Properties

Label 1224.2.bq.c.937.2
Level $1224$
Weight $2$
Character 1224.937
Analytic conductor $9.774$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1224,2,Mod(145,1224)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1224, base_ring=CyclotomicField(8))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1224.145");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1224 = 2^{3} \cdot 3^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1224.bq (of order \(8\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.77368920740\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(3\) over \(\Q(\zeta_{8})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 28x^{10} + 258x^{8} + 880x^{6} + 1033x^{4} + 132x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 136)
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

Embedding invariants

Embedding label 937.2
Root \(-3.49562i\) of defining polynomial
Character \(\chi\) \(=\) 1224.937
Dual form 1224.2.bq.c.145.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.392531 + 0.947653i) q^{5} +(-0.893542 + 2.15720i) q^{7} +(4.81196 + 1.99318i) q^{11} +4.35777i q^{13} +(-3.77648 - 1.65476i) q^{17} +(-1.89281 - 1.89281i) q^{19} +(-3.79373 - 1.57141i) q^{23} +(2.79157 - 2.79157i) q^{25} +(1.46962 + 3.54797i) q^{29} +(-10.1411 + 4.20057i) q^{31} -2.39502 q^{35} +(1.02168 - 0.423195i) q^{37} +(1.00448 - 2.42504i) q^{41} +(-2.86647 + 2.86647i) q^{43} +10.4047i q^{47} +(1.09465 + 1.09465i) q^{49} +(5.49867 + 5.49867i) q^{53} +5.34245i q^{55} +(-7.69489 + 7.69489i) q^{59} +(3.04576 - 7.35311i) q^{61} +(-4.12965 + 1.71056i) q^{65} +6.44882 q^{67} +(-1.73561 + 0.718913i) q^{71} +(5.05217 + 12.1970i) q^{73} +(-8.59937 + 8.59937i) q^{77} +(2.31129 + 0.957366i) q^{79} +(-0.0232879 - 0.0232879i) q^{83} +(0.0857556 - 4.22833i) q^{85} -7.34936i q^{89} +(-9.40057 - 3.89384i) q^{91} +(1.05074 - 2.53671i) q^{95} +(-6.98779 - 16.8700i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 4 q^{5} + 12 q^{11} - 4 q^{17} - 4 q^{19} + 8 q^{23} - 16 q^{25} - 8 q^{29} - 32 q^{31} + 32 q^{35} + 4 q^{37} - 16 q^{41} + 8 q^{43} + 44 q^{49} + 8 q^{53} - 16 q^{59} + 44 q^{61} + 20 q^{65} - 40 q^{67}+ \cdots - 16 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1224\mathbb{Z}\right)^\times\).

\(n\) \(137\) \(613\) \(649\) \(919\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{7}{8}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 0.392531 + 0.947653i 0.175545 + 0.423803i 0.987023 0.160580i \(-0.0513364\pi\)
−0.811478 + 0.584383i \(0.801336\pi\)
\(6\) 0 0
\(7\) −0.893542 + 2.15720i −0.337727 + 0.815345i 0.660206 + 0.751084i \(0.270469\pi\)
−0.997933 + 0.0642606i \(0.979531\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 4.81196 + 1.99318i 1.45086 + 0.600966i 0.962404 0.271622i \(-0.0875601\pi\)
0.488457 + 0.872588i \(0.337560\pi\)
\(12\) 0 0
\(13\) 4.35777i 1.20863i 0.796747 + 0.604313i \(0.206552\pi\)
−0.796747 + 0.604313i \(0.793448\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −3.77648 1.65476i −0.915930 0.401338i
\(18\) 0 0
\(19\) −1.89281 1.89281i −0.434240 0.434240i 0.455828 0.890068i \(-0.349343\pi\)
−0.890068 + 0.455828i \(0.849343\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −3.79373 1.57141i −0.791047 0.327662i −0.0496826 0.998765i \(-0.515821\pi\)
−0.741364 + 0.671103i \(0.765821\pi\)
\(24\) 0 0
\(25\) 2.79157 2.79157i 0.558314 0.558314i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 1.46962 + 3.54797i 0.272901 + 0.658841i 0.999605 0.0281099i \(-0.00894885\pi\)
−0.726704 + 0.686951i \(0.758949\pi\)
\(30\) 0 0
\(31\) −10.1411 + 4.20057i −1.82139 + 0.754444i −0.846272 + 0.532751i \(0.821158\pi\)
−0.975117 + 0.221693i \(0.928842\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −2.39502 −0.404832
\(36\) 0 0
\(37\) 1.02168 0.423195i 0.167964 0.0695728i −0.297117 0.954841i \(-0.596025\pi\)
0.465081 + 0.885268i \(0.346025\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 1.00448 2.42504i 0.156874 0.378728i −0.825828 0.563923i \(-0.809292\pi\)
0.982702 + 0.185195i \(0.0592916\pi\)
\(42\) 0 0
\(43\) −2.86647 + 2.86647i −0.437132 + 0.437132i −0.891046 0.453914i \(-0.850027\pi\)
0.453914 + 0.891046i \(0.350027\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 10.4047i 1.51768i 0.651280 + 0.758838i \(0.274233\pi\)
−0.651280 + 0.758838i \(0.725767\pi\)
\(48\) 0 0
\(49\) 1.09465 + 1.09465i 0.156379 + 0.156379i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 5.49867 + 5.49867i 0.755301 + 0.755301i 0.975463 0.220162i \(-0.0706587\pi\)
−0.220162 + 0.975463i \(0.570659\pi\)
\(54\) 0 0
\(55\) 5.34245i 0.720376i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −7.69489 + 7.69489i −1.00179 + 1.00179i −0.00179152 + 0.999998i \(0.500570\pi\)
−0.999998 + 0.00179152i \(0.999430\pi\)
\(60\) 0 0
\(61\) 3.04576 7.35311i 0.389969 0.941469i −0.599976 0.800018i \(-0.704823\pi\)
