Properties

Label 1445.2.d.g.866.4
Level $1445$
Weight $2$
Character 1445.866
Analytic conductor $11.538$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1445,2,Mod(866,1445)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1445, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1445.866");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1445 = 5 \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1445.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.5383830921\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 18x^{10} + 83x^{8} + 152x^{6} + 111x^{4} + 22x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: no (minimal twist has level 85)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 866.4
Root \(-1.52346i\) of defining polynomial
Character \(\chi\) \(=\) 1445.866
Dual form 1445.2.d.g.866.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.07061 q^{2} +2.52346i q^{3} +2.28744 q^{4} +1.00000i q^{5} -5.22511i q^{6} -0.368961i q^{7} -0.595174 q^{8} -3.36786 q^{9} -2.07061i q^{10} +2.49810i q^{11} +5.77226i q^{12} +4.68778 q^{13} +0.763976i q^{14} -2.52346 q^{15} -3.34250 q^{16} +6.97354 q^{18} +7.16938 q^{19} +2.28744i q^{20} +0.931060 q^{21} -5.17260i q^{22} -6.70055i q^{23} -1.50190i q^{24} -1.00000 q^{25} -9.70657 q^{26} -0.928289i q^{27} -0.843976i q^{28} +6.78165i q^{29} +5.22511 q^{30} +4.81801i q^{31} +8.11138 q^{32} -6.30387 q^{33} +0.368961 q^{35} -7.70378 q^{36} -1.93935i q^{37} -14.8450 q^{38} +11.8294i q^{39} -0.595174i q^{40} +2.35972i q^{41} -1.92786 q^{42} +11.7105 q^{43} +5.71425i q^{44} -3.36786i q^{45} +13.8743i q^{46} +1.65317 q^{47} -8.43468i q^{48} +6.86387 q^{49} +2.07061 q^{50} +10.7230 q^{52} +6.81536 q^{53} +1.92213i q^{54} -2.49810 q^{55} +0.219596i q^{56} +18.0917i q^{57} -14.0422i q^{58} +0.484372 q^{59} -5.77226 q^{60} +6.88307i q^{61} -9.97624i q^{62} +1.24261i q^{63} -10.1105 q^{64} +4.68778i q^{65} +13.0529 q^{66} -1.87478 q^{67} +16.9086 q^{69} -0.763976 q^{70} +1.71958i q^{71} +2.00446 q^{72} -0.286310i q^{73} +4.01564i q^{74} -2.52346i q^{75} +16.3995 q^{76} +0.921703 q^{77} -24.4942i q^{78} -5.38563i q^{79} -3.34250i q^{80} -7.76109 q^{81} -4.88608i q^{82} -9.94985 q^{83} +2.12974 q^{84} -24.2479 q^{86} -17.1132 q^{87} -1.48680i q^{88} +4.30781 q^{89} +6.97354i q^{90} -1.72961i q^{91} -15.3271i q^{92} -12.1581 q^{93} -3.42308 q^{94} +7.16938i q^{95} +20.4688i q^{96} -12.7460i q^{97} -14.2124 q^{98} -8.41327i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 4 q^{2} + 12 q^{4} - 12 q^{8} - 4 q^{9} - 8 q^{15} + 4 q^{16} + 28 q^{18} + 24 q^{19} + 16 q^{21} - 12 q^{25} + 24 q^{26} + 8 q^{30} + 12 q^{32} - 16 q^{33} + 16 q^{35} + 20 q^{36} - 24 q^{38} + 16 q^{42}+ \cdots - 44 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1445\mathbb{Z}\right)^\times\).

\(n\) \(581\) \(1157\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.07061 −1.46414 −0.732072 0.681227i \(-0.761447\pi\)
−0.732072 + 0.681227i \(0.761447\pi\)
\(3\) 2.52346i 1.45692i 0.685087 + 0.728461i \(0.259764\pi\)
−0.685087 + 0.728461i \(0.740236\pi\)
\(4\) 2.28744 1.14372
\(5\) 1.00000i 0.447214i
\(6\) − 5.22511i − 2.13314i
\(7\) − 0.368961i − 0.139454i −0.997566 0.0697271i \(-0.977787\pi\)
0.997566 0.0697271i \(-0.0222129\pi\)
\(8\) −0.595174 −0.210426
\(9\) −3.36786 −1.12262
\(10\) − 2.07061i − 0.654785i
\(11\) 2.49810i 0.753206i 0.926375 + 0.376603i \(0.122908\pi\)
−0.926375 + 0.376603i \(0.877092\pi\)
\(12\) 5.77226i 1.66631i
\(13\) 4.68778 1.30016 0.650078 0.759868i \(-0.274736\pi\)
0.650078 + 0.759868i \(0.274736\pi\)
\(14\) 0.763976i 0.204181i
\(15\) −2.52346 −0.651555
\(16\) −3.34250 −0.835626
\(17\) 0 0
\(18\) 6.97354 1.64368
\(19\) 7.16938 1.64477 0.822384 0.568933i \(-0.192644\pi\)
0.822384 + 0.568933i \(0.192644\pi\)
\(20\) 2.28744i 0.511487i
\(21\) 0.931060 0.203174
\(22\) − 5.17260i − 1.10280i
\(23\) − 6.70055i − 1.39716i −0.715531 0.698581i \(-0.753815\pi\)
0.715531 0.698581i \(-0.246185\pi\)
\(24\) − 1.50190i − 0.306574i
\(25\) −1.00000 −0.200000
\(26\) −9.70657 −1.90361
\(27\) − 0.928289i − 0.178649i
\(28\) − 0.843976i − 0.159496i
\(29\) 6.78165i 1.25932i 0.776870 + 0.629661i \(0.216806\pi\)
−0.776870 + 0.629661i \(0.783194\pi\)
\(30\) 5.22511 0.953971
\(31\) 4.81801i 0.865341i 0.901552 + 0.432670i \(0.142429\pi\)
−0.901552 + 0.432670i \(0.857571\pi\)
\(32\) 8.11138 1.43390
\(33\) −6.30387 −1.09736
\(34\) 0 0
\(35\) 0.368961 0.0623658
\(36\) −7.70378 −1.28396
\(37\) − 1.93935i − 0.318827i −0.987212 0.159413i \(-0.949040\pi\)
0.987212 0.159413i \(-0.0509603\pi\)
\(38\) −14.8450 −2.40818
\(39\) 11.8294i 1.89422i
\(40\) − 0.595174i − 0.0941052i
\(41\) 2.35972i 0.368527i 0.982877 + 0.184263i \(0.0589900\pi\)
−0.982877 + 0.184263i \(0.941010\pi\)
\(42\) −1.92786 −0.297476
\(43\) 11.7105 1.78584 0.892918 0.450218i \(-0.148654\pi\)
0.892918 + 0.450218i \(0.148654\pi\)
\(44\) 5.71425i 0.861456i
\(45\) − 3.36786i − 0.502051i
\(46\) 13.8743i 2.04565i
\(47\) 1.65317 0.241140 0.120570 0.992705i \(-0.461528\pi\)
0.120570 + 0.992705i \(0.461528\pi\)
\(48\) − 8.43468i − 1.21744i
\(49\) 6.86387 0.980553
\(50\) 2.07061 0.292829
\(51\) 0 0
\(52\) 10.7230 1.48701
\(53\) 6.81536 0.936162 0.468081 0.883686i \(-0.344946\pi\)
