Properties

Label 1360.2.bt.d.1041.1
Level $1360$
Weight $2$
Character 1360.1041
Analytic conductor $10.860$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1360,2,Mod(81,1360)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1360, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1360.81");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1360 = 2^{4} \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1360.bt (of order \(4\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.8596546749\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 18x^{10} + 83x^{8} + 152x^{6} + 111x^{4} + 22x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 85)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 1041.1
Root \(1.52346i\) of defining polynomial
Character \(\chi\) \(=\) 1360.1041
Dual form 1360.2.bt.d.81.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.78436 + 1.78436i) q^{3} +(-0.707107 + 0.707107i) q^{5} +(0.260895 + 0.260895i) q^{7} -3.36786i q^{9} +(1.76642 + 1.76642i) q^{11} -4.68778 q^{13} -2.52346i q^{15} +(3.84558 + 1.48711i) q^{17} +7.16938i q^{19} -0.931060 q^{21} +(-4.73801 - 4.73801i) q^{23} -1.00000i q^{25} +(0.656399 + 0.656399i) q^{27} +(-4.79535 + 4.79535i) q^{29} +(-3.40685 + 3.40685i) q^{31} -6.30387 q^{33} -0.368961 q^{35} +(-1.37133 + 1.37133i) q^{37} +(8.36467 - 8.36467i) q^{39} +(1.66858 + 1.66858i) q^{41} -11.7105i q^{43} +(2.38144 + 2.38144i) q^{45} +1.65317 q^{47} -6.86387i q^{49} +(-9.51543 + 4.20836i) q^{51} -6.81536i q^{53} -2.49810 q^{55} +(-12.7927 - 12.7927i) q^{57} -0.484372i q^{59} +(4.86706 + 4.86706i) q^{61} +(0.878658 - 0.878658i) q^{63} +(3.31476 - 3.31476i) q^{65} +1.87478 q^{67} +16.9086 q^{69} +(-1.21593 + 1.21593i) q^{71} +(0.202452 - 0.202452i) q^{73} +(1.78436 + 1.78436i) q^{75} +0.921703i q^{77} +(-3.80821 - 3.80821i) q^{79} +7.76109 q^{81} -9.94985i q^{83} +(-3.77078 + 1.66769i) q^{85} -17.1132i q^{87} -4.30781 q^{89} +(-1.22302 - 1.22302i) q^{91} -12.1581i q^{93} +(-5.06952 - 5.06952i) q^{95} +(9.01275 - 9.01275i) q^{97} +(5.94908 - 5.94908i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 4 q^{3} + 4 q^{11} + 12 q^{17} - 16 q^{21} - 12 q^{23} + 4 q^{27} - 12 q^{29} - 16 q^{33} - 16 q^{35} + 12 q^{37} + 20 q^{39} - 24 q^{41} + 8 q^{45} + 48 q^{47} - 32 q^{51} + 40 q^{61} - 12 q^{63}+ \cdots + 4 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1360\mathbb{Z}\right)^\times\).

\(n\) \(241\) \(341\) \(511\) \(817\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.78436 + 1.78436i −1.03020 + 1.03020i −0.0306697 + 0.999530i \(0.509764\pi\)
−0.999530 + 0.0306697i \(0.990236\pi\)
\(4\) 0 0
\(5\) −0.707107 + 0.707107i −0.316228 + 0.316228i
\(6\) 0 0
\(7\) 0.260895 + 0.260895i 0.0986090 + 0.0986090i 0.754690 0.656081i \(-0.227787\pi\)
−0.656081 + 0.754690i \(0.727787\pi\)
\(8\) 0 0
\(9\) 3.36786i 1.12262i
\(10\) 0 0
\(11\) 1.76642 + 1.76642i 0.532597 + 0.532597i 0.921344 0.388747i \(-0.127092\pi\)
−0.388747 + 0.921344i \(0.627092\pi\)
\(12\) 0 0
\(13\) −4.68778 −1.30016 −0.650078 0.759868i \(-0.725264\pi\)
−0.650078 + 0.759868i \(0.725264\pi\)
\(14\) 0 0
\(15\) 2.52346i 0.651555i
\(16\) 0 0
\(17\) 3.84558 + 1.48711i 0.932691 + 0.360676i
\(18\) 0 0
\(19\) 7.16938i 1.64477i 0.568933 + 0.822384i \(0.307356\pi\)
−0.568933 + 0.822384i \(0.692644\pi\)
\(20\) 0 0
\(21\) −0.931060 −0.203174
\(22\) 0 0
\(23\) −4.73801 4.73801i −0.987943 0.987943i 0.0119854 0.999928i \(-0.496185\pi\)
−0.999928 + 0.0119854i \(0.996185\pi\)
\(24\) 0 0
\(25\) 1.00000i 0.200000i
\(26\) 0 0
\(27\) 0.656399 + 0.656399i 0.126324 + 0.126324i
\(28\) 0 0
\(29\) −4.79535 + 4.79535i −0.890475 + 0.890475i −0.994568 0.104093i \(-0.966806\pi\)
0.104093 + 0.994568i \(0.466806\pi\)
\(30\) 0 0
\(31\) −3.40685 + 3.40685i −0.611888 + 0.611888i −0.943438 0.331549i \(-0.892429\pi\)
0.331549 + 0.943438i \(0.392429\pi\)
\(32\) 0 0
\(33\) −6.30387 −1.09736
\(34\) 0 0
\(35\) −0.368961 −0.0623658
\(36\) 0 0
\(37\) −1.37133 + 1.37133i −0.225445 + 0.225445i −0.810787 0.585342i \(-0.800960\pi\)
0.585342 + 0.810787i \(0.300960\pi\)
\(38\) 0 0
\(39\) 8.36467 8.36467i 1.33942 1.33942i
\(40\) 0 0
\(41\) 1.66858 + 1.66858i 0.260588 + 0.260588i 0.825293 0.564705i \(-0.191010\pi\)
−0.564705 + 0.825293i \(0.691010\pi\)
\(42\) 0 0
\(43\) 11.7105i 1.78584i −0.450218 0.892918i \(-0.648654\pi\)
0.450218 0.892918i \(-0.351346\pi\)
\(44\) 0 0
\(45\) 2.38144 + 2.38144i 0.355004 + 0.355004i
\(46\) 0 0
\(47\) 1.65317 0.241140 0.120570 0.992705i \(-0.461528\pi\)
0.120570 + 0.992705i \(0.461528\pi\)
\(48\) 0 0
\(49\) 6.86387i 0.980553i
\(50\) 0 0
\(51\) −9.51543 + 4.20836i −1.33243 + 0.589289i
\(52\) 0 0
\(53\) 6.81536i 0.936162i −0.883686 0.468081i \(-0.844946\pi\)
0.883686 0.468081i \(-0.155054\pi\)
\(54\) 0 0
\(55\) −2.49810 −0.336844
\(56\) 0 0
\(57\) −12.7927 12.7927i −1.69444 1.69444i
\(58\) 0 0
\(59\) 0.484372i 0.0630598i −0.999503 0.0315299i \(-0.989962\pi\)
0.999503 0.0315299i \(-0.0100379\pi\)
\(60\) 0 0
\(61\) 4.86706 + 4.86706i 0.623164 + 0.623164i 0.946339 0.323175i \(-0.104750\pi\)
−0.323175 + 0.946339i \(0.604750\pi\)
\(62\) 0 0
\(63\) 0.878658 0.878658i 0.110701 0.110701i
