Properties

Label 2312.2.a.w.1.3
Level $2312$
Weight $2$
Character 2312.1
Self dual yes
Analytic conductor $18.461$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2312,2,Mod(1,2312)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2312, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2312.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2312 = 2^{3} \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2312.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(18.4614129473\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 32x^{10} + 380x^{8} - 2000x^{6} + 4068x^{4} - 800x^{2} + 32 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 136)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-2.67543\) of defining polynomial
Character \(\chi\) \(=\) 2312.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.67543 q^{3} -1.02573 q^{5} -2.33494 q^{7} +4.15793 q^{9} -5.20843 q^{11} -4.35777 q^{13} +2.74428 q^{15} -2.67684 q^{19} +6.24696 q^{21} -4.10630 q^{23} -3.94787 q^{25} -3.09796 q^{27} +3.84029 q^{29} -10.9766 q^{31} +13.9348 q^{33} +2.39502 q^{35} -1.10586 q^{37} +11.6589 q^{39} -2.62484 q^{41} -4.05380 q^{43} -4.26493 q^{45} +10.4047 q^{47} -1.54807 q^{49} -7.77630 q^{53} +5.34245 q^{55} +7.16170 q^{57} -10.8822 q^{59} -7.95894 q^{61} -9.70851 q^{63} +4.46990 q^{65} -6.44882 q^{67} +10.9861 q^{69} -1.87861 q^{71} +13.2020 q^{73} +10.5623 q^{75} +12.1613 q^{77} +2.50172 q^{79} -4.18540 q^{81} -0.0329340 q^{83} -10.2744 q^{87} +7.34936 q^{89} +10.1751 q^{91} +29.3672 q^{93} +2.74572 q^{95} +18.2600 q^{97} -21.6563 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 28 q^{9} + 24 q^{13} + 8 q^{15} - 8 q^{19} + 16 q^{21} + 20 q^{25} + 24 q^{33} - 32 q^{35} + 8 q^{43} + 24 q^{47} + 36 q^{49} + 8 q^{53} + 56 q^{55} - 40 q^{59} + 40 q^{67} + 56 q^{69} + 80 q^{77}+ \cdots + 40 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −2.67543 −1.54466 −0.772330 0.635221i \(-0.780909\pi\)
−0.772330 + 0.635221i \(0.780909\pi\)
\(4\) 0 0
\(5\) −1.02573 −0.458722 −0.229361 0.973341i \(-0.573664\pi\)
−0.229361 + 0.973341i \(0.573664\pi\)
\(6\) 0 0
\(7\) −2.33494 −0.882523 −0.441262 0.897379i \(-0.645469\pi\)
−0.441262 + 0.897379i \(0.645469\pi\)
\(8\) 0 0
\(9\) 4.15793 1.38598
\(10\) 0 0
\(11\) −5.20843 −1.57040 −0.785200 0.619242i \(-0.787440\pi\)
−0.785200 + 0.619242i \(0.787440\pi\)
\(12\) 0 0
\(13\) −4.35777 −1.20863 −0.604313 0.796747i \(-0.706552\pi\)
−0.604313 + 0.796747i \(0.706552\pi\)
\(14\) 0 0
\(15\) 2.74428 0.708569
\(16\) 0 0
\(17\) 0 0
\(18\) 0 0
\(19\) −2.67684 −0.614109 −0.307054 0.951692i \(-0.599343\pi\)
−0.307054 + 0.951692i \(0.599343\pi\)
\(20\) 0 0
\(21\) 6.24696 1.36320
\(22\) 0 0
\(23\) −4.10630 −0.856223 −0.428112 0.903726i \(-0.640821\pi\)
−0.428112 + 0.903726i \(0.640821\pi\)
\(24\) 0 0
\(25\) −3.94787 −0.789575
\(26\) 0 0
\(27\) −3.09796 −0.596204
\(28\) 0 0
\(29\) 3.84029 0.713124 0.356562 0.934272i \(-0.383949\pi\)
0.356562 + 0.934272i \(0.383949\pi\)
\(30\) 0 0
\(31\) −10.9766 −1.97146 −0.985728 0.168344i \(-0.946158\pi\)
−0.985728 + 0.168344i \(0.946158\pi\)
\(32\) 0 0
\(33\) 13.9348 2.42574
\(34\) 0 0
\(35\) 2.39502 0.404832
\(36\) 0 0
\(37\) −1.10586 −0.181802 −0.0909012 0.995860i \(-0.528975\pi\)
−0.0909012 + 0.995860i \(0.528975\pi\)
\(38\) 0 0
\(39\) 11.6589 1.86692
\(40\) 0 0
\(41\) −2.62484 −0.409932 −0.204966 0.978769i \(-0.565708\pi\)
−0.204966 + 0.978769i \(0.565708\pi\)
\(42\) 0 0
\(43\) −4.05380 −0.618198 −0.309099 0.951030i \(-0.600027\pi\)
−0.309099 + 0.951030i \(0.600027\pi\)
\(44\) 0 0
\(45\) −4.26493 −0.635778
\(46\) 0 0
\(47\) 10.4047 1.51768 0.758838 0.651280i \(-0.225767\pi\)
0.758838 + 0.651280i \(0.225767\pi\)
\(48\) 0 0
\(49\) −1.54807 −0.221153
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −7.77630 −1.06816 −0.534078 0.845435i \(-0.679341\pi\)
−0.534078 + 0.845435i \(0.679341\pi\)
\(54\) 0 0
\(55\) 5.34245 0.720376
\(56\) 0 0
\(57\) 7.16170 0.948590
\(58\) 0 0
\(59\) −10.8822 −1.41674 −0.708372 0.705839i \(-0.750570\pi\)
−0.708372 + 0.705839i \(0.750570\pi\)
\(60\) 0 0
\(61\) −7.95894 −1.01904 −0.509519 0.860459i \(-0.670177\pi\)
−0.509519 + 0.860459i \(0.670177\pi\)
\(62\) 0 0
\(63\) −9.70851 −1.22316
\(64\) 0 0
\(65\) 4.46990 0.554423
\(66\) 0 0
