.4047i 1.51768i −0.651280 0.758838i \(-0.725767\pi\)
0.651280 0.758838i \(-0.274233\pi\)
\(48\) 0 0
\(49\) 1.09465 + 1.09465i 0.156379 + 0.156379i
\(50\) 0 0
\(51\) 11.0288 + 0.223677i 1.54434 + 0.0313211i
\(52\) 0 0
\(53\) −5.49867 5.49867i −0.755301 0.755301i 0.220162 0.975463i \(-0.429341\pi\)
−0.975463 + 0.220162i \(0.929341\pi\)
\(54\) 0 0
\(55\) 5.34245i 0.720376i
\(56\) 0 0
\(57\) −6.61654 2.74066i −0.876383 0.363010i
\(58\) 0 0
\(59\) 7.69489 7.69489i 1.00179 1.00179i 0.00179152 0.999998i \(-0.499430\pi\)
0.999998 0.00179152i \(-0.000570259\pi\)
\(60\) 0 0
\(61\) 3.04576 7.35311i 0.389969 0.941469i −0.599976 0.800018i \(-0.704823\pi\)
0.989945 0.141451i \(-0.0451767\pi\)
\(62\) 0 0
\(63\) 3.71528 + 8.96949i 0.468082 + 1.13005i
\(64\) 0 0
\(65\) 4.12965 1.71056i 0.512220 0.212169i
\(66\) 0 0
\(67\) 6.44882 0.787848 0.393924 0.919143i \(-0.371117\pi\)
0.393924 + 0.919143i \(0.371117\pi\)
\(68\) 0 0
\(69\) 10.9861 1.32257
\(70\) 0 0
\(71\) 1.73561 0.718913i 0.205979 0.0853193i −0.277309 0.960781i \(-0.589442\pi\)
0.483288 + 0.875462i \(0.339442\pi\)
\(72\) 0 0
\(73\) 5.05217 + 12.1970i 0.591312 + 1.42755i 0.882236 + 0.470807i \(0.156037\pi\)
−0.290924 + 0.956746i \(0.593963\pi\)
\(74\) 0 0
\(75\) 4.04200 9.75826i 0.466730 1.12679i
\(76\) 0 0
\(77\) 8.59937 8.59937i 0.979989 0.979989i
\(78\) 0 0
\(79\) 2.31129 + 0.957366i 0.260040 + 0.107712i 0.508895 0.860829i \(-0.330054\pi\)
−0.248855 + 0.968541i \(0.580054\pi\)
\(80\) 0 0
\(81\) 4.18540i 0.465045i
\(82\) 0 0
\(83\) 0.0232879 + 0.0232879i 0.00255618 + 0.00255618i 0.708384 0.705828i \(-0.249425\pi\)
−0.705828 + 0.708384i \(0.749425\pi\)
\(84\) 0 0
\(85\) 0.0857556 4.22833i 0.00930150 0.458627i
\(86\) 0 0
\(87\) −7.26512 7.26512i −0.778903 0.778903i
\(88\) 0 0
\(89\) 7.34936i 0.779030i 0.921020 + 0.389515i \(0.127357\pi\)
−0.921020 + 0.389515i \(0.872643\pi\)
\(90\) 0 0
\(91\) −9.40057 3.89384i −0.985448 0.408186i
\(92\) 0 0
\(93\) −20.7657 + 20.7657i −2.15330 + 2.15330i
\(94\) 0 0
\(95\) −1.05074 + 2.53671i −0.107804 + 0.260261i
\(96\) 0 0
\(97\) −6.98779 16.8700i −0.709502 1.71289i −0.701241 0.712924i \(-0.747370\pi\)
−0.00826130 0.999966i \(-0.502630\pi\)
\(98\) 0 0
\(99\) −20.0078 + 8.28750i −2.01086 + 0.832925i
\(100\) 0 0
\(101\) 9.20094 0.915528 0.457764 0.889074i \(-0.348650\pi\)
0.457764 + 0.889074i \(0.348650\pi\)
\(102\) 0 0
\(103\) 7.88599 0.777029 0.388515 0.921443i \(-0.372988\pi\)
0.388515 + 0.921443i \(0.372988\pi\)
\(104\) 0 0
\(105\) 5.91995 2.45213i 0.577728 0.239303i
\(106\) 0 0
\(107\) −1.67810 4.05130i −0.162228 0.391654i 0.821773 0.569815i \(-0.192985\pi\)
−0.984001 + 0.178161i \(0.942985\pi\)
\(108\) 0 0
\(109\) 2.32974 5.62449i 0.223149 0.538729i −0.772166 0.635421i \(-0.780826\pi\)
0.995314 + 0.0966928i \(0.0308264\pi\)
\(110\) 0 0
\(111\) 2.09209 2.09209i 0.198572 0.198572i
\(112\) 0 0
\(113\) −16.8902 6.99617i −1.58890 0.658144i −0.599109 0.800667i \(-0.704478\pi\)
−0.989791 + 0.142523i \(0.954478\pi\)
\(114\) 0 0
\(115\) 4.21197i 0.392768i
\(116\) 0 0
\(117\) 12.8123 + 12.8123i 1.18449 + 1.18449i
\(118\) 0 0
\(119\) −6.94409 + 6.66802i −0.636563 + 0.611256i
\(120\) 0 0
\(121\) 11.4040 + 11.4040i 1.03673 + 1.03673i
\(122\) 0 0
\(123\) 7.02259i 0.633206i
\(124\) 0 0
\(125\) −8.47948 3.51232i −0.758428 0.314151i
\(126\) 0 0
\(127\) −6.83989 + 6.83989i −0.606942 + 0.606942i −0.942146 0.335203i \(-0.891195\pi\)
0.335203 + 0.942146i \(0.391195\pi\)
\(128\) 0 0
\(129\) −4.15045 + 10.0201i −0.365427 + 0.882219i
\(130\) 0 0
\(131\) 3.79494 + 9.16179i 0.331565 + 0.800469i 0.998468 + 0.0553249i \(0.0176195\pi\)
−0.666903 + 0.745144i \(0.732381\pi\)
\(132\) 0 0
\(133\) 5.77448 2.39187i 0.500711 0.207401i
\(134\) 0 0
\(135\) −3.17768 −0.273491
\(136\) 0 0
\(137\) 2.40322 0.205321 0.102661 0.994716i \(-0.467264\pi\)
0.102661 + 0.994716i \(0.467264\pi\)
\(138\) 0 0
\(139\) −8.03405 + 3.32781i −0.681439 + 0.282261i −0.696428 0.717626i \(-0.745229\pi\)
0.0149893 + 0.999888i \(0.495229\pi\)
\(140\) 0 0
\(141\) −10.6527 25.7180i −0.897123 2.16585i
\(142\) 0 0
\(143\) 8.68581 20.9694i 0.726344 1.75355i
\(144\) 0 0
\(145\) −2.78537 + 2.78537i −0.231313 + 0.231313i
\(146\) 0 0
\(147\) 3.82649 + 1.58498i 0.315603 + 0.130727i
\(148\) 0 0
\(149\) 3.90029i 0.319524i 0.987156 + 0.159762i \(0.0510727\pi\)
−0.987156 + 0.159762i \(0.948927\pi\)
\(150\) 0 0
\(151\) 2.53060 + 2.53060i 0.205938 + 0.205938i 0.802538 0.596601i \(-0.203482\pi\)
−0.596601 + 0.802538i \(0.703482\pi\)
\(152\) 0 0
\(153\) 15.9684 6.23806i 1.29097 0.504317i
\(154\) 0 0
\(155\) 7.96136 + 7.96136i 0.639472 + 0.639472i
\(156\) 0 0
\(157\) 13.5186i 1.07890i 0.842018 + 0.539449i \(0.181367\pi\)
−0.842018 + 0.539449i \(0.818633\pi\)
\(158\) 0 0
\(159\) −19.2213 7.96171i −1.52435 0.631405i
\(160\) 0 0
\(161\) −6.77971 + 6.77971i −0.534316 + 0.534316i