0.468081 + 0.883686i \(0.344946\pi\)
\(54\) 1.92213i 0.261568i
\(55\) −2.49810 −0.336844
\(56\) 0.219596i 0.0293447i
\(57\) 18.0917i 2.39630i
\(58\) − 14.0422i − 1.84383i
\(59\) 0.484372 0.0630598 0.0315299 0.999503i \(-0.489962\pi\)
0.0315299 + 0.999503i \(0.489962\pi\)
\(60\) −5.77226 −0.745196
\(61\) 6.88307i 0.881286i 0.897682 + 0.440643i \(0.145250\pi\)
−0.897682 + 0.440643i \(0.854750\pi\)
\(62\) − 9.97624i − 1.26698i
\(63\) 1.24261i 0.156554i
\(64\) −10.1105 −1.26381
\(65\) 4.68778i 0.581447i
\(66\) 13.0529 1.60670
\(67\) −1.87478 −0.229041 −0.114520 0.993421i \(-0.536533\pi\)
−0.114520 + 0.993421i \(0.536533\pi\)
\(68\) 0 0
\(69\) 16.9086 2.03556
\(70\) −0.763976 −0.0913126
\(71\) 1.71958i 0.204077i 0.994780 + 0.102038i \(0.0325365\pi\)
−0.994780 + 0.102038i \(0.967464\pi\)
\(72\) 2.00446 0.236228
\(73\) − 0.286310i − 0.0335101i −0.999860 0.0167550i \(-0.994666\pi\)
0.999860 0.0167550i \(-0.00533355\pi\)
\(74\) 4.01564i 0.466809i
\(75\) − 2.52346i − 0.291384i
\(76\) 16.3995 1.88115
\(77\) 0.921703 0.105038
\(78\) − 24.4942i − 2.77342i
\(79\) − 5.38563i − 0.605930i −0.953002 0.302965i \(-0.902023\pi\)
0.953002 0.302965i \(-0.0979766\pi\)
\(80\) − 3.34250i − 0.373703i
\(81\) −7.76109 −0.862343
\(82\) − 4.88608i − 0.539577i
\(83\) −9.94985 −1.09214 −0.546069 0.837740i \(-0.683876\pi\)
−0.546069 + 0.837740i \(0.683876\pi\)
\(84\) 2.12974 0.232374
\(85\) 0 0
\(86\) −24.2479 −2.61472
\(87\) −17.1132 −1.83473
\(88\) − 1.48680i − 0.158494i
\(89\) 4.30781 0.456627 0.228314 0.973588i \(-0.426679\pi\)
0.228314 + 0.973588i \(0.426679\pi\)
\(90\) 6.97354i 0.735076i
\(91\) − 1.72961i − 0.181312i
\(92\) − 15.3271i − 1.59796i
\(93\) −12.1581 −1.26073
\(94\) −3.42308 −0.353064
\(95\) 7.16938i 0.735563i
\(96\) 20.4688i 2.08908i
\(97\) − 12.7460i − 1.29416i −0.762424 0.647078i \(-0.775991\pi\)
0.762424 0.647078i \(-0.224009\pi\)
\(98\) −14.2124 −1.43567
\(99\) − 8.41327i − 0.845565i
\(100\) −2.28744 −0.228744
\(101\) −9.08552 −0.904043 −0.452021 0.892007i \(-0.649297\pi\)
−0.452021 + 0.892007i \(0.649297\pi\)
\(102\) 0 0
\(103\) 4.77811 0.470801 0.235401 0.971898i \(-0.424360\pi\)
0.235401 + 0.971898i \(0.424360\pi\)
\(104\) −2.79004 −0.273586
\(105\) 0.931060i 0.0908621i
\(106\) −14.1120 −1.37068
\(107\) − 2.85209i − 0.275722i −0.990452 0.137861i \(-0.955977\pi\)
0.990452 0.137861i \(-0.0440227\pi\)
\(108\) − 2.12340i − 0.204325i
\(109\) − 9.44863i − 0.905014i −0.891761 0.452507i \(-0.850530\pi\)
0.891761 0.452507i \(-0.149470\pi\)
\(110\) 5.17260 0.493188
\(111\) 4.89387 0.464506
\(112\) 1.23325i 0.116532i
\(113\) 10.6789i 1.00459i 0.864698 + 0.502293i \(0.167510\pi\)
−0.864698 + 0.502293i \(0.832490\pi\)
\(114\) − 37.4608i − 3.50853i
\(115\) 6.70055 0.624830
\(116\) 15.5126i 1.44031i
\(117\) −15.7878 −1.45958
\(118\) −1.00295 −0.0923287
\(119\) 0 0
\(120\) 1.50190 0.137104
\(121\) 4.75949 0.432681
\(122\) − 14.2522i − 1.29033i
\(123\) −5.95468 −0.536915
\(124\) 11.0209i 0.989707i
\(125\) − 1.00000i − 0.0894427i
\(126\) − 2.57297i − 0.229218i
\(127\) −15.7315 −1.39595 −0.697974 0.716124i \(-0.745915\pi\)
−0.697974 + 0.716124i \(0.745915\pi\)
\(128\) 4.71221 0.416505
\(129\) 29.5510i 2.60182i
\(130\) − 9.70657i − 0.851322i
\(131\) 4.09160i 0.357485i 0.983896 + 0.178742i \(0.0572029\pi\)
−0.983896 + 0.178742i \(0.942797\pi\)
\(132\) −14.4197 −1.25507
\(133\) − 2.64522i − 0.229370i
\(134\) 3.88194 0.335348
\(135\) 0.928289 0.0798944
\(136\) 0 0
\(137\) −16.2144 −1.38529 −0.692644 0.721280i \(-0.743554\pi\)
−0.692644 + 0.721280i \(0.743554\pi\)
\(138\) −35.0112 −2.98035
\(139\) 10.7071i 0.908168i 0.890959 + 0.454084i \(0.150033\pi\)
−0.890959 + 0.454084i \(0.849967\pi\)
\(140\) 0.843976 0.0713290
\(141\) 4.17172i 0.351322i
\(142\) − 3.56059i − 0.298798i
\(143\) 11.7105i 0.979285i
\(144\) 11.2571 0.938091
\(145\) −6.78165 −0.563186
\(146\) 0.592838i 0.0490636i
\(147\) 17.3207i 1.42859i
\(148\) − 4.43614i − 0.364649i
\(149\) 11.1290 0.911719 0.455860 0.890052i \(-0.349332\pi\)
0.455860 + 0.890052i \(0.349332\pi\)
\(150\) 5.22511i 0.426629i
\(151\) −16.0861 −1.30907 −0.654535 0.756032i \(-0.727135\pi\)
−0.654535 + 0.756032i \(0.727135\pi\)
\(152\) −4.26702 −0.346101
\(153\) 0 0
\(154\) −1.90849 −0.153790
\(155\) −4.81801 −0.386992
\(156\) 27.0591i 2.16646i
\(157\) 2.63326 0.210157 0.105079 0.994464i \(-0.466491\pi\)
0.105079 + 0.994464i \(0.466491\pi\)
\(158\) 11.1516i 0.887170i
\(159\) 17.1983i 1.36392i
\(160\) 8.11138i 0.641261i
\(161\) −2.47224 −0.194840
\(162\) 16.0702 1.26259
\(163\) − 19.0937i − 1.49554i −0.663959 0.747769i \(-0.731125\pi\)
0.663959 0.747769i \(-0.268875\pi\)
\(164\) 5.39772i 0.421491i
\(165\) − 6.30387i − 0.490755i
\(166\) 20.6023 1.59905
\(167\) 3.98742i 0.308556i 0.988028 + 0.154278i \(0.0493051\pi\)
−0.988028 + 0.154278i \(0.950695\pi\)
\(168\) −0.554142 −0.0427530
\(169\) 8.97524 0.690403
\(170\) 0 0
\(171\) −24.1455 −1.84645
\(172\) 26.7871 2.04250
\(173\) − 14.6078i − 1.11061i −0.831646 0.555307i \(-0.812601\pi\)
0.831646 0.555307i \(-0.187399\pi\)
\(174\) 35.4349 2.68631
\(175\) 0.368961i 0.0278908i
\(176\) − 8.34991i − 0.629398i
\(177\) 1.22229i 0.0918733i
\(178\) −8.91981 −0.668568
\(179\) −14.7452 −1.10211 −0.551054 0.834469i \(-0.685774\pi\)