\(67\) −6.44882 −0.787848 −0.393924 0.919143i \(-0.628883\pi\)
−0.393924 + 0.919143i \(0.628883\pi\)
\(68\) 0 0
\(69\) 10.9861 1.32257
\(70\) 0 0
\(71\) −1.87861 −0.222950 −0.111475 0.993767i \(-0.535558\pi\)
−0.111475 + 0.993767i \(0.535558\pi\)
\(72\) 0 0
\(73\) 13.2020 1.54517 0.772586 0.634910i \(-0.218963\pi\)
0.772586 + 0.634910i \(0.218963\pi\)
\(74\) 0 0
\(75\) 10.5623 1.21962
\(76\) 0 0
\(77\) 12.1613 1.38591
\(78\) 0 0
\(79\) 2.50172 0.281465 0.140733 0.990048i \(-0.455054\pi\)
0.140733 + 0.990048i \(0.455054\pi\)
\(80\) 0 0
\(81\) −4.18540 −0.465045
\(82\) 0 0
\(83\) −0.0329340 −0.00361498 −0.00180749 0.999998i \(-0.500575\pi\)
−0.00180749 + 0.999998i \(0.500575\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) −10.2744 −1.10153
\(88\) 0 0
\(89\) 7.34936 0.779030 0.389515 0.921020i \(-0.372643\pi\)
0.389515 + 0.921020i \(0.372643\pi\)
\(90\) 0 0
\(91\) 10.1751 1.06664
\(92\) 0 0
\(93\) 29.3672 3.04523
\(94\) 0 0
\(95\) 2.74572 0.281705
\(96\) 0 0
\(97\) 18.2600 1.85402 0.927009 0.375038i \(-0.122370\pi\)
0.927009 + 0.375038i \(0.122370\pi\)
\(98\) 0 0
\(99\) −21.6563 −2.17654
\(100\) 0 0
\(101\) −9.20094 −0.915528 −0.457764 0.889074i \(-0.651350\pi\)
−0.457764 + 0.889074i \(0.651350\pi\)
\(102\) 0 0
\(103\) 7.88599 0.777029 0.388515 0.921443i \(-0.372988\pi\)
0.388515 + 0.921443i \(0.372988\pi\)
\(104\) 0 0
\(105\) −6.40771 −0.625329
\(106\) 0 0
\(107\) −4.38509 −0.423923 −0.211961 0.977278i \(-0.567985\pi\)
−0.211961 + 0.977278i \(0.567985\pi\)
\(108\) 0 0
\(109\) 6.08791 0.583116 0.291558 0.956553i \(-0.405826\pi\)
0.291558 + 0.956553i \(0.405826\pi\)
\(110\) 0 0
\(111\) 2.95866 0.280823
\(112\) 0 0
\(113\) −18.2819 −1.71981 −0.859907 0.510451i \(-0.829478\pi\)
−0.859907 + 0.510451i \(0.829478\pi\)
\(114\) 0 0
\(115\) 4.21197 0.392768
\(116\) 0 0
\(117\) −18.1193 −1.67513
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 16.1277 1.46616
\(122\) 0 0
\(123\) 7.02259 0.633206
\(124\) 0 0
\(125\) 9.17812 0.820916
\(126\) 0 0
\(127\) 9.67307 0.858346 0.429173 0.903222i \(-0.358805\pi\)
0.429173 + 0.903222i \(0.358805\pi\)
\(128\) 0 0
\(129\) 10.8457 0.954907
\(130\) 0 0
\(131\) −9.91665 −0.866422 −0.433211 0.901293i \(-0.642619\pi\)
−0.433211 + 0.901293i \(0.642619\pi\)
\(132\) 0 0
\(133\) 6.25025 0.541965
\(134\) 0 0
\(135\) 3.17768 0.273491
\(136\) 0 0
\(137\) 2.40322 0.205321 0.102661 0.994716i \(-0.467264\pi\)
0.102661 + 0.994716i \(0.467264\pi\)
\(138\) 0 0
\(139\) 8.69599 0.737584 0.368792 0.929512i \(-0.379771\pi\)
0.368792 + 0.929512i \(0.379771\pi\)
\(140\) 0 0
\(141\) −27.8370 −2.34429
\(142\) 0 0
\(143\) 22.6971 1.89803
\(144\) 0 0
\(145\) −3.93911 −0.327125
\(146\) 0 0
\(147\) 4.14176 0.341607
\(148\) 0 0
\(149\) −3.90029 −0.319524 −0.159762 0.987156i \(-0.551073\pi\)
−0.159762 + 0.987156i \(0.551073\pi\)
\(150\) 0 0
\(151\) −3.57881 −0.291240 −0.145620 0.989341i \(-0.546518\pi\)
−0.145620 + 0.989341i \(0.546518\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 11.2591 0.904350
\(156\) 0 0
\(157\) 13.5186 1.07890 0.539449 0.842018i \(-0.318633\pi\)
0.539449 + 0.842018i \(0.318633\pi\)
\(158\) 0 0
\(159\) 20.8050 1.64994
\(160\) 0 0
\(161\) 9.58795 0.755637
\(162\) 0 0
\(163\) −1.35180 −0.105881 −0.0529407 0.998598i \(-0.516859\pi\)
−0.0529407 + 0.998598i \(0.516859\pi\)
\(164\) 0 0
\(165\) −14.2934 −1.11274
\(166\) 0 0
\(167\) 2.73583 0.211705 0.105852 0.994382i \(-0.466243\pi\)
0.105852 + 0.994382i \(0.466243\pi\)
\(168\) 0 0
\(169\) 5.99012 0.460778
\(170\) 0 0
\(171\) −11.1301 −0.851141
\(172\) 0 0
\(173\) 3.88477 0.295354 0.147677 0.989036i \(-0.452820\pi\)
0.147677 + 0.989036i \(0.452820\pi\)
\(174\) 0 0
\(175\) 9.21803 0.696818
\(176\) 0 0
\(177\) 29.1146 2.18839
\(178\) 0 0
\(179\) −8.36962 −0.625575 −0.312787 0.949823i \(-0.601263\pi\)
−0.312787 + 0.949823i \(0.601263\pi\)
\(180\) 0 0
\(181\) −7.02160 −0.521911 −0.260956 0.965351i \(-0.584038\pi\)
−0.260956 + 0.965351i \(0.584038\pi\)
\(182\) 0 0
\(183\) 21.2936 1.57407
\(184\) 0 0
\(185\) 1.13432 0.0833967
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 7.23355 0.526163
\(190\) 0 0
\(191\) 12.6238 0.913427 0.456713 0.889614i \(-0.349027\pi\)
0.456713 + 0.889614i \(0.349027\pi\)
\(192\) 0 0
\(193\) −18.7679 −1.35094 −0.675472 0.737386i \(-0.736060\pi\)
