Properties

Label 425.2.j.c.149.5
Level $425$
Weight $2$
Character 425.149
Analytic conductor $3.394$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [425,2,Mod(149,425)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(425, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("425.149");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 425 = 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 425.j (of order \(4\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.39364208590\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 18x^{10} + 83x^{8} + 152x^{6} + 111x^{4} + 22x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 85)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 149.5
Root \(1.52346i\) of defining polynomial
Character \(\chi\) \(=\) 425.149
Dual form 425.2.j.c.174.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.07061 q^{2} +(1.78436 - 1.78436i) q^{3} +2.28744 q^{4} +(3.69471 - 3.69471i) q^{6} +(-0.260895 - 0.260895i) q^{7} +0.595174 q^{8} -3.36786i q^{9} +(-1.76642 + 1.76642i) q^{11} +(4.08161 - 4.08161i) q^{12} +4.68778i q^{13} +(-0.540212 - 0.540212i) q^{14} -3.34250 q^{16} +(1.48711 + 3.84558i) q^{17} -6.97354i q^{18} -7.16938i q^{19} -0.931060 q^{21} +(-3.65758 + 3.65758i) q^{22} +(-4.73801 - 4.73801i) q^{23} +(1.06200 - 1.06200i) q^{24} +9.70657i q^{26} +(-0.656399 - 0.656399i) q^{27} +(-0.596781 - 0.596781i) q^{28} +(4.79535 + 4.79535i) q^{29} +(3.40685 + 3.40685i) q^{31} -8.11138 q^{32} +6.30387i q^{33} +(3.07922 + 7.96272i) q^{34} -7.70378i q^{36} +(1.37133 - 1.37133i) q^{37} -14.8450i q^{38} +(8.36467 + 8.36467i) q^{39} +(1.66858 - 1.66858i) q^{41} -1.92786 q^{42} -11.7105 q^{43} +(-4.04059 + 4.04059i) q^{44} +(-9.81058 - 9.81058i) q^{46} -1.65317i q^{47} +(-5.96422 + 5.96422i) q^{48} -6.86387i q^{49} +(9.51543 + 4.20836i) q^{51} +10.7230i q^{52} +6.81536 q^{53} +(-1.35915 - 1.35915i) q^{54} +(-0.155278 - 0.155278i) q^{56} +(-12.7927 - 12.7927i) q^{57} +(9.92932 + 9.92932i) q^{58} +0.484372i q^{59} +(4.86706 - 4.86706i) q^{61} +(7.05427 + 7.05427i) q^{62} +(-0.878658 + 0.878658i) q^{63} -10.1105 q^{64} +13.0529i q^{66} -1.87478i q^{67} +(3.40167 + 8.79653i) q^{68} -16.9086 q^{69} +(1.21593 + 1.21593i) q^{71} -2.00446i q^{72} +(0.202452 - 0.202452i) q^{73} +(2.83949 - 2.83949i) q^{74} -16.3995i q^{76} +0.921703 q^{77} +(17.3200 + 17.3200i) q^{78} +(-3.80821 + 3.80821i) q^{79} +7.76109 q^{81} +(3.45498 - 3.45498i) q^{82} -9.94985 q^{83} -2.12974 q^{84} -24.2479 q^{86} +17.1132 q^{87} +(-1.05133 + 1.05133i) q^{88} +4.30781 q^{89} +(1.22302 - 1.22302i) q^{91} +(-10.8379 - 10.8379i) q^{92} +12.1581 q^{93} -3.42308i q^{94} +(-14.4736 + 14.4736i) q^{96} +(-9.01275 + 9.01275i) q^{97} -14.2124i q^{98} +(5.94908 + 5.94908i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 4 q^{2} - 4 q^{3} + 12 q^{4} + 12 q^{8} - 4 q^{11} + 8 q^{12} + 4 q^{14} + 4 q^{16} + 8 q^{17} - 16 q^{21} - 20 q^{22} - 12 q^{23} - 4 q^{24} - 4 q^{27} - 4 q^{28} + 12 q^{29} - 12 q^{32} + 12 q^{34}+ \cdots - 4 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/425\mathbb{Z}\right)^\times\).

\(n\) \(52\) \(326\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.07061 1.46414 0.732072 0.681227i \(-0.238553\pi\)
0.732072 + 0.681227i \(0.238553\pi\)
\(3\) 1.78436 1.78436i 1.03020 1.03020i 0.0306697 0.999530i \(-0.490236\pi\)
0.999530 0.0306697i \(-0.00976400\pi\)
\(4\) 2.28744 1.14372
\(5\) 0 0
\(6\) 3.69471 3.69471i 1.50836 1.50836i
\(7\) −0.260895 0.260895i −0.0986090 0.0986090i 0.656081 0.754690i \(-0.272213\pi\)
−0.754690 + 0.656081i \(0.772213\pi\)
\(8\) 0.595174 0.210426
\(9\) 3.36786i 1.12262i
\(10\) 0 0
\(11\) −1.76642 + 1.76642i −0.532597 + 0.532597i −0.921344 0.388747i \(-0.872908\pi\)
0.388747 + 0.921344i \(0.372908\pi\)
\(12\) 4.08161 4.08161i 1.17826 1.17826i
\(13\) 4.68778i 1.30016i 0.759868 + 0.650078i \(0.225264\pi\)
−0.759868 + 0.650078i \(0.774736\pi\)
\(14\) −0.540212 0.540212i −0.144378 0.144378i
\(15\) 0 0
\(16\) −3.34250 −0.835626
\(17\) 1.48711 + 3.84558i 0.360676 + 0.932691i
\(18\) 6.97354i 1.64368i
\(19\) 7.16938i 1.64477i −0.568933 0.822384i \(-0.692644\pi\)
0.568933 0.822384i \(-0.307356\pi\)
\(20\) 0 0
\(21\) −0.931060 −0.203174
\(22\) −3.65758 + 3.65758i −0.779799 + 0.779799i
\(23\) −4.73801 4.73801i −0.987943 0.987943i 0.0119854 0.999928i \(-0.496185\pi\)
−0.999928 + 0.0119854i \(0.996185\pi\)
\(24\) 1.06200 1.06200i 0.216780 0.216780i
\(25\) 0 0
\(26\) 9.70657i 1.90361i
\(27\) −0.656399 0.656399i −0.126324 0.126324i
\(28\) −0.596781 0.596781i −0.112781 0.112781i
\(29\) 4.79535 + 4.79535i 0.890475 + 0.890475i 0.994568 0.104093i \(-0.0331940\pi\)
−0.104093 + 0.994568i \(0.533194\pi\)
\(30\) 0 0
\(31\) 3.40685 + 3.40685i 0.611888 + 0.611888i 0.943438 0.331549i \(-0.107571\pi\)
−0.331549 + 0.943438i \(0.607571\pi\)
\(32\) −8.11138 −1.43390
\(33\) 6.30387i 1.09736i
\(34\) 3.07922 + 7.96272i 0.528083 + 1.36559i
\(35\) 0 0
\(36\) 7.70378i 1.28396i
\(37\) 1.37133 1.37133i 0.225445 0.225445i −0.585342 0.810787i \(-0.699040\pi\)
0.810787 + 0.585342i \(0.199040\pi\)
\(38\) 14.8450i 2.40818i
\(39\) 8.36467 + 8.36467i 1.33942 + 1.33942i
\(40\) 0 0
\(41\) 1.66858 1.66858i 0.260588 0.260588i −0.564705 0.825293i \(-0.691010\pi\)
0.825293 + 0.564705i \(0.191010\pi\)
\(42\) −1.92786 −0.297476
\(43\) −11.7105 −1.78584 −0.892918 0.450218i \(-0.851346\pi\)
−0.892918 + 0.450218i \(0.851346\pi\)
\(44\) −4.04059 + 4.04059i −0.609142 + 0.609142i
\(45\) 0 0
\(46\) −9.81058 9.81058i −1.44649 1.44649i
\(47\) 1.65317i 0.241140i −0.992705 0.120570i \(-0.961528\pi\)
0.992705 0.120570i \(-0.0384723\pi\)
\(48\) −5.96422 + 5.96422i −0.860861 + 0.860861i
\(49\) 6.86387i 0.980553i
\(50\) 0 0
\(51\) 9.51543 + 4.20836i 1.33243 + 0.589289i
\(52\) 10.7230i 1.48701i
\(53\) 6.81536 0.936162 0.468081 0.883686i \(-0.344946\pi\)
0.468081 + 0.883686i \(0.344946\pi\)
\(54\) −1.35915 1.35915i −0.184957 0.184957i
\(55\) 0 0
\(56\) −0.155278 0.155278i −0.0207499 0.0207499i
\(57\) −12.7927 12.7927i −1.69444 1.69444i
\(58\) 9.92932 + 9.92932i 1.30378 + 1.30378i
\(59\) 0.484372i 0.0630598i 0.999503 + 0.0315299i \(0.0100379\pi\)
−0.999503 + 0.0315299i \(0.989962\pi\)
\(60\) 0 0