−0.551054 + 0.834469i \(0.685774\pi\)
\(180\) − 7.70378i − 0.574206i
\(181\) − 11.2615i − 0.837059i −0.908203 0.418529i \(-0.862546\pi\)
0.908203 0.418529i \(-0.137454\pi\)
\(182\) 3.58135i 0.265467i
\(183\) −17.3692 −1.28397
\(184\) 3.98799i 0.293999i
\(185\) 1.93935 0.142584
\(186\) 25.1747 1.84590
\(187\) 0 0
\(188\) 3.78153 0.275797
\(189\) −0.342503 −0.0249134
\(190\) − 14.8450i − 1.07697i
\(191\) −21.4934 −1.55521 −0.777604 0.628754i \(-0.783565\pi\)
−0.777604 + 0.628754i \(0.783565\pi\)
\(192\) − 25.5135i − 1.84128i
\(193\) 1.42208i 0.102363i 0.998689 + 0.0511817i \(0.0162988\pi\)
−0.998689 + 0.0511817i \(0.983701\pi\)
\(194\) 26.3919i 1.89483i
\(195\) −11.8294 −0.847123
\(196\) 15.7007 1.12148
\(197\) 17.4127i 1.24060i 0.784363 + 0.620302i \(0.212990\pi\)
−0.784363 + 0.620302i \(0.787010\pi\)
\(198\) 17.4206i 1.23803i
\(199\) 17.8876i 1.26802i 0.773325 + 0.634010i \(0.218592\pi\)
−0.773325 + 0.634010i \(0.781408\pi\)
\(200\) 0.595174 0.0420851
\(201\) − 4.73093i − 0.333694i
\(202\) 18.8126 1.32365
\(203\) 2.50217 0.175618
\(204\) 0 0
\(205\) −2.35972 −0.164810
\(206\) −9.89362 −0.689321
\(207\) 22.5665i 1.56848i
\(208\) −15.6689 −1.08644
\(209\) 17.9098i 1.23885i
\(210\) − 1.92786i − 0.133035i
\(211\) − 7.17979i − 0.494277i −0.968980 0.247139i \(-0.920510\pi\)
0.968980 0.247139i \(-0.0794903\pi\)
\(212\) 15.5897 1.07071
\(213\) −4.33930 −0.297324
\(214\) 5.90557i 0.403697i
\(215\) 11.7105i 0.798651i
\(216\) 0.552493i 0.0375924i
\(217\) 1.77766 0.120675
\(218\) 19.5645i 1.32507i
\(219\) 0.722494 0.0488216
\(220\) −5.71425 −0.385255
\(221\) 0 0
\(222\) −10.1333 −0.680104
\(223\) 3.93334 0.263396 0.131698 0.991290i \(-0.457957\pi\)
0.131698 + 0.991290i \(0.457957\pi\)
\(224\) − 2.99278i − 0.199964i
\(225\) 3.36786 0.224524
\(226\) − 22.1119i − 1.47086i
\(227\) − 3.47984i − 0.230965i −0.993310 0.115483i \(-0.963159\pi\)
0.993310 0.115483i \(-0.0368414\pi\)
\(228\) 41.3835i 2.74069i
\(229\) −4.41164 −0.291529 −0.145765 0.989319i \(-0.546564\pi\)
−0.145765 + 0.989319i \(0.546564\pi\)
\(230\) −13.8743 −0.914841
\(231\) 2.32588i 0.153032i
\(232\) − 4.03626i − 0.264993i
\(233\) 15.6666i 1.02635i 0.858284 + 0.513175i \(0.171531\pi\)
−0.858284 + 0.513175i \(0.828469\pi\)
\(234\) 32.6904 2.13704
\(235\) 1.65317i 0.107841i
\(236\) 1.10797 0.0721227
\(237\) 13.5904 0.882793
\(238\) 0 0
\(239\) −6.59116 −0.426346 −0.213173 0.977014i \(-0.568380\pi\)
−0.213173 + 0.977014i \(0.568380\pi\)
\(240\) 8.43468 0.544456
\(241\) 4.38042i 0.282167i 0.989998 + 0.141084i \(0.0450587\pi\)
−0.989998 + 0.141084i \(0.954941\pi\)
\(242\) −9.85506 −0.633507
\(243\) − 22.3697i − 1.43502i
\(244\) 15.7446i 1.00794i
\(245\) 6.86387i 0.438516i
\(246\) 12.3298 0.786121
\(247\) 33.6084 2.13845
\(248\) − 2.86755i − 0.182090i
\(249\) − 25.1081i − 1.59116i
\(250\) 2.07061i 0.130957i
\(251\) 4.30290 0.271597 0.135798 0.990736i \(-0.456640\pi\)
0.135798 + 0.990736i \(0.456640\pi\)
\(252\) 2.84240i 0.179054i
\(253\) 16.7387 1.05235
\(254\) 32.5739 2.04387
\(255\) 0 0
\(256\) 10.4639 0.653991
\(257\) −10.5366 −0.657254 −0.328627 0.944460i \(-0.606586\pi\)
−0.328627 + 0.944460i \(0.606586\pi\)
\(258\) − 61.1888i − 3.80945i
\(259\) −0.715544 −0.0444618
\(260\) 10.7230i 0.665012i
\(261\) − 22.8397i − 1.41374i
\(262\) − 8.47213i − 0.523410i
\(263\) −13.6253 −0.840173 −0.420086 0.907484i \(-0.638000\pi\)
−0.420086 + 0.907484i \(0.638000\pi\)
\(264\) 3.75189 0.230913
\(265\) 6.81536i 0.418664i
\(266\) 5.47723i 0.335831i
\(267\) 10.8706i 0.665270i
\(268\) −4.28844 −0.261958
\(269\) 15.6073i 0.951593i 0.879555 + 0.475796i \(0.157840\pi\)
−0.879555 + 0.475796i \(0.842160\pi\)
\(270\) −1.92213 −0.116977
\(271\) −9.66560 −0.587143 −0.293572 0.955937i \(-0.594844\pi\)
−0.293572 + 0.955937i \(0.594844\pi\)
\(272\) 0 0
\(273\) 4.36460 0.264158
\(274\) 33.5737 2.02826
\(275\) − 2.49810i − 0.150641i
\(276\) 38.6774 2.32810
\(277\) 1.35066i 0.0811535i 0.999176 + 0.0405767i \(0.0129195\pi\)
−0.999176 + 0.0405767i \(0.987080\pi\)
\(278\) − 22.1703i − 1.32969i
\(279\) − 16.2264i − 0.971450i
\(280\) −0.219596 −0.0131234
\(281\) 15.8582 0.946020 0.473010 0.881057i \(-0.343167\pi\)
0.473010 + 0.881057i \(0.343167\pi\)
\(282\) − 8.63802i − 0.514387i
\(283\) − 29.3390i − 1.74402i −0.489488 0.872010i \(-0.662816\pi\)
0.489488 0.872010i \(-0.337184\pi\)
\(284\) 3.93344i 0.233407i
\(285\) −18.0917 −1.07166
\(286\) − 24.2480i − 1.43381i
\(287\) 0.870646 0.0513926
\(288\) −27.3180 −1.60973
\(289\) 0 0
\(290\) 14.0422 0.824585
\(291\) 32.1639 1.88548
\(292\) − 0.654917i − 0.0383261i
\(293\) 20.6478 1.20626 0.603129 0.797644i \(-0.293920\pi\)
0.603129 + 0.797644i \(0.293920\pi\)
\(294\) − 35.8645i − 2.09166i
\(295\) 0.484372i 0.0282012i
\(296\) 1.15425i 0.0670894i
\(297\) 2.31896 0.134560
\(298\) −23.0437 −1.33489
\(299\) − 31.4107i − 1.81653i
\(300\) − 5.77226i − 0.333262i
\(301\) − 4.32073i − 0.249042i
\(302\) 33.3081 1.91667
\(303\) − 22.9270i − 1.31712i
\(304\) −23.9637 −1.37441
\(305\) −6.88307 −0.394123
\(306\) 0 0
\(307\) 16.3437 0.932787 0.466393 0.884577i \(-0.345553\pi\)
0.466393 + 0.884577i \(0.345553\pi\)
\(308\) 2.10834 0.120134
\(309\) 12.0574i 0.685921i
\(310\) 9.97624 0.566613