−0.675472 + 0.737386i \(0.736060\pi\)
\(194\) 0 0
\(195\) −11.9589 −0.856396
\(196\) 0 0
\(197\) 14.4212 1.02747 0.513735 0.857949i \(-0.328261\pi\)
0.513735 + 0.857949i \(0.328261\pi\)
\(198\) 0 0
\(199\) 9.57318 0.678625 0.339313 0.940674i \(-0.389806\pi\)
0.339313 + 0.940674i \(0.389806\pi\)
\(200\) 0 0
\(201\) 17.2534 1.21696
\(202\) 0 0
\(203\) −8.96683 −0.629348
\(204\) 0 0
\(205\) 2.69239 0.188045
\(206\) 0 0
\(207\) −17.0737 −1.18671
\(208\) 0 0
\(209\) 13.9421 0.964397
\(210\) 0 0
\(211\) 1.60876 0.110752 0.0553759 0.998466i \(-0.482364\pi\)
0.0553759 + 0.998466i \(0.482364\pi\)
\(212\) 0 0
\(213\) 5.02609 0.344382
\(214\) 0 0
\(215\) 4.15811 0.283581
\(216\) 0 0
\(217\) 25.6297 1.73986
\(218\) 0 0
\(219\) −35.3209 −2.38677
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 9.48098 0.634893 0.317447 0.948276i \(-0.397175\pi\)
0.317447 + 0.948276i \(0.397175\pi\)
\(224\) 0 0
\(225\) −16.4150 −1.09433
\(226\) 0 0
\(227\) −2.61793 −0.173758 −0.0868790 0.996219i \(-0.527689\pi\)
−0.0868790 + 0.996219i \(0.527689\pi\)
\(228\) 0 0
\(229\) −4.93551 −0.326148 −0.163074 0.986614i \(-0.552141\pi\)
−0.163074 + 0.986614i \(0.552141\pi\)
\(230\) 0 0
\(231\) −32.5368 −2.14077
\(232\) 0 0
\(233\) 2.28244 0.149528 0.0747639 0.997201i \(-0.476180\pi\)
0.0747639 + 0.997201i \(0.476180\pi\)
\(234\) 0 0
\(235\) −10.6724 −0.696191
\(236\) 0 0
\(237\) −6.69317 −0.434768
\(238\) 0 0
\(239\) −12.1821 −0.787995 −0.393997 0.919112i \(-0.628908\pi\)
−0.393997 + 0.919112i \(0.628908\pi\)
\(240\) 0 0
\(241\) 14.4072 0.928047 0.464024 0.885823i \(-0.346405\pi\)
0.464024 + 0.885823i \(0.346405\pi\)
\(242\) 0 0
\(243\) 20.4916 1.31454
\(244\) 0 0
\(245\) 1.58791 0.101448
\(246\) 0 0
\(247\) 11.6650 0.742228
\(248\) 0 0
\(249\) 0.0881127 0.00558392
\(250\) 0 0
\(251\) −17.8445 −1.12634 −0.563168 0.826342i \(-0.690418\pi\)
−0.563168 + 0.826342i \(0.690418\pi\)
\(252\) 0 0
\(253\) 21.3874 1.34461
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −5.40343 −0.337057 −0.168528 0.985697i \(-0.553901\pi\)
−0.168528 + 0.985697i \(0.553901\pi\)
\(258\) 0 0
\(259\) 2.58212 0.160445
\(260\) 0 0
\(261\) 15.9677 0.988374
\(262\) 0 0
\(263\) −9.88246 −0.609378 −0.304689 0.952452i \(-0.598553\pi\)
−0.304689 + 0.952452i \(0.598553\pi\)
\(264\) 0 0
\(265\) 7.97640 0.489987
\(266\) 0 0
\(267\) −19.6627 −1.20334
\(268\) 0 0
\(269\) −26.7671 −1.63202 −0.816009 0.578039i \(-0.803818\pi\)
−0.816009 + 0.578039i \(0.803818\pi\)
\(270\) 0 0
\(271\) −26.6483 −1.61877 −0.809384 0.587280i \(-0.800199\pi\)
−0.809384 + 0.587280i \(0.800199\pi\)
\(272\) 0 0
\(273\) −27.2228 −1.64760
\(274\) 0 0
\(275\) 20.5622 1.23995
\(276\) 0 0
\(277\) −28.0560 −1.68572 −0.842860 0.538132i \(-0.819130\pi\)
−0.842860 + 0.538132i \(0.819130\pi\)
\(278\) 0 0
\(279\) −45.6400 −2.73239
\(280\) 0 0
\(281\) −21.1636 −1.26251 −0.631256 0.775575i \(-0.717460\pi\)
−0.631256 + 0.775575i \(0.717460\pi\)
\(282\) 0 0
\(283\) 4.38686 0.260772 0.130386 0.991463i \(-0.458378\pi\)
0.130386 + 0.991463i \(0.458378\pi\)
\(284\) 0 0
\(285\) −7.34598 −0.435139
\(286\) 0 0
\(287\) 6.12885 0.361774
\(288\) 0 0
\(289\) 0 0
\(290\) 0 0
\(291\) −48.8533 −2.86383
\(292\) 0 0
\(293\) −11.8892 −0.694573 −0.347286 0.937759i \(-0.612897\pi\)
−0.347286 + 0.937759i \(0.612897\pi\)
\(294\) 0 0
\(295\) 11.1623 0.649891
\(296\) 0 0
\(297\) 16.1355 0.936278
\(298\) 0 0
\(299\) 17.8943 1.03485
\(300\) 0 0
\(301\) 9.46536 0.545574
\(302\) 0 0
\(303\) 24.6165 1.41418
\(304\) 0 0
\(305\) 8.16375 0.467455
\(306\) 0 0
\(307\) 20.9185 1.19388 0.596941 0.802285i \(-0.296383\pi\)
0.596941 + 0.802285i \(0.296383\pi\)
\(308\) 0 0
\(309\) −21.0984 −1.20025
\(310\) 0 0
\(311\) 6.11686 0.346855 0.173428 0.984847i \(-0.444516\pi\)
0.173428 + 0.984847i \(0.444516\pi\)
\(312\) 0 0
\(313\) −28.6754 −1.62083 −0.810414 0.585858i \(-0.800758\pi\)
−0.810414 + 0.585858i \(0.800758\pi\)
\(314\) 0 0
\(315\) 9.95833 0.561088
\(316\) 0 0
\(317\) 6.26907 0.352106 0.176053 0.984381i \(-0.443667\pi\)
0.176053 + 0.984381i \(0.443667\pi\)
\(318\) 0 0
\(319\) −20.0019 −1.11989
\(320\) 0 0
\(321\) 11.7320 0.654817
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) 17.2039 0.954301
\(326\) 0 0
\(327\) −16.2878 −0.900716
\(328\) 0 0
\(329\) −24.2942 −1.33938