0.989945 0.141451i \(-0.0451767\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −4.12965 + 1.71056i −0.512220 + 0.212169i
\(66\) 0 0
\(67\) 6.44882 0.787848 0.393924 0.919143i \(-0.371117\pi\)
0.393924 + 0.919143i \(0.371117\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −1.73561 + 0.718913i −0.205979 + 0.0853193i −0.483288 0.875462i \(-0.660558\pi\)
0.277309 + 0.960781i \(0.410558\pi\)
\(72\) 0 0
\(73\) 5.05217 + 12.1970i 0.591312 + 1.42755i 0.882236 + 0.470807i \(0.156037\pi\)
−0.290924 + 0.956746i \(0.593963\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −8.59937 + 8.59937i −0.979989 + 0.979989i
\(78\) 0 0
\(79\) 2.31129 + 0.957366i 0.260040 + 0.107712i 0.508895 0.860829i \(-0.330054\pi\)
−0.248855 + 0.968541i \(0.580054\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −0.0232879 0.0232879i −0.00255618 0.00255618i 0.705828 0.708384i \(-0.250575\pi\)
−0.708384 + 0.705828i \(0.750575\pi\)
\(84\) 0 0
\(85\) 0.0857556 4.22833i 0.00930150 0.458627i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 7.34936i 0.779030i −0.921020 0.389515i \(-0.872643\pi\)
0.921020 0.389515i \(-0.127357\pi\)
\(90\) 0 0
\(91\) −9.40057 3.89384i −0.985448 0.408186i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 1.05074 2.53671i 0.107804 0.260261i
\(96\) 0 0
\(97\) −6.98779 16.8700i −0.709502 1.71289i −0.701241 0.712924i \(-0.747370\pi\)
−0.00826130 0.999966i \(-0.502630\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −9.20094 −0.915528 −0.457764 0.889074i \(-0.651350\pi\)
−0.457764 + 0.889074i \(0.651350\pi\)
\(102\) 0 0
\(103\) 7.88599 0.777029 0.388515 0.921443i \(-0.372988\pi\)
0.388515 + 0.921443i \(0.372988\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 1.67810 + 4.05130i 0.162228 + 0.391654i 0.984001 0.178161i \(-0.0570149\pi\)
−0.821773 + 0.569815i \(0.807015\pi\)
\(108\) 0 0
\(109\) 2.32974 5.62449i 0.223149 0.538729i −0.772166 0.635421i \(-0.780826\pi\)
0.995314 + 0.0966928i \(0.0308264\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 16.8902 + 6.99617i 1.58890 + 0.658144i 0.989791 0.142523i \(-0.0455216\pi\)
0.599109 + 0.800667i \(0.295522\pi\)
\(114\) 0 0
\(115\) 4.21197i 0.392768i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 6.94409 6.66802i 0.636563 0.611256i
\(120\) 0 0
\(121\) 11.4040 + 11.4040i 1.03673 + 1.03673i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 8.47948 + 3.51232i 0.758428 + 0.314151i
\(126\) 0 0
\(127\) −6.83989 + 6.83989i −0.606942 + 0.606942i −0.942146 0.335203i \(-0.891195\pi\)
0.335203 + 0.942146i \(0.391195\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −3.79494 9.16179i −0.331565 0.800469i −0.998468 0.0553249i \(-0.982381\pi\)
0.666903 0.745144i \(-0.267619\pi\)
\(132\) 0 0
\(133\) 5.77448 2.39187i 0.500711 0.207401i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −2.40322 −0.205321 −0.102661 0.994716i \(-0.532736\pi\)
−0.102661 + 0.994716i \(0.532736\pi\)
\(138\) 0 0
\(139\) −8.03405 + 3.32781i −0.681439 + 0.282261i −0.696428 0.717626i \(-0.745229\pi\)
0.0149893 + 0.999888i \(0.495229\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −8.68581 + 20.9694i −0.726344 + 1.75355i
\(144\) 0 0
\(145\) −2.78537 + 2.78537i −0.231313 + 0.231313i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 3.90029i 0.319524i −0.987156 0.159762i \(-0.948927\pi\)
0.987156 0.159762i \(-0.0510727\pi\)
\(150\) 0 0
\(151\) 2.53060 + 2.53060i 0.205938 + 0.205938i 0.802538 0.596601i \(-0.203482\pi\)
−0.596601 + 0.802538i \(0.703482\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −7.96136 7.96136i −0.639472 0.639472i
\(156\) 0 0
\(157\) 13.5186i 1.07890i 0.842018 + 0.539449i \(0.181367\pi\)
−0.842018 + 0.539449i \(0.818633\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 6.77971 6.77971i 0.534316 0.534316i
\(162\) 0 0
\(163\) 0.517312 1.24890i 0.0405190 0.0978216i −0.902324 0.431058i \(-0.858141\pi\)
0.942843 + 0.333236i \(0.108141\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −2.52757 + 1.04696i −0.195589 + 0.0810158i −0.478328 0.878181i \(-0.658757\pi\)
0.282739 + 0.959197i \(0.408757\pi\)
\(168\) 0 0
\(169\) −5.99012 −0.460778
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 3.58906 1.48664i 0.272871 0.113027i −0.242052 0.970263i \(-0.577820\pi\)
0.514923 + 0.857236i \(0.327820\pi\)
\(174\) 0 0
\(175\) 3.52759 + 8.51635i 0.266661 + 0.643776i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 5.91821 5.91821i 0.442348 0.442348i −0.450452 0.892800i \(-0.648737\pi\)
0.892800 + 0.450452i \(0.148737\pi\)
\(180\) 0 0
\(181\) −6.48711 2.68705i −0.482183 0.199727i 0.128332 0.991731i \(-0.459038\pi\)
−0.610515 + 0.792004i \(0.709038\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0.802084 + 0.802084i 0.0589704 + 0.0589704i
\(186\) 0 0
\(187\) −14.8740 15.4898i −1.08770 1.13273i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 12.6238i 0.913427i −0.889614 0.456713i \(-0.849027\pi\)