\(64\) 0 0
\(65\) 3.31476 3.31476i 0.411145 0.411145i
\(66\) 0 0
\(67\) 1.87478 0.229041 0.114520 0.993421i \(-0.463467\pi\)
0.114520 + 0.993421i \(0.463467\pi\)
\(68\) 0 0
\(69\) 16.9086 2.03556
\(70\) 0 0
\(71\) −1.21593 + 1.21593i −0.144304 + 0.144304i −0.775568 0.631264i \(-0.782536\pi\)
0.631264 + 0.775568i \(0.282536\pi\)
\(72\) 0 0
\(73\) 0.202452 0.202452i 0.0236952 0.0236952i −0.695160 0.718855i \(-0.744666\pi\)
0.718855 + 0.695160i \(0.244666\pi\)
\(74\) 0 0
\(75\) 1.78436 + 1.78436i 0.206040 + 0.206040i
\(76\) 0 0
\(77\) 0.921703i 0.105038i
\(78\) 0 0
\(79\) −3.80821 3.80821i −0.428458 0.428458i 0.459645 0.888103i \(-0.347977\pi\)
−0.888103 + 0.459645i \(0.847977\pi\)
\(80\) 0 0
\(81\) 7.76109 0.862343
\(82\) 0 0
\(83\) 9.94985i 1.09214i −0.837740 0.546069i \(-0.816124\pi\)
0.837740 0.546069i \(-0.183876\pi\)
\(84\) 0 0
\(85\) −3.77078 + 1.66769i −0.408999 + 0.180887i
\(86\) 0 0
\(87\) 17.1132i 1.83473i
\(88\) 0 0
\(89\) −4.30781 −0.456627 −0.228314 0.973588i \(-0.573321\pi\)
−0.228314 + 0.973588i \(0.573321\pi\)
\(90\) 0 0
\(91\) −1.22302 1.22302i −0.128207 0.128207i
\(92\) 0 0
\(93\) 12.1581i 1.26073i
\(94\) 0 0
\(95\) −5.06952 5.06952i −0.520121 0.520121i
\(96\) 0 0
\(97\) 9.01275 9.01275i 0.915106 0.915106i −0.0815619 0.996668i \(-0.525991\pi\)
0.996668 + 0.0815619i \(0.0259908\pi\)
\(98\) 0 0
\(99\) 5.94908 5.94908i 0.597905 0.597905i
\(100\) 0 0
\(101\) −9.08552 −0.904043 −0.452021 0.892007i \(-0.649297\pi\)
−0.452021 + 0.892007i \(0.649297\pi\)
\(102\) 0 0
\(103\) −4.77811 −0.470801 −0.235401 0.971898i \(-0.575640\pi\)
−0.235401 + 0.971898i \(0.575640\pi\)
\(104\) 0 0
\(105\) 0.658359 0.658359i 0.0642492 0.0642492i
\(106\) 0 0
\(107\) −2.01673 + 2.01673i −0.194965 + 0.194965i −0.797837 0.602873i \(-0.794023\pi\)
0.602873 + 0.797837i \(0.294023\pi\)
\(108\) 0 0
\(109\) −6.68119 6.68119i −0.639942 0.639942i 0.310599 0.950541i \(-0.399470\pi\)
−0.950541 + 0.310599i \(0.899470\pi\)
\(110\) 0 0
\(111\) 4.89387i 0.464506i
\(112\) 0 0
\(113\) −7.55112 7.55112i −0.710349 0.710349i 0.256259 0.966608i \(-0.417510\pi\)
−0.966608 + 0.256259i \(0.917510\pi\)
\(114\) 0 0
\(115\) 6.70055 0.624830
\(116\) 0 0
\(117\) 15.7878i 1.45958i
\(118\) 0 0
\(119\) 0.615314 + 1.39127i 0.0564058 + 0.127538i
\(120\) 0 0
\(121\) 4.75949i 0.432681i
\(122\) 0 0
\(123\) −5.95468 −0.536915
\(124\) 0 0
\(125\) 0.707107 + 0.707107i 0.0632456 + 0.0632456i
\(126\) 0 0
\(127\) 15.7315i 1.39595i 0.716124 + 0.697974i \(0.245915\pi\)
−0.716124 + 0.697974i \(0.754085\pi\)
\(128\) 0 0
\(129\) 20.8957 + 20.8957i 1.83977 + 1.83977i
\(130\) 0 0
\(131\) 2.89320 2.89320i 0.252780 0.252780i −0.569329 0.822109i \(-0.692797\pi\)
0.822109 + 0.569329i \(0.192797\pi\)
\(132\) 0 0
\(133\) −1.87045 + 1.87045i −0.162189 + 0.162189i
\(134\) 0 0
\(135\) −0.928289 −0.0798944
\(136\) 0 0
\(137\) −16.2144 −1.38529 −0.692644 0.721280i \(-0.743554\pi\)
−0.692644 + 0.721280i \(0.743554\pi\)
\(138\) 0 0
\(139\) −7.57109 + 7.57109i −0.642172 + 0.642172i −0.951089 0.308917i \(-0.900033\pi\)
0.308917 + 0.951089i \(0.400033\pi\)
\(140\) 0 0
\(141\) −2.94985 + 2.94985i −0.248422 + 0.248422i
\(142\) 0 0
\(143\) −8.28060 8.28060i −0.692459 0.692459i
\(144\) 0 0
\(145\) 6.78165i 0.563186i
\(146\) 0 0
\(147\) 12.2476 + 12.2476i 1.01016 + 1.01016i
\(148\) 0 0
\(149\) −11.1290 −0.911719 −0.455860 0.890052i \(-0.650668\pi\)
−0.455860 + 0.890052i \(0.650668\pi\)
\(150\) 0 0
\(151\) 16.0861i 1.30907i −0.756032 0.654535i \(-0.772865\pi\)
0.756032 0.654535i \(-0.227135\pi\)
\(152\) 0 0
\(153\) 5.00837 12.9514i 0.404903 1.04706i
\(154\) 0 0
\(155\) 4.81801i 0.386992i
\(156\) 0 0
\(157\) −2.63326 −0.210157 −0.105079 0.994464i \(-0.533509\pi\)
−0.105079 + 0.994464i \(0.533509\pi\)
\(158\) 0 0
\(159\) 12.1610 + 12.1610i 0.964434 + 0.964434i
\(160\) 0 0
\(161\) 2.47224i 0.194840i
\(162\) 0 0
\(163\) 13.5013 + 13.5013i 1.05751 + 1.05751i 0.998242 + 0.0592626i \(0.0188749\pi\)
0.0592626 + 0.998242i \(0.481125\pi\)
\(164\) 0 0
\(165\) 4.45751 4.45751i 0.347016 0.347016i
\(166\) 0 0
\(167\) −2.81953 + 2.81953i −0.218182 + 0.218182i −0.807732 0.589550i \(-0.799305\pi\)
0.589550 + 0.807732i \(0.299305\pi\)
\(168\) 0 0
\(169\) 8.97524 0.690403
\(170\) 0 0
\(171\) 24.1455 1.84645
\(172\) 0 0
\(173\) −10.3293 + 10.3293i −0.785322 + 0.785322i −0.980723 0.195401i \(-0.937399\pi\)
0.195401 + 0.980723i \(0.437399\pi\)
\(174\) 0 0
\(175\) 0.260895 0.260895i 0.0197218 0.0197218i
\(176\) 0 0
\(177\) 0.864292 + 0.864292i 0.0649642 + 0.0649642i
\(178\) 0 0
\(179\) 14.7452i 1.10211i 0.834469 + 0.551054i \(0.185774\pi\)
−0.834469 + 0.551054i \(0.814226\pi\)
\(180\) 0 0
\(181\) 7.96307 + 7.96307i 0.591890 + 0.591890i 0.938142 0.346252i \(-0.112546\pi\)
−0.346252 + 0.938142i \(0.612546\pi\)
\(182\) 0 0
\(183\) −17.3692 −1.28397
\(184\) 0 0
\(185\) 1.93935i 0.142584i
\(186\) 0 0
\(187\) 4.16607 + 9.41980i 0.304653 + 0.688844i
\(188\) 0 0
\(189\) 0.342503i 0.0249134i
\(190\) 0 0
\(191\) −21.4934 −1.55521 −0.777604 0.628754i \(-0.783565\pi\)
−0.777604 + 0.628754i \(0.783565\pi\)
\(192\) 0 0
\(193\) −1.00556 1.00556i −0.0723819 0.0723819i 0.669989 0.742371i \(-0.266299\pi\)