\(330\) 0 0
\(331\) −9.56871 −0.525944 −0.262972 0.964803i \(-0.584703\pi\)
−0.262972 + 0.964803i \(0.584703\pi\)
\(332\) 0 0
\(333\) −4.59810 −0.251974
\(334\) 0 0
\(335\) 6.61476 0.361403
\(336\) 0 0
\(337\) −2.28982 −0.124735 −0.0623673 0.998053i \(-0.519865\pi\)
−0.0623673 + 0.998053i \(0.519865\pi\)
\(338\) 0 0
\(339\) 48.9119 2.65653
\(340\) 0 0
\(341\) 57.1709 3.09598
\(342\) 0 0
\(343\) 19.9592 1.07770
\(344\) 0 0
\(345\) −11.2688 −0.606693
\(346\) 0 0
\(347\) −3.99933 −0.214695 −0.107348 0.994222i \(-0.534236\pi\)
−0.107348 + 0.994222i \(0.534236\pi\)
\(348\) 0 0
\(349\) 26.5502 1.42120 0.710599 0.703597i \(-0.248424\pi\)
0.710599 + 0.703597i \(0.248424\pi\)
\(350\) 0 0
\(351\) 13.5002 0.720588
\(352\) 0 0
\(353\) 1.75320 0.0933134 0.0466567 0.998911i \(-0.485143\pi\)
0.0466567 + 0.998911i \(0.485143\pi\)
\(354\) 0 0
\(355\) 1.92695 0.102272
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −19.8649 −1.04843 −0.524216 0.851586i \(-0.675641\pi\)
−0.524216 + 0.851586i \(0.675641\pi\)
\(360\) 0 0
\(361\) −11.8345 −0.622870
\(362\) 0 0
\(363\) −43.1486 −2.26471
\(364\) 0 0
\(365\) −13.5417 −0.708804
\(366\) 0 0
\(367\) −17.3289 −0.904560 −0.452280 0.891876i \(-0.649389\pi\)
−0.452280 + 0.891876i \(0.649389\pi\)
\(368\) 0 0
\(369\) −10.9139 −0.568156
\(370\) 0 0
\(371\) 18.1572 0.942673
\(372\) 0 0
\(373\) −0.854460 −0.0442423 −0.0221211 0.999755i \(-0.507042\pi\)
−0.0221211 + 0.999755i \(0.507042\pi\)
\(374\) 0 0
\(375\) −24.5554 −1.26804
\(376\) 0 0
\(377\) −16.7351 −0.861901
\(378\) 0 0
\(379\) −29.9048 −1.53611 −0.768053 0.640386i \(-0.778774\pi\)
−0.768053 + 0.640386i \(0.778774\pi\)
\(380\) 0 0
\(381\) −25.8796 −1.32585
\(382\) 0 0
\(383\) −27.6510 −1.41290 −0.706451 0.707762i \(-0.749705\pi\)
−0.706451 + 0.707762i \(0.749705\pi\)
\(384\) 0 0
\(385\) −12.4743 −0.635749
\(386\) 0 0
\(387\) −16.8554 −0.856809
\(388\) 0 0
\(389\) 29.3110 1.48613 0.743064 0.669220i \(-0.233372\pi\)
0.743064 + 0.669220i \(0.233372\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 26.5313 1.33833
\(394\) 0 0
\(395\) −2.56609 −0.129114
\(396\) 0 0
\(397\) −18.6002 −0.933518 −0.466759 0.884384i \(-0.654578\pi\)
−0.466759 + 0.884384i \(0.654578\pi\)
\(398\) 0 0
\(399\) −16.7221 −0.837152
\(400\) 0 0
\(401\) −7.93565 −0.396288 −0.198144 0.980173i \(-0.563491\pi\)
−0.198144 + 0.980173i \(0.563491\pi\)
\(402\) 0 0
\(403\) 47.8335 2.38276
\(404\) 0 0
\(405\) 4.29310 0.213326
\(406\) 0 0
\(407\) 5.75980 0.285503
\(408\) 0 0
\(409\) −6.93345 −0.342837 −0.171418 0.985198i \(-0.554835\pi\)
−0.171418 + 0.985198i \(0.554835\pi\)
\(410\) 0 0
\(411\) −6.42966 −0.317152
\(412\) 0 0
\(413\) 25.4093 1.25031
\(414\) 0 0
\(415\) 0.0337815 0.00165827
\(416\) 0 0
\(417\) −23.2655 −1.13932
\(418\) 0 0
\(419\) 25.6432 1.25275 0.626376 0.779521i \(-0.284537\pi\)
0.626376 + 0.779521i \(0.284537\pi\)
\(420\) 0 0
\(421\) −34.5518 −1.68395 −0.841977 0.539513i \(-0.818608\pi\)
−0.841977 + 0.539513i \(0.818608\pi\)
\(422\) 0 0
\(423\) 43.2619 2.10346
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 18.5836 0.899325
\(428\) 0 0
\(429\) −60.7245 −2.93181
\(430\) 0 0
\(431\) 2.86931 0.138210 0.0691050 0.997609i \(-0.477986\pi\)
0.0691050 + 0.997609i \(0.477986\pi\)
\(432\) 0 0
\(433\) −16.9089 −0.812588 −0.406294 0.913742i \(-0.633179\pi\)
−0.406294 + 0.913742i \(0.633179\pi\)
\(434\) 0 0
\(435\) 10.5388 0.505298
\(436\) 0 0
\(437\) 10.9919 0.525814
\(438\) 0 0
\(439\) 20.8176 0.993572 0.496786 0.867873i \(-0.334513\pi\)
0.496786 + 0.867873i \(0.334513\pi\)
\(440\) 0 0
\(441\) −6.43678 −0.306513
\(442\) 0 0
\(443\) −23.5157 −1.11726 −0.558632 0.829416i \(-0.688673\pi\)
−0.558632 + 0.829416i \(0.688673\pi\)
\(444\) 0 0
\(445\) −7.53847 −0.357358
\(446\) 0 0
\(447\) 10.4349 0.493556
\(448\) 0 0
\(449\) 9.60971 0.453510 0.226755 0.973952i \(-0.427188\pi\)
0.226755 + 0.973952i \(0.427188\pi\)
\(450\) 0 0
\(451\) 13.6713 0.643757
\(452\) 0 0
\(453\) 9.57487 0.449867
\(454\) 0 0
\(455\) −10.4369 −0.489291
\(456\) 0 0
\(457\) 17.1673 0.803051 0.401526 0.915848i \(-0.368480\pi\)
0.401526 + 0.915848i \(0.368480\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −30.2470 −1.40874 −0.704371 0.709832i \(-0.748771\pi\)
−0.704371 + 0.709832i \(0.748771\pi\)
\(462\) 0 0