\(162\) 0 0
\(163\) 0.517312 1.24890i 0.0405190 0.0978216i −0.902324 0.431058i \(-0.858141\pi\)
0.942843 + 0.333236i \(0.108141\pi\)
\(164\) 0 0
\(165\) 5.46984 + 13.2053i 0.425826 + 1.02804i
\(166\) 0 0
\(167\) 2.52757 1.04696i 0.195589 0.0810158i −0.282739 0.959197i \(-0.591243\pi\)
0.478328 + 0.878181i \(0.341243\pi\)
\(168\) 0 0
\(169\) −5.99012 −0.460778
\(170\) 0 0
\(171\) −11.1301 −0.851141
\(172\) 0 0
\(173\) −3.58906 + 1.48664i −0.272871 + 0.113027i −0.514923 0.857236i \(-0.672180\pi\)
0.242052 + 0.970263i \(0.422180\pi\)
\(174\) 0 0
\(175\) 3.52759 + 8.51635i 0.266661 + 0.643776i
\(176\) 0 0
\(177\) 11.1417 26.8984i 0.837461 2.02181i
\(178\) 0 0
\(179\) −5.91821 + 5.91821i −0.442348 + 0.442348i −0.892800 0.450452i \(-0.851263\pi\)
0.450452 + 0.892800i \(0.351263\pi\)
\(180\) 0 0
\(181\) −6.48711 2.68705i −0.482183 0.199727i 0.128332 0.991731i \(-0.459038\pi\)
−0.610515 + 0.792004i \(0.709038\pi\)
\(182\) 0 0
\(183\) 21.2936i 1.57407i
\(184\) 0 0
\(185\) −0.802084 0.802084i −0.0589704 0.0589704i
\(186\) 0 0
\(187\) −14.8740 15.4898i −1.08770 1.13273i
\(188\) 0 0
\(189\) 5.11489 + 5.11489i 0.372054 + 0.372054i
\(190\) 0 0
\(191\) 12.6238i 0.913427i 0.889614 + 0.456713i \(0.150973\pi\)
−0.889614 + 0.456713i \(0.849027\pi\)
\(192\) 0 0
\(193\) 17.3393 + 7.18217i 1.24811 + 0.516984i 0.906240 0.422764i \(-0.138940\pi\)
0.341869 + 0.939748i \(0.388940\pi\)
\(194\) 0 0
\(195\) 8.45623 8.45623i 0.605563 0.605563i
\(196\) 0 0
\(197\) −5.51876 + 13.3235i −0.393196 + 0.949258i 0.596044 + 0.802952i \(0.296739\pi\)
−0.989239 + 0.146306i \(0.953261\pi\)
\(198\) 0 0
\(199\) −3.66350 8.84447i −0.259699 0.626968i 0.739220 0.673464i \(-0.235194\pi\)
−0.998918 + 0.0464963i \(0.985194\pi\)
\(200\) 0 0
\(201\) 15.9400 6.60258i 1.12432 0.465710i
\(202\) 0 0
\(203\) 8.96683 0.629348
\(204\) 0 0
\(205\) 2.69239 0.188045
\(206\) 0 0
\(207\) 15.7741 6.53383i 1.09637 0.454133i
\(208\) 0 0
\(209\) 5.33542 + 12.8808i 0.369059 + 0.890986i
\(210\) 0 0
\(211\) 0.615646 1.48630i 0.0423828 0.102321i −0.901270 0.433257i \(-0.857364\pi\)
0.943653 + 0.330936i \(0.107364\pi\)
\(212\) 0 0
\(213\) 3.55399 3.55399i 0.243515 0.243515i
\(214\) 0 0
\(215\) 3.84159 + 1.59124i 0.261995 + 0.108522i
\(216\) 0 0
\(217\) 25.6297i 1.73986i
\(218\) 0 0
\(219\) 24.9757 + 24.9757i 1.68770 + 1.68770i
\(220\) 0 0
\(221\) −7.21106 + 16.4570i −0.485068 + 1.10702i
\(222\) 0 0
\(223\) 6.70407 + 6.70407i 0.448937 + 0.448937i 0.895001 0.446064i \(-0.147175\pi\)
−0.446064 + 0.895001i \(0.647175\pi\)
\(224\) 0 0
\(225\) 16.4150i 1.09433i
\(226\) 0 0
\(227\) 2.41865 + 1.00184i 0.160531 + 0.0664943i 0.461502 0.887139i \(-0.347311\pi\)
−0.300971 + 0.953633i \(0.597311\pi\)
\(228\) 0 0
\(229\) 3.48993 3.48993i 0.230621 0.230621i −0.582331 0.812952i \(-0.697859\pi\)
0.812952 + 0.582331i \(0.197859\pi\)
\(230\) 0 0
\(231\) 12.4513 30.0601i 0.819236 1.97781i
\(232\) 0 0
\(233\) −0.873453 2.10870i −0.0572218 0.138146i 0.892683 0.450685i \(-0.148820\pi\)
−0.949905 + 0.312540i \(0.898820\pi\)
\(234\) 0 0
\(235\) −9.86001 + 4.08415i −0.643196 + 0.266421i
\(236\) 0 0
\(237\) 6.69317 0.434768
\(238\) 0 0
\(239\) −12.1821 −0.787995 −0.393997 0.919112i \(-0.628908\pi\)
−0.393997 + 0.919112i \(0.628908\pi\)
\(240\) 0 0
\(241\) −13.3105 + 5.51338i −0.857404 + 0.355148i −0.767692 0.640820i \(-0.778595\pi\)
−0.0897121 + 0.995968i \(0.528595\pi\)
\(242\) 0 0
\(243\) 7.84181 + 18.9318i 0.503053 + 1.21448i
\(244\) 0 0
\(245\) 0.607666 1.46704i 0.0388223 0.0937254i
\(246\) 0 0
\(247\) 8.24842 8.24842i 0.524835 0.524835i
\(248\) 0 0
\(249\) 0.0814055 + 0.0337193i 0.00515887 + 0.00213687i
\(250\) 0 0
\(251\) 17.8445i 1.12634i 0.826342 + 0.563168i \(0.190418\pi\)
−0.826342 + 0.563168i \(0.809582\pi\)
\(252\) 0 0
\(253\) −15.1232 15.1232i −0.950785 0.950785i
\(254\) 0 0
\(255\) −4.11718 10.5393i −0.257828 0.659996i
\(256\) 0 0
\(257\) −3.82080 3.82080i −0.238335 0.238335i 0.577825 0.816160i \(-0.303901\pi\)
−0.816160 + 0.577825i \(0.803901\pi\)
\(258\) 0 0
\(259\) 2.58212i 0.160445i
\(260\) 0 0
\(261\) −14.7522 6.11056i −0.913138 0.378234i
\(262\) 0 0
\(263\) 6.98795 6.98795i 0.430896 0.430896i −0.458037 0.888933i \(-0.651447\pi\)
0.888933 + 0.458037i \(0.151447\pi\)
\(264\) 0 0
\(265\) −3.05244 + 7.36924i −0.187510 + 0.452689i
\(266\) 0 0
\(267\) 7.52459 + 18.1660i 0.460497 + 1.11174i
\(268\) 0 0
\(269\) −24.7296 + 10.2433i −1.50779 + 0.624546i −0.975100 0.221765i \(-0.928818\pi\)
−0.532688 + 0.846312i \(0.678818\pi\)
\(270\) 0 0
\(271\) 26.6483 1.61877 0.809384 0.587280i \(-0.199801\pi\)
0.809384 + 0.587280i \(0.199801\pi\)
\(272\) 0 0
\(273\) −27.2228 −1.64760
\(274\) 0 0
\(275\) −18.9970 + 7.86882i −1.14556 + 0.474508i
\(276\) 0 0
\(277\) −10.7366 25.9204i −0.645097 1.55740i −0.819718 0.572767i \(-0.805870\pi\)