\(61\) 4.86706 4.86706i 0.623164 0.623164i −0.323175 0.946339i \(-0.604750\pi\)
0.946339 + 0.323175i \(0.104750\pi\)
\(62\) 7.05427 + 7.05427i 0.895893 + 0.895893i
\(63\) −0.878658 + 0.878658i −0.110701 + 0.110701i
\(64\) −10.1105 −1.26381
\(65\) 0 0
\(66\) 13.0529i 1.60670i
\(67\) 1.87478i 0.229041i −0.993421 0.114520i \(-0.963467\pi\)
0.993421 0.114520i \(-0.0365331\pi\)
\(68\) 3.40167 + 8.79653i 0.412513 + 1.06674i
\(69\) −16.9086 −2.03556
\(70\) 0 0
\(71\) 1.21593 + 1.21593i 0.144304 + 0.144304i 0.775568 0.631264i \(-0.217464\pi\)
−0.631264 + 0.775568i \(0.717464\pi\)
\(72\) 2.00446i 0.236228i
\(73\) 0.202452 0.202452i 0.0236952 0.0236952i −0.695160 0.718855i \(-0.744666\pi\)
0.718855 + 0.695160i \(0.244666\pi\)
\(74\) 2.83949 2.83949i 0.330084 0.330084i
\(75\) 0 0
\(76\) 16.3995i 1.88115i
\(77\) 0.921703 0.105038
\(78\) 17.3200 + 17.3200i 1.96110 + 1.96110i
\(79\) −3.80821 + 3.80821i −0.428458 + 0.428458i −0.888103 0.459645i \(-0.847977\pi\)
0.459645 + 0.888103i \(0.347977\pi\)
\(80\) 0 0
\(81\) 7.76109 0.862343
\(82\) 3.45498 3.45498i 0.381538 0.381538i
\(83\) −9.94985 −1.09214 −0.546069 0.837740i \(-0.683876\pi\)
−0.546069 + 0.837740i \(0.683876\pi\)
\(84\) −2.12974 −0.232374
\(85\) 0 0
\(86\) −24.2479 −2.61472
\(87\) 17.1132 1.83473
\(88\) −1.05133 + 1.05133i −0.112072 + 0.112072i
\(89\) 4.30781 0.456627 0.228314 0.973588i \(-0.426679\pi\)
0.228314 + 0.973588i \(0.426679\pi\)
\(90\) 0 0
\(91\) 1.22302 1.22302i 0.128207 0.128207i
\(92\) −10.8379 10.8379i −1.12993 1.12993i
\(93\) 12.1581 1.26073
\(94\) 3.42308i 0.353064i
\(95\) 0 0
\(96\) −14.4736 + 14.4736i −1.47721 + 1.47721i
\(97\) −9.01275 + 9.01275i −0.915106 + 0.915106i −0.996668 0.0815619i \(-0.974009\pi\)
0.0815619 + 0.996668i \(0.474009\pi\)
\(98\) 14.2124i 1.43567i
\(99\) 5.94908 + 5.94908i 0.597905 + 0.597905i
\(100\) 0 0
\(101\) −9.08552 −0.904043 −0.452021 0.892007i \(-0.649297\pi\)
−0.452021 + 0.892007i \(0.649297\pi\)
\(102\) 19.7028 + 8.71389i 1.95086 + 0.862804i
\(103\) 4.77811i 0.470801i −0.971898 0.235401i \(-0.924360\pi\)
0.971898 0.235401i \(-0.0756402\pi\)
\(104\) 2.79004i 0.273586i
\(105\) 0 0
\(106\) 14.1120 1.37068
\(107\) −2.01673 + 2.01673i −0.194965 + 0.194965i −0.797837 0.602873i \(-0.794023\pi\)
0.602873 + 0.797837i \(0.294023\pi\)
\(108\) −1.50147 1.50147i −0.144479 0.144479i
\(109\) 6.68119 6.68119i 0.639942 0.639942i −0.310599 0.950541i \(-0.600530\pi\)
0.950541 + 0.310599i \(0.100530\pi\)
\(110\) 0 0
\(111\) 4.89387i 0.464506i
\(112\) 0.872042 + 0.872042i 0.0824002 + 0.0824002i
\(113\) 7.55112 + 7.55112i 0.710349 + 0.710349i 0.966608 0.256259i \(-0.0824900\pi\)
−0.256259 + 0.966608i \(0.582490\pi\)
\(114\) −26.4888 26.4888i −2.48090 2.48090i
\(115\) 0 0
\(116\) 10.9691 + 10.9691i 1.01845 + 1.01845i
\(117\) 15.7878 1.45958
\(118\) 1.00295i 0.0923287i
\(119\) 0.615314 1.39127i 0.0564058 0.127538i
\(120\) 0 0
\(121\) 4.75949i 0.432681i
\(122\) 10.0778 10.0778i 0.912402 0.912402i
\(123\) 5.95468i 0.536915i
\(124\) 7.79296 + 7.79296i 0.699829 + 0.699829i
\(125\) 0 0
\(126\) −1.81936 + 1.81936i −0.162082 + 0.162082i
\(127\) −15.7315 −1.39595 −0.697974 0.716124i \(-0.745915\pi\)
−0.697974 + 0.716124i \(0.745915\pi\)
\(128\) −4.71221 −0.416505
\(129\) −20.8957 + 20.8957i −1.83977 + 1.83977i
\(130\) 0 0
\(131\) −2.89320 2.89320i −0.252780 0.252780i 0.569329 0.822109i \(-0.307203\pi\)
−0.822109 + 0.569329i \(0.807203\pi\)
\(132\) 14.4197i 1.25507i
\(133\) −1.87045 + 1.87045i −0.162189 + 0.162189i
\(134\) 3.88194i 0.335348i
\(135\) 0 0
\(136\) 0.885087 + 2.28879i 0.0758956 + 0.196262i
\(137\) 16.2144i 1.38529i −0.721280 0.692644i \(-0.756446\pi\)
0.721280 0.692644i \(-0.243554\pi\)
\(138\) −35.0112 −2.98035
\(139\) −7.57109 7.57109i −0.642172 0.642172i 0.308917 0.951089i \(-0.400033\pi\)
−0.951089 + 0.308917i \(0.900033\pi\)
\(140\) 0 0
\(141\) −2.94985 2.94985i −0.248422 0.248422i
\(142\) 2.51772 + 2.51772i 0.211282 + 0.211282i
\(143\) −8.28060 8.28060i −0.692459 0.692459i
\(144\) 11.2571i 0.938091i
\(145\) 0 0
\(146\) 0.419200 0.419200i 0.0346932 0.0346932i
\(147\) −12.2476 12.2476i −1.01016 1.01016i
\(148\) 3.13683 3.13683i 0.257845 0.257845i
\(149\) 11.1290 0.911719 0.455860 0.890052i \(-0.349332\pi\)
0.455860 + 0.890052i \(0.349332\pi\)
\(150\) 0 0
\(151\) 16.0861i 1.30907i −0.756032 0.654535i \(-0.772865\pi\)
0.756032 0.654535i \(-0.227135\pi\)
\(152\) 4.26702i 0.346101i
\(153\) 12.9514 5.00837i 1.04706 0.404903i
\(154\) 1.90849 0.153790
\(155\) 0 0
\(156\) 19.1337 + 19.1337i 1.53192 + 1.53192i
\(157\) 2.63326i 0.210157i −0.994464 0.105079i \(-0.966491\pi\)
0.994464 0.105079i \(-0.0335094\pi\)
\(158\) −7.88534 + 7.88534i −0.627324 + 0.627324i
\(159\) 12.1610 12.1610i 0.964434 0.964434i
\(160\) 0 0
\(161\) 2.47224i 0.194840i
\(162\) 16.0702 1.26259
\(163\) 13.5013 + 13.5013i 1.05751 + 1.05751i 0.998242 + 0.0592626i \(0.0188749\pi\)
0.0592626 + 0.998242i \(0.481125\pi\)
\(164\) 3.81677 3.81677i 0.298039 0.298039i
\(165\) 0 0
\(166\) −20.6023 −1.59905
\(167\) −2.81953 + 2.81953i −0.218182 + 0.218182i −0.807732 0.589550i \(-0.799305\pi\)
0.589550 + 0.807732i \(0.299305\pi\)
\(168\) −0.554142 −0.0427530
\(169\) −8.97524 −0.690403
\(170\) 0 0
\(171\) −24.1455 −1.84645
\(172\) −26.7871 −2.04250
\(173\) −10.3293 + 10.3293i −0.785322 + 0.785322i −0.980723 0.195401i \(-0.937399\pi\)
0.195401 + 0.980723i \(0.437399\pi\)
\(174\) 35.4349 2.68631
\(175\) 0 0
\(176\) 5.90428 5.90428i 0.445052 0.445052i
\(177\) 0.864292 + 0.864292i 0.0649642 + 0.0649642i
\(178\) 8.91981 0.668568
\(179\) 14.7452i 1.10211i −0.834469 0.551054i \(-0.814226\pi\)
0.834469 0.551054i \(-0.185774\pi\)
\(180\) 0 0
\(181\) 7.96307 7.96307i 0.591890 0.591890i −0.346252 0.938142i \(-0.612546\pi\)
0.938142 + 0.346252i \(0.112546\pi\)
\(182\) 2.53239 2.53239i 0.187714 0.187714i
\(183\) 17.3692i 1.28397i
\(184\) −2.81994 2.81994i −0.207888 0.207888i
\(185\) 0 0
\(186\) 25.1747 1.84590
\(187\) −9.41980 4.16607i −0.688844 0.304653i
\(188\) 3.78153i 0.275797i
\(189\) 0.342503i 0.0249134i
\(190\) 0 0
\(191\) 21.4934 1.55521 0.777604 0.628754i \(-0.216435\pi\)
0.777604 + 0.628754i \(0.216435\pi\)
\(192\) −18.0408 + 18.0408i −1.30198 + 1.30198i