\(463\) 33.1695 1.54152 0.770758 0.637128i \(-0.219878\pi\)
0.770758 + 0.637128i \(0.219878\pi\)
\(464\) 0 0
\(465\) −30.1228 −1.39691
\(466\) 0 0
\(467\) −5.57527 −0.257993 −0.128996 0.991645i \(-0.541176\pi\)
−0.128996 + 0.991645i \(0.541176\pi\)
\(468\) 0 0
\(469\) 15.0576 0.695294
\(470\) 0 0
\(471\) −36.1680 −1.66653
\(472\) 0 0
\(473\) 21.1139 0.970819
\(474\) 0 0
\(475\) 10.5678 0.484885
\(476\) 0 0
\(477\) −32.3333 −1.48044
\(478\) 0 0
\(479\) −23.1079 −1.05583 −0.527913 0.849298i \(-0.677025\pi\)
−0.527913 + 0.849298i \(0.677025\pi\)
\(480\) 0 0
\(481\) 4.81908 0.219731
\(482\) 0 0
\(483\) −25.6519 −1.16720
\(484\) 0 0
\(485\) −18.7298 −0.850478
\(486\) 0 0
\(487\) 14.8048 0.670868 0.335434 0.942064i \(-0.391117\pi\)
0.335434 + 0.942064i \(0.391117\pi\)
\(488\) 0 0
\(489\) 3.61665 0.163551
\(490\) 0 0
\(491\) 0.524437 0.0236675 0.0118338 0.999930i \(-0.496233\pi\)
0.0118338 + 0.999930i \(0.496233\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 22.2136 0.998425
\(496\) 0 0
\(497\) 4.38644 0.196759
\(498\) 0 0
\(499\) −16.1396 −0.722509 −0.361255 0.932467i \(-0.617652\pi\)
−0.361255 + 0.932467i \(0.617652\pi\)
\(500\) 0 0
\(501\) −7.31951 −0.327012
\(502\) 0 0
\(503\) −12.8740 −0.574023 −0.287011 0.957927i \(-0.592662\pi\)
−0.287011 + 0.957927i \(0.592662\pi\)
\(504\) 0 0
\(505\) 9.43771 0.419973
\(506\) 0 0
\(507\) −16.0262 −0.711746
\(508\) 0 0
\(509\) −0.684018 −0.0303185 −0.0151593 0.999885i \(-0.504826\pi\)
−0.0151593 + 0.999885i \(0.504826\pi\)
\(510\) 0 0
\(511\) −30.8257 −1.36365
\(512\) 0 0
\(513\) 8.29275 0.366134
\(514\) 0 0
\(515\) −8.08891 −0.356440
\(516\) 0 0
\(517\) −54.1919 −2.38336
\(518\) 0 0
\(519\) −10.3934 −0.456221
\(520\) 0 0
\(521\) −4.75103 −0.208147 −0.104073 0.994570i \(-0.533188\pi\)
−0.104073 + 0.994570i \(0.533188\pi\)
\(522\) 0 0
\(523\) 40.6707 1.77840 0.889202 0.457515i \(-0.151260\pi\)
0.889202 + 0.457515i \(0.151260\pi\)
\(524\) 0 0
\(525\) −24.6622 −1.07635
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) −6.13829 −0.266882
\(530\) 0 0
\(531\) −45.2475 −1.96358
\(532\) 0 0
\(533\) 11.4385 0.495455
\(534\) 0 0
\(535\) 4.49793 0.194463
\(536\) 0 0
\(537\) 22.3923 0.966301
\(538\) 0 0
\(539\) 8.06302 0.347299
\(540\) 0 0
\(541\) −34.5690 −1.48624 −0.743119 0.669159i \(-0.766654\pi\)
−0.743119 + 0.669159i \(0.766654\pi\)
\(542\) 0 0
\(543\) 18.7858 0.806176
\(544\) 0 0
\(545\) −6.24456 −0.267488
\(546\) 0 0
\(547\) 26.4964 1.13290 0.566452 0.824094i \(-0.308315\pi\)
0.566452 + 0.824094i \(0.308315\pi\)
\(548\) 0 0
\(549\) −33.0927 −1.41236
\(550\) 0 0
\(551\) −10.2798 −0.437936
\(552\) 0 0
\(553\) −5.84135 −0.248399
\(554\) 0 0
\(555\) −3.03479 −0.128820
\(556\) 0 0
\(557\) −24.1708 −1.02415 −0.512075 0.858941i \(-0.671123\pi\)
−0.512075 + 0.858941i \(0.671123\pi\)
\(558\) 0 0
\(559\) 17.6655 0.747171
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 3.53989 0.149189 0.0745943 0.997214i \(-0.476234\pi\)
0.0745943 + 0.997214i \(0.476234\pi\)
\(564\) 0 0
\(565\) 18.7523 0.788916
\(566\) 0 0
\(567\) 9.77265 0.410413
\(568\) 0 0
\(569\) −15.8884 −0.666076 −0.333038 0.942913i \(-0.608074\pi\)
−0.333038 + 0.942913i \(0.608074\pi\)
\(570\) 0 0
\(571\) 17.1570 0.717997 0.358998 0.933338i \(-0.383118\pi\)
0.358998 + 0.933338i \(0.383118\pi\)
\(572\) 0 0
\(573\) −33.7741 −1.41093
\(574\) 0 0
\(575\) 16.2112 0.676052
\(576\) 0 0
\(577\) −39.0319 −1.62492 −0.812460 0.583017i \(-0.801872\pi\)
−0.812460 + 0.583017i \(0.801872\pi\)
\(578\) 0 0
\(579\) 50.2122 2.08675
\(580\) 0 0
\(581\) 0.0768989 0.00319030
\(582\) 0 0
\(583\) 40.5023 1.67743
\(584\) 0 0
\(585\) 18.5855 0.768418
\(586\) 0 0
\(587\) −15.8714 −0.655081 −0.327540 0.944837i \(-0.606220\pi\)
−0.327540 + 0.944837i \(0.606220\pi\)
\(588\) 0 0
\(589\) 29.3826 1.21069
\(590\) 0 0
\(591\) −38.5830 −1.58709
\(592\) 0 0
\(593\) −10.4046 −0.427264 −0.213632 0.976914i \(-0.568529\pi\)
−0.213632 + 0.976914i \(0.568529\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −25.6124 −1.04825
\(598\) 0 0
\(599\) −35.7297 −1.45988 −0.729938 0.683513i \(-0.760451\pi\)
−0.729938 + 0.683513i \(0.760451\pi\)
\(600\) 0 0
\(601\) 27.8337 1.13536 0.567681 0.823249i \(-0.307841\pi\)
0.567681 + 0.823249i \(0.307841\pi\)
\(602\) 0 0
\(603\) −26.8137 −1.09194