0.889614 0.456713i \(-0.150973\pi\)
\(192\) 0 0
\(193\) 17.3393 + 7.18217i 1.24811 + 0.516984i 0.906240 0.422764i \(-0.138940\pi\)
0.341869 + 0.939748i \(0.388940\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 5.51876 13.3235i 0.393196 0.949258i −0.596044 0.802952i \(-0.703261\pi\)
0.989239 0.146306i \(-0.0467385\pi\)
\(198\) 0 0
\(199\) −3.66350 8.84447i −0.259699 0.626968i 0.739220 0.673464i \(-0.235194\pi\)
−0.998918 + 0.0464963i \(0.985194\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −8.96683 −0.629348
\(204\) 0 0
\(205\) 2.69239 0.188045
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −5.33542 12.8808i −0.369059 0.890986i
\(210\) 0 0
\(211\) 0.615646 1.48630i 0.0423828 0.102321i −0.901270 0.433257i \(-0.857364\pi\)
0.943653 + 0.330936i \(0.107364\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −3.84159 1.59124i −0.261995 0.108522i
\(216\) 0 0
\(217\) 25.6297i 1.73986i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 7.21106 16.4570i 0.485068 1.10702i
\(222\) 0 0
\(223\) 6.70407 + 6.70407i 0.448937 + 0.448937i 0.895001 0.446064i \(-0.147175\pi\)
−0.446064 + 0.895001i \(0.647175\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −2.41865 1.00184i −0.160531 0.0664943i 0.300971 0.953633i \(-0.402689\pi\)
−0.461502 + 0.887139i \(0.652689\pi\)
\(228\) 0 0
\(229\) 3.48993 3.48993i 0.230621 0.230621i −0.582331 0.812952i \(-0.697859\pi\)
0.812952 + 0.582331i \(0.197859\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 0.873453 + 2.10870i 0.0572218 + 0.138146i 0.949905 0.312540i \(-0.101180\pi\)
−0.892683 + 0.450685i \(0.851180\pi\)
\(234\) 0 0
\(235\) −9.86001 + 4.08415i −0.643196 + 0.266421i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 12.1821 0.787995 0.393997 0.919112i \(-0.371092\pi\)
0.393997 + 0.919112i \(0.371092\pi\)
\(240\) 0 0
\(241\) −13.3105 + 5.51338i −0.857404 + 0.355148i −0.767692 0.640820i \(-0.778595\pi\)
−0.0897121 + 0.995968i \(0.528595\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −0.607666 + 1.46704i −0.0388223 + 0.0937254i
\(246\) 0 0
\(247\) 8.24842 8.24842i 0.524835 0.524835i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 17.8445i 1.12634i −0.826342 0.563168i \(-0.809582\pi\)
0.826342 0.563168i \(-0.190418\pi\)
\(252\) 0 0
\(253\) −15.1232 15.1232i −0.950785 0.950785i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 3.82080 + 3.82080i 0.238335 + 0.238335i 0.816160 0.577825i \(-0.196099\pi\)
−0.577825 + 0.816160i \(0.696099\pi\)
\(258\) 0 0
\(259\) 2.58212i 0.160445i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −6.98795 + 6.98795i −0.430896 + 0.430896i −0.888933 0.458037i \(-0.848553\pi\)
0.458037 + 0.888933i \(0.348553\pi\)
\(264\) 0 0
\(265\) −3.05244 + 7.36924i −0.187510 + 0.452689i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 24.7296 10.2433i 1.50779 0.624546i 0.532688 0.846312i \(-0.321182\pi\)
0.975100 + 0.221765i \(0.0711819\pi\)
\(270\) 0 0
\(271\) 26.6483 1.61877 0.809384 0.587280i \(-0.199801\pi\)
0.809384 + 0.587280i \(0.199801\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 18.9970 7.86882i 1.14556 0.474508i
\(276\) 0 0
\(277\) −10.7366 25.9204i −0.645097 1.55740i −0.819718 0.572767i \(-0.805870\pi\)
0.174621 0.984636i \(-0.444130\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 14.9649 14.9649i 0.892731 0.892731i −0.102049 0.994779i \(-0.532540\pi\)
0.994779 + 0.102049i \(0.0325397\pi\)
\(282\) 0 0
\(283\) 4.05293 + 1.67878i 0.240922 + 0.0997931i 0.499877 0.866096i \(-0.333378\pi\)
−0.258956 + 0.965889i \(0.583378\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 4.33375 + 4.33375i 0.255813 + 0.255813i
\(288\) 0 0
\(289\) 11.5235 + 12.4983i 0.677855 + 0.735195i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 11.8892i 0.694573i 0.937759 + 0.347286i \(0.112897\pi\)
−0.937759 + 0.347286i \(0.887103\pi\)
\(294\) 0 0
\(295\) −10.3126 4.27161i −0.600421 0.248703i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 6.84785 16.5322i 0.396022 0.956080i
\(300\) 0 0
\(301\) −3.62224 8.74485i −0.208782 0.504045i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 8.16375 0.467455
\(306\) 0 0
\(307\) 20.9185 1.19388 0.596941 0.802285i \(-0.296383\pi\)
0.596941 + 0.802285i \(0.296383\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −2.34082 5.65124i −0.132736 0.320453i 0.843512 0.537111i \(-0.180484\pi\)
−0.976248 + 0.216658i \(0.930484\pi\)
\(312\) 0 0
\(313\) −10.9736 + 26.4926i −0.620264 + 1.49745i 0.231130 + 0.972923i \(0.425758\pi\)
−0.851394 + 0.524527i \(0.824242\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −5.79187 2.39907i −0.325304 0.134745i 0.214054 0.976822i \(-0.431333\pi\)
−0.539358 + 0.842077i \(0.681333\pi\)
\(318\) 0 0
\(319\) 20.0019i 1.11989i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 4.01601 + 10.2803i 0.223457 + 0.572011i
\(324\) 0 0