−0.742371 + 0.669989i \(0.766299\pi\)
\(194\) 0 0
\(195\) 11.8294i 0.847123i
\(196\) 0 0
\(197\) 12.3127 + 12.3127i 0.877240 + 0.877240i 0.993248 0.116008i \(-0.0370098\pi\)
−0.116008 + 0.993248i \(0.537010\pi\)
\(198\) 0 0
\(199\) 12.6485 12.6485i 0.896626 0.896626i −0.0985101 0.995136i \(-0.531408\pi\)
0.995136 + 0.0985101i \(0.0314077\pi\)
\(200\) 0 0
\(201\) −3.34527 + 3.34527i −0.235957 + 0.235957i
\(202\) 0 0
\(203\) −2.50217 −0.175618
\(204\) 0 0
\(205\) −2.35972 −0.164810
\(206\) 0 0
\(207\) −15.9570 + 15.9570i −1.10909 + 1.10909i
\(208\) 0 0
\(209\) −12.6642 + 12.6642i −0.875999 + 0.875999i
\(210\) 0 0
\(211\) 5.07688 + 5.07688i 0.349507 + 0.349507i 0.859926 0.510419i \(-0.170510\pi\)
−0.510419 + 0.859926i \(0.670510\pi\)
\(212\) 0 0
\(213\) 4.33930i 0.297324i
\(214\) 0 0
\(215\) 8.28059 + 8.28059i 0.564731 + 0.564731i
\(216\) 0 0
\(217\) −1.77766 −0.120675
\(218\) 0 0
\(219\) 0.722494i 0.0488216i
\(220\) 0 0
\(221\) −18.0272 6.97123i −1.21264 0.468935i
\(222\) 0 0
\(223\) 3.93334i 0.263396i 0.991290 + 0.131698i \(0.0420428\pi\)
−0.991290 + 0.131698i \(0.957957\pi\)
\(224\) 0 0
\(225\) −3.36786 −0.224524
\(226\) 0 0
\(227\) −2.46062 2.46062i −0.163317 0.163317i 0.620717 0.784034i \(-0.286841\pi\)
−0.784034 + 0.620717i \(0.786841\pi\)
\(228\) 0 0
\(229\) 4.41164i 0.291529i −0.989319 0.145765i \(-0.953436\pi\)
0.989319 0.145765i \(-0.0465642\pi\)
\(230\) 0 0
\(231\) −1.64465 1.64465i −0.108210 0.108210i
\(232\) 0 0
\(233\) −11.0779 + 11.0779i −0.725739 + 0.725739i −0.969768 0.244029i \(-0.921531\pi\)
0.244029 + 0.969768i \(0.421531\pi\)
\(234\) 0 0
\(235\) −1.16897 + 1.16897i −0.0762552 + 0.0762552i
\(236\) 0 0
\(237\) 13.5904 0.882793
\(238\) 0 0
\(239\) 6.59116 0.426346 0.213173 0.977014i \(-0.431620\pi\)
0.213173 + 0.977014i \(0.431620\pi\)
\(240\) 0 0
\(241\) 3.09742 3.09742i 0.199523 0.199523i −0.600273 0.799795i \(-0.704941\pi\)
0.799795 + 0.600273i \(0.204941\pi\)
\(242\) 0 0
\(243\) −15.8178 + 15.8178i −1.01471 + 1.01471i
\(244\) 0 0
\(245\) 4.85349 + 4.85349i 0.310078 + 0.310078i
\(246\) 0 0
\(247\) 33.6084i 2.13845i
\(248\) 0 0
\(249\) 17.7541 + 17.7541i 1.12512 + 1.12512i
\(250\) 0 0
\(251\) 4.30290 0.271597 0.135798 0.990736i \(-0.456640\pi\)
0.135798 + 0.990736i \(0.456640\pi\)
\(252\) 0 0
\(253\) 16.7387i 1.05235i
\(254\) 0 0
\(255\) 3.75266 9.70419i 0.235001 0.607700i
\(256\) 0 0
\(257\) 10.5366i 0.657254i 0.944460 + 0.328627i \(0.106586\pi\)
−0.944460 + 0.328627i \(0.893414\pi\)
\(258\) 0 0
\(259\) −0.715544 −0.0444618
\(260\) 0 0
\(261\) 16.1501 + 16.1501i 0.999665 + 0.999665i
\(262\) 0 0
\(263\) 13.6253i 0.840173i 0.907484 + 0.420086i \(0.138000\pi\)
−0.907484 + 0.420086i \(0.862000\pi\)
\(264\) 0 0
\(265\) 4.81919 + 4.81919i 0.296040 + 0.296040i
\(266\) 0 0
\(267\) 7.68668 7.68668i 0.470417 0.470417i
\(268\) 0 0
\(269\) 11.0360 11.0360i 0.672878 0.672878i −0.285501 0.958378i \(-0.592160\pi\)
0.958378 + 0.285501i \(0.0921599\pi\)
\(270\) 0 0
\(271\) 9.66560 0.587143 0.293572 0.955937i \(-0.405156\pi\)
0.293572 + 0.955937i \(0.405156\pi\)
\(272\) 0 0
\(273\) 4.36460 0.264158
\(274\) 0 0
\(275\) 1.76642 1.76642i 0.106519 0.106519i
\(276\) 0 0
\(277\) −0.955063 + 0.955063i −0.0573842 + 0.0573842i −0.735217 0.677832i \(-0.762920\pi\)
0.677832 + 0.735217i \(0.262920\pi\)
\(278\) 0 0
\(279\) 11.4738 + 11.4738i 0.686919 + 0.686919i
\(280\) 0 0
\(281\) 15.8582i 0.946020i 0.881057 + 0.473010i \(0.156833\pi\)
−0.881057 + 0.473010i \(0.843167\pi\)
\(282\) 0 0
\(283\) −20.7458 20.7458i −1.23321 1.23321i −0.962725 0.270483i \(-0.912816\pi\)
−0.270483 0.962725i \(-0.587184\pi\)
\(284\) 0 0
\(285\) 18.0917 1.07166
\(286\) 0 0
\(287\) 0.870646i 0.0513926i
\(288\) 0 0
\(289\) 12.5770 + 11.4376i 0.739825 + 0.672799i
\(290\) 0 0
\(291\) 32.1639i 1.88548i
\(292\) 0 0
\(293\) −20.6478 −1.20626 −0.603129 0.797644i \(-0.706080\pi\)
−0.603129 + 0.797644i \(0.706080\pi\)
\(294\) 0 0
\(295\) 0.342503 + 0.342503i 0.0199413 + 0.0199413i
\(296\) 0 0
\(297\) 2.31896i 0.134560i
\(298\) 0 0
\(299\) 22.2107 + 22.2107i 1.28448 + 1.28448i
\(300\) 0 0
\(301\) 3.05521 3.05521i 0.176100 0.176100i
\(302\) 0 0
\(303\) 16.2118 16.2118i 0.931344 0.931344i
\(304\) 0 0
\(305\) −6.88307 −0.394123
\(306\) 0 0
\(307\) −16.3437 −0.932787 −0.466393 0.884577i \(-0.654447\pi\)
−0.466393 + 0.884577i \(0.654447\pi\)
\(308\) 0 0
\(309\) 8.52586 8.52586i 0.485019 0.485019i
\(310\) 0 0
\(311\) −24.8266 + 24.8266i −1.40778 + 1.40778i −0.636547 + 0.771238i \(0.719638\pi\)
−0.771238 + 0.636547i \(0.780362\pi\)
\(312\) 0 0
\(313\) 22.1419 + 22.1419i 1.25153 + 1.25153i 0.955032 + 0.296502i \(0.0958202\pi\)
0.296502 + 0.955032i \(0.404180\pi\)
\(314\) 0 0
\(315\) 1.24261i 0.0700132i
\(316\) 0 0
\(317\) 8.87399 + 8.87399i 0.498413 + 0.498413i 0.910944 0.412531i \(-0.135355\pi\)
−0.412531 + 0.910944i \(0.635355\pi\)
\(318\) 0 0
\(319\) −16.9413 −0.948528
\(320\) 0 0
\(321\) 7.19714i 0.401705i
\(322\) 0 0
\(323\) −10.6616 + 27.5704i −0.593229 + 1.53406i
\(324\) 0 0
\(325\) 4.68778i 0.260031i
\(326\) 0 0
\(327\) 23.8433 1.31854
\(328\) 0 0
\(329\) 0.431305 + 0.431305i 0.0237786 + 0.0237786i
\(330\) 0 0