0.174621 0.984636i \(-0.444130\pi\)
\(278\) 0 0
\(279\) −17.4657 + 42.1658i −1.04564 + 2.52440i
\(280\) 0 0
\(281\) −14.9649 + 14.9649i −0.892731 + 0.892731i −0.994779 0.102049i \(-0.967460\pi\)
0.102049 + 0.994779i \(0.467460\pi\)
\(282\) 0 0
\(283\) 4.05293 + 1.67878i 0.240922 + 0.0997931i 0.499877 0.866096i \(-0.333378\pi\)
−0.258956 + 0.965889i \(0.583378\pi\)
\(284\) 0 0
\(285\) 7.34598i 0.435139i
\(286\) 0 0
\(287\) −4.33375 4.33375i −0.255813 0.255813i
\(288\) 0 0
\(289\) 11.5235 + 12.4983i 0.677855 + 0.735195i
\(290\) 0 0
\(291\) −34.5445 34.5445i −2.02503 2.02503i
\(292\) 0 0
\(293\) 11.8892i 0.694573i −0.937759 0.347286i \(-0.887103\pi\)
0.937759 0.347286i \(-0.112897\pi\)
\(294\) 0 0
\(295\) −10.3126 4.27161i −0.600421 0.248703i
\(296\) 0 0
\(297\) −11.4095 + 11.4095i −0.662049 + 0.662049i
\(298\) 0 0
\(299\) −6.84785 + 16.5322i −0.396022 + 0.956080i
\(300\) 0 0
\(301\) −3.62224 8.74485i −0.208782 0.504045i
\(302\) 0 0
\(303\) 22.7427 9.42032i 1.30653 0.541183i
\(304\) 0 0
\(305\) −8.16375 −0.467455
\(306\) 0 0
\(307\) 20.9185 1.19388 0.596941 0.802285i \(-0.296383\pi\)
0.596941 + 0.802285i \(0.296383\pi\)
\(308\) 0 0
\(309\) 19.4924 8.07401i 1.10888 0.459315i
\(310\) 0 0
\(311\) 2.34082 + 5.65124i 0.132736 + 0.320453i 0.976248 0.216658i \(-0.0695157\pi\)
−0.843512 + 0.537111i \(0.819516\pi\)
\(312\) 0 0
\(313\) −10.9736 + 26.4926i −0.620264 + 1.49745i 0.231130 + 0.972923i \(0.425758\pi\)
−0.851394 + 0.524527i \(0.824242\pi\)
\(314\) 0 0
\(315\) 7.04160 7.04160i 0.396749 0.396749i
\(316\) 0 0
\(317\) 5.79187 + 2.39907i 0.325304 + 0.134745i 0.539358 0.842077i \(-0.318667\pi\)
−0.214054 + 0.976822i \(0.568667\pi\)
\(318\) 0 0
\(319\) 20.0019i 1.11989i
\(320\) 0 0
\(321\) −8.29578 8.29578i −0.463026 0.463026i
\(322\) 0 0
\(323\) −4.01601 10.2803i −0.223457 0.572011i
\(324\) 0 0
\(325\) 12.1650 + 12.1650i 0.674793 + 0.674793i
\(326\) 0 0
\(327\) 16.2878i 0.900716i
\(328\) 0 0
\(329\) 22.4449 + 9.29700i 1.23743 + 0.512560i
\(330\) 0 0
\(331\) 6.76610 6.76610i 0.371899 0.371899i −0.496270 0.868168i \(-0.665297\pi\)
0.868168 + 0.496270i \(0.165297\pi\)
\(332\) 0 0
\(333\) 1.75961 4.24809i 0.0964263 0.232794i
\(334\) 0 0
\(335\) −2.53136 6.11124i −0.138303 0.333893i
\(336\) 0 0
\(337\) −2.11552 + 0.876277i −0.115240 + 0.0477339i −0.439558 0.898214i \(-0.644865\pi\)
0.324319 + 0.945948i \(0.394865\pi\)
\(338\) 0 0
\(339\) −48.9119 −2.65653
\(340\) 0 0
\(341\) 57.1709 3.09598
\(342\) 0 0
\(343\) −18.4399 + 7.63806i −0.995661 + 0.412416i
\(344\) 0 0
\(345\) −4.31239 10.4110i −0.232171 0.560512i
\(346\) 0 0
\(347\) −1.53048 + 3.69490i −0.0821603 + 0.198353i −0.959621 0.281296i \(-0.909236\pi\)
0.877461 + 0.479648i \(0.159236\pi\)
\(348\) 0 0
\(349\) 18.7738 18.7738i 1.00494 1.00494i 0.00495064 0.999988i \(-0.498424\pi\)
0.999988 0.00495064i \(-0.00157584\pi\)
\(350\) 0 0
\(351\) 12.4726 + 5.16630i 0.665736 + 0.275757i
\(352\) 0 0
\(353\) 1.75320i 0.0933134i −0.998911 0.0466567i \(-0.985143\pi\)
0.998911 0.0466567i \(-0.0148567\pi\)
\(354\) 0 0
\(355\) −1.36256 1.36256i −0.0723172 0.0723172i
\(356\) 0 0
\(357\) −10.3372 + 23.5915i −0.547104 + 1.24859i
\(358\) 0 0
\(359\) −14.0466 14.0466i −0.741353 0.741353i 0.231486 0.972838i \(-0.425641\pi\)
−0.972838 + 0.231486i \(0.925641\pi\)
\(360\) 0 0
\(361\) 11.8345i 0.622870i
\(362\) 0 0
\(363\) 39.8641 + 16.5123i 2.09232 + 0.866669i
\(364\) 0 0
\(365\) 9.57541 9.57541i 0.501200 0.501200i
\(366\) 0 0
\(367\) 6.63148 16.0098i 0.346160 0.835705i −0.650906 0.759159i \(-0.725611\pi\)
0.997066 0.0765462i \(-0.0243893\pi\)
\(368\) 0 0
\(369\) 4.17658 + 10.0832i 0.217424 + 0.524908i
\(370\) 0 0
\(371\) 16.7750 6.94845i 0.870916 0.360745i
\(372\) 0 0
\(373\) 0.854460 0.0442423 0.0221211 0.999755i \(-0.492958\pi\)
0.0221211 + 0.999755i \(0.492958\pi\)
\(374\) 0 0
\(375\) −24.5554 −1.26804
\(376\) 0 0
\(377\) 15.4612 6.40424i 0.796292 0.329835i
\(378\) 0 0
\(379\) −11.4441 27.6284i −0.587843 1.41918i −0.885561 0.464524i \(-0.846226\pi\)
0.297718 0.954654i \(-0.403774\pi\)
\(380\) 0 0
\(381\) −9.90370 + 23.9097i −0.507382 + 1.22493i
\(382\) 0 0
\(383\) −19.5522 + 19.5522i −0.999073 + 0.999073i −1.00000 0.000926910i \(-0.999705\pi\)
0.000926910 1.00000i \(0.499705\pi\)
\(384\) 0 0
\(385\) −11.5247 4.77370i −0.587355 0.243291i
\(386\) 0 0
\(387\) 16.8554i 0.856809i
\(388\) 0 0
\(389\) −20.7260 20.7260i −1.05085 1.05085i −0.998636 0.0522161i \(-0.983372\pi\)
−0.0522161 0.998636i \(-0.516628\pi\)
\(390\) 0 0
\(391\) 11.7266 + 12.2121i 0.593040 + 0.617593i
\(392\) 0 0
\(393\) 18.7605 + 18.7605i 0.946341 + 0.946341i
\(394\) 0 0
\(395\) 2.56609i 0.129114i
\(396\) 0 0
\(397\) 17.1844 + 7.11800i 0.862458 + 0.357242i 0.769668 0.638444i \(-0.220422\pi\)
0.0927899 + 0.995686i \(0.470422\pi\)
\(398\) 0 0
\(399\) 11.8243 11.8243i 0.591956 0.591956i
\(400\) 0 0