\(325\) 12.1650 + 12.1650i 0.674793 + 0.674793i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −22.4449 9.29700i −1.23743 0.512560i
\(330\) 0 0
\(331\) 6.76610 6.76610i 0.371899 0.371899i −0.496270 0.868168i \(-0.665297\pi\)
0.868168 + 0.496270i \(0.165297\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 2.53136 + 6.11124i 0.138303 + 0.333893i
\(336\) 0 0
\(337\) −2.11552 + 0.876277i −0.115240 + 0.0477339i −0.439558 0.898214i \(-0.644865\pi\)
0.324319 + 0.945948i \(0.394865\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −57.1709 −3.09598
\(342\) 0 0
\(343\) −18.4399 + 7.63806i −0.995661 + 0.412416i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 1.53048 3.69490i 0.0821603 0.198353i −0.877461 0.479648i \(-0.840764\pi\)
0.959621 + 0.281296i \(0.0907642\pi\)
\(348\) 0 0
\(349\) 18.7738 18.7738i 1.00494 1.00494i 0.00495064 0.999988i \(-0.498424\pi\)
0.999988 0.00495064i \(-0.00157584\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 1.75320i 0.0933134i 0.998911 + 0.0466567i \(0.0148567\pi\)
−0.998911 + 0.0466567i \(0.985143\pi\)
\(354\) 0 0
\(355\) −1.36256 1.36256i −0.0723172 0.0723172i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 14.0466 + 14.0466i 0.741353 + 0.741353i 0.972838 0.231486i \(-0.0743586\pi\)
−0.231486 + 0.972838i \(0.574359\pi\)
\(360\) 0 0
\(361\) 11.8345i 0.622870i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −9.57541 + 9.57541i −0.501200 + 0.501200i
\(366\) 0 0
\(367\) 6.63148 16.0098i 0.346160 0.835705i −0.650906 0.759159i \(-0.725611\pi\)
0.997066 0.0765462i \(-0.0243893\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −16.7750 + 6.94845i −0.870916 + 0.360745i
\(372\) 0 0
\(373\) 0.854460 0.0442423 0.0221211 0.999755i \(-0.492958\pi\)
0.0221211 + 0.999755i \(0.492958\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −15.4612 + 6.40424i −0.796292 + 0.329835i
\(378\) 0 0
\(379\) −11.4441 27.6284i −0.587843 1.41918i −0.885561 0.464524i \(-0.846226\pi\)
0.297718 0.954654i \(-0.403774\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 19.5522 19.5522i 0.999073 0.999073i −0.000926910 1.00000i \(-0.500295\pi\)
1.00000 0.000926910i \(0.000295045\pi\)
\(384\) 0 0
\(385\) −11.5247 4.77370i −0.587355 0.243291i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 20.7260 + 20.7260i 1.05085 + 1.05085i 0.998636 + 0.0522161i \(0.0166285\pi\)
0.0522161 + 0.998636i \(0.483372\pi\)
\(390\) 0 0
\(391\) 11.7266 + 12.2121i 0.593040 + 0.617593i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 2.56609i 0.129114i
\(396\) 0 0
\(397\) 17.1844 + 7.11800i 0.862458 + 0.357242i 0.769668 0.638444i \(-0.220422\pi\)
0.0927899 + 0.995686i \(0.470422\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −3.03684 + 7.33159i −0.151653 + 0.366122i −0.981388 0.192035i \(-0.938491\pi\)
0.829735 + 0.558157i \(0.188491\pi\)
\(402\) 0 0
\(403\) −18.3051 44.1924i −0.911841 2.20138i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 5.75980 0.285503
\(408\) 0 0
\(409\) −6.93345 −0.342837 −0.171418 0.985198i \(-0.554835\pi\)
−0.171418 + 0.985198i \(0.554835\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −9.72372 23.4751i −0.478473 1.15514i
\(414\) 0 0
\(415\) 0.0129276 0.0312100i 0.000634592 0.00153204i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −23.6912 9.81323i −1.15739 0.479407i −0.280386 0.959887i \(-0.590463\pi\)
−0.877006 + 0.480480i \(0.840463\pi\)
\(420\) 0 0
\(421\) 34.5518i 1.68395i 0.539513 + 0.841977i \(0.318608\pi\)
−0.539513 + 0.841977i \(0.681392\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −15.1617 + 5.92291i −0.735449 + 0.287303i
\(426\) 0 0
\(427\) 13.1406 + 13.1406i 0.635919 + 0.635919i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 2.65090 + 1.09804i 0.127689 + 0.0528907i 0.445613 0.895226i \(-0.352986\pi\)
−0.317924 + 0.948116i \(0.602986\pi\)
\(432\) 0 0
\(433\) 11.9564 11.9564i 0.574586 0.574586i −0.358820 0.933407i \(-0.616821\pi\)
0.933407 + 0.358820i \(0.116821\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 4.20642 + 10.1552i 0.201220 + 0.485789i
\(438\) 0 0
\(439\) 19.2330 7.96657i 0.917941 0.380223i 0.126850 0.991922i \(-0.459513\pi\)
0.791091 + 0.611698i \(0.209513\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 23.5157 1.11726 0.558632 0.829416i \(-0.311327\pi\)
0.558632 + 0.829416i \(0.311327\pi\)
\(444\) 0 0
\(445\) 6.96464 2.88485i 0.330156 0.136755i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −3.67748 + 8.87821i −0.173551 + 0.418989i −0.986590 0.163221i \(-0.947812\pi\)
0.813039 + 0.582210i \(0.197812\pi\)
\(450\) 0 0
\(451\) 9.66708 9.66708i 0.455205 0.455205i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 10.4369i 0.489291i
\(456\) 0 0
\(457\) −12.1391 12.1391i −0.567843 0.567843i 0.363681 0.931524i \(-0.381520\pi\)
−0.931524 + 0.363681i \(0.881520\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 21.3878 + 21.3878i 0.996131 + 0.996131i 0.999993 0.00386124i \(-0.00122907\pi\)