\(331\) 0.497450i 0.0273423i −0.999907 0.0136712i \(-0.995648\pi\)
0.999907 0.0136712i \(-0.00435180\pi\)
\(332\) 0 0
\(333\) 4.61844 + 4.61844i 0.253089 + 0.253089i
\(334\) 0 0
\(335\) −1.32567 + 1.32567i −0.0724290 + 0.0724290i
\(336\) 0 0
\(337\) −23.7358 + 23.7358i −1.29297 + 1.29297i −0.360031 + 0.932940i \(0.617234\pi\)
−0.932940 + 0.360031i \(0.882766\pi\)
\(338\) 0 0
\(339\) 26.9478 1.46360
\(340\) 0 0
\(341\) −12.0359 −0.651780
\(342\) 0 0
\(343\) 3.61701 3.61701i 0.195300 0.195300i
\(344\) 0 0
\(345\) −11.9562 + 11.9562i −0.643699 + 0.643699i
\(346\) 0 0
\(347\) −18.5976 18.5976i −0.998370 0.998370i 0.00162819 0.999999i \(-0.499482\pi\)
−0.999999 + 0.00162819i \(0.999482\pi\)
\(348\) 0 0
\(349\) 16.7865i 0.898560i −0.893391 0.449280i \(-0.851681\pi\)
0.893391 0.449280i \(-0.148319\pi\)
\(350\) 0 0
\(351\) −3.07705 3.07705i −0.164241 0.164241i
\(352\) 0 0
\(353\) −23.4532 −1.24829 −0.624144 0.781309i \(-0.714552\pi\)
−0.624144 + 0.781309i \(0.714552\pi\)
\(354\) 0 0
\(355\) 1.71958i 0.0912660i
\(356\) 0 0
\(357\) −3.58047 1.38459i −0.189498 0.0732800i
\(358\) 0 0
\(359\) 18.1568i 0.958279i −0.877739 0.479139i \(-0.840949\pi\)
0.877739 0.479139i \(-0.159051\pi\)
\(360\) 0 0
\(361\) −32.4000 −1.70526
\(362\) 0 0
\(363\) 8.49263 + 8.49263i 0.445747 + 0.445747i
\(364\) 0 0
\(365\) 0.286310i 0.0149862i
\(366\) 0 0
\(367\) 9.68061 + 9.68061i 0.505324 + 0.505324i 0.913087 0.407764i \(-0.133691\pi\)
−0.407764 + 0.913087i \(0.633691\pi\)
\(368\) 0 0
\(369\) 5.61954 5.61954i 0.292541 0.292541i
\(370\) 0 0
\(371\) 1.77809 1.77809i 0.0923140 0.0923140i
\(372\) 0 0
\(373\) −10.1594 −0.526035 −0.263018 0.964791i \(-0.584718\pi\)
−0.263018 + 0.964791i \(0.584718\pi\)
\(374\) 0 0
\(375\) −2.52346 −0.130311
\(376\) 0 0
\(377\) 22.4795 22.4795i 1.15775 1.15775i
\(378\) 0 0
\(379\) 2.94447 2.94447i 0.151247 0.151247i −0.627428 0.778675i \(-0.715892\pi\)
0.778675 + 0.627428i \(0.215892\pi\)
\(380\) 0 0
\(381\) −28.0707 28.0707i −1.43810 1.43810i
\(382\) 0 0
\(383\) 0.813273i 0.0415563i 0.999784 + 0.0207782i \(0.00661437\pi\)
−0.999784 + 0.0207782i \(0.993386\pi\)
\(384\) 0 0
\(385\) −0.651742 0.651742i −0.0332159 0.0332159i
\(386\) 0 0
\(387\) −39.4394 −2.00482
\(388\) 0 0
\(389\) 3.11676i 0.158026i 0.996874 + 0.0790131i \(0.0251769\pi\)
−0.996874 + 0.0790131i \(0.974823\pi\)
\(390\) 0 0
\(391\) −11.1745 25.2663i −0.565118 1.27777i
\(392\) 0 0
\(393\) 10.3250i 0.520828i
\(394\) 0 0
\(395\) 5.38563 0.270980
\(396\) 0 0
\(397\) 11.5998 + 11.5998i 0.582177 + 0.582177i 0.935501 0.353324i \(-0.114949\pi\)
−0.353324 + 0.935501i \(0.614949\pi\)
\(398\) 0 0
\(399\) 6.67512i 0.334174i
\(400\) 0 0
\(401\) 10.2143 + 10.2143i 0.510075 + 0.510075i 0.914549 0.404474i \(-0.132545\pi\)
−0.404474 + 0.914549i \(0.632545\pi\)
\(402\) 0 0
\(403\) 15.9706 15.9706i 0.795550 0.795550i
\(404\) 0 0
\(405\) −5.48792 + 5.48792i −0.272697 + 0.272697i
\(406\) 0 0
\(407\) −4.84469 −0.240142
\(408\) 0 0
\(409\) 32.2867 1.59648 0.798238 0.602342i \(-0.205765\pi\)
0.798238 + 0.602342i \(0.205765\pi\)
\(410\) 0 0
\(411\) 28.9323 28.9323i 1.42712 1.42712i
\(412\) 0 0
\(413\) 0.126370 0.126370i 0.00621827 0.00621827i
\(414\) 0 0
\(415\) 7.03561 + 7.03561i 0.345364 + 0.345364i
\(416\) 0 0
\(417\) 27.0191i 1.32313i
\(418\) 0 0
\(419\) −13.3485 13.3485i −0.652115 0.652115i 0.301387 0.953502i \(-0.402550\pi\)
−0.953502 + 0.301387i \(0.902550\pi\)
\(420\) 0 0
\(421\) −2.06006 −0.100401 −0.0502006 0.998739i \(-0.515986\pi\)
−0.0502006 + 0.998739i \(0.515986\pi\)
\(422\) 0 0
\(423\) 5.56766i 0.270709i
\(424\) 0 0
\(425\) 1.48711 3.84558i 0.0721353 0.186538i
\(426\) 0 0
\(427\) 2.53958i 0.122899i
\(428\) 0 0
\(429\) 29.5511 1.42674
\(430\) 0 0
\(431\) 2.63581 + 2.63581i 0.126962 + 0.126962i 0.767733 0.640770i \(-0.221385\pi\)
−0.640770 + 0.767733i \(0.721385\pi\)
\(432\) 0 0
\(433\) 27.9634i 1.34383i 0.740626 + 0.671917i \(0.234529\pi\)
−0.740626 + 0.671917i \(0.765471\pi\)
\(434\) 0 0
\(435\) 12.1009 + 12.1009i 0.580193 + 0.580193i
\(436\) 0 0
\(437\) 33.9686 33.9686i 1.62494 1.62494i
\(438\) 0 0
\(439\) −8.87022 + 8.87022i −0.423353 + 0.423353i −0.886356 0.463004i \(-0.846772\pi\)
0.463004 + 0.886356i \(0.346772\pi\)
\(440\) 0 0
\(441\) −23.1166 −1.10079
\(442\) 0 0
\(443\) 19.9529 0.947991 0.473995 0.880527i \(-0.342811\pi\)
0.473995 + 0.880527i \(0.342811\pi\)
\(444\) 0 0
\(445\) 3.04608 3.04608i 0.144398 0.144398i
\(446\) 0 0
\(447\) 19.8580 19.8580i 0.939252 0.939252i
\(448\) 0 0
\(449\) 14.2737 + 14.2737i 0.673618 + 0.673618i 0.958548 0.284930i \(-0.0919704\pi\)
−0.284930 + 0.958548i \(0.591970\pi\)
\(450\) 0 0
\(451\) 5.89483i 0.277577i
\(452\) 0 0
\(453\) 28.7034 + 28.7034i 1.34860 + 1.34860i
\(454\) 0 0
\(455\) 1.72961 0.0810852
\(456\) 0 0
\(457\) 37.7391i 1.76536i −0.469973 0.882681i \(-0.655737\pi\)
0.469973 0.882681i \(-0.344263\pi\)
\(458\) 0 0
\(459\) 1.54810 + 3.50038i 0.0722592 + 0.163384i
\(460\) 0 0
\(461\) 38.1740i 1.77794i −0.457966 0.888970i \(-0.651422\pi\)
0.457966 0.888970i \(-0.348578\pi\)
\(462\) 0 0
\(463\) −13.1481 −0.611044 −0.305522 0.952185i \(-0.598831\pi\)
−0.305522 + 0.952185i \(0.598831\pi\)
\(464\) 0 0