\(401\) 3.03684 7.33159i 0.151653 0.366122i −0.829735 0.558157i \(-0.811509\pi\)
0.981388 + 0.192035i \(0.0615087\pi\)
\(402\) 0 0
\(403\) −18.3051 44.1924i −0.911841 2.20138i
\(404\) 0 0
\(405\) 3.96631 1.64290i 0.197088 0.0816363i
\(406\) 0 0
\(407\) −5.75980 −0.285503
\(408\) 0 0
\(409\) −6.93345 −0.342837 −0.171418 0.985198i \(-0.554835\pi\)
−0.171418 + 0.985198i \(0.554835\pi\)
\(410\) 0 0
\(411\) 5.94023 2.46052i 0.293010 0.121369i
\(412\) 0 0
\(413\) 9.72372 + 23.4751i 0.478473 + 1.15514i
\(414\) 0 0
\(415\) 0.0129276 0.0312100i 0.000634592 0.00153204i
\(416\) 0 0
\(417\) −16.4512 + 16.4512i −0.805619 + 0.805619i
\(418\) 0 0
\(419\) 23.6912 + 9.81323i 1.15739 + 0.479407i 0.877006 0.480480i \(-0.159537\pi\)
0.280386 + 0.959887i \(0.409537\pi\)
\(420\) 0 0
\(421\) 34.5518i 1.68395i 0.539513 + 0.841977i \(0.318608\pi\)
−0.539513 + 0.841977i \(0.681392\pi\)
\(422\) 0 0
\(423\) −30.5908 30.5908i −1.48737 1.48737i
\(424\) 0 0
\(425\) 15.1617 5.92291i 0.735449 0.287303i
\(426\) 0 0
\(427\) 13.1406 + 13.1406i 0.635919 + 0.635919i
\(428\) 0 0
\(429\) 60.7245i 2.93181i
\(430\) 0 0
\(431\) −2.65090 1.09804i −0.127689 0.0528907i 0.317924 0.948116i \(-0.397014\pi\)
−0.445613 + 0.895226i \(0.647014\pi\)
\(432\) 0 0
\(433\) 11.9564 11.9564i 0.574586 0.574586i −0.358820 0.933407i \(-0.616821\pi\)
0.933407 + 0.358820i \(0.116821\pi\)
\(434\) 0 0
\(435\) −4.03303 + 9.73660i −0.193369 + 0.466834i
\(436\) 0 0
\(437\) −4.20642 10.1552i −0.201220 0.485789i
\(438\) 0 0
\(439\) 19.2330 7.96657i 0.917941 0.380223i 0.126850 0.991922i \(-0.459513\pi\)
0.791091 + 0.611698i \(0.209513\pi\)
\(440\) 0 0
\(441\) 6.43678 0.306513
\(442\) 0 0
\(443\) −23.5157 −1.11726 −0.558632 0.829416i \(-0.688673\pi\)
−0.558632 + 0.829416i \(0.688673\pi\)
\(444\) 0 0
\(445\) 6.96464 2.88485i 0.330156 0.136755i
\(446\) 0 0
\(447\) 3.99328 + 9.64063i 0.188876 + 0.455986i
\(448\) 0 0
\(449\) 3.67748 8.87821i 0.173551 0.418989i −0.813039 0.582210i \(-0.802188\pi\)
0.986590 + 0.163221i \(0.0521883\pi\)
\(450\) 0 0
\(451\) 9.66708 9.66708i 0.455205 0.455205i
\(452\) 0 0
\(453\) 8.84603 + 3.66414i 0.415623 + 0.172157i
\(454\) 0 0
\(455\) 10.4369i 0.489291i
\(456\) 0 0
\(457\) −12.1391 12.1391i −0.567843 0.567843i 0.363681 0.931524i \(-0.381520\pi\)
−0.931524 + 0.363681i \(0.881520\pi\)
\(458\) 0 0
\(459\) 9.21333 8.84704i 0.430041 0.412945i
\(460\) 0 0
\(461\) −21.3878 21.3878i −0.996131 0.996131i 0.00386124 0.999993i \(-0.498771\pi\)
−0.999993 + 0.00386124i \(0.998771\pi\)
\(462\) 0 0
\(463\) 33.1695i 1.54152i 0.637128 + 0.770758i \(0.280122\pi\)
−0.637128 + 0.770758i \(0.719878\pi\)
\(464\) 0 0
\(465\) 27.8299 + 11.5275i 1.29058 + 0.534576i
\(466\) 0 0
\(467\) 3.94231 3.94231i 0.182428 0.182428i −0.609985 0.792413i \(-0.708824\pi\)
0.792413 + 0.609985i \(0.208824\pi\)
\(468\) 0 0
\(469\) −5.76229 + 13.9114i −0.266078 + 0.642368i
\(470\) 0 0
\(471\) 13.8409 + 33.4148i 0.637754 + 1.53967i
\(472\) 0 0
\(473\) 19.5067 8.07994i 0.896919 0.371516i
\(474\) 0 0
\(475\) −10.5678 −0.484885
\(476\) 0 0
\(477\) −32.3333 −1.48044
\(478\) 0 0
\(479\) 21.3489 8.84301i 0.975457 0.404047i 0.162716 0.986673i \(-0.447975\pi\)
0.812741 + 0.582626i \(0.197975\pi\)
\(480\) 0 0
\(481\) 1.84418 + 4.45225i 0.0840875 + 0.203005i
\(482\) 0 0
\(483\) −9.81656 + 23.6993i −0.446669 + 1.07835i
\(484\) 0 0
\(485\) −13.2440 + 13.2440i −0.601379 + 0.601379i
\(486\) 0 0
\(487\) 13.6778 + 5.66554i 0.619801 + 0.256730i 0.670413 0.741988i \(-0.266117\pi\)
−0.0506118 + 0.998718i \(0.516117\pi\)
\(488\) 0 0
\(489\) 3.61665i 0.163551i
\(490\) 0 0
\(491\) −0.370833 0.370833i −0.0167355 0.0167355i 0.698690 0.715425i \(-0.253767\pi\)
−0.715425 + 0.698690i \(0.753767\pi\)
\(492\) 0 0
\(493\) 0.321065 15.8307i 0.0144600 0.712977i
\(494\) 0 0
\(495\) 15.7074 + 15.7074i 0.705993 + 0.705993i
\(496\) 0 0
\(497\) 4.38644i 0.196759i
\(498\) 0 0
\(499\) 14.9111 + 6.17637i 0.667512 + 0.276492i 0.690596 0.723241i \(-0.257348\pi\)
−0.0230839 + 0.999734i \(0.507348\pi\)
\(500\) 0 0
\(501\) 5.17568 5.17568i 0.231232 0.231232i
\(502\) 0 0
\(503\) 4.92666 11.8940i 0.219669 0.530328i −0.775175 0.631747i \(-0.782338\pi\)
0.994844 + 0.101419i \(0.0323382\pi\)
\(504\) 0 0
\(505\) −3.61165 8.71931i −0.160717 0.388004i
\(506\) 0 0
\(507\) −14.8062 + 6.13294i −0.657568 + 0.272374i
\(508\) 0 0
\(509\) 0.684018 0.0303185 0.0151593 0.999885i \(-0.495174\pi\)
0.0151593 + 0.999885i \(0.495174\pi\)
\(510\) 0 0
\(511\) −30.8257 −1.36365
\(512\) 0 0
\(513\) −7.66150 + 3.17350i −0.338264 + 0.140113i
\(514\) 0 0
\(515\) −3.09549 7.47318i −0.136404 0.329308i
\(516\) 0 0
\(517\) −20.7384 + 50.0668i −0.912072 + 2.20194i
\(518\) 0 0
\(519\) −7.34927 + 7.34927i −0.322597 + 0.322597i
\(520\) 0 0
\(521\) −4.38938 1.81814i −0.192302 0.0796543i 0.284454 0.958690i \(-0.408188\pi\)