−0.00386124 + 0.999993i \(0.501229\pi\)
\(462\) 0 0
\(463\) 33.1695i 1.54152i 0.637128 + 0.770758i \(0.280122\pi\)
−0.637128 + 0.770758i \(0.719878\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −3.94231 + 3.94231i −0.182428 + 0.182428i −0.792413 0.609985i \(-0.791176\pi\)
0.609985 + 0.792413i \(0.291176\pi\)
\(468\) 0 0
\(469\) −5.76229 + 13.9114i −0.266078 + 0.642368i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −19.5067 + 8.07994i −0.896919 + 0.371516i
\(474\) 0 0
\(475\) −10.5678 −0.484885
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −21.3489 + 8.84301i −0.975457 + 0.404047i −0.812741 0.582626i \(-0.802025\pi\)
−0.162716 + 0.986673i \(0.552025\pi\)
\(480\) 0 0
\(481\) 1.84418 + 4.45225i 0.0840875 + 0.203005i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 13.2440 13.2440i 0.601379 0.601379i
\(486\) 0 0
\(487\) 13.6778 + 5.66554i 0.619801 + 0.256730i 0.670413 0.741988i \(-0.266117\pi\)
−0.0506118 + 0.998718i \(0.516117\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 0.370833 + 0.370833i 0.0167355 + 0.0167355i 0.715425 0.698690i \(-0.246233\pi\)
−0.698690 + 0.715425i \(0.746233\pi\)
\(492\) 0 0
\(493\) 0.321065 15.8307i 0.0144600 0.712977i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 4.38644i 0.196759i
\(498\) 0 0
\(499\) 14.9111 + 6.17637i 0.667512 + 0.276492i 0.690596 0.723241i \(-0.257348\pi\)
−0.0230839 + 0.999734i \(0.507348\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −4.92666 + 11.8940i −0.219669 + 0.530328i −0.994844 0.101419i \(-0.967662\pi\)
0.775175 + 0.631747i \(0.217662\pi\)
\(504\) 0 0
\(505\) −3.61165 8.71931i −0.160717 0.388004i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −0.684018 −0.0303185 −0.0151593 0.999885i \(-0.504826\pi\)
−0.0151593 + 0.999885i \(0.504826\pi\)
\(510\) 0 0
\(511\) −30.8257 −1.36365
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 3.09549 + 7.47318i 0.136404 + 0.329308i
\(516\) 0 0
\(517\) −20.7384 + 50.0668i −0.912072 + 2.20194i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 4.38938 + 1.81814i 0.192302 + 0.0796543i 0.476757 0.879035i \(-0.341812\pi\)
−0.284454 + 0.958690i \(0.591812\pi\)
\(522\) 0 0
\(523\) 40.6707i 1.77840i −0.457515 0.889202i \(-0.651260\pi\)
0.457515 0.889202i \(-0.348740\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 45.2484 + 0.917691i 1.97105 + 0.0399753i
\(528\) 0 0
\(529\) −4.34042 4.34042i −0.188714 0.188714i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 10.5678 + 4.37731i 0.457740 + 0.189602i
\(534\) 0 0
\(535\) −3.18052 + 3.18052i −0.137506 + 0.137506i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 3.08558 + 7.44926i 0.132906 + 0.320862i
\(540\) 0 0
\(541\) −31.9376 + 13.2290i −1.37310 + 0.568759i −0.942629 0.333843i \(-0.891654\pi\)
−0.430476 + 0.902602i \(0.641654\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 6.24456 0.267488
\(546\) 0 0
\(547\) −24.4795 + 10.1397i −1.04667 + 0.433544i −0.838701 0.544592i \(-0.816685\pi\)
−0.207967 + 0.978136i \(0.566685\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 3.93392 9.49733i 0.167591 0.404600i
\(552\) 0 0
\(553\) −4.13046 + 4.13046i −0.175645 + 0.175645i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 24.1708i 1.02415i −0.858941 0.512075i \(-0.828877\pi\)
0.858941 0.512075i \(-0.171123\pi\)
\(558\) 0 0
\(559\) −12.4914 12.4914i −0.528330 0.528330i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −2.50308 2.50308i −0.105492 0.105492i 0.652391 0.757883i \(-0.273766\pi\)
−0.757883 + 0.652391i \(0.773766\pi\)
\(564\) 0 0
\(565\) 18.7523i 0.788916i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −11.2348 + 11.2348i −0.470987 + 0.470987i −0.902234 0.431247i \(-0.858074\pi\)
0.431247 + 0.902234i \(0.358074\pi\)
\(570\) 0 0
\(571\) −6.56569 + 15.8510i −0.274765 + 0.663342i −0.999675 0.0255019i \(-0.991882\pi\)
0.724909 + 0.688844i \(0.241882\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −14.9772 + 6.20374i −0.624591 + 0.258714i
\(576\) 0 0
\(577\) 39.0319 1.62492 0.812460 0.583017i \(-0.198128\pi\)
0.812460 + 0.583017i \(0.198128\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 0.0710453 0.0294279i 0.00294745 0.00122088i
\(582\) 0 0
\(583\) 15.4996 + 37.4192i 0.641926 + 1.54975i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 11.2227 11.2227i 0.463212 0.463212i −0.436495 0.899707i \(-0.643780\pi\)
0.899707 + 0.436495i \(0.143780\pi\)
\(588\) 0 0
\(589\) 27.1460 + 11.2442i 1.11853 + 0.463311i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −7.35714 7.35714i −0.302121 0.302121i 0.539722 0.841843i \(-0.318529\pi\)
−0.841843 + 0.539722i \(0.818529\pi\)
\(594\) 0 0
\(595\) 9.04474 + 3.96318i 0.370798 + 0.162475i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 35.7297i 1.45988i 0.683513 + 0.729938i \(0.260451\pi\)
−0.683513 + 0.729938i \(0.739549\pi\)
\(600\) 0 0