\(193\) 1.00556 + 1.00556i 0.0723819 + 0.0723819i 0.742371 0.669989i \(-0.233701\pi\)
−0.669989 + 0.742371i \(0.733701\pi\)
\(194\) −18.6619 + 18.6619i −1.33985 + 1.33985i
\(195\) 0 0
\(196\) 15.7007i 1.12148i
\(197\) 12.3127 + 12.3127i 0.877240 + 0.877240i 0.993248 0.116008i \(-0.0370098\pi\)
−0.116008 + 0.993248i \(0.537010\pi\)
\(198\) 12.3182 + 12.3182i 0.875419 + 0.875419i
\(199\) 12.6485 + 12.6485i 0.896626 + 0.896626i 0.995136 0.0985101i \(-0.0314077\pi\)
−0.0985101 + 0.995136i \(0.531408\pi\)
\(200\) 0 0
\(201\) −3.34527 3.34527i −0.235957 0.235957i
\(202\) −18.8126 −1.32365
\(203\) 2.50217i 0.175618i
\(204\) 21.7660 + 9.62637i 1.52392 + 0.673981i
\(205\) 0 0
\(206\) 9.89362i 0.689321i
\(207\) −15.9570 + 15.9570i −1.10909 + 1.10909i
\(208\) 15.6689i 1.08644i
\(209\) 12.6642 + 12.6642i 0.875999 + 0.875999i
\(210\) 0 0
\(211\) −5.07688 + 5.07688i −0.349507 + 0.349507i −0.859926 0.510419i \(-0.829490\pi\)
0.510419 + 0.859926i \(0.329490\pi\)
\(212\) 15.5897 1.07071
\(213\) 4.33930 0.297324
\(214\) −4.17587 + 4.17587i −0.285457 + 0.285457i
\(215\) 0 0
\(216\) −0.390672 0.390672i −0.0265818 0.0265818i
\(217\) 1.77766i 0.120675i
\(218\) 13.8342 13.8342i 0.936967 0.936967i
\(219\) 0.722494i 0.0488216i
\(220\) 0 0
\(221\) −18.0272 + 6.97123i −1.21264 + 0.468935i
\(222\) 10.1333i 0.680104i
\(223\) 3.93334 0.263396 0.131698 0.991290i \(-0.457957\pi\)
0.131698 + 0.991290i \(0.457957\pi\)
\(224\) 2.11622 + 2.11622i 0.141396 + 0.141396i
\(225\) 0 0
\(226\) 15.6354 + 15.6354i 1.04005 + 1.04005i
\(227\) 2.46062 + 2.46062i 0.163317 + 0.163317i 0.784034 0.620717i \(-0.213159\pi\)
−0.620717 + 0.784034i \(0.713159\pi\)
\(228\) −29.2626 29.2626i −1.93796 1.93796i
\(229\) 4.41164i 0.291529i −0.989319 0.145765i \(-0.953436\pi\)
0.989319 0.145765i \(-0.0465642\pi\)
\(230\) 0 0
\(231\) 1.64465 1.64465i 0.108210 0.108210i
\(232\) 2.85407 + 2.85407i 0.187379 + 0.187379i
\(233\) −11.0779 + 11.0779i −0.725739 + 0.725739i −0.969768 0.244029i \(-0.921531\pi\)
0.244029 + 0.969768i \(0.421531\pi\)
\(234\) 32.6904 2.13704
\(235\) 0 0
\(236\) 1.10797i 0.0721227i
\(237\) 13.5904i 0.882793i
\(238\) 1.27408 2.88079i 0.0825862 0.186734i
\(239\) 6.59116 0.426346 0.213173 0.977014i \(-0.431620\pi\)
0.213173 + 0.977014i \(0.431620\pi\)
\(240\) 0 0
\(241\) 3.09742 + 3.09742i 0.199523 + 0.199523i 0.799795 0.600273i \(-0.204941\pi\)
−0.600273 + 0.799795i \(0.704941\pi\)
\(242\) 9.85506i 0.633507i
\(243\) 15.8178 15.8178i 1.01471 1.01471i
\(244\) 11.1331 11.1331i 0.712724 0.712724i
\(245\) 0 0
\(246\) 12.3298i 0.786121i
\(247\) 33.6084 2.13845
\(248\) 2.02767 + 2.02767i 0.128757 + 0.128757i
\(249\) −17.7541 + 17.7541i −1.12512 + 1.12512i
\(250\) 0 0
\(251\) −4.30290 −0.271597 −0.135798 0.990736i \(-0.543360\pi\)
−0.135798 + 0.990736i \(0.543360\pi\)
\(252\) −2.00988 + 2.00988i −0.126610 + 0.126610i
\(253\) 16.7387 1.05235
\(254\) −32.5739 −2.04387
\(255\) 0 0
\(256\) 10.4639 0.653991
\(257\) 10.5366 0.657254 0.328627 0.944460i \(-0.393414\pi\)
0.328627 + 0.944460i \(0.393414\pi\)
\(258\) −43.2670 + 43.2670i −2.69369 + 2.69369i
\(259\) −0.715544 −0.0444618
\(260\) 0 0
\(261\) 16.1501 16.1501i 0.999665 0.999665i
\(262\) −5.99070 5.99070i −0.370107 0.370107i
\(263\) 13.6253 0.840173 0.420086 0.907484i \(-0.362000\pi\)
0.420086 + 0.907484i \(0.362000\pi\)
\(264\) 3.75189i 0.230913i
\(265\) 0 0
\(266\) −3.87299 + 3.87299i −0.237468 + 0.237468i
\(267\) 7.68668 7.68668i 0.470417 0.470417i
\(268\) 4.28844i 0.261958i
\(269\) −11.0360 11.0360i −0.672878 0.672878i 0.285501 0.958378i \(-0.407840\pi\)
−0.958378 + 0.285501i \(0.907840\pi\)
\(270\) 0 0
\(271\) −9.66560 −0.587143 −0.293572 0.955937i \(-0.594844\pi\)
−0.293572 + 0.955937i \(0.594844\pi\)
\(272\) −4.97066 12.8539i −0.301391 0.779381i
\(273\) 4.36460i 0.264158i
\(274\) 33.5737i 2.02826i
\(275\) 0 0
\(276\) −38.6774 −2.32810
\(277\) 0.955063 0.955063i 0.0573842 0.0573842i −0.677832 0.735217i \(-0.737080\pi\)
0.735217 + 0.677832i \(0.237080\pi\)
\(278\) −15.6768 15.6768i −0.940232 0.940232i
\(279\) 11.4738 11.4738i 0.686919 0.686919i
\(280\) 0 0
\(281\) 15.8582i 0.946020i −0.881057 0.473010i \(-0.843167\pi\)
0.881057 0.473010i \(-0.156833\pi\)
\(282\) −6.10801 6.10801i −0.363726 0.363726i
\(283\) −20.7458 20.7458i −1.23321 1.23321i −0.962725 0.270483i \(-0.912816\pi\)
−0.270483 0.962725i \(-0.587184\pi\)
\(284\) 2.78136 + 2.78136i 0.165044 + 0.165044i
\(285\) 0 0
\(286\) −17.1459 17.1459i −1.01386 1.01386i
\(287\) −0.870646 −0.0513926
\(288\) 27.3180i 1.60973i
\(289\) −12.5770 + 11.4376i −0.739825 + 0.672799i
\(290\) 0 0
\(291\) 32.1639i 1.88548i
\(292\) 0.463096 0.463096i 0.0271007 0.0271007i
\(293\) 20.6478i 1.20626i 0.797644 + 0.603129i \(0.206080\pi\)
−0.797644 + 0.603129i \(0.793920\pi\)
\(294\) −25.3600 25.3600i −1.47903 1.47903i
\(295\) 0 0
\(296\) 0.816177 0.816177i 0.0474393 0.0474393i
\(297\) 2.31896 0.134560
\(298\) 23.0437 1.33489
\(299\) 22.2107 22.2107i 1.28448 1.28448i
\(300\) 0 0
\(301\) 3.05521 + 3.05521i 0.176100 + 0.176100i
\(302\) 33.3081i 1.91667i
\(303\) −16.2118 + 16.2118i −0.931344 + 0.931344i
\(304\) 23.9637i 1.37441i
\(305\) 0 0
\(306\) 26.8173 10.3704i 1.53305 0.592837i
\(307\) 16.3437i 0.932787i 0.884577 + 0.466393i \(0.154447\pi\)
−0.884577 + 0.466393i \(0.845553\pi\)
\(308\) 2.10834 0.120134
\(309\) −8.52586 8.52586i −0.485019 0.485019i
\(310\) 0 0
\(311\) 24.8266 + 24.8266i 1.40778 + 1.40778i 0.771238 + 0.636547i \(0.219638\pi\)
0.636547 + 0.771238i \(0.280362\pi\)
\(312\) 4.97843 + 4.97843i 0.281848 + 0.281848i
\(313\) −22.1419 22.1419i −1.25153 1.25153i −0.955032 0.296502i \(-0.904180\pi\)
−0.296502 0.955032i \(-0.595820\pi\)
\(314\) 5.45247i 0.307701i
\(315\) 0 0
\(316\) −8.71105 + 8.71105i −0.490035 + 0.490035i
\(317\) 8.87399 + 8.87399i 0.498413 + 0.498413i 0.910944 0.412531i \(-0.135355\pi\)
−0.412531 + 0.910944i \(0.635355\pi\)
\(318\) 25.1808 25.1808i 1.41207 1.41207i
\(319\) −16.9413 −0.948528
\(320\) 0 0
\(321\) 7.19714i 0.401705i
\(322\) 5.11906i 0.285274i
\(323\) 27.5704 10.6616i 1.53406 0.593229i
\(324\) 17.7530 0.986278
\(325\) 0 0
\(326\) 27.9560 + 27.9560i 1.54834 + 1.54834i
\(327\) 23.8433i 1.31854i
\(328\) 0.993093 0.993093i 0.0548344 0.0548344i