\(604\) 0 0
\(605\) −16.5427 −0.672558
\(606\) 0 0
\(607\) −17.1987 −0.698073 −0.349036 0.937109i \(-0.613491\pi\)
−0.349036 + 0.937109i \(0.613491\pi\)
\(608\) 0 0
\(609\) 23.9901 0.972130
\(610\) 0 0
\(611\) −45.3411 −1.83430
\(612\) 0 0
\(613\) −44.0031 −1.77727 −0.888634 0.458618i \(-0.848345\pi\)
−0.888634 + 0.458618i \(0.848345\pi\)
\(614\) 0 0
\(615\) −7.20330 −0.290465
\(616\) 0 0
\(617\) −29.6094 −1.19203 −0.596014 0.802974i \(-0.703250\pi\)
−0.596014 + 0.802974i \(0.703250\pi\)
\(618\) 0 0
\(619\) 26.1735 1.05200 0.526001 0.850484i \(-0.323691\pi\)
0.526001 + 0.850484i \(0.323691\pi\)
\(620\) 0 0
\(621\) 12.7212 0.510483
\(622\) 0 0
\(623\) −17.1603 −0.687512
\(624\) 0 0
\(625\) 10.3251 0.413003
\(626\) 0 0
\(627\) −37.3012 −1.48967
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 40.2883 1.60385 0.801925 0.597424i \(-0.203809\pi\)
0.801925 + 0.597424i \(0.203809\pi\)
\(632\) 0 0
\(633\) −4.30413 −0.171074
\(634\) 0 0
\(635\) −9.92198 −0.393742
\(636\) 0 0
\(637\) 6.74613 0.267292
\(638\) 0 0
\(639\) −7.81114 −0.309004
\(640\) 0 0
\(641\) −7.90788 −0.312342 −0.156171 0.987730i \(-0.549915\pi\)
−0.156171 + 0.987730i \(0.549915\pi\)
\(642\) 0 0
\(643\) −5.54323 −0.218603 −0.109302 0.994009i \(-0.534861\pi\)
−0.109302 + 0.994009i \(0.534861\pi\)
\(644\) 0 0
\(645\) −11.1247 −0.438036
\(646\) 0 0
\(647\) 18.3835 0.722731 0.361366 0.932424i \(-0.382311\pi\)
0.361366 + 0.932424i \(0.382311\pi\)
\(648\) 0 0
\(649\) 56.6793 2.22486
\(650\) 0 0
\(651\) −68.5704 −2.68749
\(652\) 0 0
\(653\) 35.3400 1.38296 0.691480 0.722396i \(-0.256959\pi\)
0.691480 + 0.722396i \(0.256959\pi\)
\(654\) 0 0
\(655\) 10.1718 0.397446
\(656\) 0 0
\(657\) 54.8928 2.14157
\(658\) 0 0
\(659\) 0.950773 0.0370369 0.0185184 0.999829i \(-0.494105\pi\)
0.0185184 + 0.999829i \(0.494105\pi\)
\(660\) 0 0
\(661\) 11.5490 0.449203 0.224602 0.974451i \(-0.427892\pi\)
0.224602 + 0.974451i \(0.427892\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −6.41108 −0.248611
\(666\) 0 0
\(667\) −15.7694 −0.610593
\(668\) 0 0
\(669\) −25.3657 −0.980695
\(670\) 0 0
\(671\) 41.4536 1.60030
\(672\) 0 0
\(673\) −11.9983 −0.462501 −0.231250 0.972894i \(-0.574282\pi\)
−0.231250 + 0.972894i \(0.574282\pi\)
\(674\) 0 0
\(675\) 12.2304 0.470747
\(676\) 0 0
\(677\) 41.6732 1.60163 0.800815 0.598912i \(-0.204400\pi\)
0.800815 + 0.598912i \(0.204400\pi\)
\(678\) 0 0
\(679\) −42.6359 −1.63621
\(680\) 0 0
\(681\) 7.00409 0.268397
\(682\) 0 0
\(683\) −11.3230 −0.433262 −0.216631 0.976254i \(-0.569507\pi\)
−0.216631 + 0.976254i \(0.569507\pi\)
\(684\) 0 0
\(685\) −2.46506 −0.0941853
\(686\) 0 0
\(687\) 13.2046 0.503787
\(688\) 0 0
\(689\) 33.8873 1.29100
\(690\) 0 0
\(691\) 24.6925 0.939347 0.469673 0.882840i \(-0.344372\pi\)
0.469673 + 0.882840i \(0.344372\pi\)
\(692\) 0 0
\(693\) 50.5661 1.92085
\(694\) 0 0
\(695\) −8.91976 −0.338346
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) −6.10652 −0.230970
\(700\) 0 0
\(701\) 38.0011 1.43528 0.717642 0.696413i \(-0.245222\pi\)
0.717642 + 0.696413i \(0.245222\pi\)
\(702\) 0 0
\(703\) 2.96021 0.111647
\(704\) 0 0
\(705\) 28.5533 1.07538
\(706\) 0 0
\(707\) 21.4836 0.807975
\(708\) 0 0
\(709\) 19.5644 0.734757 0.367378 0.930072i \(-0.380255\pi\)
0.367378 + 0.930072i \(0.380255\pi\)
\(710\) 0 0
\(711\) 10.4020 0.390104
\(712\) 0 0
\(713\) 45.0733 1.68801
\(714\) 0 0
\(715\) −23.2812 −0.870666
\(716\) 0 0
\(717\) 32.5924 1.21718
\(718\) 0 0
\(719\) −39.1974 −1.46182 −0.730909 0.682475i \(-0.760904\pi\)
−0.730909 + 0.682475i \(0.760904\pi\)
\(720\) 0 0
\(721\) −18.4133 −0.685746
\(722\) 0 0
\(723\) −38.5454 −1.43352
\(724\) 0 0
\(725\) −15.1610 −0.563065
\(726\) 0 0
\(727\) 49.8981 1.85062 0.925310 0.379212i \(-0.123805\pi\)
0.925310 + 0.379212i \(0.123805\pi\)
\(728\) 0 0
\(729\) −42.2678 −1.56547
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 27.9360 1.03184 0.515919 0.856637i \(-0.327451\pi\)
0.515919 + 0.856637i \(0.327451\pi\)
\(734\) 0 0
\(735\) −4.24834 −0.156702
\(736\) 0 0
\(737\) 33.5882 1.23724
\(738\) 0 0
\(739\) 30.1936 1.11069 0.555344 0.831621i \(-0.312587\pi\)
0.555344 + 0.831621i \(0.312587\pi\)
\(740\) 0 0
\(741\) −31.2090 −1.14649
\(742\) 0 0
\(743\) 5.24624 0.192466 0.0962328 0.995359i \(-0.469321\pi\)