−0.476757 + 0.879035i \(0.658188\pi\)
\(522\) 0 0
\(523\) 40.6707i 1.77840i −0.457515 0.889202i \(-0.651260\pi\)
0.457515 0.889202i \(-0.348740\pi\)
\(524\) 0 0
\(525\) 17.4388 + 17.4388i 0.761092 + 0.761092i
\(526\) 0 0
\(527\) −45.2484 0.917691i −1.97105 0.0399753i
\(528\) 0 0
\(529\) −4.34042 4.34042i −0.188714 0.188714i
\(530\) 0 0
\(531\) 45.2475i 1.96358i
\(532\) 0 0
\(533\) −10.5678 4.37731i −0.457740 0.189602i
\(534\) 0 0
\(535\) −3.18052 + 3.18052i −0.137506 + 0.137506i
\(536\) 0 0
\(537\) −8.56918 + 20.6878i −0.369787 + 0.892745i
\(538\) 0 0
\(539\) −3.08558 7.44926i −0.132906 0.320862i
\(540\) 0 0
\(541\) −31.9376 + 13.2290i −1.37310 + 0.568759i −0.942629 0.333843i \(-0.891654\pi\)
−0.430476 + 0.902602i \(0.641654\pi\)
\(542\) 0 0
\(543\) −18.7858 −0.806176
\(544\) 0 0
\(545\) −6.24456 −0.267488
\(546\) 0 0
\(547\) −24.4795 + 10.1397i −1.04667 + 0.433544i −0.838701 0.544592i \(-0.816685\pi\)
−0.207967 + 0.978136i \(0.566685\pi\)
\(548\) 0 0
\(549\) −12.6640 30.5737i −0.540488 1.30485i
\(550\) 0 0
\(551\) −3.93392 + 9.49733i −0.167591 + 0.404600i
\(552\) 0 0
\(553\) −4.13046 + 4.13046i −0.175645 + 0.175645i
\(554\) 0 0
\(555\) −2.80378 1.16136i −0.119014 0.0492971i
\(556\) 0 0
\(557\) 24.1708i 1.02415i 0.858941 + 0.512075i \(0.171123\pi\)
−0.858941 + 0.512075i \(0.828877\pi\)
\(558\) 0 0
\(559\) −12.4914 12.4914i −0.528330 0.528330i
\(560\) 0 0
\(561\) −52.6244 23.0587i −2.22180 0.973541i
\(562\) 0 0
\(563\) 2.50308 + 2.50308i 0.105492 + 0.105492i 0.757883 0.652391i \(-0.226234\pi\)
−0.652391 + 0.757883i \(0.726234\pi\)
\(564\) 0 0
\(565\) 18.7523i 0.788916i
\(566\) 0 0
\(567\) −9.02875 3.73983i −0.379172 0.157058i
\(568\) 0 0
\(569\) 11.2348 11.2348i 0.470987 0.470987i −0.431247 0.902234i \(-0.641926\pi\)
0.902234 + 0.431247i \(0.141926\pi\)
\(570\) 0 0
\(571\) −6.56569 + 15.8510i −0.274765 + 0.663342i −0.999675 0.0255019i \(-0.991882\pi\)
0.724909 + 0.688844i \(0.241882\pi\)
\(572\) 0 0
\(573\) 12.9248 + 31.2032i 0.539941 + 1.30353i
\(574\) 0 0
\(575\) 14.9772 6.20374i 0.624591 0.258714i
\(576\) 0 0
\(577\) 39.0319 1.62492 0.812460 0.583017i \(-0.198128\pi\)
0.812460 + 0.583017i \(0.198128\pi\)
\(578\) 0 0
\(579\) 50.2122 2.08675
\(580\) 0 0
\(581\) −0.0710453 + 0.0294279i −0.00294745 + 0.00122088i
\(582\) 0 0
\(583\) 15.4996 + 37.4192i 0.641926 + 1.54975i
\(584\) 0 0
\(585\) 7.11238 17.1708i 0.294061 0.709925i
\(586\) 0 0
\(587\) −11.2227 + 11.2227i −0.463212 + 0.463212i −0.899707 0.436495i \(-0.856220\pi\)
0.436495 + 0.899707i \(0.356220\pi\)
\(588\) 0 0
\(589\) 27.1460 + 11.2442i 1.11853 + 0.463311i
\(590\) 0 0
\(591\) 38.5830i 1.58709i
\(592\) 0 0
\(593\) 7.35714 + 7.35714i 0.302121 + 0.302121i 0.841843 0.539722i \(-0.181471\pi\)
−0.539722 + 0.841843i \(0.681471\pi\)
\(594\) 0 0
\(595\) 9.04474 + 3.96318i 0.370798 + 0.162475i
\(596\) 0 0
\(597\) −18.1107 18.1107i −0.741222 0.741222i
\(598\) 0 0
\(599\) 35.7297i 1.45988i −0.683513 0.729938i \(-0.739549\pi\)
0.683513 0.729938i \(-0.260451\pi\)
\(600\) 0 0
\(601\) −25.7150 10.6515i −1.04894 0.434484i −0.209425 0.977825i \(-0.567159\pi\)
−0.839512 + 0.543341i \(0.817159\pi\)
\(602\) 0 0
\(603\) 18.9602 18.9602i 0.772118 0.772118i
\(604\) 0 0
\(605\) 6.33063 15.2835i 0.257377 0.621362i
\(606\) 0 0
\(607\) 6.58165 + 15.8895i 0.267141 + 0.644935i 0.999346 0.0361486i \(-0.0115090\pi\)
−0.732206 + 0.681084i \(0.761509\pi\)
\(608\) 0 0
\(609\) 22.1640 9.18063i 0.898131 0.372018i
\(610\) 0 0
\(611\) 45.3411 1.83430
\(612\) 0 0
\(613\) −44.0031 −1.77727 −0.888634 0.458618i \(-0.848345\pi\)
−0.888634 + 0.458618i \(0.848345\pi\)
\(614\) 0 0
\(615\) 6.65498 2.75658i 0.268355 0.111156i
\(616\) 0 0
\(617\) −11.3310 27.3555i −0.456169 1.10129i −0.969936 0.243360i \(-0.921750\pi\)
0.513767 0.857930i \(-0.328250\pi\)
\(618\) 0 0
\(619\) 10.0162 24.1812i 0.402584 0.971923i −0.584453 0.811428i \(-0.698691\pi\)
0.987037 0.160495i \(-0.0513091\pi\)
\(620\) 0 0
\(621\) 8.99523 8.99523i 0.360966 0.360966i
\(622\) 0 0
\(623\) −15.8540 6.56695i −0.635178 0.263099i
\(624\) 0 0
\(625\) 10.3251i 0.413003i
\(626\) 0 0
\(627\) 26.3759 + 26.3759i 1.05335 + 1.05335i
\(628\) 0 0
\(629\) 4.55865 + 0.0924547i 0.181765 + 0.00368641i
\(630\) 0 0
\(631\) 28.4881 + 28.4881i 1.13409 + 1.13409i 0.989490 + 0.144604i \(0.0461908\pi\)
0.144604 + 0.989490i \(0.453809\pi\)
\(632\) 0 0
\(633\) 4.30413i 0.171074i
\(634\) 0 0
\(635\) 9.16672 + 3.79698i 0.363770 + 0.150678i
\(636\) 0 0
\(637\) −4.77024 + 4.77024i −0.189004 + 0.189004i
\(638\) 0 0
\(639\) 2.98919 7.21655i 0.118251 0.285482i
\(640\) 0 0
\(641\) 3.02621 + 7.30593i 0.119528 + 0.288567i 0.972308 0.233705i \(-0.0750848\pi\)
−0.852779 + 0.522271i \(0.825085\pi\)
\(642\) 0 0
\(643\) −5.12127 + 2.12130i −0.201963 + 0.0836559i −0.481372 0.876516i \(-0.659861\pi\)
0.279409 + 0.960172i \(0.409861\pi\)