\(329\) −0.431305 + 0.431305i −0.0237786 + 0.0237786i
\(330\) 0 0
\(331\) 0.497450i 0.0273423i −0.999907 0.0136712i \(-0.995648\pi\)
0.999907 0.0136712i \(-0.00435180\pi\)
\(332\) −22.7597 −1.24910
\(333\) −4.61844 4.61844i −0.253089 0.253089i
\(334\) −5.83816 + 5.83816i −0.319450 + 0.319450i
\(335\) 0 0
\(336\) 3.11207 0.169777
\(337\) 23.7358 23.7358i 1.29297 1.29297i 0.360031 0.932940i \(-0.382766\pi\)
0.932940 0.360031i \(-0.117234\pi\)
\(338\) −18.5843 −1.01085
\(339\) 26.9478 1.46360
\(340\) 0 0
\(341\) −12.0359 −0.651780
\(342\) −49.9959 −2.70347
\(343\) −3.61701 + 3.61701i −0.195300 + 0.195300i
\(344\) −6.96979 −0.375786
\(345\) 0 0
\(346\) −21.3880 + 21.3880i −1.14983 + 1.14983i
\(347\) 18.5976 + 18.5976i 0.998370 + 0.998370i 0.999999 0.00162819i \(-0.000518270\pi\)
−0.00162819 + 0.999999i \(0.500518\pi\)
\(348\) 39.1455 2.09842
\(349\) 16.7865i 0.898560i −0.893391 0.449280i \(-0.851681\pi\)
0.893391 0.449280i \(-0.148319\pi\)
\(350\) 0 0
\(351\) 3.07705 3.07705i 0.164241 0.164241i
\(352\) 14.3281 14.3281i 0.763692 0.763692i
\(353\) 23.4532i 1.24829i 0.781309 + 0.624144i \(0.214552\pi\)
−0.781309 + 0.624144i \(0.785448\pi\)
\(354\) 1.78962 + 1.78962i 0.0951170 + 0.0951170i
\(355\) 0 0
\(356\) 9.85386 0.522253
\(357\) −1.38459 3.58047i −0.0732800 0.189498i
\(358\) 30.5316i 1.61365i
\(359\) 18.1568i 0.958279i 0.877739 + 0.479139i \(0.159051\pi\)
−0.877739 + 0.479139i \(0.840949\pi\)
\(360\) 0 0
\(361\) −32.4000 −1.70526
\(362\) 16.4884 16.4884i 0.866613 0.866613i
\(363\) 8.49263 + 8.49263i 0.445747 + 0.445747i
\(364\) 2.79758 2.79758i 0.146633 0.146633i
\(365\) 0 0
\(366\) 35.9648i 1.87991i
\(367\) −9.68061 9.68061i −0.505324 0.505324i 0.407764 0.913087i \(-0.366309\pi\)
−0.913087 + 0.407764i \(0.866309\pi\)
\(368\) 15.8368 + 15.8368i 0.825550 + 0.825550i
\(369\) −5.61954 5.61954i −0.292541 0.292541i
\(370\) 0 0
\(371\) −1.77809 1.77809i −0.0923140 0.0923140i
\(372\) 27.8109 1.44193
\(373\) 10.1594i 0.526035i 0.964791 + 0.263018i \(0.0847177\pi\)
−0.964791 + 0.263018i \(0.915282\pi\)
\(374\) −19.5048 8.62632i −1.00857 0.446056i
\(375\) 0 0
\(376\) 0.983925i 0.0507421i
\(377\) −22.4795 + 22.4795i −1.15775 + 1.15775i
\(378\) 0.709190i 0.0364768i
\(379\) 2.94447 + 2.94447i 0.151247 + 0.151247i 0.778675 0.627428i \(-0.215892\pi\)
−0.627428 + 0.778675i \(0.715892\pi\)
\(380\) 0 0
\(381\) −28.0707 + 28.0707i −1.43810 + 1.43810i
\(382\) 44.5045 2.27705
\(383\) 0.813273 0.0415563 0.0207782 0.999784i \(-0.493386\pi\)
0.0207782 + 0.999784i \(0.493386\pi\)
\(384\) −8.40828 + 8.40828i −0.429083 + 0.429083i
\(385\) 0 0
\(386\) 2.08213 + 2.08213i 0.105978 + 0.105978i
\(387\) 39.4394i 2.00482i
\(388\) −20.6161 + 20.6161i −1.04662 + 1.04662i
\(389\) 3.11676i 0.158026i 0.996874 + 0.0790131i \(0.0251769\pi\)
−0.996874 + 0.0790131i \(0.974823\pi\)
\(390\) 0 0
\(391\) 11.1745 25.2663i 0.565118 1.27777i
\(392\) 4.08519i 0.206333i
\(393\) −10.3250 −0.520828
\(394\) 25.4947 + 25.4947i 1.28441 + 1.28441i
\(395\) 0 0
\(396\) 13.6081 + 13.6081i 0.683835 + 0.683835i
\(397\) 11.5998 + 11.5998i 0.582177 + 0.582177i 0.935501 0.353324i \(-0.114949\pi\)
−0.353324 + 0.935501i \(0.614949\pi\)
\(398\) 26.1901 + 26.1901i 1.31279 + 1.31279i
\(399\) 6.67512i 0.334174i
\(400\) 0 0
\(401\) 10.2143 10.2143i 0.510075 0.510075i −0.404474 0.914549i \(-0.632545\pi\)
0.914549 + 0.404474i \(0.132545\pi\)
\(402\) −6.92677 6.92677i −0.345476 0.345476i
\(403\) −15.9706 + 15.9706i −0.795550 + 0.795550i
\(404\) −20.7826 −1.03397
\(405\) 0 0
\(406\) 5.18102i 0.257130i
\(407\) 4.84469i 0.240142i
\(408\) 5.66333 + 2.50471i 0.280377 + 0.124001i
\(409\) −32.2867 −1.59648 −0.798238 0.602342i \(-0.794235\pi\)
−0.798238 + 0.602342i \(0.794235\pi\)
\(410\) 0 0
\(411\) −28.9323 28.9323i −1.42712 1.42712i
\(412\) 10.9296i 0.538464i
\(413\) 0.126370 0.126370i 0.00621827 0.00621827i
\(414\) −33.0407 + 33.0407i −1.62386 + 1.62386i
\(415\) 0 0
\(416\) 38.0243i 1.86430i
\(417\) −27.0191 −1.32313
\(418\) 26.2226 + 26.2226i 1.28259 + 1.28259i
\(419\) −13.3485 + 13.3485i −0.652115 + 0.652115i −0.953502 0.301387i \(-0.902550\pi\)
0.301387 + 0.953502i \(0.402550\pi\)
\(420\) 0 0
\(421\) −2.06006 −0.100401 −0.0502006 0.998739i \(-0.515986\pi\)
−0.0502006 + 0.998739i \(0.515986\pi\)
\(422\) −10.5122 + 10.5122i −0.511728 + 0.511728i
\(423\) −5.56766 −0.270709
\(424\) 4.05632 0.196993
\(425\) 0 0
\(426\) 8.98502 0.435326
\(427\) −2.53958 −0.122899
\(428\) −4.61315 + 4.61315i −0.222985 + 0.222985i
\(429\) −29.5511 −1.42674
\(430\) 0 0
\(431\) −2.63581 + 2.63581i −0.126962 + 0.126962i −0.767733 0.640770i \(-0.778615\pi\)
0.640770 + 0.767733i \(0.278615\pi\)
\(432\) 2.19402 + 2.19402i 0.105560 + 0.105560i
\(433\) −27.9634 −1.34383 −0.671917 0.740626i \(-0.734529\pi\)
−0.671917 + 0.740626i \(0.734529\pi\)
\(434\) 3.68085i 0.176686i
\(435\) 0 0
\(436\) 15.2828 15.2828i 0.731914 0.731914i
\(437\) −33.9686 + 33.9686i −1.62494 + 1.62494i
\(438\) 1.49600i 0.0714819i
\(439\) −8.87022 8.87022i −0.423353 0.423353i 0.463004 0.886356i \(-0.346772\pi\)
−0.886356 + 0.463004i \(0.846772\pi\)
\(440\) 0 0
\(441\) −23.1166 −1.10079
\(442\) −37.3274 + 14.4347i −1.77548 + 0.686589i
\(443\) 19.9529i 0.947991i 0.880527 + 0.473995i \(0.157189\pi\)
−0.880527 + 0.473995i \(0.842811\pi\)
\(444\) 11.1944i 0.531264i
\(445\) 0 0
\(446\) 8.14442 0.385649
\(447\) 19.8580 19.8580i 0.939252 0.939252i
\(448\) 2.63778 + 2.63778i 0.124624 + 0.124624i
\(449\) −14.2737 + 14.2737i −0.673618 + 0.673618i −0.958548 0.284930i \(-0.908030\pi\)
0.284930 + 0.958548i \(0.408030\pi\)
\(450\) 0 0
\(451\) 5.89483i 0.277577i
\(452\) 17.2727 + 17.2727i 0.812440 + 0.812440i
\(453\) −28.7034 28.7034i −1.34860 1.34860i
\(454\) 5.09499 + 5.09499i 0.239120 + 0.239120i
\(455\) 0 0
\(456\) −7.61389 7.61389i −0.356553 0.356553i
\(457\) −37.7391 −1.76536 −0.882681 0.469973i \(-0.844263\pi\)
−0.882681 + 0.469973i \(0.844263\pi\)
\(458\) 9.13479i 0.426841i
\(459\) 1.54810 3.50038i 0.0722592 0.163384i
\(460\) 0 0
\(461\) 38.1740i 1.77794i 0.457966 + 0.888970i \(0.348578\pi\)
−0.457966 + 0.888970i \(0.651422\pi\)
\(462\) 3.40543 3.40543i 0.158435 0.158435i
\(463\) 13.1481i 0.611044i −0.952185 0.305522i \(-0.901169\pi\)