\(311\) − 35.1101i − 1.99091i −0.0952411 0.995454i \(-0.530362\pi\)
0.0952411 0.995454i \(-0.469638\pi\)
\(312\) − 7.04056i − 0.398593i
\(313\) 31.3134i 1.76994i 0.465651 + 0.884968i \(0.345820\pi\)
−0.465651 + 0.884968i \(0.654180\pi\)
\(314\) −5.45247 −0.307701
\(315\) −1.24261 −0.0700132
\(316\) − 12.3193i − 0.693014i
\(317\) − 12.5497i − 0.704862i −0.935838 0.352431i \(-0.885355\pi\)
0.935838 0.352431i \(-0.114645\pi\)
\(318\) − 35.6111i − 1.99697i
\(319\) −16.9413 −0.948528
\(320\) − 10.1105i − 0.565195i
\(321\) 7.19714 0.401705
\(322\) 5.11906 0.285274
\(323\) 0 0
\(324\) −17.7530 −0.986278
\(325\) −4.68778 −0.260031
\(326\) 39.5358i 2.18968i
\(327\) 23.8433 1.31854
\(328\) − 1.40445i − 0.0775475i
\(329\) − 0.609957i − 0.0336280i
\(330\) 13.0529i 0.718537i
\(331\) 0.497450 0.0273423 0.0136712 0.999907i \(-0.495648\pi\)
0.0136712 + 0.999907i \(0.495648\pi\)
\(332\) −22.7597 −1.24910
\(333\) 6.53146i 0.357922i
\(334\) − 8.25640i − 0.451770i
\(335\) − 1.87478i − 0.102430i
\(336\) −3.11207 −0.169777
\(337\) − 33.5675i − 1.82854i −0.405108 0.914269i \(-0.632766\pi\)
0.405108 0.914269i \(-0.367234\pi\)
\(338\) −18.5843 −1.01085
\(339\) −26.9478 −1.46360
\(340\) 0 0
\(341\) −12.0359 −0.651780
\(342\) 49.9959 2.70347
\(343\) − 5.11523i − 0.276196i
\(344\) −6.96979 −0.375786
\(345\) 16.9086i 0.910328i
\(346\) 30.2472i 1.62610i
\(347\) 26.3010i 1.41191i 0.708257 + 0.705955i \(0.249482\pi\)
−0.708257 + 0.705955i \(0.750518\pi\)
\(348\) −39.1455 −2.09842
\(349\) −16.7865 −0.898560 −0.449280 0.893391i \(-0.648319\pi\)
−0.449280 + 0.893391i \(0.648319\pi\)
\(350\) − 0.763976i − 0.0408362i
\(351\) − 4.35161i − 0.232272i
\(352\) 20.2630i 1.08002i
\(353\) 23.4532 1.24829 0.624144 0.781309i \(-0.285448\pi\)
0.624144 + 0.781309i \(0.285448\pi\)
\(354\) − 2.53090i − 0.134516i
\(355\) −1.71958 −0.0912660
\(356\) 9.85386 0.522253
\(357\) 0 0
\(358\) 30.5316 1.61365
\(359\) −18.1568 −0.958279 −0.479139 0.877739i \(-0.659051\pi\)
−0.479139 + 0.877739i \(0.659051\pi\)
\(360\) 2.00446i 0.105644i
\(361\) 32.4000 1.70526
\(362\) 23.3182i 1.22558i
\(363\) 12.0104i 0.630382i
\(364\) − 3.95637i − 0.207370i
\(365\) 0.286310 0.0149862
\(366\) 35.9648 1.87991
\(367\) − 13.6904i − 0.714635i −0.933983 0.357318i \(-0.883691\pi\)
0.933983 0.357318i \(-0.116309\pi\)
\(368\) 22.3966i 1.16750i
\(369\) − 7.94723i − 0.413716i
\(370\) −4.01564 −0.208763
\(371\) − 2.51460i − 0.130552i
\(372\) −27.8109 −1.44193
\(373\) −10.1594 −0.526035 −0.263018 0.964791i \(-0.584718\pi\)
−0.263018 + 0.964791i \(0.584718\pi\)
\(374\) 0 0
\(375\) 2.52346 0.130311
\(376\) −0.983925 −0.0507421
\(377\) 31.7909i 1.63731i
\(378\) 0.709190 0.0364768
\(379\) 4.16411i 0.213896i 0.994265 + 0.106948i \(0.0341078\pi\)
−0.994265 + 0.106948i \(0.965892\pi\)
\(380\) 16.3995i 0.841277i
\(381\) − 39.6979i − 2.03379i
\(382\) 44.5045 2.27705
\(383\) −0.813273 −0.0415563 −0.0207782 0.999784i \(-0.506614\pi\)
−0.0207782 + 0.999784i \(0.506614\pi\)
\(384\) 11.8911i 0.606815i
\(385\) 0.921703i 0.0469743i
\(386\) − 2.94457i − 0.149875i
\(387\) −39.4394 −2.00482
\(388\) − 29.1556i − 1.48015i
\(389\) −3.11676 −0.158026 −0.0790131 0.996874i \(-0.525177\pi\)
−0.0790131 + 0.996874i \(0.525177\pi\)
\(390\) 24.4942 1.24031
\(391\) 0 0
\(392\) −4.08519 −0.206333
\(393\) −10.3250 −0.520828
\(394\) − 36.0550i − 1.81642i
\(395\) 5.38563 0.270980
\(396\) − 19.2448i − 0.967089i
\(397\) − 16.4046i − 0.823322i −0.911337 0.411661i \(-0.864949\pi\)
0.911337 0.411661i \(-0.135051\pi\)
\(398\) − 37.0384i − 1.85657i
\(399\) 6.67512 0.334174
\(400\) 3.34250 0.167125
\(401\) 14.4451i 0.721356i 0.932690 + 0.360678i \(0.117455\pi\)
−0.932690 + 0.360678i \(0.882545\pi\)
\(402\) 9.79593i 0.488576i
\(403\) 22.5858i 1.12508i
\(404\) −20.7826 −1.03397
\(405\) − 7.76109i − 0.385652i
\(406\) −5.18102 −0.257130
\(407\) 4.84469 0.240142
\(408\) 0 0
\(409\) 32.2867 1.59648 0.798238 0.602342i \(-0.205765\pi\)
0.798238 + 0.602342i \(0.205765\pi\)
\(410\) 4.88608 0.241306
\(411\) − 40.9164i − 2.01826i
\(412\) 10.9296 0.538464
\(413\) − 0.178714i − 0.00879396i
\(414\) − 46.7266i − 2.29649i
\(415\) − 9.94985i − 0.488419i
\(416\) 38.0243 1.86430
\(417\) −27.0191 −1.32313
\(418\) − 37.0843i − 1.81385i
\(419\) − 18.8776i − 0.922230i −0.887340 0.461115i \(-0.847450\pi\)
0.887340 0.461115i \(-0.152550\pi\)
\(420\) 2.12974i 0.103921i
\(421\) 2.06006 0.100401 0.0502006 0.998739i \(-0.484014\pi\)
0.0502006 + 0.998739i \(0.484014\pi\)
\(422\) 14.8666i 0.723693i
\(423\) −5.56766 −0.270709
\(424\) −4.05632 −0.196993
\(425\) 0 0
\(426\) 8.98502 0.435326
\(427\) 2.53958 0.122899
\(428\) − 6.52398i − 0.315348i
\(429\) −29.5511 −1.42674
\(430\) − 24.2479i − 1.16934i
\(431\) 3.72759i 0.179552i 0.995962 + 0.0897759i \(0.0286151\pi\)
−0.995962 + 0.0897759i \(0.971385\pi\)
\(432\) 3.10281i 0.149284i
\(433\) 27.9634 1.34383 0.671917 0.740626i \(-0.265471\pi\)
0.671917 + 0.740626i \(0.265471\pi\)
\(434\) −3.68085 −0.176686
\(435\) − 17.1132i − 0.820517i
\(436\) − 21.6132i − 1.03508i
\(437\) − 48.0388i − 2.29801i
\(438\) −1.49600 −0.0714819
\(439\) 12.5444i 0.598711i 0.954142 + 0.299356i \(0.0967717\pi\)
−0.954142 + 0.299356i \(0.903228\pi\)
\(440\) 1.48680 0.0708806
\(441\) −23.1166 −1.10079
\(442\) 0 0