0.0962328 + 0.995359i \(0.469321\pi\)
\(744\) 0 0
\(745\) 4.00065 0.146572
\(746\) 0 0
\(747\) −0.136937 −0.00501028
\(748\) 0 0
\(749\) 10.2389 0.374122
\(750\) 0 0
\(751\) −14.4140 −0.525976 −0.262988 0.964799i \(-0.584708\pi\)
−0.262988 + 0.964799i \(0.584708\pi\)
\(752\) 0 0
\(753\) 47.7418 1.73981
\(754\) 0 0
\(755\) 3.67091 0.133598
\(756\) 0 0
\(757\) −6.29402 −0.228760 −0.114380 0.993437i \(-0.536488\pi\)
−0.114380 + 0.993437i \(0.536488\pi\)
\(758\) 0 0
\(759\) −57.2205 −2.07697
\(760\) 0 0
\(761\) 6.45544 0.234010 0.117005 0.993131i \(-0.462671\pi\)
0.117005 + 0.993131i \(0.462671\pi\)
\(762\) 0 0
\(763\) −14.2149 −0.514613
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 47.4222 1.71232
\(768\) 0 0
\(769\) −0.665285 −0.0239908 −0.0119954 0.999928i \(-0.503818\pi\)
−0.0119954 + 0.999928i \(0.503818\pi\)
\(770\) 0 0
\(771\) 14.4565 0.520638
\(772\) 0 0
\(773\) −4.37461 −0.157344 −0.0786719 0.996901i \(-0.525068\pi\)
−0.0786719 + 0.996901i \(0.525068\pi\)
\(774\) 0 0
\(775\) 43.3342 1.55661
\(776\) 0 0
\(777\) −6.90827 −0.247833
\(778\) 0 0
\(779\) 7.02628 0.251743
\(780\) 0 0
\(781\) 9.78461 0.350121
\(782\) 0 0
\(783\) −11.8971 −0.425167
\(784\) 0 0
\(785\) −13.8664 −0.494914
\(786\) 0 0
\(787\) −7.39078 −0.263453 −0.131726 0.991286i \(-0.542052\pi\)
−0.131726 + 0.991286i \(0.542052\pi\)
\(788\) 0 0
\(789\) 26.4398 0.941283
\(790\) 0 0
\(791\) 42.6870 1.51778
\(792\) 0 0
\(793\) 34.6832 1.23164
\(794\) 0 0
\(795\) −21.3403 −0.756863
\(796\) 0 0
\(797\) −22.5759 −0.799678 −0.399839 0.916585i \(-0.630934\pi\)
−0.399839 + 0.916585i \(0.630934\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 30.5581 1.07972
\(802\) 0 0
\(803\) −68.7615 −2.42654
\(804\) 0 0
\(805\) −9.83468 −0.346627
\(806\) 0 0
\(807\) 71.6135 2.52091
\(808\) 0 0
\(809\) −4.39402 −0.154486 −0.0772428 0.997012i \(-0.524612\pi\)
−0.0772428 + 0.997012i \(0.524612\pi\)
\(810\) 0 0
\(811\) −11.3678 −0.399177 −0.199589 0.979880i \(-0.563961\pi\)
−0.199589 + 0.979880i \(0.563961\pi\)
\(812\) 0 0
\(813\) 71.2956 2.50045
\(814\) 0 0
\(815\) 1.38659 0.0485700
\(816\) 0 0
\(817\) 10.8514 0.379641
\(818\) 0 0
\(819\) 42.3074 1.47834
\(820\) 0 0
\(821\) 45.0897 1.57364 0.786821 0.617181i \(-0.211725\pi\)
0.786821 + 0.617181i \(0.211725\pi\)
\(822\) 0 0
\(823\) 10.6982 0.372916 0.186458 0.982463i \(-0.440299\pi\)
0.186458 + 0.982463i \(0.440299\pi\)
\(824\) 0 0
\(825\) −55.0128 −1.91530
\(826\) 0 0
\(827\) −50.8622 −1.76865 −0.884326 0.466869i \(-0.845382\pi\)
−0.884326 + 0.466869i \(0.845382\pi\)
\(828\) 0 0
\(829\) −6.52156 −0.226503 −0.113252 0.993566i \(-0.536127\pi\)
−0.113252 + 0.993566i \(0.536127\pi\)
\(830\) 0 0
\(831\) 75.0619 2.60387
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) −2.80623 −0.0971134
\(836\) 0 0
\(837\) 34.0051 1.17539
\(838\) 0 0
\(839\) −8.36481 −0.288785 −0.144393 0.989520i \(-0.546123\pi\)
−0.144393 + 0.989520i \(0.546123\pi\)
\(840\) 0 0
\(841\) −14.2522 −0.491454
\(842\) 0 0
\(843\) 56.6216 1.95015
\(844\) 0 0
\(845\) −6.14426 −0.211369
\(846\) 0 0
\(847\) −37.6572 −1.29392
\(848\) 0 0
\(849\) −11.7367 −0.402804
\(850\) 0 0
\(851\) 4.54100 0.155663
\(852\) 0 0
\(853\) 3.09683 0.106034 0.0530168 0.998594i \(-0.483116\pi\)
0.0530168 + 0.998594i \(0.483116\pi\)
\(854\) 0 0
\(855\) 11.4165 0.390437
\(856\) 0 0
\(857\) 8.20901 0.280415 0.140207 0.990122i \(-0.455223\pi\)
0.140207 + 0.990122i \(0.455223\pi\)
\(858\) 0 0
\(859\) −11.2149 −0.382648 −0.191324 0.981527i \(-0.561278\pi\)
−0.191324 + 0.981527i \(0.561278\pi\)
\(860\) 0 0
\(861\) −16.3973 −0.558819
\(862\) 0 0
\(863\) 34.8722 1.18706 0.593532 0.804811i \(-0.297733\pi\)
0.593532 + 0.804811i \(0.297733\pi\)
\(864\) 0 0
\(865\) −3.98474 −0.135485
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −13.0300 −0.442013
\(870\) 0 0
\(871\) 28.1024 0.952215
\(872\) 0 0
\(873\) 75.9237 2.56963
\(874\) 0 0
\(875\) −21.4303 −0.724478
\(876\) 0 0
\(877\) −12.3174 −0.415930 −0.207965 0.978136i \(-0.566684\pi\)
−0.207965 + 0.978136i \(0.566684\pi\)
\(878\) 0 0
\(879\) 31.8087 1.07288
\(880\) 0 0
\(881\) −41.9252 −1.41250 −0.706248 0.707965i \(-0.749613\pi\)
−0.706248 + 0.707965i \(0.749613\pi\)
\(882\) 0 0
\(883\) −14.6148 −0.491828 −0.245914 0.969292i \(-0.579088\pi\)