0.952185 0.305522i \(-0.0988310\pi\)
\(464\) −16.0285 16.0285i −0.744103 0.744103i
\(465\) 0 0
\(466\) −22.9381 + 22.9381i −1.06259 + 1.06259i
\(467\) 16.2167 0.750422 0.375211 0.926940i \(-0.377570\pi\)
0.375211 + 0.926940i \(0.377570\pi\)
\(468\) 36.1136 1.66935
\(469\) −0.489120 + 0.489120i −0.0225855 + 0.0225855i
\(470\) 0 0
\(471\) −4.69869 4.69869i −0.216504 0.216504i
\(472\) 0.288285i 0.0132694i
\(473\) 20.6857 20.6857i 0.951132 0.951132i
\(474\) 28.1405i 1.29254i
\(475\) 0 0
\(476\) 1.40749 3.18245i 0.0645124 0.145867i
\(477\) 22.9532i 1.05096i
\(478\) 13.6477 0.624233
\(479\) −1.46724 1.46724i −0.0670398 0.0670398i 0.672792 0.739832i \(-0.265095\pi\)
−0.739832 + 0.672792i \(0.765095\pi\)
\(480\) 0 0
\(481\) 6.42847 + 6.42847i 0.293113 + 0.293113i
\(482\) 6.41356 + 6.41356i 0.292130 + 0.292130i
\(483\) 4.41137 + 4.41137i 0.200724 + 0.200724i
\(484\) 10.8870i 0.494865i
\(485\) 0 0
\(486\) 32.7524 32.7524i 1.48568 1.48568i
\(487\) −16.9890 16.9890i −0.769843 0.769843i 0.208236 0.978079i \(-0.433228\pi\)
−0.978079 + 0.208236i \(0.933228\pi\)
\(488\) 2.89675 2.89675i 0.131130 0.131130i
\(489\) 48.1824 2.17888
\(490\) 0 0
\(491\) 22.3803i 1.01001i 0.863116 + 0.505005i \(0.168509\pi\)
−0.863116 + 0.505005i \(0.831491\pi\)
\(492\) 13.6210i 0.614080i
\(493\) −11.3097 + 25.5721i −0.509364 + 1.15171i
\(494\) 69.5901 3.13100
\(495\) 0 0
\(496\) −11.3874 11.3874i −0.511310 0.511310i
\(497\) 0.634459i 0.0284594i
\(498\) −36.7619 + 36.7619i −1.64734 + 1.64734i
\(499\) 2.61493 2.61493i 0.117060 0.117060i −0.646150 0.763210i \(-0.723622\pi\)
0.763210 + 0.646150i \(0.223622\pi\)
\(500\) 0 0
\(501\) 10.0621i 0.449541i
\(502\) −8.90965 −0.397657
\(503\) 13.0544 + 13.0544i 0.582066 + 0.582066i 0.935471 0.353404i \(-0.114976\pi\)
−0.353404 + 0.935471i \(0.614976\pi\)
\(504\) −0.522954 + 0.522954i −0.0232942 + 0.0232942i
\(505\) 0 0
\(506\) 34.6593 1.54079
\(507\) −16.0150 + 16.0150i −0.711253 + 0.711253i
\(508\) −35.9849 −1.59657
\(509\) 17.3588 0.769415 0.384708 0.923039i \(-0.374302\pi\)
0.384708 + 0.923039i \(0.374302\pi\)
\(510\) 0 0
\(511\) −0.105637 −0.00467312
\(512\) 31.0910 1.37404
\(513\) −4.70598 + 4.70598i −0.207774 + 0.207774i
\(514\) 21.8172 0.962314
\(515\) 0 0
\(516\) −47.7977 + 47.7977i −2.10418 + 2.10418i
\(517\) 2.92021 + 2.92021i 0.128431 + 0.128431i
\(518\) −1.48162 −0.0650984
\(519\) 36.8623i 1.61808i
\(520\) 0 0
\(521\) 9.87476 9.87476i 0.432621 0.432621i −0.456898 0.889519i \(-0.651040\pi\)
0.889519 + 0.456898i \(0.151040\pi\)
\(522\) 33.4406 33.4406i 1.46365 1.46365i
\(523\) 5.59638i 0.244712i −0.992486 0.122356i \(-0.960955\pi\)
0.992486 0.122356i \(-0.0390450\pi\)
\(524\) −6.61802 6.61802i −0.289109 0.289109i
\(525\) 0 0
\(526\) 28.2127 1.23013
\(527\) −8.03498 + 18.1677i −0.350009 + 0.791397i
\(528\) 21.0707i 0.916984i
\(529\) 21.8974i 0.952062i
\(530\) 0 0
\(531\) 1.63130 0.0707923
\(532\) −4.27855 + 4.27855i −0.185499 + 0.185499i
\(533\) 7.82191 + 7.82191i 0.338805 + 0.338805i
\(534\) 15.9161 15.9161i 0.688759 0.688759i
\(535\) 0 0
\(536\) 1.11582i 0.0481960i
\(537\) −26.3107 26.3107i −1.13539 1.13539i
\(538\) −22.8513 22.8513i −0.985190 0.985190i
\(539\) 12.1245 + 12.1245i 0.522239 + 0.522239i
\(540\) 0 0
\(541\) 27.6477 + 27.6477i 1.18867 + 1.18867i 0.977436 + 0.211234i \(0.0677481\pi\)
0.211234 + 0.977436i \(0.432252\pi\)
\(542\) −20.0137 −0.859662
\(543\) 28.4179i 1.21953i
\(544\) −12.0625 31.1930i −0.517175 1.33739i
\(545\) 0 0
\(546\) 9.03740i 0.386765i
\(547\) −20.7878 + 20.7878i −0.888823 + 0.888823i −0.994410 0.105588i \(-0.966328\pi\)
0.105588 + 0.994410i \(0.466328\pi\)
\(548\) 37.0894i 1.58438i
\(549\) −16.3916 16.3916i −0.699577 0.699577i
\(550\) 0 0
\(551\) 34.3797 34.3797i 1.46462 1.46462i
\(552\) −10.0635 −0.428333
\(553\) 1.98709 0.0844995
\(554\) 1.97757 1.97757i 0.0840187 0.0840187i
\(555\) 0 0
\(556\) −17.3184 17.3184i −0.734464 0.734464i
\(557\) 27.9399i 1.18385i −0.805992 0.591927i \(-0.798368\pi\)
0.805992 0.591927i \(-0.201632\pi\)
\(558\) 23.7578 23.7578i 1.00575 1.00575i
\(559\) 54.8963i 2.32186i
\(560\) 0 0
\(561\) −24.2420 + 9.37453i −1.02350 + 0.395793i
\(562\) 32.8362i 1.38511i
\(563\) 11.2994 0.476213 0.238106 0.971239i \(-0.423473\pi\)
0.238106 + 0.971239i \(0.423473\pi\)
\(564\) −6.74761 6.74761i −0.284126 0.284126i
\(565\) 0 0
\(566\) −42.9565 42.9565i −1.80559 1.80559i
\(567\) −2.02483 2.02483i −0.0850348 0.0850348i
\(568\) 0.723689 + 0.723689i 0.0303653 + 0.0303653i
\(569\) 12.1204i 0.508114i 0.967189 + 0.254057i \(0.0817650\pi\)
−0.967189 + 0.254057i \(0.918235\pi\)
\(570\) 0 0
\(571\) −7.74264 + 7.74264i −0.324019 + 0.324019i −0.850307 0.526287i \(-0.823584\pi\)
0.526287 + 0.850307i \(0.323584\pi\)
\(572\) −18.9414 18.9414i −0.791978 0.791978i
\(573\) 38.3519 38.3519i 1.60217 1.60217i
\(574\) −1.80277 −0.0752462
\(575\) 0 0
\(576\) 34.0508i 1.41878i
\(577\) 9.09883i 0.378789i −0.981901 0.189395i \(-0.939347\pi\)
0.981901 0.189395i \(-0.0606525\pi\)
\(578\) −26.0421 + 23.6828i −1.08321 + 0.985076i
\(579\) 3.58856 0.149135
\(580\) 0 0
\(581\) 2.59587 + 2.59587i 0.107695 + 0.107695i
\(582\) 66.5991i 2.76062i
\(583\) −12.0388 + 12.0388i −0.498597 + 0.498597i
\(584\) 0.120494 0.120494i 0.00498608 0.00498608i
\(585\) 0 0
\(586\) 42.7536i 1.76614i
\(587\) −11.2991 −0.466362 −0.233181 0.972433i \(-0.574913\pi\)
−0.233181 + 0.972433i \(0.574913\pi\)
\(588\) −28.0156 28.0156i −1.15534 1.15534i
\(589\) 24.4250 24.4250i 1.00641 1.00641i
\(590\) 0 0
\(591\) 43.9403 1.80746
\(592\) −4.58366 + 4.58366i −0.188387 + 0.188387i
\(593\) −42.8620 −1.76013 −0.880066 0.474851i \(-0.842502\pi\)
−0.880066 + 0.474851i \(0.842502\pi\)
\(594\) 4.80167 0.197015
\(595\) 0 0
\(596\) 25.4568 1.04275
\(597\) 45.1388 1.84741
\(598\) 45.9898 45.9898i 1.88066 1.88066i
\(599\) −21.0108 −0.858478 −0.429239 0.903191i \(-0.641218\pi\)
−0.429239 + 0.903191i \(0.641218\pi\)
\(600\) 0 0
\(601\) −13.7533 + 13.7533i −0.561009 + 0.561009i −0.929594 0.368585i \(-0.879842\pi\)
0.368585 + 0.929594i \(0.379842\pi\)
\(602\) 6.32617 + 6.32617i 0.257835 + 0.257835i
\(603\) −6.31399 −0.257126
\(604\) 36.7960i 1.49721i
\(605\) 0 0