\(465\) 8.59706 + 8.59706i 0.398679 + 0.398679i
\(466\) 0 0
\(467\) 16.2167i 0.750422i −0.926940 0.375211i \(-0.877570\pi\)
0.926940 0.375211i \(-0.122430\pi\)
\(468\) 0 0
\(469\) 0.489120 + 0.489120i 0.0225855 + 0.0225855i
\(470\) 0 0
\(471\) 4.69869 4.69869i 0.216504 0.216504i
\(472\) 0 0
\(473\) 20.6857 20.6857i 0.951132 0.951132i
\(474\) 0 0
\(475\) 7.16938 0.328954
\(476\) 0 0
\(477\) −22.9532 −1.05096
\(478\) 0 0
\(479\) −1.46724 + 1.46724i −0.0670398 + 0.0670398i −0.739832 0.672792i \(-0.765095\pi\)
0.672792 + 0.739832i \(0.265095\pi\)
\(480\) 0 0
\(481\) 6.42847 6.42847i 0.293113 0.293113i
\(482\) 0 0
\(483\) 4.41137 + 4.41137i 0.200724 + 0.200724i
\(484\) 0 0
\(485\) 12.7460i 0.578764i
\(486\) 0 0
\(487\) 16.9890 + 16.9890i 0.769843 + 0.769843i 0.978079 0.208236i \(-0.0667721\pi\)
−0.208236 + 0.978079i \(0.566772\pi\)
\(488\) 0 0
\(489\) −48.1824 −2.17888
\(490\) 0 0
\(491\) 22.3803i 1.01001i 0.863116 + 0.505005i \(0.168509\pi\)
−0.863116 + 0.505005i \(0.831491\pi\)
\(492\) 0 0
\(493\) −25.5721 + 11.3097i −1.15171 + 0.509364i
\(494\) 0 0
\(495\) 8.41327i 0.378148i
\(496\) 0 0
\(497\) −0.634459 −0.0284594
\(498\) 0 0
\(499\) 2.61493 + 2.61493i 0.117060 + 0.117060i 0.763210 0.646150i \(-0.223622\pi\)
−0.646150 + 0.763210i \(0.723622\pi\)
\(500\) 0 0
\(501\) 10.0621i 0.449541i
\(502\) 0 0
\(503\) 13.0544 + 13.0544i 0.582066 + 0.582066i 0.935471 0.353404i \(-0.114976\pi\)
−0.353404 + 0.935471i \(0.614976\pi\)
\(504\) 0 0
\(505\) 6.42443 6.42443i 0.285883 0.285883i
\(506\) 0 0
\(507\) −16.0150 + 16.0150i −0.711253 + 0.711253i
\(508\) 0 0
\(509\) −17.3588 −0.769415 −0.384708 0.923039i \(-0.625698\pi\)
−0.384708 + 0.923039i \(0.625698\pi\)
\(510\) 0 0
\(511\) 0.105637 0.00467312
\(512\) 0 0
\(513\) −4.70598 + 4.70598i −0.207774 + 0.207774i
\(514\) 0 0
\(515\) 3.37863 3.37863i 0.148880 0.148880i
\(516\) 0 0
\(517\) 2.92021 + 2.92021i 0.128431 + 0.128431i
\(518\) 0 0
\(519\) 36.8623i 1.61808i
\(520\) 0 0
\(521\) 9.87476 + 9.87476i 0.432621 + 0.432621i 0.889519 0.456898i \(-0.151040\pi\)
−0.456898 + 0.889519i \(0.651040\pi\)
\(522\) 0 0
\(523\) −5.59638 −0.244712 −0.122356 0.992486i \(-0.539045\pi\)
−0.122356 + 0.992486i \(0.539045\pi\)
\(524\) 0 0
\(525\) 0.931060i 0.0406348i
\(526\) 0 0
\(527\) −18.1677 + 8.03498i −0.791397 + 0.350009i
\(528\) 0 0
\(529\) 21.8974i 0.952062i
\(530\) 0 0
\(531\) −1.63130 −0.0707923
\(532\) 0 0
\(533\) −7.82191 7.82191i −0.338805 0.338805i
\(534\) 0 0
\(535\) 2.85209i 0.123307i
\(536\) 0 0
\(537\) −26.3107 26.3107i −1.13539 1.13539i
\(538\) 0 0
\(539\) 12.1245 12.1245i 0.522239 0.522239i
\(540\) 0 0
\(541\) 27.6477 27.6477i 1.18867 1.18867i 0.211234 0.977436i \(-0.432252\pi\)
0.977436 0.211234i \(-0.0677481\pi\)
\(542\) 0 0
\(543\) −28.4179 −1.21953
\(544\) 0 0
\(545\) 9.44863 0.404735
\(546\) 0 0
\(547\) −20.7878 + 20.7878i −0.888823 + 0.888823i −0.994410 0.105588i \(-0.966328\pi\)
0.105588 + 0.994410i \(0.466328\pi\)
\(548\) 0 0
\(549\) 16.3916 16.3916i 0.699577 0.699577i
\(550\) 0 0
\(551\) −34.3797 34.3797i −1.46462 1.46462i
\(552\) 0 0
\(553\) 1.98709i 0.0844995i
\(554\) 0 0
\(555\) 3.46049 + 3.46049i 0.146890 + 0.146890i
\(556\) 0 0
\(557\) −27.9399 −1.18385 −0.591927 0.805992i \(-0.701632\pi\)
−0.591927 + 0.805992i \(0.701632\pi\)
\(558\) 0 0
\(559\) 54.8963i 2.32186i
\(560\) 0 0
\(561\) −24.2420 9.37453i −1.02350 0.395793i
\(562\) 0 0
\(563\) 11.2994i 0.476213i 0.971239 + 0.238106i \(0.0765267\pi\)
−0.971239 + 0.238106i \(0.923473\pi\)
\(564\) 0 0
\(565\) 10.6789 0.449264
\(566\) 0 0
\(567\) 2.02483 + 2.02483i 0.0850348 + 0.0850348i
\(568\) 0 0
\(569\) 12.1204i 0.508114i 0.967189 + 0.254057i \(0.0817650\pi\)
−0.967189 + 0.254057i \(0.918235\pi\)
\(570\) 0 0
\(571\) 7.74264 + 7.74264i 0.324019 + 0.324019i 0.850307 0.526287i \(-0.176416\pi\)
−0.526287 + 0.850307i \(0.676416\pi\)
\(572\) 0 0
\(573\) 38.3519 38.3519i 1.60217 1.60217i
\(574\) 0 0
\(575\) −4.73801 + 4.73801i −0.197589 + 0.197589i
\(576\) 0 0
\(577\) −9.09883 −0.378789 −0.189395 0.981901i \(-0.560653\pi\)
−0.189395 + 0.981901i \(0.560653\pi\)
\(578\) 0 0
\(579\) 3.58856 0.149135
\(580\) 0 0
\(581\) 2.59587 2.59587i 0.107695 0.107695i
\(582\) 0 0
\(583\) 12.0388 12.0388i 0.498597 0.498597i
\(584\) 0 0
\(585\) −11.1637 11.1637i −0.461560 0.461560i
\(586\) 0 0
\(587\) 11.2991i 0.466362i 0.972433 + 0.233181i \(0.0749134\pi\)
−0.972433 + 0.233181i \(0.925087\pi\)
\(588\) 0 0
\(589\) −24.4250 24.4250i −1.00641 1.00641i
\(590\) 0 0
\(591\) −43.9403 −1.80746
\(592\) 0 0
\(593\) 42.8620i 1.76013i 0.474851 + 0.880066i \(0.342502\pi\)
−0.474851 + 0.880066i \(0.657498\pi\)
\(594\) 0 0
\(595\) −1.41887 0.548685i −0.0581680 0.0224939i
\(596\) 0 0
\(597\) 45.1388i 1.84741i
\(598\) 0 0
\(599\) −21.0108 −0.858478 −0.429239 0.903191i \(-0.641218\pi\)
−0.429239 + 0.903191i \(0.641218\pi\)
\(600\) 0 0
\(601\) −13.7533 13.7533i −0.561009 0.561009i 0.368585 0.929594i \(-0.379842\pi\)
−0.929594 + 0.368585i \(0.879842\pi\)
\(602\) 0 0
\(603\) 6.31399i 0.257126i
\(604\) 0 0
\(605\) 3.36547 + 3.36547i 0.136826 + 0.136826i
\(606\) 0 0
\(607\) 19.3965 19.3965i 0.787281 0.787281i −0.193767 0.981048i \(-0.562071\pi\)