\(601\) −25.7150 10.6515i −1.04894 0.434484i −0.209425 0.977825i \(-0.567159\pi\)
−0.839512 + 0.543341i \(0.817159\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −6.33063 + 15.2835i −0.257377 + 0.621362i
\(606\) 0 0
\(607\) 6.58165 + 15.8895i 0.267141 + 0.644935i 0.999346 0.0361486i \(-0.0115090\pi\)
−0.732206 + 0.681084i \(0.761509\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −45.3411 −1.83430
\(612\) 0 0
\(613\) −44.0031 −1.77727 −0.888634 0.458618i \(-0.848345\pi\)
−0.888634 + 0.458618i \(0.848345\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 11.3310 + 27.3555i 0.456169 + 1.10129i 0.969936 + 0.243360i \(0.0782497\pi\)
−0.513767 + 0.857930i \(0.671750\pi\)
\(618\) 0 0
\(619\) 10.0162 24.1812i 0.402584 0.971923i −0.584453 0.811428i \(-0.698691\pi\)
0.987037 0.160495i \(-0.0513091\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 15.8540 + 6.56695i 0.635178 + 0.263099i
\(624\) 0 0
\(625\) 10.3251i 0.413003i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −4.55865 0.0924547i −0.181765 0.00368641i
\(630\) 0 0
\(631\) 28.4881 + 28.4881i 1.13409 + 1.13409i 0.989490 + 0.144604i \(0.0461908\pi\)
0.144604 + 0.989490i \(0.453809\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −9.16672 3.79698i −0.363770 0.150678i
\(636\) 0 0
\(637\) −4.77024 + 4.77024i −0.189004 + 0.189004i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −3.02621 7.30593i −0.119528 0.288567i 0.852779 0.522271i \(-0.174915\pi\)
−0.972308 + 0.233705i \(0.924915\pi\)
\(642\) 0 0
\(643\) −5.12127 + 2.12130i −0.201963 + 0.0836559i −0.481372 0.876516i \(-0.659861\pi\)
0.279409 + 0.960172i \(0.409861\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −18.3835 −0.722731 −0.361366 0.932424i \(-0.617689\pi\)
−0.361366 + 0.932424i \(0.617689\pi\)
\(648\) 0 0
\(649\) −52.3648 + 21.6902i −2.05550 + 0.851416i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −13.5240 + 32.6499i −0.529236 + 1.27769i 0.402789 + 0.915293i \(0.368041\pi\)
−0.932024 + 0.362395i \(0.881959\pi\)
\(654\) 0 0
\(655\) 7.19257 7.19257i 0.281037 0.281037i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 0.950773i 0.0370369i 0.999829 + 0.0185184i \(0.00589494\pi\)
−0.999829 + 0.0185184i \(0.994105\pi\)
\(660\) 0 0
\(661\) −8.16636 8.16636i −0.317635 0.317635i 0.530223 0.847858i \(-0.322108\pi\)
−0.847858 + 0.530223i \(0.822108\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 4.53332 + 4.53332i 0.175795 + 0.175795i
\(666\) 0 0
\(667\) 15.7694i 0.610593i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 29.3121 29.3121i 1.13158 1.13158i
\(672\) 0 0
\(673\) 4.59155 11.0850i 0.176991 0.427295i −0.810341 0.585958i \(-0.800718\pi\)
0.987333 + 0.158663i \(0.0507183\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −38.5010 + 15.9476i −1.47971 + 0.612917i −0.969050 0.246864i \(-0.920600\pi\)
−0.510663 + 0.859781i \(0.670600\pi\)
\(678\) 0 0
\(679\) 42.6359 1.63621
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −10.4611 + 4.33312i −0.400282 + 0.165802i −0.573737 0.819039i \(-0.694507\pi\)
0.173455 + 0.984842i \(0.444507\pi\)
\(684\) 0 0
\(685\) −0.943339 2.27742i −0.0360431 0.0870158i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −23.9619 + 23.9619i −0.912877 + 0.912877i
\(690\) 0 0
\(691\) 22.8129 + 9.44941i 0.867843 + 0.359472i 0.771770 0.635902i \(-0.219372\pi\)
0.0960732 + 0.995374i \(0.469372\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −6.30722 6.30722i −0.239247 0.239247i
\(696\) 0 0
\(697\) −7.80627 + 7.49592i −0.295684 + 0.283928i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 38.0011i 1.43528i −0.696413 0.717642i \(-0.745222\pi\)
0.696413 0.717642i \(-0.254778\pi\)
\(702\) 0 0
\(703\) −2.73488 1.13282i −0.103148 0.0427253i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 8.22143 19.8483i 0.309199 0.746471i
\(708\) 0 0
\(709\) −7.48697 18.0752i −0.281179 0.678827i 0.718685 0.695336i \(-0.244745\pi\)
−0.999864 + 0.0165097i \(0.994745\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 45.0733 1.68801
\(714\) 0 0
\(715\) −23.2812 −0.870666
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 15.0002 + 36.2137i 0.559414 + 1.35054i 0.910231 + 0.414100i \(0.135904\pi\)
−0.350818 + 0.936444i \(0.614096\pi\)
\(720\) 0 0
\(721\) −7.04646 + 17.0116i −0.262424 + 0.633547i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 14.0069 + 5.80186i 0.520204 + 0.215475i
\(726\) 0 0
\(727\) 49.8981i 1.85062i −0.379212 0.925310i \(-0.623805\pi\)
0.379212 0.925310i \(-0.376195\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 15.5685 6.08183i 0.575820 0.224945i
\(732\) 0 0
\(733\) 19.7537 + 19.7537i 0.729620 + 0.729620i 0.970544 0.240924i \(-0.0774505\pi\)
−0.240924 + 0.970544i \(0.577451\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 31.0315 + 12.8536i 1.14306 + 0.473470i
\(738\) 0 0
\(739\) −21.3501 + 21.3501i −0.785375 + 0.785375i −0.980732 0.195357i \(-0.937413\pi\)