\(606\) −33.5684 + 33.5684i −1.36362 + 1.36362i
\(607\) 19.3965 19.3965i 0.787281 0.787281i −0.193767 0.981048i \(-0.562071\pi\)
0.981048 + 0.193767i \(0.0620706\pi\)
\(608\) 58.1535i 2.35844i
\(609\) −4.46476 4.46476i −0.180921 0.180921i
\(610\) 0 0
\(611\) 7.74971 0.313520
\(612\) 29.6255 11.4563i 1.19754 0.463095i
\(613\) 0.297602i 0.0120200i −0.999982 0.00601001i \(-0.998087\pi\)
0.999982 0.00601001i \(-0.00191306\pi\)
\(614\) 33.8416i 1.36573i
\(615\) 0 0
\(616\) 0.548573 0.0221026
\(617\) −8.95764 + 8.95764i −0.360621 + 0.360621i −0.864041 0.503421i \(-0.832075\pi\)
0.503421 + 0.864041i \(0.332075\pi\)
\(618\) −17.6538 17.6538i −0.710138 0.710138i
\(619\) −6.89991 + 6.89991i −0.277331 + 0.277331i −0.832043 0.554712i \(-0.812829\pi\)
0.554712 + 0.832043i \(0.312829\pi\)
\(620\) 0 0
\(621\) 6.22005i 0.249602i
\(622\) 51.4062 + 51.4062i 2.06120 + 2.06120i
\(623\) −1.12389 1.12389i −0.0450276 0.0450276i
\(624\) −27.9589 27.9589i −1.11925 1.11925i
\(625\) 0 0
\(626\) −45.8473 45.8473i −1.83243 1.83243i
\(627\) 45.1948 1.80491
\(628\) 6.02343i 0.240361i
\(629\) 7.31286 + 3.23424i 0.291583 + 0.128958i
\(630\) 0 0
\(631\) 40.9574i 1.63049i −0.579117 0.815244i \(-0.696603\pi\)
0.579117 0.815244i \(-0.303397\pi\)
\(632\) −2.26655 + 2.26655i −0.0901584 + 0.0901584i
\(633\) 18.1179i 0.720123i
\(634\) 18.3746 + 18.3746i 0.729748 + 0.729748i
\(635\) 0 0
\(636\) 27.8176 27.8176i 1.10304 1.10304i
\(637\) 32.1763 1.27487
\(638\) −35.0788 −1.38878
\(639\) 4.09508 4.09508i 0.161999 0.161999i
\(640\) 0 0
\(641\) 2.80367 + 2.80367i 0.110738 + 0.110738i 0.760305 0.649567i \(-0.225050\pi\)
−0.649567 + 0.760305i \(0.725050\pi\)
\(642\) 14.9025i 0.588154i
\(643\) 10.9095 10.9095i 0.430227 0.430227i −0.458478 0.888706i \(-0.651605\pi\)
0.888706 + 0.458478i \(0.151605\pi\)
\(644\) 5.65511i 0.222842i
\(645\) 0 0
\(646\) 57.0877 22.0761i 2.24609 0.868573i
\(647\) 10.5735i 0.415687i −0.978162 0.207843i \(-0.933356\pi\)
0.978162 0.207843i \(-0.0666445\pi\)
\(648\) 4.61919 0.181459
\(649\) −0.855606 0.855606i −0.0335855 0.0335855i
\(650\) 0 0
\(651\) −3.17198 3.17198i −0.124320 0.124320i
\(652\) 30.8834 + 30.8834i 1.20949 + 1.20949i
\(653\) 10.3029 + 10.3029i 0.403184 + 0.403184i 0.879354 0.476169i \(-0.157975\pi\)
−0.476169 + 0.879354i \(0.657975\pi\)
\(654\) 49.3702i 1.93053i
\(655\) 0 0
\(656\) −5.57722 + 5.57722i −0.217754 + 0.217754i
\(657\) −0.681831 0.681831i −0.0266007 0.0266007i
\(658\) −0.893065 + 0.893065i −0.0348153 + 0.0348153i
\(659\) −23.7883 −0.926660 −0.463330 0.886186i \(-0.653346\pi\)
−0.463330 + 0.886186i \(0.653346\pi\)
\(660\) 0 0
\(661\) 9.91502i 0.385650i −0.981233 0.192825i \(-0.938235\pi\)
0.981233 0.192825i \(-0.0617649\pi\)
\(662\) 1.03003i 0.0400331i
\(663\) −19.7279 + 44.6062i −0.766167 + 1.73236i
\(664\) −5.92189 −0.229814
\(665\) 0 0
\(666\) −9.56300 9.56300i −0.370559 0.370559i
\(667\) 45.4408i 1.75948i
\(668\) −6.44950 + 6.44950i −0.249539 + 0.249539i
\(669\) 7.01848 7.01848i 0.271350 0.271350i
\(670\) 0 0
\(671\) 17.1946i 0.663790i
\(672\) 7.55218 0.291331
\(673\) 2.81097 + 2.81097i 0.108355 + 0.108355i 0.759206 0.650851i \(-0.225588\pi\)
−0.650851 + 0.759206i \(0.725588\pi\)
\(674\) 49.1477 49.1477i 1.89310 1.89310i
\(675\) 0 0
\(676\) −20.5303 −0.789627
\(677\) 14.4022 14.4022i 0.553523 0.553523i −0.373933 0.927456i \(-0.621991\pi\)
0.927456 + 0.373933i \(0.121991\pi\)
\(678\) 55.7984 2.14293
\(679\) 4.70276 0.180475
\(680\) 0 0
\(681\) 8.78125 0.336498
\(682\) −24.9217 −0.954300
\(683\) 20.4617 20.4617i 0.782944 0.782944i −0.197383 0.980327i \(-0.563244\pi\)
0.980327 + 0.197383i \(0.0632442\pi\)
\(684\) −55.2313 −2.11182
\(685\) 0 0
\(686\) −7.48943 + 7.48943i −0.285948 + 0.285948i
\(687\) −7.87193 7.87193i −0.300333 0.300333i
\(688\) 39.1424 1.49229
\(689\) 31.9489i 1.21716i
\(690\) 0 0
\(691\) −3.76661 + 3.76661i −0.143289 + 0.143289i −0.775112 0.631824i \(-0.782307\pi\)
0.631824 + 0.775112i \(0.282307\pi\)
\(692\) −23.6276 + 23.6276i −0.898188 + 0.898188i
\(693\) 3.10417i 0.117918i
\(694\) 38.5084 + 38.5084i 1.46176 + 1.46176i
\(695\) 0 0
\(696\) 10.1854 0.386075
\(697\) 8.89800 + 3.93530i 0.337036 + 0.149060i
\(698\) 34.7583i 1.31562i
\(699\) 39.5340i 1.49531i
\(700\) 0 0
\(701\) −42.2699 −1.59651 −0.798256 0.602318i \(-0.794244\pi\)
−0.798256 + 0.602318i \(0.794244\pi\)
\(702\) 6.37139 6.37139i 0.240473 0.240473i
\(703\) −9.83156 9.83156i −0.370804 0.370804i
\(704\) 17.8595 17.8595i 0.673104 0.673104i
\(705\) 0 0
\(706\) 48.5625i 1.82768i
\(707\) 2.37037 + 2.37037i 0.0891468 + 0.0891468i
\(708\) 1.97702 + 1.97702i 0.0743008 + 0.0743008i
\(709\) 34.1983 + 34.1983i 1.28435 + 1.28435i 0.938170 + 0.346176i \(0.112520\pi\)
0.346176 + 0.938170i \(0.387480\pi\)
\(710\) 0 0
\(711\) 12.8255 + 12.8255i 0.480995 + 0.480995i
\(712\) 2.56390 0.0960861
\(713\) 32.2834i 1.20902i
\(714\) −2.86694 7.41376i −0.107293 0.277453i
\(715\) 0 0
\(716\) 33.7288i 1.26050i
\(717\) 11.7610 11.7610i 0.439222 0.439222i
\(718\) 37.5957i 1.40306i
\(719\) −5.83066 5.83066i −0.217447 0.217447i 0.589975 0.807422i \(-0.299138\pi\)
−0.807422 + 0.589975i \(0.799138\pi\)
\(720\) 0 0
\(721\) −1.24658 + 1.24658i −0.0464252 + 0.0464252i
\(722\) −67.0878 −2.49675
\(723\) 11.0538 0.411096
\(724\) 18.2150 18.2150i 0.676956 0.676956i
\(725\) 0 0
\(726\) 17.5849 + 17.5849i 0.652638 + 0.652638i
\(727\) 6.46089i 0.239621i 0.992797 + 0.119811i \(0.0382288\pi\)
−0.992797 + 0.119811i \(0.961771\pi\)
\(728\) 0.727907 0.727907i 0.0269780 0.0269780i
\(729\) 33.1658i 1.22836i
\(730\) 0 0
\(731\) −17.4148 45.0338i −0.644109 1.66563i
\(732\) 39.7309i 1.46850i
\(733\) 15.9605 0.589515 0.294758 0.955572i \(-0.404761\pi\)
0.294758 + 0.955572i \(0.404761\pi\)
\(734\) −20.0448 20.0448i −0.739867 0.739867i
\(735\) 0 0
\(736\) 38.4318 + 38.4318i 1.41661 + 1.41661i
\(737\) 3.31165 + 3.31165i 0.121986 + 0.121986i
\(738\) −11.6359 11.6359i −0.428323 0.428323i
\(739\) 0.760943i 0.0279918i 0.999902 + 0.0139959i \(0.00445517\pi\)
−0.999902 + 0.0139959i \(0.995545\pi\)
\(740\) 0 0
\(741\) 59.9695 59.9695i 2.20303 2.20303i
\(742\) −3.68174 3.68174i −0.135161 0.135161i
\(743\) 27.8096 27.8096i 1.02024 1.02024i 0.0204461 0.999791i \(-0.493491\pi\)