0.981048 + 0.193767i \(0.0620706\pi\)
\(608\) 0 0
\(609\) 4.46476 4.46476i 0.180921 0.180921i
\(610\) 0 0
\(611\) −7.74971 −0.313520
\(612\) 0 0
\(613\) 0.297602 0.0120200 0.00601001 0.999982i \(-0.498087\pi\)
0.00601001 + 0.999982i \(0.498087\pi\)
\(614\) 0 0
\(615\) 4.21059 4.21059i 0.169787 0.169787i
\(616\) 0 0
\(617\) 8.95764 8.95764i 0.360621 0.360621i −0.503421 0.864041i \(-0.667925\pi\)
0.864041 + 0.503421i \(0.167925\pi\)
\(618\) 0 0
\(619\) −6.89991 6.89991i −0.277331 0.277331i 0.554712 0.832043i \(-0.312829\pi\)
−0.832043 + 0.554712i \(0.812829\pi\)
\(620\) 0 0
\(621\) 6.22005i 0.249602i
\(622\) 0 0
\(623\) −1.12389 1.12389i −0.0450276 0.0450276i
\(624\) 0 0
\(625\) −1.00000 −0.0400000
\(626\) 0 0
\(627\) 45.1948i 1.80491i
\(628\) 0 0
\(629\) −7.31286 + 3.23424i −0.291583 + 0.128958i
\(630\) 0 0
\(631\) 40.9574i 1.63049i −0.579117 0.815244i \(-0.696603\pi\)
0.579117 0.815244i \(-0.303397\pi\)
\(632\) 0 0
\(633\) −18.1179 −0.720123
\(634\) 0 0
\(635\) −11.1239 11.1239i −0.441437 0.441437i
\(636\) 0 0
\(637\) 32.1763i 1.27487i
\(638\) 0 0
\(639\) 4.09508 + 4.09508i 0.161999 + 0.161999i
\(640\) 0 0
\(641\) 2.80367 2.80367i 0.110738 0.110738i −0.649567 0.760305i \(-0.725050\pi\)
0.760305 + 0.649567i \(0.225050\pi\)
\(642\) 0 0
\(643\) −10.9095 + 10.9095i −0.430227 + 0.430227i −0.888706 0.458478i \(-0.848395\pi\)
0.458478 + 0.888706i \(0.348395\pi\)
\(644\) 0 0
\(645\) −29.5510 −1.16357
\(646\) 0 0
\(647\) 10.5735 0.415687 0.207843 0.978162i \(-0.433356\pi\)
0.207843 + 0.978162i \(0.433356\pi\)
\(648\) 0 0
\(649\) 0.855606 0.855606i 0.0335855 0.0335855i
\(650\) 0 0
\(651\) 3.17198 3.17198i 0.124320 0.124320i
\(652\) 0 0
\(653\) −10.3029 10.3029i −0.403184 0.403184i 0.476169 0.879354i \(-0.342025\pi\)
−0.879354 + 0.476169i \(0.842025\pi\)
\(654\) 0 0
\(655\) 4.09160i 0.159872i
\(656\) 0 0
\(657\) −0.681831 0.681831i −0.0266007 0.0266007i
\(658\) 0 0
\(659\) −23.7883 −0.926660 −0.463330 0.886186i \(-0.653346\pi\)
−0.463330 + 0.886186i \(0.653346\pi\)
\(660\) 0 0
\(661\) 9.91502i 0.385650i 0.981233 + 0.192825i \(0.0617649\pi\)
−0.981233 + 0.192825i \(0.938235\pi\)
\(662\) 0 0
\(663\) 44.6062 19.7279i 1.73236 0.766167i
\(664\) 0 0
\(665\) 2.64522i 0.102577i
\(666\) 0 0
\(667\) 45.4408 1.75948
\(668\) 0 0
\(669\) −7.01848 7.01848i −0.271350 0.271350i
\(670\) 0 0
\(671\) 17.1946i 0.663790i
\(672\) 0 0
\(673\) −2.81097 2.81097i −0.108355 0.108355i 0.650851 0.759206i \(-0.274412\pi\)
−0.759206 + 0.650851i \(0.774412\pi\)
\(674\) 0 0
\(675\) 0.656399 0.656399i 0.0252648 0.0252648i
\(676\) 0 0
\(677\) −14.4022 + 14.4022i −0.553523 + 0.553523i −0.927456 0.373933i \(-0.878009\pi\)
0.373933 + 0.927456i \(0.378009\pi\)
\(678\) 0 0
\(679\) 4.70276 0.180475
\(680\) 0 0
\(681\) 8.78125 0.336498
\(682\) 0 0
\(683\) −20.4617 + 20.4617i −0.782944 + 0.782944i −0.980327 0.197383i \(-0.936756\pi\)
0.197383 + 0.980327i \(0.436756\pi\)
\(684\) 0 0
\(685\) 11.4653 11.4653i 0.438067 0.438067i
\(686\) 0 0
\(687\) 7.87193 + 7.87193i 0.300333 + 0.300333i
\(688\) 0 0
\(689\) 31.9489i 1.21716i
\(690\) 0 0
\(691\) 3.76661 + 3.76661i 0.143289 + 0.143289i 0.775112 0.631824i \(-0.217693\pi\)
−0.631824 + 0.775112i \(0.717693\pi\)
\(692\) 0 0
\(693\) 3.10417 0.117918
\(694\) 0 0
\(695\) 10.7071i 0.406145i
\(696\) 0 0
\(697\) 3.93530 + 8.89800i 0.149060 + 0.337036i
\(698\) 0 0
\(699\) 39.5340i 1.49531i
\(700\) 0 0
\(701\) −42.2699 −1.59651 −0.798256 0.602318i \(-0.794244\pi\)
−0.798256 + 0.602318i \(0.794244\pi\)
\(702\) 0 0
\(703\) −9.83156 9.83156i −0.370804 0.370804i
\(704\) 0 0
\(705\) 4.17172i 0.157116i
\(706\) 0 0
\(707\) −2.37037 2.37037i −0.0891468 0.0891468i
\(708\) 0 0
\(709\) −34.1983 + 34.1983i −1.28435 + 1.28435i −0.346176 + 0.938170i \(0.612520\pi\)
−0.938170 + 0.346176i \(0.887480\pi\)
\(710\) 0 0
\(711\) −12.8255 + 12.8255i −0.480995 + 0.480995i
\(712\) 0 0
\(713\) 32.2834 1.20902
\(714\) 0 0
\(715\) 11.7105 0.437949
\(716\) 0 0
\(717\) −11.7610 + 11.7610i −0.439222 + 0.439222i
\(718\) 0 0
\(719\) −5.83066 + 5.83066i −0.217447 + 0.217447i −0.807422 0.589975i \(-0.799138\pi\)
0.589975 + 0.807422i \(0.299138\pi\)
\(720\) 0 0
\(721\) −1.24658 1.24658i −0.0464252 0.0464252i
\(722\) 0 0
\(723\) 11.0538i 0.411096i
\(724\) 0 0
\(725\) 4.79535 + 4.79535i 0.178095 + 0.178095i
\(726\) 0 0
\(727\) −6.46089 −0.239621 −0.119811 0.992797i \(-0.538229\pi\)
−0.119811 + 0.992797i \(0.538229\pi\)
\(728\) 0 0
\(729\) 33.1658i 1.22836i
\(730\) 0 0
\(731\) 17.4148 45.0338i 0.644109 1.66563i
\(732\) 0 0
\(733\) 15.9605i 0.589515i −0.955572 0.294758i \(-0.904761\pi\)
0.955572 0.294758i \(-0.0952389\pi\)
\(734\) 0 0
\(735\) −17.3207 −0.638884
\(736\) 0 0
\(737\) 3.31165 + 3.31165i 0.121986 + 0.121986i
\(738\) 0 0
\(739\) 0.760943i 0.0279918i −0.999902 0.0139959i \(-0.995545\pi\)
0.999902 0.0139959i \(-0.00445517\pi\)
\(740\) 0 0
\(741\) 59.9695 + 59.9695i 2.20303 + 2.20303i
\(742\) 0 0
\(743\) −27.8096 + 27.8096i −1.02024 + 1.02024i −0.0204461 + 0.999791i \(0.506509\pi\)
−0.999791 + 0.0204461i \(0.993491\pi\)
\(744\) 0 0
\(745\) 7.86936 7.86936i 0.288311 0.288311i
\(746\) 0 0
\(747\) −33.5097 −1.22606
\(748\) 0 0