\(644\) 0 0
\(645\) 11.1247 0.438036
\(646\) 0 0
\(647\) 18.3835 0.722731 0.361366 0.932424i \(-0.382311\pi\)
0.361366 + 0.932424i \(0.382311\pi\)
\(648\) 0 0
\(649\) −52.3648 + 21.6902i −2.05550 + 0.851416i
\(650\) 0 0
\(651\) −26.2408 63.3508i −1.02846 2.48291i
\(652\) 0 0
\(653\) 13.5240 32.6499i 0.529236 1.27769i −0.402789 0.915293i \(-0.631959\pi\)
0.932024 0.362395i \(-0.118041\pi\)
\(654\) 0 0
\(655\) 7.19257 7.19257i 0.281037 0.281037i
\(656\) 0 0
\(657\) 50.7144 + 21.0066i 1.97856 + 0.819545i
\(658\) 0 0
\(659\) 0.950773i 0.0370369i −0.999829 0.0185184i \(-0.994105\pi\)
0.999829 0.0185184i \(-0.00589494\pi\)
\(660\) 0 0
\(661\) −8.16636 8.16636i −0.317635 0.317635i 0.530223 0.847858i \(-0.322108\pi\)
−0.847858 + 0.530223i \(0.822108\pi\)
\(662\) 0 0
\(663\) −0.974734 + 48.0610i −0.0378555 + 1.86653i
\(664\) 0 0
\(665\) −4.53332 4.53332i −0.175795 0.175795i
\(666\) 0 0
\(667\) 15.7694i 0.610593i
\(668\) 0 0
\(669\) 23.4349 + 9.70704i 0.906044 + 0.375296i
\(670\) 0 0
\(671\) −29.3121 + 29.3121i −1.13158 + 1.13158i
\(672\) 0 0
\(673\) 4.59155 11.0850i 0.176991 0.427295i −0.810341 0.585958i \(-0.800718\pi\)
0.987333 + 0.158663i \(0.0507183\pi\)
\(674\) 0 0
\(675\) −4.68036 11.2994i −0.180147 0.434914i
\(676\) 0 0
\(677\) 38.5010 15.9476i 1.47971 0.612917i 0.510663 0.859781i \(-0.329400\pi\)
0.969050 + 0.246864i \(0.0794001\pi\)
\(678\) 0 0
\(679\) 42.6359 1.63621
\(680\) 0 0
\(681\) 7.00409 0.268397
\(682\) 0 0
\(683\) 10.4611 4.33312i 0.400282 0.165802i −0.173455 0.984842i \(-0.555493\pi\)
0.573737 + 0.819039i \(0.305493\pi\)
\(684\) 0 0
\(685\) −0.943339 2.27742i −0.0360431 0.0870158i
\(686\) 0 0
\(687\) 5.05319 12.1995i 0.192791 0.465439i
\(688\) 0 0
\(689\) 23.9619 23.9619i 0.912877 0.912877i
\(690\) 0 0
\(691\) 22.8129 + 9.44941i 0.867843 + 0.359472i 0.771770 0.635902i \(-0.219372\pi\)
0.0960732 + 0.995374i \(0.469372\pi\)
\(692\) 0 0
\(693\) 50.5661i 1.92085i
\(694\) 0 0
\(695\) 6.30722 + 6.30722i 0.239247 + 0.239247i
\(696\) 0 0
\(697\) −7.80627 + 7.49592i −0.295684 + 0.283928i
\(698\) 0 0
\(699\) −4.31796 4.31796i −0.163320 0.163320i
\(700\) 0 0
\(701\) 38.0011i 1.43528i 0.696413 + 0.717642i \(0.254778\pi\)
−0.696413 + 0.717642i \(0.745222\pi\)
\(702\) 0 0
\(703\) −2.73488 1.13282i −0.103148 0.0427253i
\(704\) 0 0
\(705\) −20.1902 + 20.1902i −0.760407 + 0.760407i
\(706\) 0 0
\(707\) −8.22143 + 19.8483i −0.309199 + 0.746471i
\(708\) 0 0
\(709\) −7.48697 18.0752i −0.281179 0.678827i 0.718685 0.695336i \(-0.244745\pi\)
−0.999864 + 0.0165097i \(0.994745\pi\)
\(710\) 0 0
\(711\) 9.61016 3.98066i 0.360409 0.149286i
\(712\) 0 0
\(713\) −45.0733 −1.68801
\(714\) 0 0
\(715\) −23.2812 −0.870666
\(716\) 0 0
\(717\) −30.1114 + 12.4726i −1.12453 + 0.465796i
\(718\) 0 0
\(719\) −15.0002 36.2137i −0.559414 1.35054i −0.910231 0.414100i \(-0.864096\pi\)
0.350818 0.936444i \(-0.385904\pi\)
\(720\) 0 0
\(721\) −7.04646 + 17.0116i −0.262424 + 0.633547i
\(722\) 0 0
\(723\) −27.2557 + 27.2557i −1.01365 + 1.01365i
\(724\) 0 0
\(725\) −14.0069 5.80186i −0.520204 0.215475i
\(726\) 0 0
\(727\) 49.8981i 1.85062i −0.379212 0.925310i \(-0.623805\pi\)
0.379212 0.925310i \(-0.376195\pi\)
\(728\) 0 0
\(729\) 29.8878 + 29.8878i 1.10696 + 1.10696i
\(730\) 0 0
\(731\) −15.5685 + 6.08183i −0.575820 + 0.224945i
\(732\) 0 0
\(733\) 19.7537 + 19.7537i 0.729620 + 0.729620i 0.970544 0.240924i \(-0.0774505\pi\)
−0.240924 + 0.970544i \(0.577451\pi\)
\(734\) 0 0
\(735\) 4.24834i 0.156702i
\(736\) 0 0
\(737\) −31.0315 12.8536i −1.14306 0.473470i
\(738\) 0 0
\(739\) −21.3501 + 21.3501i −0.785375 + 0.785375i −0.980732 0.195357i \(-0.937413\pi\)
0.195357 + 0.980732i \(0.437413\pi\)
\(740\) 0 0
\(741\) 11.9432 28.8333i 0.438743 1.05922i
\(742\) 0 0
\(743\) −2.00765 4.84689i −0.0736534 0.177815i 0.882765 0.469815i \(-0.155679\pi\)
−0.956418 + 0.292000i \(0.905679\pi\)
\(744\) 0 0
\(745\) 3.69612 1.53098i 0.135415 0.0560909i
\(746\) 0 0
\(747\) 0.136937 0.00501028
\(748\) 0 0
\(749\) 10.2389 0.374122
\(750\) 0 0
\(751\) 13.3168 5.51601i 0.485938 0.201282i −0.126244 0.991999i \(-0.540292\pi\)
0.612182 + 0.790717i \(0.290292\pi\)
\(752\) 0 0
\(753\) 18.2700 + 44.1077i 0.665796 + 1.60737i
\(754\) 0 0
\(755\) 1.40480 3.39148i 0.0511257 0.123428i
\(756\) 0 0
\(757\) −4.45055 + 4.45055i −0.161758 + 0.161758i −0.783345 0.621587i \(-0.786488\pi\)
0.621587 + 0.783345i \(0.286488\pi\)
\(758\) 0 0
\(759\) −52.8648 21.8973i −1.91887 0.794822i
\(760\) 0 0
\(761\) 6.45544i 0.234010i −0.993131 0.117005i \(-0.962671\pi\)
0.993131 0.117005i \(-0.0373293\pi\)
\(762\) 0 0
\(763\) 10.0514 + 10.0514i 0.363886 + 0.363886i
\(764\) 0 0
\(765\) −12.1796 12.6839i −0.440354 0.458586i
\(766\) 0 0
\(767\) 33.5325 + 33.5325i 1.21079 + 1.21079i
\(768\) 0 0
\(769\) 0.665285i 0.0239908i −0.999928 0.0119954i \(-0.996182\pi\)