0.999791 0.0204461i \(-0.00650865\pi\)
\(744\) 7.23617 0.265291
\(745\) 0 0
\(746\) 21.0362i 0.770191i
\(747\) 33.5097i 1.22606i
\(748\) −21.5472 9.52963i −0.787844 0.348438i
\(749\) 1.05231 0.0384506
\(750\) 0 0
\(751\) −23.8937 23.8937i −0.871892 0.871892i 0.120786 0.992679i \(-0.461458\pi\)
−0.992679 + 0.120786i \(0.961458\pi\)
\(752\) 5.52574i 0.201503i
\(753\) −7.67792 + 7.67792i −0.279799 + 0.279799i
\(754\) −46.5464 + 46.5464i −1.69512 + 1.69512i
\(755\) 0 0
\(756\) 0.783454i 0.0284939i
\(757\) −23.0663 −0.838359 −0.419180 0.907903i \(-0.637682\pi\)
−0.419180 + 0.907903i \(0.637682\pi\)
\(758\) 6.09685 + 6.09685i 0.221448 + 0.221448i
\(759\) 29.8678 29.8678i 1.08413 1.08413i
\(760\) 0 0
\(761\) 22.8435 0.828076 0.414038 0.910260i \(-0.364118\pi\)
0.414038 + 0.910260i \(0.364118\pi\)
\(762\) −58.1235 + 58.1235i −2.10559 + 2.10559i
\(763\) −3.48618 −0.126208
\(764\) 49.1648 1.77872
\(765\) 0 0
\(766\) 1.68397 0.0608445
\(767\) −2.27063 −0.0819876
\(768\) 18.6713 18.6713i 0.673741 0.673741i
\(769\) −3.68785 −0.132987 −0.0664936 0.997787i \(-0.521181\pi\)
−0.0664936 + 0.997787i \(0.521181\pi\)
\(770\) 0 0
\(771\) 18.8010 18.8010i 0.677102 0.677102i
\(772\) 2.30016 + 2.30016i 0.0827845 + 0.0827845i
\(773\) −5.04027 −0.181286 −0.0906430 0.995883i \(-0.528892\pi\)
−0.0906430 + 0.995883i \(0.528892\pi\)
\(774\) 81.6638i 2.93534i
\(775\) 0 0
\(776\) −5.36415 + 5.36415i −0.192562 + 0.192562i
\(777\) −1.27679 + 1.27679i −0.0458045 + 0.0458045i
\(778\) 6.45361i 0.231373i
\(779\) −11.9627 11.9627i −0.428607 0.428607i
\(780\) 0 0
\(781\) −4.29569 −0.153712
\(782\) 23.1380 52.3168i 0.827414 1.87084i
\(783\) 6.29533i 0.224977i
\(784\) 22.9425i 0.819375i
\(785\) 0 0
\(786\) −21.3791 −0.762567
\(787\) 9.65129 9.65129i 0.344031 0.344031i −0.513849 0.857880i \(-0.671781\pi\)
0.857880 + 0.513849i \(0.171781\pi\)
\(788\) 28.1644 + 28.1644i 1.00332 + 1.00332i
\(789\) 24.3124 24.3124i 0.865545 0.865545i
\(790\) 0 0
\(791\) 3.94010i 0.140094i
\(792\) 3.54073 + 3.54073i 0.125814 + 0.125814i
\(793\) 22.8157 + 22.8157i 0.810209 + 0.810209i
\(794\) 24.0187 + 24.0187i 0.852391 + 0.852391i
\(795\) 0 0
\(796\) 28.9326 + 28.9326i 1.02549 + 1.02549i
\(797\) −16.6869 −0.591081 −0.295541 0.955330i \(-0.595500\pi\)
−0.295541 + 0.955330i \(0.595500\pi\)
\(798\) 13.8216i 0.489279i
\(799\) 6.35742 2.45845i 0.224909 0.0869736i
\(800\) 0 0
\(801\) 14.5081i 0.512619i
\(802\) 21.1498 21.1498i 0.746824 0.746824i
\(803\) 0.715232i 0.0252400i
\(804\) −7.65211 7.65211i −0.269869 0.269869i
\(805\) 0 0
\(806\) −33.0688 + 33.0688i −1.16480 + 1.16480i
\(807\) −39.3844 −1.38640
\(808\) −5.40746 −0.190234
\(809\) 21.7364 21.7364i 0.764211 0.764211i −0.212870 0.977081i \(-0.568281\pi\)
0.977081 + 0.212870i \(0.0682810\pi\)
\(810\) 0 0
\(811\) 15.1208 + 15.1208i 0.530962 + 0.530962i 0.920859 0.389896i \(-0.127489\pi\)
−0.389896 + 0.920859i \(0.627489\pi\)
\(812\) 5.72355i 0.200857i
\(813\) −17.2469 + 17.2469i −0.604874 + 0.604874i
\(814\) 10.0315i 0.351603i
\(815\) 0 0
\(816\) −31.8053 14.0665i −1.11341 0.492425i
\(817\) 83.9571i 2.93729i
\(818\) −66.8534 −2.33747
\(819\) −4.11895 4.11895i −0.143928 0.143928i
\(820\) 0 0
\(821\) −8.42091 8.42091i −0.293892 0.293892i 0.544724 0.838616i \(-0.316634\pi\)
−0.838616 + 0.544724i \(0.816634\pi\)
\(822\) −59.9075 59.9075i −2.08951 2.08951i
\(823\) 13.8553 + 13.8553i 0.482965 + 0.482965i 0.906077 0.423113i \(-0.139063\pi\)
−0.423113 + 0.906077i \(0.639063\pi\)
\(824\) 2.84381i 0.0990686i
\(825\) 0 0
\(826\) 0.261664 0.261664i 0.00910444 0.00910444i
\(827\) 24.8128 + 24.8128i 0.862827 + 0.862827i 0.991666 0.128838i \(-0.0411248\pi\)
−0.128838 + 0.991666i \(0.541125\pi\)
\(828\) −36.5006 + 36.5006i −1.26848 + 1.26848i
\(829\) −46.3683 −1.61044 −0.805219 0.592978i \(-0.797952\pi\)
−0.805219 + 0.592978i \(0.797952\pi\)
\(830\) 0 0
\(831\) 3.40835i 0.118234i
\(832\) 47.3958i 1.64315i
\(833\) 26.3956 10.2073i 0.914552 0.353662i
\(834\) −55.9460 −1.93725
\(835\) 0 0
\(836\) 28.9685 + 28.9685i 1.00190 + 1.00190i
\(837\) 4.47251i 0.154593i
\(838\) −27.6395 + 27.6395i −0.954791 + 0.954791i
\(839\) 17.6001 17.6001i 0.607623 0.607623i −0.334701 0.942324i \(-0.608635\pi\)
0.942324 + 0.334701i \(0.108635\pi\)
\(840\) 0 0
\(841\) 16.9908i 0.585890i
\(842\) −4.26559 −0.147002
\(843\) −28.2967 28.2967i −0.974589 0.974589i
\(844\) −11.6130 + 11.6130i −0.399737 + 0.399737i
\(845\) 0 0
\(846\) −11.5285 −0.396357
\(847\) 1.24173 1.24173i 0.0426662 0.0426662i
\(848\) −22.7804 −0.782281
\(849\) −74.0357 −2.54090
\(850\) 0 0
\(851\) −12.9947 −0.445453
\(852\) 9.92589 0.340055
\(853\) −19.8742 + 19.8742i −0.680478 + 0.680478i −0.960108 0.279629i \(-0.909788\pi\)
0.279629 + 0.960108i \(0.409788\pi\)
\(854\) −5.25850 −0.179942
\(855\) 0 0
\(856\) −1.20031 + 1.20031i −0.0410256 + 0.0410256i
\(857\) −17.3313 17.3313i −0.592025 0.592025i 0.346153 0.938178i \(-0.387488\pi\)
−0.938178 + 0.346153i \(0.887488\pi\)
\(858\) −61.1889 −2.08896
\(859\) 12.8979i 0.440069i 0.975492 + 0.220034i \(0.0706170\pi\)
−0.975492 + 0.220034i \(0.929383\pi\)
\(860\) 0 0
\(861\) −1.55354 + 1.55354i −0.0529447 + 0.0529447i
\(862\) −5.45773 + 5.45773i −0.185891 + 0.185891i
\(863\) 5.83668i 0.198683i 0.995053 + 0.0993414i \(0.0316736\pi\)
−0.995053 + 0.0993414i \(0.968326\pi\)
\(864\) 5.32430 + 5.32430i 0.181136 + 0.181136i
\(865\) 0 0
\(866\) −57.9014 −1.96757
\(867\) −2.03316 + 42.8507i −0.0690496 + 1.45528i
\(868\) 4.06629i 0.138019i
\(869\) 13.4538i 0.456390i
\(870\) 0 0
\(871\) 8.78854 0.297788
\(872\) 3.97647 3.97647i 0.134660 0.134660i
\(873\) 30.3537 + 30.3537i 1.02732 + 1.02732i
\(874\) −70.3357 + 70.3357i −2.37914 + 2.37914i
\(875\) 0 0
\(876\) 1.65266i 0.0558382i
\(877\) −13.2827 13.2827i −0.448526 0.448526i 0.446338 0.894864i \(-0.352728\pi\)
−0.894864 + 0.446338i \(0.852728\pi\)
\(878\) −18.3668 18.3668i −0.619850 0.619850i
\(879\) 36.8431 + 36.8431i 1.24269 + 1.24269i
\(880\) 0 0
\(881\) −32.3447 32.3447i −1.08972 1.08972i −0.995557 0.0941649i \(-0.969982\pi\)
−0.0941649 0.995557i \(-0.530018\pi\)
\(882\) −47.8655 −1.61171
\(883\) 6.15932i 0.207277i −0.994615 0.103639i \(-0.966951\pi\)
0.994615 0.103639i \(-0.0330486\pi\)