\(749\) −1.05231 −0.0384506
\(750\) 0 0
\(751\) 23.8937 23.8937i 0.871892 0.871892i −0.120786 0.992679i \(-0.538542\pi\)
0.992679 + 0.120786i \(0.0385416\pi\)
\(752\) 0 0
\(753\) −7.67792 + 7.67792i −0.279799 + 0.279799i
\(754\) 0 0
\(755\) 11.3746 + 11.3746i 0.413964 + 0.413964i
\(756\) 0 0
\(757\) 23.0663i 0.838359i −0.907903 0.419180i \(-0.862318\pi\)
0.907903 0.419180i \(-0.137682\pi\)
\(758\) 0 0
\(759\) 29.8678 + 29.8678i 1.08413 + 1.08413i
\(760\) 0 0
\(761\) 22.8435 0.828076 0.414038 0.910260i \(-0.364118\pi\)
0.414038 + 0.910260i \(0.364118\pi\)
\(762\) 0 0
\(763\) 3.48618i 0.126208i
\(764\) 0 0
\(765\) 5.61657 + 12.6995i 0.203067 + 0.459151i
\(766\) 0 0
\(767\) 2.27063i 0.0819876i
\(768\) 0 0
\(769\) 3.68785 0.132987 0.0664936 0.997787i \(-0.478819\pi\)
0.0664936 + 0.997787i \(0.478819\pi\)
\(770\) 0 0
\(771\) −18.8010 18.8010i −0.677102 0.677102i
\(772\) 0 0
\(773\) 5.04027i 0.181286i 0.995883 + 0.0906430i \(0.0288922\pi\)
−0.995883 + 0.0906430i \(0.971108\pi\)
\(774\) 0 0
\(775\) 3.40685 + 3.40685i 0.122378 + 0.122378i
\(776\) 0 0
\(777\) 1.27679 1.27679i 0.0458045 0.0458045i
\(778\) 0 0
\(779\) −11.9627 + 11.9627i −0.428607 + 0.428607i
\(780\) 0 0
\(781\) −4.29569 −0.153712
\(782\) 0 0
\(783\) −6.29533 −0.224977
\(784\) 0 0
\(785\) 1.86200 1.86200i 0.0664576 0.0664576i
\(786\) 0 0
\(787\) 9.65129 9.65129i 0.344031 0.344031i −0.513849 0.857880i \(-0.671781\pi\)
0.857880 + 0.513849i \(0.171781\pi\)
\(788\) 0 0
\(789\) −24.3124 24.3124i −0.865545 0.865545i
\(790\) 0 0
\(791\) 3.94010i 0.140094i
\(792\) 0 0
\(793\) −22.8157 22.8157i −0.810209 0.810209i
\(794\) 0 0
\(795\) −17.1983 −0.609961
\(796\) 0 0
\(797\) 16.6869i 0.591081i −0.955330 0.295541i \(-0.904500\pi\)
0.955330 0.295541i \(-0.0954997\pi\)
\(798\) 0 0
\(799\) 6.35742 + 2.45845i 0.224909 + 0.0869736i
\(800\) 0 0
\(801\) 14.5081i 0.512619i
\(802\) 0 0
\(803\) 0.715232 0.0252400
\(804\) 0 0
\(805\) 1.74814 + 1.74814i 0.0616139 + 0.0616139i
\(806\) 0 0
\(807\) 39.3844i 1.38640i
\(808\) 0 0
\(809\) −21.7364 21.7364i −0.764211 0.764211i 0.212870 0.977081i \(-0.431719\pi\)
−0.977081 + 0.212870i \(0.931719\pi\)
\(810\) 0 0
\(811\) −15.1208 + 15.1208i −0.530962 + 0.530962i −0.920859 0.389896i \(-0.872511\pi\)
0.389896 + 0.920859i \(0.372511\pi\)
\(812\) 0 0
\(813\) −17.2469 + 17.2469i −0.604874 + 0.604874i
\(814\) 0 0
\(815\) −19.0937 −0.668825
\(816\) 0 0
\(817\) 83.9571 2.93729
\(818\) 0 0
\(819\) −4.11895 + 4.11895i −0.143928 + 0.143928i
\(820\) 0 0
\(821\) −8.42091 + 8.42091i −0.293892 + 0.293892i −0.838616 0.544724i \(-0.816634\pi\)
0.544724 + 0.838616i \(0.316634\pi\)
\(822\) 0 0
\(823\) 13.8553 + 13.8553i 0.482965 + 0.482965i 0.906077 0.423113i \(-0.139063\pi\)
−0.423113 + 0.906077i \(0.639063\pi\)
\(824\) 0 0
\(825\) 6.30387i 0.219472i
\(826\) 0 0
\(827\) −24.8128 24.8128i −0.862827 0.862827i 0.128838 0.991666i \(-0.458875\pi\)
−0.991666 + 0.128838i \(0.958875\pi\)
\(828\) 0 0
\(829\) 46.3683 1.61044 0.805219 0.592978i \(-0.202048\pi\)
0.805219 + 0.592978i \(0.202048\pi\)
\(830\) 0 0
\(831\) 3.40835i 0.118234i
\(832\) 0 0
\(833\) 10.2073 26.3956i 0.353662 0.914552i
\(834\) 0 0
\(835\) 3.98742i 0.137990i
\(836\) 0 0
\(837\) −4.47251 −0.154593
\(838\) 0 0
\(839\) 17.6001 + 17.6001i 0.607623 + 0.607623i 0.942324 0.334701i \(-0.108635\pi\)
−0.334701 + 0.942324i \(0.608635\pi\)
\(840\) 0 0
\(841\) 16.9908i 0.585890i
\(842\) 0 0
\(843\) −28.2967 28.2967i −0.974589 0.974589i
\(844\) 0 0
\(845\) −6.34645 + 6.34645i −0.218325 + 0.218325i
\(846\) 0 0
\(847\) 1.24173 1.24173i 0.0426662 0.0426662i
\(848\) 0 0
\(849\) 74.0357 2.54090
\(850\) 0 0
\(851\) 12.9947 0.445453
\(852\) 0 0
\(853\) −19.8742 + 19.8742i −0.680478 + 0.680478i −0.960108 0.279629i \(-0.909788\pi\)
0.279629 + 0.960108i \(0.409788\pi\)
\(854\) 0 0
\(855\) −17.0734 + 17.0734i −0.583899 + 0.583899i
\(856\) 0 0
\(857\) −17.3313 17.3313i −0.592025 0.592025i 0.346153 0.938178i \(-0.387488\pi\)
−0.938178 + 0.346153i \(0.887488\pi\)
\(858\) 0 0
\(859\) 12.8979i 0.440069i −0.975492 0.220034i \(-0.929383\pi\)
0.975492 0.220034i \(-0.0706170\pi\)
\(860\) 0 0
\(861\) −1.55354 1.55354i −0.0529447 0.0529447i
\(862\) 0 0
\(863\) 5.83668 0.198683 0.0993414 0.995053i \(-0.468326\pi\)
0.0993414 + 0.995053i \(0.468326\pi\)
\(864\) 0 0
\(865\) 14.6078i 0.496681i
\(866\) 0 0
\(867\) −42.8507 + 2.03316i −1.45528 + 0.0690496i
\(868\) 0 0
\(869\) 13.4538i 0.456390i
\(870\) 0 0
\(871\) −8.78854 −0.297788
\(872\) 0 0
\(873\) −30.3537 30.3537i −1.02732 1.02732i
\(874\) 0 0
\(875\) 0.368961i 0.0124732i
\(876\) 0 0
\(877\) −13.2827 13.2827i −0.448526 0.448526i 0.446338 0.894864i \(-0.352728\pi\)
−0.894864 + 0.446338i \(0.852728\pi\)
\(878\) 0 0
\(879\) 36.8431 36.8431i 1.24269 1.24269i
\(880\) 0 0
\(881\) −32.3447 + 32.3447i −1.08972 + 1.08972i −0.0941649 + 0.995557i \(0.530018\pi\)
−0.995557 + 0.0941649i \(0.969982\pi\)
\(882\) 0 0
\(883\) −6.15932 −0.207277 −0.103639 0.994615i \(-0.533049\pi\)
−0.103639 + 0.994615i \(0.533049\pi\)
\(884\) 0 0
\(885\) −1.22229 −0.0410870
\(886\) 0 0
\(887\) 11.8423 11.8423i 0.397627 0.397627i −0.479768 0.877395i \(-0.659279\pi\)
0.877395 + 0.479768i \(0.159279\pi\)