0.999928 0.0119954i \(-0.00381835\pi\)
\(770\) 0 0
\(771\) −13.3561 5.53227i −0.481007 0.199240i
\(772\) 0 0
\(773\) 3.09332 3.09332i 0.111259 0.111259i −0.649286 0.760545i \(-0.724932\pi\)
0.760545 + 0.649286i \(0.224932\pi\)
\(774\) 0 0
\(775\) −16.5833 + 40.0356i −0.595690 + 1.43812i
\(776\) 0 0
\(777\) 2.64368 + 6.38241i 0.0948416 + 0.228968i
\(778\) 0 0
\(779\) 6.49144 2.68884i 0.232580 0.0963378i
\(780\) 0 0
\(781\) −9.78461 −0.350121
\(782\) 0 0
\(783\) −11.8971 −0.425167
\(784\) 0 0
\(785\) 12.8109 5.30645i 0.457241 0.189395i
\(786\) 0 0
\(787\) −2.82833 6.82819i −0.100819 0.243399i 0.865419 0.501048i \(-0.167052\pi\)
−0.966238 + 0.257649i \(0.917052\pi\)
\(788\) 0 0
\(789\) 10.1181 24.4272i 0.360213 0.869632i
\(790\) 0 0
\(791\) 30.1843 30.1843i 1.07323 1.07323i
\(792\) 0 0
\(793\) 32.0431 + 13.2727i 1.13788 + 0.471327i
\(794\) 0 0
\(795\) 21.3403i 0.756863i
\(796\) 0 0
\(797\) 15.9635 + 15.9635i 0.565458 + 0.565458i 0.930853 0.365395i \(-0.119066\pi\)
−0.365395 + 0.930853i \(0.619066\pi\)
\(798\) 0 0
\(799\) 17.2172 39.2930i 0.609101 1.39008i
\(800\) 0 0
\(801\) 21.6078 + 21.6078i 0.763476 + 0.763476i
\(802\) 0 0
\(803\) 68.7615i 2.42654i
\(804\) 0 0
\(805\) 9.08606 + 3.76357i 0.320241 + 0.132648i
\(806\) 0 0
\(807\) −50.6384 + 50.6384i −1.78256 + 1.78256i
\(808\) 0 0
\(809\) 1.68152 4.05955i 0.0591191 0.142726i −0.891560 0.452903i \(-0.850388\pi\)
0.950679 + 0.310177i \(0.100388\pi\)
\(810\) 0 0
\(811\) 4.35027 + 10.5025i 0.152759 + 0.368792i 0.981670 0.190588i \(-0.0610394\pi\)
−0.828912 + 0.559380i \(0.811039\pi\)
\(812\) 0 0
\(813\) 65.8686 27.2837i 2.31011 0.956880i
\(814\) 0 0
\(815\) −1.38659 −0.0485700
\(816\) 0 0
\(817\) 10.8514 0.379641
\(818\) 0 0
\(819\) −39.0869 + 16.1903i −1.36581 + 0.565736i
\(820\) 0 0
\(821\) 17.2551 + 41.6575i 0.602207 + 1.45386i 0.871304 + 0.490743i \(0.163275\pi\)
−0.269097 + 0.963113i \(0.586725\pi\)
\(822\) 0 0
\(823\) 4.09403 9.88385i 0.142709 0.344529i −0.836323 0.548237i \(-0.815299\pi\)
0.979032 + 0.203708i \(0.0652992\pi\)
\(824\) 0 0
\(825\) −38.8999 + 38.8999i −1.35432 + 1.35432i
\(826\) 0 0
\(827\) −46.9906 19.4641i −1.63402 0.676834i −0.638348 0.769748i \(-0.720382\pi\)
−0.995674 + 0.0929138i \(0.970382\pi\)
\(828\) 0 0
\(829\) 6.52156i 0.226503i 0.993566 + 0.113252i \(0.0361266\pi\)
−0.993566 + 0.113252i \(0.963873\pi\)
\(830\) 0 0
\(831\) −53.0767 53.0767i −1.84121 1.84121i
\(832\) 0 0
\(833\) 2.32254 + 5.94531i 0.0804712 + 0.205993i
\(834\) 0 0
\(835\) −1.98430 1.98430i −0.0686696 0.0686696i
\(836\) 0 0
\(837\) 34.0051i 1.17539i
\(838\) 0 0
\(839\) 7.72808 + 3.20108i 0.266803 + 0.110513i 0.512075 0.858941i \(-0.328877\pi\)
−0.245272 + 0.969454i \(0.578877\pi\)
\(840\) 0 0
\(841\) 10.0778 10.0778i 0.347511 0.347511i
\(842\) 0 0
\(843\) −21.6682 + 52.3116i −0.746291 + 1.80171i
\(844\) 0 0
\(845\) 2.35131 + 5.67656i 0.0808874 + 0.195279i
\(846\) 0 0
\(847\) −34.7907 + 14.4108i −1.19542 + 0.495161i
\(848\) 0 0
\(849\) 11.7367 0.402804
\(850\) 0 0
\(851\) 4.54100 0.155663
\(852\) 0 0
\(853\) −2.86110 + 1.18511i −0.0979622 + 0.0405773i −0.431126 0.902292i \(-0.641884\pi\)
0.333164 + 0.942869i \(0.391884\pi\)
\(854\) 0 0
\(855\) 4.36891 + 10.5475i 0.149414 + 0.360716i
\(856\) 0 0
\(857\) 3.14145 7.58414i 0.107310 0.259069i −0.861099 0.508438i \(-0.830223\pi\)
0.968409 + 0.249369i \(0.0802231\pi\)
\(858\) 0 0
\(859\) −7.93014 + 7.93014i −0.270573 + 0.270573i −0.829331 0.558758i \(-0.811278\pi\)
0.558758 + 0.829331i \(0.311278\pi\)
\(860\) 0 0
\(861\) −15.1491 6.27498i −0.516281 0.213851i
\(862\) 0 0
\(863\) 34.8722i 1.18706i −0.804811 0.593532i \(-0.797733\pi\)
0.804811 0.593532i \(-0.202267\pi\)
\(864\) 0 0
\(865\) 2.81763 + 2.81763i 0.0958024 + 0.0958024i
\(866\) 0 0
\(867\) 41.2799 + 19.0948i 1.40194 + 0.648492i
\(868\) 0 0
\(869\) −9.21361 9.21361i −0.312550 0.312550i
\(870\) 0 0
\(871\) 28.1024i 0.952215i
\(872\) 0 0
\(873\) −70.1443 29.0547i −2.37403 0.983354i
\(874\) 0 0
\(875\) 15.1535 15.1535i 0.512283 0.512283i
\(876\) 0 0
\(877\) 4.71367 11.3798i 0.159169 0.384269i −0.824095 0.566451i \(-0.808316\pi\)
0.983265 + 0.182182i \(0.0583160\pi\)
\(878\) 0 0
\(879\) −12.1726 29.3874i −0.410573 0.991211i
\(880\) 0 0
\(881\) −38.7338 + 16.0441i −1.30498 + 0.540538i −0.923414 0.383805i \(-0.874613\pi\)
−0.381561 + 0.924344i \(0.624613\pi\)
\(882\) 0 0
\(883\) 14.6148 0.491828 0.245914 0.969292i \(-0.420912\pi\)
0.245914 + 0.969292i \(0.420912\pi\)
\(884\) 0 0
\(885\) −29.8638 −1.00386
\(886\) 0 0
\(887\) −5.37765 + 2.22750i −0.180564 + 0.0747920i −0.471134 0.882062i \(-0.656155\pi\)
0.290570 + 0.956854i \(0.406155\pi\)
\(888\) 0 0
\(889\) −8.64329 20.8667i −0.289887 0.699848i
\(890\) 0 0
\(891\) 8.34226 20.1400i 0.279476 0.674715i
\(892\) 0 0
\(893\) −19.6941 + 19.6941i −0.659036 + 0.659036i
\(894\) 0 0