\(443\) −19.9529 −0.947991 −0.473995 0.880527i \(-0.657189\pi\)
−0.473995 + 0.880527i \(0.657189\pi\)
\(444\) 11.1944 0.531264
\(445\) 4.30781i 0.204210i
\(446\) −8.14442 −0.385649
\(447\) 28.0835i 1.32830i
\(448\) 3.73039i 0.176244i
\(449\) 20.1861i 0.952640i 0.879272 + 0.476320i \(0.158030\pi\)
−0.879272 + 0.476320i \(0.841970\pi\)
\(450\) −6.97354 −0.328736
\(451\) −5.89483 −0.277577
\(452\) 24.4273i 1.14896i
\(453\) − 40.5927i − 1.90721i
\(454\) 7.20540i 0.338166i
\(455\) 1.72961 0.0810852
\(456\) − 10.7677i − 0.504243i
\(457\) 37.7391 1.76536 0.882681 0.469973i \(-0.155737\pi\)
0.882681 + 0.469973i \(0.155737\pi\)
\(458\) 9.13479 0.426841
\(459\) 0 0
\(460\) 15.3271 0.714630
\(461\) 38.1740 1.77794 0.888970 0.457966i \(-0.151422\pi\)
0.888970 + 0.457966i \(0.151422\pi\)
\(462\) − 4.81600i − 0.224061i
\(463\) −13.1481 −0.611044 −0.305522 0.952185i \(-0.598831\pi\)
−0.305522 + 0.952185i \(0.598831\pi\)
\(464\) − 22.6677i − 1.05232i
\(465\) − 12.1581i − 0.563817i
\(466\) − 32.4394i − 1.50272i
\(467\) 16.2167 0.750422 0.375211 0.926940i \(-0.377570\pi\)
0.375211 + 0.926940i \(0.377570\pi\)
\(468\) −36.1136 −1.66935
\(469\) 0.691720i 0.0319407i
\(470\) − 3.42308i − 0.157895i
\(471\) 6.64494i 0.306183i
\(472\) −0.288285 −0.0132694
\(473\) 29.2541i 1.34510i
\(474\) −28.1405 −1.29254
\(475\) −7.16938 −0.328954
\(476\) 0 0
\(477\) −22.9532 −1.05096
\(478\) 13.6477 0.624233
\(479\) 2.07499i 0.0948086i 0.998876 + 0.0474043i \(0.0150949\pi\)
−0.998876 + 0.0474043i \(0.984905\pi\)
\(480\) −20.4688 −0.934267
\(481\) − 9.09123i − 0.414525i
\(482\) − 9.07015i − 0.413134i
\(483\) − 6.23862i − 0.283867i
\(484\) 10.8870 0.494865
\(485\) 12.7460 0.578764
\(486\) 46.3189i 2.10107i
\(487\) 24.0260i 1.08872i 0.838851 + 0.544361i \(0.183228\pi\)
−0.838851 + 0.544361i \(0.816772\pi\)
\(488\) − 4.09662i − 0.185445i
\(489\) 48.1824 2.17888
\(490\) − 14.2124i − 0.642051i
\(491\) 22.3803 1.01001 0.505005 0.863116i \(-0.331491\pi\)
0.505005 + 0.863116i \(0.331491\pi\)
\(492\) −13.6210 −0.614080
\(493\) 0 0
\(494\) −69.5901 −3.13100
\(495\) 8.41327 0.378148
\(496\) − 16.1042i − 0.723101i
\(497\) 0.634459 0.0284594
\(498\) 51.9891i 2.32969i
\(499\) 3.69807i 0.165548i 0.996568 + 0.0827742i \(0.0263780\pi\)
−0.996568 + 0.0827742i \(0.973622\pi\)
\(500\) − 2.28744i − 0.102297i
\(501\) −10.0621 −0.449541
\(502\) −8.90965 −0.397657
\(503\) − 18.4617i − 0.823166i −0.911372 0.411583i \(-0.864976\pi\)
0.911372 0.411583i \(-0.135024\pi\)
\(504\) − 0.739569i − 0.0329430i
\(505\) − 9.08552i − 0.404300i
\(506\) −34.6593 −1.54079
\(507\) 22.6487i 1.00586i
\(508\) −35.9849 −1.59657
\(509\) −17.3588 −0.769415 −0.384708 0.923039i \(-0.625698\pi\)
−0.384708 + 0.923039i \(0.625698\pi\)
\(510\) 0 0
\(511\) −0.105637 −0.00467312
\(512\) −31.0910 −1.37404
\(513\) − 6.65525i − 0.293837i
\(514\) 21.8172 0.962314
\(515\) 4.77811i 0.210549i
\(516\) 67.5962i 2.97576i
\(517\) 4.12980i 0.181628i
\(518\) 1.48162 0.0650984
\(519\) 36.8623 1.61808
\(520\) − 2.79004i − 0.122351i
\(521\) − 13.9650i − 0.611819i −0.952061 0.305909i \(-0.901040\pi\)
0.952061 0.305909i \(-0.0989604\pi\)
\(522\) 47.2921i 2.06992i
\(523\) −5.59638 −0.244712 −0.122356 0.992486i \(-0.539045\pi\)
−0.122356 + 0.992486i \(0.539045\pi\)
\(524\) 9.35929i 0.408862i
\(525\) −0.931060 −0.0406348
\(526\) 28.2127 1.23013
\(527\) 0 0
\(528\) 21.0707 0.916984
\(529\) −21.8974 −0.952062
\(530\) − 14.1120i − 0.612985i
\(531\) −1.63130 −0.0707923
\(532\) − 6.05078i − 0.262335i
\(533\) 11.0619i 0.479142i
\(534\) − 22.5088i − 0.974052i
\(535\) 2.85209 0.123307
\(536\) 1.11582 0.0481960
\(537\) − 37.2090i − 1.60569i
\(538\) − 32.3166i − 1.39327i
\(539\) 17.1466i 0.738558i
\(540\) 2.12340 0.0913768
\(541\) 39.0998i 1.68103i 0.541787 + 0.840516i \(0.317748\pi\)
−0.541787 + 0.840516i \(0.682252\pi\)
\(542\) 20.0137 0.859662
\(543\) 28.4179 1.21953
\(544\) 0 0
\(545\) 9.44863 0.404735
\(546\) −9.03740 −0.386765
\(547\) 29.3984i 1.25698i 0.777816 + 0.628492i \(0.216328\pi\)
−0.777816 + 0.628492i \(0.783672\pi\)
\(548\) −37.0894 −1.58438
\(549\) − 23.1812i − 0.989351i
\(550\) 5.17260i 0.220561i
\(551\) 48.6202i 2.07129i
\(552\) −10.0635 −0.428333
\(553\) −1.98709 −0.0844995
\(554\) − 2.79670i − 0.118820i
\(555\) 4.89387i 0.207733i
\(556\) 24.4919i 1.03869i
\(557\) 27.9399 1.18385 0.591927 0.805992i \(-0.298368\pi\)
0.591927 + 0.805992i \(0.298368\pi\)
\(558\) 33.5986i 1.42234i
\(559\) 54.8963 2.32186
\(560\) −1.23325 −0.0521145
\(561\) 0 0
\(562\) −32.8362 −1.38511
\(563\) 11.2994 0.476213 0.238106 0.971239i \(-0.423473\pi\)
0.238106 + 0.971239i \(0.423473\pi\)
\(564\) 9.54256i 0.401814i
\(565\) −10.6789 −0.449264
\(566\) 60.7496i 2.55350i
\(567\) 2.86354i 0.120257i
\(568\) − 1.02345i − 0.0429430i
\(569\) 12.1204 0.508114 0.254057 0.967189i \(-0.418235\pi\)
0.254057 + 0.967189i \(0.418235\pi\)
\(570\) 37.4608 1.56906
\(571\) − 10.9497i − 0.458232i −0.973399 0.229116i \(-0.926416\pi\)
0.973399 0.229116i \(-0.0735836\pi\)
\(572\) 26.7871i 1.12003i
\(573\) − 54.2378i − 2.26582i
\(574\) −1.80277 −0.0752462
\(575\) 6.70055i 0.279432i
\(576\) 34.0508 1.41878
\(577\) −9.09883 −0.378789 −0.189395 0.981901i \(-0.560653\pi\)
−0.189395 + 0.981901i \(0.560653\pi\)
\(578\) 0 0