\(884\) −41.2362 + 15.9462i −1.38692 + 0.536330i
\(885\) 0 0
\(886\) 41.3147i 1.38800i
\(887\) 11.8423 11.8423i 0.397627 0.397627i −0.479768 0.877395i \(-0.659279\pi\)
0.877395 + 0.479768i \(0.159279\pi\)
\(888\) 2.91270i 0.0977440i
\(889\) 4.10428 + 4.10428i 0.137653 + 0.137653i
\(890\) 0 0
\(891\) −13.7094 + 13.7094i −0.459281 + 0.459281i
\(892\) 8.99726 0.301251
\(893\) −11.8522 −0.396620
\(894\) 41.1183 41.1183i 1.37520 1.37520i
\(895\) 0 0
\(896\) 1.22939 + 1.22939i 0.0410711 + 0.0410711i
\(897\) 79.2637i 2.64654i
\(898\) −29.5553 + 29.5553i −0.986274 + 0.986274i
\(899\) 32.6741i 1.08974i
\(900\) 0 0
\(901\) 10.1352 + 26.2091i 0.337652 + 0.873150i
\(902\) 12.2059i 0.406412i
\(903\) 10.9032 0.362835
\(904\) 4.49422 + 4.49422i 0.149476 + 0.149476i
\(905\) 0 0
\(906\) −59.4336 59.4336i −1.97455 1.97455i
\(907\) 5.74762 + 5.74762i 0.190847 + 0.190847i 0.796062 0.605215i \(-0.206913\pi\)
−0.605215 + 0.796062i \(0.706913\pi\)
\(908\) 5.62851 + 5.62851i 0.186789 + 0.186789i
\(909\) 30.5988i 1.01490i
\(910\) 0 0
\(911\) −25.2063 + 25.2063i −0.835121 + 0.835121i −0.988212 0.153091i \(-0.951077\pi\)
0.153091 + 0.988212i \(0.451077\pi\)
\(912\) 42.7597 + 42.7597i 1.41592 + 1.41592i
\(913\) 17.5757 17.5757i 0.581670 0.581670i
\(914\) −78.1431 −2.58474
\(915\) 0 0
\(916\) 10.0913i 0.333427i
\(917\) 1.50964i 0.0498528i
\(918\) 3.20552 7.24792i 0.105798 0.239217i
\(919\) 24.2398 0.799596 0.399798 0.916603i \(-0.369080\pi\)
0.399798 + 0.916603i \(0.369080\pi\)
\(920\) 0 0
\(921\) 29.1631 + 29.1631i 0.960956 + 0.960956i
\(922\) 79.0435i 2.60316i
\(923\) −5.70000 + 5.70000i −0.187618 + 0.187618i
\(924\) 3.76203 3.76203i 0.123762 0.123762i
\(925\) 0 0
\(926\) 27.2246i 0.894657i
\(927\) −16.0920 −0.528531
\(928\) −38.8969 38.8969i −1.27685 1.27685i
\(929\) 23.6454 23.6454i 0.775781 0.775781i −0.203329 0.979110i \(-0.565176\pi\)
0.979110 + 0.203329i \(0.0651761\pi\)
\(930\) 0 0
\(931\) −49.2097 −1.61278
\(932\) −25.3401 + 25.3401i −0.830042 + 0.830042i
\(933\) 88.5989 2.90060
\(934\) 33.5786 1.09873
\(935\) 0 0
\(936\) 9.39647 0.307133
\(937\) 25.6264 0.837177 0.418588 0.908176i \(-0.362525\pi\)
0.418588 + 0.908176i \(0.362525\pi\)
\(938\) −1.01278 + 1.01278i −0.0330684 + 0.0330684i
\(939\) −79.0181 −2.57866
\(940\) 0 0
\(941\) 37.8063 37.8063i 1.23245 1.23245i 0.269429 0.963020i \(-0.413165\pi\)
0.963020 0.269429i \(-0.0868348\pi\)
\(942\) −9.72916 9.72916i −0.316993 0.316993i
\(943\) −15.8115 −0.514892
\(944\) 1.61901i 0.0526944i
\(945\) 0 0
\(946\) 42.8322 42.8322i 1.39259 1.39259i
\(947\) 8.32772 8.32772i 0.270615 0.270615i −0.558733 0.829348i \(-0.688712\pi\)
0.829348 + 0.558733i \(0.188712\pi\)
\(948\) 31.0873i 1.00967i
\(949\) 0.949050 + 0.949050i 0.0308075 + 0.0308075i
\(950\) 0 0
\(951\) 31.6687 1.02693
\(952\) 0.366219 0.828048i 0.0118692 0.0268372i
\(953\) 23.9735i 0.776576i −0.921538 0.388288i \(-0.873067\pi\)
0.921538 0.388288i \(-0.126933\pi\)
\(954\) 47.5272i 1.53875i
\(955\) 0 0
\(956\) 15.0769 0.487621
\(957\) −30.2293 + 30.2293i −0.977173 + 0.977173i
\(958\) −3.03808 3.03808i −0.0981560 0.0981560i
\(959\) −4.23025 + 4.23025i −0.136602 + 0.136602i
\(960\) 0 0
\(961\) 7.78674i 0.251185i
\(962\) 13.3109 + 13.3109i 0.429160 + 0.429160i
\(963\) 6.79208 + 6.79208i 0.218872 + 0.218872i
\(964\) 7.08516 + 7.08516i 0.228198 + 0.228198i
\(965\) 0 0
\(966\) 9.13423 + 9.13423i 0.293889 + 0.293889i
\(967\) 45.6312 1.46740 0.733700 0.679473i \(-0.237792\pi\)
0.733700 + 0.679473i \(0.237792\pi\)
\(968\) 2.83272i 0.0910471i
\(969\) 30.1714 68.2197i 0.969243 2.19153i
\(970\) 0 0
\(971\) 58.9182i 1.89078i 0.325946 + 0.945388i \(0.394317\pi\)
−0.325946 + 0.945388i \(0.605683\pi\)
\(972\) 36.1821 36.1821i 1.16054 1.16054i
\(973\) 3.95052i 0.126648i
\(974\) −35.1776 35.1776i −1.12716 1.12716i
\(975\) 0 0
\(976\) −16.2682 + 16.2682i −0.520731 + 0.520731i
\(977\) 24.7610 0.792176 0.396088 0.918213i \(-0.370368\pi\)
0.396088 + 0.918213i \(0.370368\pi\)
\(978\) 99.7670 3.19020
\(979\) −7.60943 + 7.60943i −0.243198 + 0.243198i
\(980\) 0 0
\(981\) −22.5013 22.5013i −0.718412 0.718412i
\(982\) 46.3410i 1.47880i
\(983\) 6.99814 6.99814i 0.223206 0.223206i −0.586641 0.809847i \(-0.699550\pi\)
0.809847 + 0.586641i \(0.199550\pi\)
\(984\) 3.54406i 0.112981i
\(985\) 0 0
\(986\) −23.4181 + 52.9500i −0.745783 + 1.68627i
\(987\) 1.53920i 0.0489934i
\(988\) 76.8772 2.44579
\(989\) 55.4845 + 55.4845i 1.76430 + 1.76430i
\(990\) 0 0
\(991\) 0.624955 + 0.624955i 0.0198524 + 0.0198524i 0.716963 0.697111i \(-0.245532\pi\)
−0.697111 + 0.716963i \(0.745532\pi\)
\(992\) −27.6342 27.6342i −0.877388 0.877388i
\(993\) −0.887628 0.887628i −0.0281680 0.0281680i
\(994\) 1.31372i 0.0416687i
\(995\) 0 0
\(996\) −40.6114 + 40.6114i −1.28682 + 1.28682i
\(997\) −20.5067 20.5067i −0.649455 0.649455i 0.303407 0.952861i \(-0.401876\pi\)
−0.952861 + 0.303407i \(0.901876\pi\)
\(998\) 5.41451 5.41451i 0.171393 0.171393i
\(999\) −1.80028 −0.0569582
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 425.2.j.c.149.5 12
5.2 odd 4 425.2.e.f.251.5 12
5.3 odd 4 85.2.e.a.81.2 yes 12
5.4 even 2 425.2.j.b.149.2 12
15.8 even 4 765.2.k.b.676.5 12
17.4 even 4 425.2.j.b.174.2 12
20.3 even 4 1360.2.bt.d.81.1 12
85.2 odd 8 7225.2.a.z.1.2 6
85.4 even 4 inner 425.2.j.c.174.5 12
85.8 odd 8 1445.2.d.g.866.3 12
85.32 odd 8 7225.2.a.bb.1.2 6
85.38 odd 4 85.2.e.a.21.5 12
85.43 odd 8 1445.2.d.g.866.4 12
85.53 odd 8 1445.2.a.o.1.5 6
85.72 odd 4 425.2.e.f.276.2 12
85.83 odd 8 1445.2.a.n.1.5 6
255.38 even 4 765.2.k.b.361.2 12
340.123 even 4 1360.2.bt.d.1041.1 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
85.2.e.a.21.5 12 85.38 odd 4
85.2.e.a.81.2 yes 12 5.3 odd 4
425.2.e.f.251.5 12 5.2 odd 4
425.2.e.f.276.2 12 85.72 odd 4
425.2.j.b.149.2 12 5.4 even 2
425.2.j.b.174.2 12 17.4 even 4
425.2.j.c.149.5 12 1.1 even 1 trivial
425.2.j.c.174.5 12 85.4 even 4 inner
765.2.k.b.361.2 12 255.38 even 4
765.2.k.b.676.5 12 15.8 even 4
1360.2.bt.d.81.1 12 20.3 even 4
1360.2.bt.d.1041.1 12 340.123 even 4
1445.2.a.n.1.5 6 85.83 odd 8
1445.2.a.o.1.5 6 85.53 odd 8
1445.2.d.g.866.3 12 85.8 odd 8
1445.2.d.g.866.4 12 85.43 odd 8
7225.2.a.z.1.2 6 85.2 odd 8
7225.2.a.bb.1.2 6 85.32 odd 8