0.195357 + 0.980732i \(0.437413\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 2.00765 + 4.84689i 0.0736534 + 0.177815i 0.956418 0.292000i \(-0.0943207\pi\)
−0.882765 + 0.469815i \(0.844321\pi\)
\(744\) 0 0
\(745\) 3.69612 1.53098i 0.135415 0.0560909i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −10.2389 −0.374122
\(750\) 0 0
\(751\) 13.3168 5.51601i 0.485938 0.201282i −0.126244 0.991999i \(-0.540292\pi\)
0.612182 + 0.790717i \(0.290292\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −1.40480 + 3.39148i −0.0511257 + 0.123428i
\(756\) 0 0
\(757\) −4.45055 + 4.45055i −0.161758 + 0.161758i −0.783345 0.621587i \(-0.786488\pi\)
0.621587 + 0.783345i \(0.286488\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 6.45544i 0.234010i 0.993131 + 0.117005i \(0.0373293\pi\)
−0.993131 + 0.117005i \(0.962671\pi\)
\(762\) 0 0
\(763\) 10.0514 + 10.0514i 0.363886 + 0.363886i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −33.5325 33.5325i −1.21079 1.21079i
\(768\) 0 0
\(769\) 0.665285i 0.0239908i −0.999928 0.0119954i \(-0.996182\pi\)
0.999928 0.0119954i \(-0.00381835\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −3.09332 + 3.09332i −0.111259 + 0.111259i −0.760545 0.649286i \(-0.775068\pi\)
0.649286 + 0.760545i \(0.275068\pi\)
\(774\) 0 0
\(775\) −16.5833 + 40.0356i −0.595690 + 1.43812i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −6.49144 + 2.68884i −0.232580 + 0.0963378i
\(780\) 0 0
\(781\) −9.78461 −0.350121
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −12.8109 + 5.30645i −0.457241 + 0.189395i
\(786\) 0 0
\(787\) −2.82833 6.82819i −0.100819 0.243399i 0.865419 0.501048i \(-0.167052\pi\)
−0.966238 + 0.257649i \(0.917052\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −30.1843 + 30.1843i −1.07323 + 1.07323i
\(792\) 0 0
\(793\) 32.0431 + 13.2727i 1.13788 + 0.471327i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −15.9635 15.9635i −0.565458 0.565458i 0.365395 0.930853i \(-0.380934\pi\)
−0.930853 + 0.365395i \(0.880934\pi\)
\(798\) 0 0
\(799\) 17.2172 39.2930i 0.609101 1.39008i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 68.7615i 2.42654i
\(804\) 0 0
\(805\) 9.08606 + 3.76357i 0.320241 + 0.132648i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −1.68152 + 4.05955i −0.0591191 + 0.142726i −0.950679 0.310177i \(-0.899612\pi\)
0.891560 + 0.452903i \(0.149612\pi\)
\(810\) 0 0
\(811\) 4.35027 + 10.5025i 0.152759 + 0.368792i 0.981670 0.190588i \(-0.0610394\pi\)
−0.828912 + 0.559380i \(0.811039\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 1.38659 0.0485700
\(816\) 0 0
\(817\) 10.8514 0.379641
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −17.2551 41.6575i −0.602207 1.45386i −0.871304 0.490743i \(-0.836725\pi\)
0.269097 0.963113i \(-0.413275\pi\)
\(822\) 0 0
\(823\) 4.09403 9.88385i 0.142709 0.344529i −0.836323 0.548237i \(-0.815299\pi\)
0.979032 + 0.203708i \(0.0652992\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 46.9906 + 19.4641i 1.63402 + 0.676834i 0.995674 0.0929138i \(-0.0296181\pi\)
0.638348 + 0.769748i \(0.279618\pi\)
\(828\) 0 0
\(829\) 6.52156i 0.226503i 0.993566 + 0.113252i \(0.0361266\pi\)
−0.993566 + 0.113252i \(0.963873\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −2.32254 5.94531i −0.0804712 0.205993i
\(834\) 0 0
\(835\) −1.98430 1.98430i −0.0686696 0.0686696i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −7.72808 3.20108i −0.266803 0.110513i 0.245272 0.969454i \(-0.421123\pi\)
−0.512075 + 0.858941i \(0.671123\pi\)
\(840\) 0 0
\(841\) 10.0778 10.0778i 0.347511 0.347511i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −2.35131 5.67656i −0.0808874 0.195279i
\(846\) 0 0
\(847\) −34.7907 + 14.4108i −1.19542 + 0.495161i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −4.54100 −0.155663
\(852\) 0 0
\(853\) −2.86110 + 1.18511i −0.0979622 + 0.0405773i −0.431126 0.902292i \(-0.641884\pi\)
0.333164 + 0.942869i \(0.391884\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −3.14145 + 7.58414i −0.107310 + 0.259069i −0.968409 0.249369i \(-0.919777\pi\)
0.861099 + 0.508438i \(0.169777\pi\)
\(858\) 0 0
\(859\) −7.93014 + 7.93014i −0.270573 + 0.270573i −0.829331 0.558758i \(-0.811278\pi\)
0.558758 + 0.829331i \(0.311278\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 34.8722i 1.18706i 0.804811 + 0.593532i \(0.202267\pi\)
−0.804811 + 0.593532i \(0.797733\pi\)
\(864\) 0 0
\(865\) 2.81763 + 2.81763i 0.0958024 + 0.0958024i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 9.21361 + 9.21361i 0.312550 + 0.312550i
\(870\) 0 0
\(871\) 28.1024i 0.952215i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −15.1535 + 15.1535i −0.512283 + 0.512283i
\(876\) 0 0
\(877\) 4.71367 11.3798i 0.159169 0.384269i −0.824095 0.566451i \(-0.808316\pi\)
0.983265 + 0.182182i \(0.0583160\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 38.7338 16.0441i 1.30498 0.540538i 0.381561 0.924344i \(-0.375387\pi\)