\(579\) −3.58856 −0.149135
\(580\) −15.5126 −0.644126
\(581\) 3.67111i 0.152303i
\(582\) −66.5991 −2.76062
\(583\) 17.0255i 0.705123i
\(584\) 0.170404i 0.00705138i
\(585\) − 15.7878i − 0.652745i
\(586\) −42.7536 −1.76614
\(587\) −11.2991 −0.466362 −0.233181 0.972433i \(-0.574913\pi\)
−0.233181 + 0.972433i \(0.574913\pi\)
\(588\) 39.6201i 1.63390i
\(589\) 34.5422i 1.42329i
\(590\) − 1.00295i − 0.0412907i
\(591\) −43.9403 −1.80746
\(592\) 6.48228i 0.266420i
\(593\) −42.8620 −1.76013 −0.880066 0.474851i \(-0.842502\pi\)
−0.880066 + 0.474851i \(0.842502\pi\)
\(594\) −4.80167 −0.197015
\(595\) 0 0
\(596\) 25.4568 1.04275
\(597\) −45.1388 −1.84741
\(598\) 65.0394i 2.65966i
\(599\) −21.0108 −0.858478 −0.429239 0.903191i \(-0.641218\pi\)
−0.429239 + 0.903191i \(0.641218\pi\)
\(600\) 1.50190i 0.0613147i
\(601\) 19.4501i 0.793387i 0.917951 + 0.396693i \(0.129842\pi\)
−0.917951 + 0.396693i \(0.870158\pi\)
\(602\) 8.94655i 0.364634i
\(603\) 6.31399 0.257126
\(604\) −36.7960 −1.49721
\(605\) 4.75949i 0.193501i
\(606\) 47.4729i 1.92845i
\(607\) 27.4308i 1.11338i 0.830719 + 0.556691i \(0.187929\pi\)
−0.830719 + 0.556691i \(0.812071\pi\)
\(608\) 58.1535 2.35844
\(609\) 6.31412i 0.255861i
\(610\) 14.2522 0.577053
\(611\) 7.74971 0.313520
\(612\) 0 0
\(613\) 0.297602 0.0120200 0.00601001 0.999982i \(-0.498087\pi\)
0.00601001 + 0.999982i \(0.498087\pi\)
\(614\) −33.8416 −1.36573
\(615\) − 5.95468i − 0.240116i
\(616\) −0.548573 −0.0221026
\(617\) − 12.6680i − 0.509995i −0.966942 0.254997i \(-0.917925\pi\)
0.966942 0.254997i \(-0.0820746\pi\)
\(618\) − 24.9662i − 1.00429i
\(619\) 9.75795i 0.392205i 0.980583 + 0.196103i \(0.0628285\pi\)
−0.980583 + 0.196103i \(0.937171\pi\)
\(620\) −11.0209 −0.442610
\(621\) −6.22005 −0.249602
\(622\) 72.6993i 2.91498i
\(623\) − 1.58942i − 0.0636786i
\(624\) − 39.5399i − 1.58286i
\(625\) 1.00000 0.0400000
\(626\) − 64.8379i − 2.59144i
\(627\) −45.1948 −1.80491
\(628\) 6.02343 0.240361
\(629\) 0 0
\(630\) 2.57297 0.102509
\(631\) −40.9574 −1.63049 −0.815244 0.579117i \(-0.803397\pi\)
−0.815244 + 0.579117i \(0.803397\pi\)
\(632\) 3.20538i 0.127503i
\(633\) 18.1179 0.720123
\(634\) 25.9856i 1.03202i
\(635\) − 15.7315i − 0.624287i
\(636\) 39.3401i 1.55994i
\(637\) 32.1763 1.27487
\(638\) 35.0788 1.38878
\(639\) − 5.79132i − 0.229101i
\(640\) 4.71221i 0.186267i
\(641\) − 3.96498i − 0.156607i −0.996930 0.0783037i \(-0.975050\pi\)
0.996930 0.0783037i \(-0.0249504\pi\)
\(642\) −14.9025 −0.588154
\(643\) 15.4283i 0.608433i 0.952603 + 0.304217i \(0.0983947\pi\)
−0.952603 + 0.304217i \(0.901605\pi\)
\(644\) −5.65511 −0.222842
\(645\) −29.5510 −1.16357
\(646\) 0 0
\(647\) −10.5735 −0.415687 −0.207843 0.978162i \(-0.566644\pi\)
−0.207843 + 0.978162i \(0.566644\pi\)
\(648\) 4.61919 0.181459
\(649\) 1.21001i 0.0474971i
\(650\) 9.70657 0.380723
\(651\) 4.48586i 0.175815i
\(652\) − 43.6758i − 1.71048i
\(653\) − 14.5705i − 0.570189i −0.958499 0.285094i \(-0.907975\pi\)
0.958499 0.285094i \(-0.0920250\pi\)
\(654\) −49.3702 −1.93053
\(655\) −4.09160 −0.159872
\(656\) − 7.88738i − 0.307951i
\(657\) 0.964254i 0.0376191i
\(658\) 1.26298i 0.0492363i
\(659\) −23.7883 −0.926660 −0.463330 0.886186i \(-0.653346\pi\)
−0.463330 + 0.886186i \(0.653346\pi\)
\(660\) − 14.4197i − 0.561286i
\(661\) −9.91502 −0.385650 −0.192825 0.981233i \(-0.561765\pi\)
−0.192825 + 0.981233i \(0.561765\pi\)
\(662\) −1.03003 −0.0400331
\(663\) 0 0
\(664\) 5.92189 0.229814
\(665\) 2.64522 0.102577
\(666\) − 13.5241i − 0.524049i
\(667\) 45.4408 1.75948
\(668\) 9.12097i 0.352901i
\(669\) 9.92562i 0.383747i
\(670\) 3.88194i 0.149972i
\(671\) −17.1946 −0.663790
\(672\) 7.55218 0.291331
\(673\) − 3.97532i − 0.153237i −0.997060 0.0766186i \(-0.975588\pi\)
0.997060 0.0766186i \(-0.0244124\pi\)
\(674\) 69.5053i 2.67724i
\(675\) 0.928289i 0.0357299i
\(676\) 20.5303 0.789627
\(677\) − 20.3678i − 0.782800i −0.920221 0.391400i \(-0.871991\pi\)
0.920221 0.391400i \(-0.128009\pi\)
\(678\) 55.7984 2.14293
\(679\) −4.70276 −0.180475
\(680\) 0 0
\(681\) 8.78125 0.336498
\(682\) 24.9217 0.954300
\(683\) 28.9372i 1.10725i 0.832766 + 0.553625i \(0.186756\pi\)
−0.832766 + 0.553625i \(0.813244\pi\)
\(684\) −55.2313 −2.11182
\(685\) − 16.2144i − 0.619520i
\(686\) 10.5917i 0.404391i
\(687\) − 11.1326i − 0.424735i
\(688\) −39.1424 −1.49229
\(689\) 31.9489 1.21716
\(690\) − 35.0112i − 1.33285i
\(691\) 5.32679i 0.202641i 0.994854 + 0.101320i \(0.0323067\pi\)
−0.994854 + 0.101320i \(0.967693\pi\)
\(692\) − 33.4145i − 1.27023i
\(693\) −3.10417 −0.117918
\(694\) − 54.4591i − 2.06724i
\(695\) −10.7071 −0.406145
\(696\) 10.1854 0.386075
\(697\) 0 0
\(698\) 34.7583 1.31562
\(699\) −39.5340 −1.49531
\(700\) 0.843976i 0.0318993i
\(701\) 42.2699 1.59651 0.798256 0.602318i \(-0.205756\pi\)
0.798256 + 0.602318i \(0.205756\pi\)
\(702\) 9.01050i 0.340079i
\(703\) − 13.9039i − 0.524396i
\(704\) − 25.2571i − 0.951913i
\(705\) −4.17172 −0.157116
\(706\) −48.5625 −1.82768
\(707\) 3.35220i 0.126073i
\(708\) 2.79592i 0.105077i
\(709\) 48.3638i 1.81634i 0.418603 + 0.908169i \(0.362520\pi\)
−0.418603 + 0.908169i \(0.637480\pi\)
\(710\) 3.56059 0.133627
\(711\) 18.1381i 0.680230i
\(712\) −2.56390 −0.0960861
\(713\) 32.2834 1.20902