−0.245914 + 0.969292i \(0.579088\pi\)
\(884\) 0 0
\(885\) −29.8638 −1.00386
\(886\) 0 0
\(887\) 5.82073 0.195441 0.0977205 0.995214i \(-0.468845\pi\)
0.0977205 + 0.995214i \(0.468845\pi\)
\(888\) 0 0
\(889\) −22.5860 −0.757510
\(890\) 0 0
\(891\) 21.7994 0.730306
\(892\) 0 0
\(893\) −27.8516 −0.932018
\(894\) 0 0
\(895\) 8.58499 0.286965
\(896\) 0 0
\(897\) −47.8750 −1.59850
\(898\) 0 0
\(899\) −42.1534 −1.40589
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) −25.3239 −0.842727
\(904\) 0 0
\(905\) 7.20228 0.239412
\(906\) 0 0
\(907\) 2.41186 0.0800844 0.0400422 0.999198i \(-0.487251\pi\)
0.0400422 + 0.999198i \(0.487251\pi\)
\(908\) 0 0
\(909\) −38.2569 −1.26890
\(910\) 0 0
\(911\) 19.8485 0.657611 0.328806 0.944398i \(-0.393354\pi\)
0.328806 + 0.944398i \(0.393354\pi\)
\(912\) 0 0
\(913\) 0.171534 0.00567696
\(914\) 0 0
\(915\) −21.8415 −0.722059
\(916\) 0 0
\(917\) 23.1547 0.764637
\(918\) 0 0
\(919\) 16.7830 0.553619 0.276810 0.960925i \(-0.410723\pi\)
0.276810 + 0.960925i \(0.410723\pi\)
\(920\) 0 0
\(921\) −55.9660 −1.84414
\(922\) 0 0
\(923\) 8.18655 0.269463
\(924\) 0 0
\(925\) 4.36580 0.143547
\(926\) 0 0
\(927\) 32.7894 1.07694
\(928\) 0 0
\(929\) −23.2751 −0.763632 −0.381816 0.924238i \(-0.624701\pi\)
−0.381816 + 0.924238i \(0.624701\pi\)
\(930\) 0 0
\(931\) 4.14394 0.135812
\(932\) 0 0
\(933\) −16.3652 −0.535774
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −39.7859 −1.29975 −0.649875 0.760041i \(-0.725179\pi\)
−0.649875 + 0.760041i \(0.725179\pi\)
\(938\) 0 0
\(939\) 76.7190 2.50363
\(940\) 0 0
\(941\) −28.5899 −0.932004 −0.466002 0.884784i \(-0.654306\pi\)
−0.466002 + 0.884784i \(0.654306\pi\)
\(942\) 0 0
\(943\) 10.7784 0.350993
\(944\) 0 0
\(945\) −7.41969 −0.241363
\(946\) 0 0
\(947\) −42.7997 −1.39080 −0.695402 0.718621i \(-0.744774\pi\)
−0.695402 + 0.718621i \(0.744774\pi\)
\(948\) 0 0
\(949\) −57.5310 −1.86754
\(950\) 0 0
\(951\) −16.7725 −0.543885
\(952\) 0 0
\(953\) −41.2093 −1.33490 −0.667451 0.744654i \(-0.732614\pi\)
−0.667451 + 0.744654i \(0.732614\pi\)
\(954\) 0 0
\(955\) −12.9487 −0.419008
\(956\) 0 0
\(957\) 53.5136 1.72985
\(958\) 0 0
\(959\) −5.61137 −0.181201
\(960\) 0 0
\(961\) 89.4859 2.88664
\(962\) 0 0
\(963\) −18.2329 −0.587547
\(964\) 0 0
\(965\) 19.2509 0.619707
\(966\) 0 0
\(967\) 30.2438 0.972574 0.486287 0.873799i \(-0.338351\pi\)
0.486287 + 0.873799i \(0.338351\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −37.4533 −1.20193 −0.600967 0.799274i \(-0.705218\pi\)
−0.600967 + 0.799274i \(0.705218\pi\)
\(972\) 0 0
\(973\) −20.3046 −0.650935
\(974\) 0 0
\(975\) −46.0279 −1.47407
\(976\) 0 0
\(977\) −38.0539 −1.21745 −0.608726 0.793381i \(-0.708319\pi\)
−0.608726 + 0.793381i \(0.708319\pi\)
\(978\) 0 0
\(979\) −38.2786 −1.22339
\(980\) 0 0
\(981\) 25.3131 0.808185
\(982\) 0 0
\(983\) 49.0680 1.56503 0.782513 0.622634i \(-0.213938\pi\)
0.782513 + 0.622634i \(0.213938\pi\)
\(984\) 0 0
\(985\) −14.7923 −0.471323
\(986\) 0 0
\(987\) 64.9975 2.06889
\(988\) 0 0
\(989\) 16.6461 0.529316
\(990\) 0 0
\(991\) −33.6501 −1.06893 −0.534465 0.845190i \(-0.679487\pi\)
−0.534465 + 0.845190i \(0.679487\pi\)
\(992\) 0 0
\(993\) 25.6004 0.812405
\(994\) 0 0
\(995\) −9.81953 −0.311300
\(996\) 0 0
\(997\) 38.7913 1.22853 0.614266 0.789099i \(-0.289452\pi\)
0.614266 + 0.789099i \(0.289452\pi\)
\(998\) 0 0
\(999\) 3.42592 0.108391
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2312.2.a.w.1.3 12
4.3 odd 2 4624.2.a.bt.1.10 12
17.4 even 4 2312.2.b.n.577.10 12
17.11 odd 16 136.2.n.c.121.3 yes 12
17.13 even 4 2312.2.b.n.577.3 12
17.14 odd 16 136.2.n.c.9.3 12
17.16 even 2 inner 2312.2.a.w.1.10 12
51.11 even 16 1224.2.bq.c.937.2 12
51.14 even 16 1224.2.bq.c.145.2 12
68.11 even 16 272.2.v.f.257.1 12
68.31 even 16 272.2.v.f.145.1 12
68.67 odd 2 4624.2.a.bt.1.3 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
136.2.n.c.9.3 12 17.14 odd 16
136.2.n.c.121.3 yes 12 17.11 odd 16
272.2.v.f.145.1 12 68.31 even 16
272.2.v.f.257.1 12 68.11 even 16
1224.2.bq.c.145.2 12 51.14 even 16
1224.2.bq.c.937.2 12 51.11 even 16
2312.2.a.w.1.3 12 1.1 even 1 trivial
2312.2.a.w.1.10 12 17.16 even 2 inner
2312.2.b.n.577.3 12 17.13 even 4
2312.2.b.n.577.10 12 17.4 even 4
4624.2.a.bt.1.3 12 68.67 odd 2
4624.2.a.bt.1.10 12 4.3 odd 2