0.923414 + 0.383805i \(0.125387\pi\)
\(882\) 0 0
\(883\) 14.6148 0.491828 0.245914 0.969292i \(-0.420912\pi\)
0.245914 + 0.969292i \(0.420912\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 5.37765 2.22750i 0.180564 0.0747920i −0.290570 0.956854i \(-0.593845\pi\)
0.471134 + 0.882062i \(0.343845\pi\)
\(888\) 0 0
\(889\) −8.64329 20.8667i −0.289887 0.699848i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 19.6941 19.6941i 0.659036 0.659036i
\(894\) 0 0
\(895\) 7.93150 + 3.28533i 0.265121 + 0.109817i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −29.8069 29.8069i −0.994117 0.994117i
\(900\) 0 0
\(901\) −11.6666 29.8646i −0.388672 0.994934i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 7.20228i 0.239412i
\(906\) 0 0
\(907\) −2.22827 0.922978i −0.0739884 0.0306470i 0.345382 0.938462i \(-0.387749\pi\)
−0.419371 + 0.907815i \(0.637749\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 7.59570 18.3377i 0.251657 0.607553i −0.746681 0.665182i \(-0.768354\pi\)
0.998338 + 0.0576286i \(0.0183539\pi\)
\(912\) 0 0
\(913\) −0.0656434 0.158477i −0.00217248 0.00524483i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 23.1547 0.764637
\(918\) 0 0
\(919\) 16.7830 0.553619 0.276810 0.960925i \(-0.410723\pi\)
0.276810 + 0.960925i \(0.410723\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −3.13286 7.56338i −0.103119 0.248952i
\(924\) 0 0
\(925\) 1.67072 4.03347i 0.0549329 0.132620i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 21.5034 + 8.90700i 0.705504 + 0.292229i 0.706443 0.707770i \(-0.250299\pi\)
−0.000938752 1.00000i \(0.500299\pi\)
\(930\) 0 0
\(931\) 4.14394i 0.135812i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 8.84048 20.1756i 0.289115 0.659814i
\(936\) 0 0
\(937\) −28.1329 28.1329i −0.919062 0.919062i 0.0778997 0.996961i \(-0.475179\pi\)
−0.996961 + 0.0778997i \(0.975179\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −26.4136 10.9409i −0.861059 0.356662i −0.0919374 0.995765i \(-0.529306\pi\)
−0.769122 + 0.639102i \(0.779306\pi\)
\(942\) 0 0
\(943\) −7.62148 + 7.62148i −0.248190 + 0.248190i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −16.3787 39.5418i −0.532238 1.28494i −0.930038 0.367463i \(-0.880226\pi\)
0.397801 0.917472i \(-0.369774\pi\)
\(948\) 0 0
\(949\) −53.1517 + 22.0162i −1.72538 + 0.714675i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 41.2093 1.33490 0.667451 0.744654i \(-0.267386\pi\)
0.667451 + 0.744654i \(0.267386\pi\)
\(954\) 0 0
\(955\) 11.9630 4.95523i 0.387113 0.160348i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 2.14738 5.18423i 0.0693425 0.167408i
\(960\) 0 0
\(961\) 63.2761 63.2761i 2.04116 2.04116i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 19.2509i 0.619707i
\(966\) 0 0
\(967\) −21.3856 21.3856i −0.687714 0.687714i 0.274013 0.961726i \(-0.411649\pi\)
−0.961726 + 0.274013i \(0.911649\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 26.4835 + 26.4835i 0.849896 + 0.849896i 0.990120 0.140224i \(-0.0447822\pi\)
−0.140224 + 0.990120i \(0.544782\pi\)
\(972\) 0 0
\(973\) 20.3046i 0.650935i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −26.9082 + 26.9082i −0.860868 + 0.860868i −0.991439 0.130571i \(-0.958319\pi\)
0.130571 + 0.991439i \(0.458319\pi\)
\(978\) 0 0
\(979\) 14.6486 35.3648i 0.468171 1.13026i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −45.3329 + 18.7775i −1.44590 + 0.598909i −0.961219 0.275785i \(-0.911062\pi\)
−0.484676 + 0.874694i \(0.661062\pi\)
\(984\) 0 0
\(985\) 14.7923 0.471323
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 15.3790 6.37019i 0.489024 0.202560i
\(990\) 0 0
\(991\) −12.8773 31.0886i −0.409062 0.987563i −0.985385 0.170341i \(-0.945513\pi\)
0.576323 0.817222i \(-0.304487\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 6.94345 6.94345i 0.220122 0.220122i
\(996\) 0 0
\(997\) 35.8385 + 14.8448i 1.13502 + 0.470139i 0.869483 0.493963i \(-0.164452\pi\)
0.265533 + 0.964102i \(0.414452\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1224.2.bq.c.937.2 12
3.2 odd 2 136.2.n.c.121.3 yes 12
12.11 even 2 272.2.v.f.257.1 12
17.9 even 8 inner 1224.2.bq.c.145.2 12
51.5 even 16 2312.2.b.n.577.10 12
51.14 even 16 2312.2.a.w.1.3 12
51.20 even 16 2312.2.a.w.1.10 12
51.26 odd 8 136.2.n.c.9.3 12
51.29 even 16 2312.2.b.n.577.3 12
204.71 odd 16 4624.2.a.bt.1.3 12
204.167 odd 16 4624.2.a.bt.1.10 12
204.179 even 8 272.2.v.f.145.1 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
136.2.n.c.9.3 12 51.26 odd 8
136.2.n.c.121.3 yes 12 3.2 odd 2
272.2.v.f.145.1 12 204.179 even 8
272.2.v.f.257.1 12 12.11 even 2
1224.2.bq.c.145.2 12 17.9 even 8 inner
1224.2.bq.c.937.2 12 1.1 even 1 trivial
2312.2.a.w.1.3 12 51.14 even 16
2312.2.a.w.1.10 12 51.20 even 16
2312.2.b.n.577.3 12 51.29 even 16
2312.2.b.n.577.10 12 51.5 even 16
4624.2.a.bt.1.3 12 204.71 odd 16
4624.2.a.bt.1.10 12 204.167 odd 16