\(895\) 7.93150 + 3.28533i 0.265121 + 0.109817i
\(896\) 0 0
\(897\) 47.8750i 1.59850i
\(898\) 0 0
\(899\) 29.8069 + 29.8069i 0.994117 + 0.994117i
\(900\) 0 0
\(901\) −11.6666 29.8646i −0.388672 0.994934i
\(902\) 0 0
\(903\) −17.9067 17.9067i −0.595898 0.595898i
\(904\) 0 0
\(905\) 7.20228i 0.239412i
\(906\) 0 0
\(907\) −2.22827 0.922978i −0.0739884 0.0306470i 0.345382 0.938462i \(-0.387749\pi\)
−0.419371 + 0.907815i \(0.637749\pi\)
\(908\) 0 0
\(909\) 27.0517 27.0517i 0.897249 0.897249i
\(910\) 0 0
\(911\) −7.59570 + 18.3377i −0.251657 + 0.607553i −0.998338 0.0576286i \(-0.981646\pi\)
0.746681 + 0.665182i \(0.231646\pi\)
\(912\) 0 0
\(913\) −0.0656434 0.158477i −0.00217248 0.00524483i
\(914\) 0 0
\(915\) −20.1790 + 8.35840i −0.667096 + 0.276320i
\(916\) 0 0
\(917\) −23.1547 −0.764637
\(918\) 0 0
\(919\) 16.7830 0.553619 0.276810 0.960925i \(-0.410723\pi\)
0.276810 + 0.960925i \(0.410723\pi\)
\(920\) 0 0
\(921\) 51.7058 21.4173i 1.70377 0.705723i
\(922\) 0 0
\(923\) 3.13286 + 7.56338i 0.103119 + 0.248952i
\(924\) 0 0
\(925\) 1.67072 4.03347i 0.0549329 0.132620i
\(926\) 0 0
\(927\) 23.1856 23.1856i 0.761515 0.761515i
\(928\) 0 0
\(929\) −21.5034 8.90700i −0.705504 0.292229i 0.000938752 1.00000i \(-0.499701\pi\)
−0.706443 + 0.707770i \(0.749701\pi\)
\(930\) 0 0
\(931\) 4.14394i 0.135812i
\(932\) 0 0
\(933\) 11.5720 + 11.5720i 0.378849 + 0.378849i
\(934\) 0 0
\(935\) −8.84048 + 20.1756i −0.289115 + 0.659814i
\(936\) 0 0
\(937\) −28.1329 28.1329i −0.919062 0.919062i 0.0778997 0.996961i \(-0.475179\pi\)
−0.996961 + 0.0778997i \(0.975179\pi\)
\(938\) 0 0
\(939\) 76.7190i 2.50363i
\(940\) 0 0
\(941\) 26.4136 + 10.9409i 0.861059 + 0.356662i 0.769122 0.639102i \(-0.220694\pi\)
0.0919374 + 0.995765i \(0.470694\pi\)
\(942\) 0 0
\(943\) −7.62148 + 7.62148i −0.248190 + 0.248190i
\(944\) 0 0
\(945\) 2.83939 6.85490i 0.0923654 0.222990i
\(946\) 0 0
\(947\) 16.3787 + 39.5418i 0.532238 + 1.28494i 0.930038 + 0.367463i \(0.119774\pi\)
−0.397801 + 0.917472i \(0.630226\pi\)
\(948\) 0 0
\(949\) −53.1517 + 22.0162i −1.72538 + 0.714675i
\(950\) 0 0
\(951\) 16.7725 0.543885
\(952\) 0 0
\(953\) −41.2093 −1.33490 −0.667451 0.744654i \(-0.732614\pi\)
−0.667451 + 0.744654i \(0.732614\pi\)
\(954\) 0 0
\(955\) 11.9630 4.95523i 0.387113 0.160348i
\(956\) 0 0
\(957\) 20.4788 + 49.4402i 0.661985 + 1.59817i
\(958\) 0 0
\(959\) −2.14738 + 5.18423i −0.0693425 + 0.167408i
\(960\) 0 0
\(961\) 63.2761 63.2761i 2.04116 2.04116i
\(962\) 0 0
\(963\) −16.8450 6.97743i −0.542823 0.224845i
\(964\) 0 0
\(965\) 19.2509i 0.619707i
\(966\) 0 0
\(967\) −21.3856 21.3856i −0.687714 0.687714i 0.274013 0.961726i \(-0.411649\pi\)
−0.961726 + 0.274013i \(0.911649\pi\)
\(968\) 0 0
\(969\) −20.4521 21.2988i −0.657015 0.684217i
\(970\) 0 0
\(971\) −26.4835 26.4835i −0.849896 0.849896i 0.140224 0.990120i \(-0.455218\pi\)
−0.990120 + 0.140224i \(0.955218\pi\)
\(972\) 0 0
\(973\) 20.3046i 0.650935i
\(974\) 0 0
\(975\) 42.5242 + 17.6141i 1.36186 + 0.564103i
\(976\) 0 0
\(977\) 26.9082 26.9082i 0.860868 0.860868i −0.130571 0.991439i \(-0.541681\pi\)
0.991439 + 0.130571i \(0.0416810\pi\)
\(978\) 0 0
\(979\) 14.6486 35.3648i 0.468171 1.13026i
\(980\) 0 0
\(981\) −9.68690 23.3862i −0.309279 0.746665i
\(982\) 0 0
\(983\) 45.3329 18.7775i 1.44590 0.598909i 0.484676 0.874694i \(-0.338938\pi\)
0.961219 + 0.275785i \(0.0889376\pi\)
\(984\) 0 0
\(985\) 14.7923 0.471323
\(986\) 0 0
\(987\) 64.9975 2.06889
\(988\) 0 0
\(989\) −15.3790 + 6.37019i −0.489024 + 0.202560i
\(990\) 0 0
\(991\) −12.8773 31.0886i −0.409062 0.987563i −0.985385 0.170341i \(-0.945513\pi\)
0.576323 0.817222i \(-0.304487\pi\)
\(992\) 0 0
\(993\) 9.79686 23.6517i 0.310894 0.750565i
\(994\) 0 0
\(995\) −6.94345 + 6.94345i −0.220122 + 0.220122i
\(996\) 0 0
\(997\) 35.8385 + 14.8448i 1.13502 + 0.470139i 0.869483 0.493963i \(-0.164452\pi\)
0.265533 + 0.964102i \(0.414452\pi\)
\(998\) 0 0
\(999\) 3.42592i 0.108391i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 136.2.n.c.121.3 yes 12
3.2 odd 2 1224.2.bq.c.937.2 12
4.3 odd 2 272.2.v.f.257.1 12
17.3 odd 16 2312.2.a.w.1.10 12
17.5 odd 16 2312.2.b.n.577.10 12
17.9 even 8 inner 136.2.n.c.9.3 12
17.12 odd 16 2312.2.b.n.577.3 12
17.14 odd 16 2312.2.a.w.1.3 12
51.26 odd 8 1224.2.bq.c.145.2 12
68.3 even 16 4624.2.a.bt.1.3 12
68.31 even 16 4624.2.a.bt.1.10 12
68.43 odd 8 272.2.v.f.145.1 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
136.2.n.c.9.3 12 17.9 even 8 inner
136.2.n.c.121.3 yes 12 1.1 even 1 trivial
272.2.v.f.145.1 12 68.43 odd 8
272.2.v.f.257.1 12 4.3 odd 2
1224.2.bq.c.145.2 12 51.26 odd 8
1224.2.bq.c.937.2 12 3.2 odd 2
2312.2.a.w.1.3 12 17.14 odd 16
2312.2.a.w.1.10 12 17.3 odd 16
2312.2.b.n.577.3 12 17.12 odd 16
2312.2.b.n.577.10 12 17.5 odd 16
4624.2.a.bt.1.3 12 68.3 even 16
4624.2.a.bt.1.10 12 68.31 even 16