\(714\) 0 0
\(715\) −11.7105 −0.437949
\(716\) −33.7288 −1.26050
\(717\) − 16.6325i − 0.621153i
\(718\) 37.5957 1.40306
\(719\) − 8.24579i − 0.307516i −0.988109 0.153758i \(-0.950862\pi\)
0.988109 0.153758i \(-0.0491376\pi\)
\(720\) 11.2571i 0.419527i
\(721\) − 1.76294i − 0.0656552i
\(722\) −67.0878 −2.49675
\(723\) −11.0538 −0.411096
\(724\) − 25.7599i − 0.957360i
\(725\) − 6.78165i − 0.251864i
\(726\) − 24.8689i − 0.922970i
\(727\) −6.46089 −0.239621 −0.119811 0.992797i \(-0.538229\pi\)
−0.119811 + 0.992797i \(0.538229\pi\)
\(728\) 1.02942i 0.0381527i
\(729\) 33.1658 1.22836
\(730\) −0.592838 −0.0219419
\(731\) 0 0
\(732\) −39.7309 −1.46850
\(733\) 15.9605 0.589515 0.294758 0.955572i \(-0.404761\pi\)
0.294758 + 0.955572i \(0.404761\pi\)
\(734\) 28.3476i 1.04633i
\(735\) −17.3207 −0.638884
\(736\) − 54.3507i − 2.00339i
\(737\) − 4.68339i − 0.172515i
\(738\) 16.4556i 0.605740i
\(739\) 0.760943 0.0279918 0.0139959 0.999902i \(-0.495545\pi\)
0.0139959 + 0.999902i \(0.495545\pi\)
\(740\) 4.43614 0.163076
\(741\) 84.8096i 3.11556i
\(742\) 5.20677i 0.191147i
\(743\) − 39.3288i − 1.44283i −0.692501 0.721417i \(-0.743491\pi\)
0.692501 0.721417i \(-0.256509\pi\)
\(744\) 7.23617 0.265291
\(745\) 11.1290i 0.407733i
\(746\) 21.0362 0.770191
\(747\) 33.5097 1.22606
\(748\) 0 0
\(749\) −1.05231 −0.0384506
\(750\) −5.22511 −0.190794
\(751\) − 33.7907i − 1.23304i −0.787339 0.616521i \(-0.788542\pi\)
0.787339 0.616521i \(-0.211458\pi\)
\(752\) −5.52574 −0.201503
\(753\) 10.8582i 0.395695i
\(754\) − 65.8266i − 2.39726i
\(755\) − 16.0861i − 0.585434i
\(756\) −0.783454 −0.0284939
\(757\) −23.0663 −0.838359 −0.419180 0.907903i \(-0.637682\pi\)
−0.419180 + 0.907903i \(0.637682\pi\)
\(758\) − 8.62225i − 0.313174i
\(759\) 42.2394i 1.53319i
\(760\) − 4.26702i − 0.154781i
\(761\) −22.8435 −0.828076 −0.414038 0.910260i \(-0.635882\pi\)
−0.414038 + 0.910260i \(0.635882\pi\)
\(762\) 82.1990i 2.97776i
\(763\) −3.48618 −0.126208
\(764\) −49.1648 −1.77872
\(765\) 0 0
\(766\) 1.68397 0.0608445
\(767\) 2.27063 0.0819876
\(768\) 26.4052i 0.952814i
\(769\) −3.68785 −0.132987 −0.0664936 0.997787i \(-0.521181\pi\)
−0.0664936 + 0.997787i \(0.521181\pi\)
\(770\) − 1.90849i − 0.0687772i
\(771\) − 26.5887i − 0.957567i
\(772\) 3.25292i 0.117075i
\(773\) 5.04027 0.181286 0.0906430 0.995883i \(-0.471108\pi\)
0.0906430 + 0.995883i \(0.471108\pi\)
\(774\) 81.6638 2.93534
\(775\) − 4.81801i − 0.173068i
\(776\) 7.58606i 0.272324i
\(777\) − 1.80565i − 0.0647773i
\(778\) 6.45361 0.231373
\(779\) 16.9178i 0.606141i
\(780\) −27.0591 −0.968871
\(781\) −4.29569 −0.153712
\(782\) 0 0
\(783\) 6.29533 0.224977
\(784\) −22.9425 −0.819375
\(785\) 2.63326i 0.0939852i
\(786\) 21.3791 0.762567
\(787\) 13.6490i 0.486534i 0.969959 + 0.243267i \(0.0782191\pi\)
−0.969959 + 0.243267i \(0.921781\pi\)
\(788\) 39.8305i 1.41890i
\(789\) − 34.3830i − 1.22407i
\(790\) −11.1516 −0.396754
\(791\) 3.94010 0.140094
\(792\) 5.00735i 0.177929i
\(793\) 32.2663i 1.14581i
\(794\) 33.9675i 1.20546i
\(795\) −17.1983 −0.609961
\(796\) 40.9169i 1.45026i
\(797\) 16.6869 0.591081 0.295541 0.955330i \(-0.404500\pi\)
0.295541 + 0.955330i \(0.404500\pi\)
\(798\) −13.8216 −0.489279
\(799\) 0 0
\(800\) −8.11138 −0.286780
\(801\) −14.5081 −0.512619
\(802\) − 29.9103i − 1.05617i
\(803\) 0.715232 0.0252400
\(804\) − 10.8217i − 0.381652i
\(805\) − 2.47224i − 0.0871352i
\(806\) − 46.7664i − 1.64728i
\(807\) −39.3844 −1.38640
\(808\) 5.40746 0.190234
\(809\) − 30.7399i − 1.08076i −0.841422 0.540379i \(-0.818281\pi\)
0.841422 0.540379i \(-0.181719\pi\)
\(810\) 16.0702i 0.564650i
\(811\) − 21.3840i − 0.750894i −0.926844 0.375447i \(-0.877489\pi\)
0.926844 0.375447i \(-0.122511\pi\)
\(812\) 5.72355 0.200857
\(813\) − 24.3908i − 0.855422i
\(814\) −10.0315 −0.351603
\(815\) 19.0937 0.668825
\(816\) 0 0
\(817\) 83.9571 2.93729
\(818\) −66.8534 −2.33747
\(819\) 5.82508i 0.203545i
\(820\) −5.39772 −0.188497
\(821\) 11.9090i 0.415626i 0.978169 + 0.207813i \(0.0666345\pi\)
−0.978169 + 0.207813i \(0.933366\pi\)
\(822\) 84.7220i 2.95502i
\(823\) − 19.5943i − 0.683015i −0.939879 0.341507i \(-0.889063\pi\)
0.939879 0.341507i \(-0.110937\pi\)
\(824\) −2.84381 −0.0990686
\(825\) 6.30387 0.219472
\(826\) 0.370048i 0.0128756i
\(827\) − 35.0907i − 1.22022i −0.792316 0.610111i \(-0.791125\pi\)
0.792316 0.610111i \(-0.208875\pi\)
\(828\) 51.6196i 1.79390i
\(829\) −46.3683 −1.61044 −0.805219 0.592978i \(-0.797952\pi\)
−0.805219 + 0.592978i \(0.797952\pi\)
\(830\) 20.6023i 0.715116i
\(831\) −3.40835 −0.118234
\(832\) −47.3958 −1.64315
\(833\) 0 0
\(834\) 55.9460 1.93725
\(835\) −3.98742 −0.137990
\(836\) 40.9676i 1.41690i
\(837\) 4.47251 0.154593
\(838\) 39.0882i 1.35028i
\(839\) 24.8903i 0.859309i 0.902993 + 0.429654i \(0.141365\pi\)
−0.902993 + 0.429654i \(0.858635\pi\)
\(840\) − 0.554142i − 0.0191197i
\(841\) −16.9908 −0.585890
\(842\) −4.26559 −0.147002
\(843\) 40.0176i 1.37828i
\(844\) − 16.4233i − 0.565314i
\(845\) 8.97524i 0.308758i
\(846\) 11.5285 0.396357
\(847\) − 1.75607i − 0.0603391i
\(848\) −22.7804 −0.782281
\(849\) 74.0357 2.54090
\(850\) 0 0
\(851\) −12.9947 −0.445453
\(852\) −9.92589 −0.340055
\(853\) − 28.1063i − 0.962342i −0.876627 0.481171i \(-0.840212\pi\)