\(888\) 0 0
\(889\) −4.10428 + 4.10428i −0.137653 + 0.137653i
\(890\) 0 0
\(891\) 13.7094 + 13.7094i 0.459281 + 0.459281i
\(892\) 0 0
\(893\) 11.8522i 0.396620i
\(894\) 0 0
\(895\) −10.4264 10.4264i −0.348517 0.348517i
\(896\) 0 0
\(897\) −79.2637 −2.64654
\(898\) 0 0
\(899\) 32.6741i 1.08974i
\(900\) 0 0
\(901\) 10.1352 26.2091i 0.337652 0.873150i
\(902\) 0 0
\(903\) 10.9032i 0.362835i
\(904\) 0 0
\(905\) −11.2615 −0.374344
\(906\) 0 0
\(907\) −5.74762 5.74762i −0.190847 0.190847i 0.605215 0.796062i \(-0.293087\pi\)
−0.796062 + 0.605215i \(0.793087\pi\)
\(908\) 0 0
\(909\) 30.5988i 1.01490i
\(910\) 0 0
\(911\) 25.2063 + 25.2063i 0.835121 + 0.835121i 0.988212 0.153091i \(-0.0489227\pi\)
−0.153091 + 0.988212i \(0.548923\pi\)
\(912\) 0 0
\(913\) 17.5757 17.5757i 0.581670 0.581670i
\(914\) 0 0
\(915\) 12.2819 12.2819i 0.406025 0.406025i
\(916\) 0 0
\(917\) 1.50964 0.0498528
\(918\) 0 0
\(919\) 24.2398 0.799596 0.399798 0.916603i \(-0.369080\pi\)
0.399798 + 0.916603i \(0.369080\pi\)
\(920\) 0 0
\(921\) 29.1631 29.1631i 0.960956 0.960956i
\(922\) 0 0
\(923\) 5.70000 5.70000i 0.187618 0.187618i
\(924\) 0 0
\(925\) 1.37133 + 1.37133i 0.0450889 + 0.0450889i
\(926\) 0 0
\(927\) 16.0920i 0.528531i
\(928\) 0 0
\(929\) −23.6454 23.6454i −0.775781 0.775781i 0.203329 0.979110i \(-0.434824\pi\)
−0.979110 + 0.203329i \(0.934824\pi\)
\(930\) 0 0
\(931\) 49.2097 1.61278
\(932\) 0 0
\(933\) 88.5989i 2.90060i
\(934\) 0 0
\(935\) −9.60666 3.71495i −0.314171 0.121492i
\(936\) 0 0
\(937\) 25.6264i 0.837177i 0.908176 + 0.418588i \(0.137475\pi\)
−0.908176 + 0.418588i \(0.862525\pi\)
\(938\) 0 0
\(939\) −79.0181 −2.57866
\(940\) 0 0
\(941\) 37.8063 + 37.8063i 1.23245 + 1.23245i 0.963020 + 0.269429i \(0.0868348\pi\)
0.269429 + 0.963020i \(0.413165\pi\)
\(942\) 0 0
\(943\) 15.8115i 0.514892i
\(944\) 0 0
\(945\) −0.242186 0.242186i −0.00787831 0.00787831i
\(946\) 0 0
\(947\) 8.32772 8.32772i 0.270615 0.270615i −0.558733 0.829348i \(-0.688712\pi\)
0.829348 + 0.558733i \(0.188712\pi\)
\(948\) 0 0
\(949\) −0.949050 + 0.949050i −0.0308075 + 0.0308075i
\(950\) 0 0
\(951\) −31.6687 −1.02693
\(952\) 0 0
\(953\) 23.9735 0.776576 0.388288 0.921538i \(-0.373067\pi\)
0.388288 + 0.921538i \(0.373067\pi\)
\(954\) 0 0
\(955\) 15.1981 15.1981i 0.491800 0.491800i
\(956\) 0 0
\(957\) 30.2293 30.2293i 0.977173 0.977173i
\(958\) 0 0
\(959\) −4.23025 4.23025i −0.136602 0.136602i
\(960\) 0 0
\(961\) 7.78674i 0.251185i
\(962\) 0 0
\(963\) 6.79208 + 6.79208i 0.218872 + 0.218872i
\(964\) 0 0
\(965\) 1.42208 0.0457783
\(966\) 0 0
\(967\) 45.6312i 1.46740i −0.679473 0.733700i \(-0.737792\pi\)
0.679473 0.733700i \(-0.262208\pi\)
\(968\) 0 0
\(969\) −30.1714 68.2197i −0.969243 2.19153i
\(970\) 0 0
\(971\) 58.9182i 1.89078i 0.325946 + 0.945388i \(0.394317\pi\)
−0.325946 + 0.945388i \(0.605683\pi\)
\(972\) 0 0
\(973\) −3.95052 −0.126648
\(974\) 0 0
\(975\) −8.36467 8.36467i −0.267884 0.267884i
\(976\) 0 0
\(977\) 24.7610i 0.792176i 0.918213 + 0.396088i \(0.129632\pi\)
−0.918213 + 0.396088i \(0.870368\pi\)
\(978\) 0 0
\(979\) −7.60943 7.60943i −0.243198 0.243198i
\(980\) 0 0
\(981\) −22.5013 + 22.5013i −0.718412 + 0.718412i
\(982\) 0 0
\(983\) −6.99814 + 6.99814i −0.223206 + 0.223206i −0.809847 0.586641i \(-0.800450\pi\)
0.586641 + 0.809847i \(0.300450\pi\)
\(984\) 0 0
\(985\) −17.4127 −0.554815
\(986\) 0 0
\(987\) −1.53920 −0.0489934
\(988\) 0 0
\(989\) −55.4845 + 55.4845i −1.76430 + 1.76430i
\(990\) 0 0
\(991\) −0.624955 + 0.624955i −0.0198524 + 0.0198524i −0.716963 0.697111i \(-0.754468\pi\)
0.697111 + 0.716963i \(0.254468\pi\)
\(992\) 0 0
\(993\) 0.887628 + 0.887628i 0.0281680 + 0.0281680i
\(994\) 0 0
\(995\) 17.8876i 0.567076i
\(996\) 0 0
\(997\) −20.5067 20.5067i −0.649455 0.649455i 0.303407 0.952861i \(-0.401876\pi\)
−0.952861 + 0.303407i \(0.901876\pi\)
\(998\) 0 0
\(999\) −1.80028 −0.0569582
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1360.2.bt.d.1041.1 12
4.3 odd 2 85.2.e.a.21.5 12
12.11 even 2 765.2.k.b.361.2 12
17.13 even 4 inner 1360.2.bt.d.81.1 12
20.3 even 4 425.2.j.c.174.5 12
20.7 even 4 425.2.j.b.174.2 12
20.19 odd 2 425.2.e.f.276.2 12
68.15 odd 8 1445.2.d.g.866.4 12
68.19 odd 8 1445.2.d.g.866.3 12
68.43 odd 8 1445.2.a.o.1.5 6
68.47 odd 4 85.2.e.a.81.2 yes 12
68.59 odd 8 1445.2.a.n.1.5 6
204.47 even 4 765.2.k.b.676.5 12
340.47 even 4 425.2.j.c.149.5 12
340.59 odd 8 7225.2.a.bb.1.2 6
340.179 odd 8 7225.2.a.z.1.2 6
340.183 even 4 425.2.j.b.149.2 12
340.319 odd 4 425.2.e.f.251.5 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
85.2.e.a.21.5 12 4.3 odd 2
85.2.e.a.81.2 yes 12 68.47 odd 4
425.2.e.f.251.5 12 340.319 odd 4
425.2.e.f.276.2 12 20.19 odd 2
425.2.j.b.149.2 12 340.183 even 4
425.2.j.b.174.2 12 20.7 even 4
425.2.j.c.149.5 12 340.47 even 4
425.2.j.c.174.5 12 20.3 even 4
765.2.k.b.361.2 12 12.11 even 2
765.2.k.b.676.5 12 204.47 even 4
1360.2.bt.d.81.1 12 17.13 even 4 inner
1360.2.bt.d.1041.1 12 1.1 even 1 trivial
1445.2.a.n.1.5 6 68.59 odd 8
1445.2.a.o.1.5 6 68.43 odd 8
1445.2.d.g.866.3 12 68.19 odd 8
1445.2.d.g.866.4 12 68.15 odd 8
7225.2.a.z.1.2 6 340.179 odd 8
7225.2.a.bb.1.2 6 340.59 odd 8