0.876627 0.481171i \(-0.159788\pi\)
\(854\) −5.25850 −0.179942
\(855\) − 24.1455i − 0.825758i
\(856\) 1.69749i 0.0580189i
\(857\) − 24.5101i − 0.837250i −0.908159 0.418625i \(-0.862512\pi\)
0.908159 0.418625i \(-0.137488\pi\)
\(858\) 61.1889 2.08896
\(859\) 12.8979 0.440069 0.220034 0.975492i \(-0.429383\pi\)
0.220034 + 0.975492i \(0.429383\pi\)
\(860\) 26.7871i 0.913432i
\(861\) 2.19704i 0.0748751i
\(862\) − 7.71840i − 0.262890i
\(863\) 5.83668 0.198683 0.0993414 0.995053i \(-0.468326\pi\)
0.0993414 + 0.995053i \(0.468326\pi\)
\(864\) − 7.52970i − 0.256166i
\(865\) 14.6078 0.496681
\(866\) −57.9014 −1.96757
\(867\) 0 0
\(868\) 4.06629 0.138019
\(869\) 13.4538 0.456390
\(870\) 35.4349i 1.20136i
\(871\) −8.78854 −0.297788
\(872\) 5.62357i 0.190438i
\(873\) 42.9266i 1.45285i
\(874\) 99.4698i 3.36461i
\(875\) −0.368961 −0.0124732
\(876\) 1.65266 0.0558382
\(877\) − 18.7846i − 0.634312i −0.948373 0.317156i \(-0.897272\pi\)
0.948373 0.317156i \(-0.102728\pi\)
\(878\) − 25.9746i − 0.876600i
\(879\) 52.1040i 1.75742i
\(880\) 8.34991 0.281475
\(881\) − 45.7423i − 1.54110i −0.637380 0.770549i \(-0.719982\pi\)
0.637380 0.770549i \(-0.280018\pi\)
\(882\) 47.8655 1.61171
\(883\) 6.15932 0.207277 0.103639 0.994615i \(-0.466951\pi\)
0.103639 + 0.994615i \(0.466951\pi\)
\(884\) 0 0
\(885\) −1.22229 −0.0410870
\(886\) 41.3147 1.38800
\(887\) − 16.7476i − 0.562329i −0.959660 0.281165i \(-0.909279\pi\)
0.959660 0.281165i \(-0.0907207\pi\)
\(888\) −2.91270 −0.0977440
\(889\) 5.80432i 0.194671i
\(890\) − 8.91981i − 0.298993i
\(891\) − 19.3880i − 0.649522i
\(892\) 8.99726 0.301251
\(893\) 11.8522 0.396620
\(894\) − 58.1500i − 1.94483i
\(895\) − 14.7452i − 0.492878i
\(896\) − 1.73862i − 0.0580834i
\(897\) 79.2637 2.64654
\(898\) − 41.7976i − 1.39480i
\(899\) −32.6741 −1.08974
\(900\) 7.70378 0.256793
\(901\) 0 0
\(902\) 12.2059 0.406412
\(903\) 10.9032 0.362835
\(904\) − 6.35579i − 0.211391i
\(905\) 11.2615 0.374344
\(906\) 84.0518i 2.79243i
\(907\) − 8.12836i − 0.269898i −0.990853 0.134949i \(-0.956913\pi\)
0.990853 0.134949i \(-0.0430870\pi\)
\(908\) − 7.95992i − 0.264159i
\(909\) 30.5988 1.01490
\(910\) −3.58135 −0.118721
\(911\) − 35.6471i − 1.18104i −0.807023 0.590520i \(-0.798923\pi\)
0.807023 0.590520i \(-0.201077\pi\)
\(912\) − 60.4714i − 2.00241i
\(913\) − 24.8557i − 0.822605i
\(914\) −78.1431 −2.58474
\(915\) − 17.3692i − 0.574207i
\(916\) −10.0913 −0.333427
\(917\) 1.50964 0.0498528
\(918\) 0 0
\(919\) −24.2398 −0.799596 −0.399798 0.916603i \(-0.630920\pi\)
−0.399798 + 0.916603i \(0.630920\pi\)
\(920\) −3.98799 −0.131480
\(921\) 41.2428i 1.35900i
\(922\) −79.0435 −2.60316
\(923\) 8.06102i 0.265332i
\(924\) 5.32031i 0.175025i
\(925\) 1.93935i 0.0637654i
\(926\) 27.2246 0.894657
\(927\) −16.0920 −0.528531
\(928\) 55.0085i 1.80574i
\(929\) 33.4397i 1.09712i 0.836111 + 0.548560i \(0.184824\pi\)
−0.836111 + 0.548560i \(0.815176\pi\)
\(930\) 25.1747i 0.825510i
\(931\) 49.2097 1.61278
\(932\) 35.8363i 1.17386i
\(933\) 88.5989 2.90060
\(934\) −33.5786 −1.09873
\(935\) 0 0
\(936\) 9.39647 0.307133
\(937\) −25.6264 −0.837177 −0.418588 0.908176i \(-0.637475\pi\)
−0.418588 + 0.908176i \(0.637475\pi\)
\(938\) − 1.43228i − 0.0467657i
\(939\) −79.0181 −2.57866
\(940\) 3.78153i 0.123340i
\(941\) − 53.4661i − 1.74295i −0.490443 0.871473i \(-0.663165\pi\)
0.490443 0.871473i \(-0.336835\pi\)
\(942\) − 13.7591i − 0.448296i
\(943\) 15.8115 0.514892
\(944\) −1.61901 −0.0526944
\(945\) − 0.342503i − 0.0111416i
\(946\) − 60.5738i − 1.96943i
\(947\) 11.7772i 0.382707i 0.981521 + 0.191353i \(0.0612877\pi\)
−0.981521 + 0.191353i \(0.938712\pi\)
\(948\) 31.0873 1.00967
\(949\) − 1.34216i − 0.0435683i
\(950\) 14.8450 0.481636
\(951\) 31.6687 1.02693
\(952\) 0 0
\(953\) 23.9735 0.776576 0.388288 0.921538i \(-0.373067\pi\)
0.388288 + 0.921538i \(0.373067\pi\)
\(954\) 47.5272 1.53875
\(955\) − 21.4934i − 0.695510i
\(956\) −15.0769 −0.487621
\(957\) − 42.7506i − 1.38193i
\(958\) − 4.29650i − 0.138814i
\(959\) 5.98248i 0.193184i
\(960\) 25.5135 0.823445
\(961\) 7.78674 0.251185
\(962\) 18.8244i 0.606924i
\(963\) 9.60545i 0.309531i
\(964\) 10.0199i 0.322720i
\(965\) −1.42208 −0.0457783
\(966\) 12.9178i 0.415622i
\(967\) −45.6312 −1.46740 −0.733700 0.679473i \(-0.762208\pi\)
−0.733700 + 0.679473i \(0.762208\pi\)
\(968\) −2.83272 −0.0910471
\(969\) 0 0
\(970\) −26.3919 −0.847394
\(971\) 58.9182 1.89078 0.945388 0.325946i \(-0.105683\pi\)
0.945388 + 0.325946i \(0.105683\pi\)
\(972\) − 51.1693i − 1.64125i
\(973\) 3.95052 0.126648
\(974\) − 49.7486i − 1.59405i
\(975\) − 11.8294i − 0.378845i
\(976\) − 23.0067i − 0.736425i
\(977\) 24.7610 0.792176 0.396088 0.918213i \(-0.370368\pi\)
0.396088 + 0.918213i \(0.370368\pi\)
\(978\) −99.7670 −3.19020
\(979\) 10.7614i 0.343934i
\(980\) 15.7007i 0.501540i
\(981\) 31.8217i 1.01599i
\(982\) −46.3410 −1.47880
\(983\) 9.89686i 0.315661i 0.987466 + 0.157830i \(0.0504499\pi\)
−0.987466 + 0.157830i \(0.949550\pi\)
\(984\) 3.54406 0.112981
\(985\) −17.4127 −0.554815
\(986\) 0 0
\(987\) 1.53920 0.0489934
\(988\) 76.8772 2.44579
\(989\) − 78.4669i − 2.49510i
\(990\) −17.4206 −0.553664
\(991\) − 0.883820i − 0.0280755i −0.999901 0.0140377i \(-0.995532\pi\)
0.999901 0.0140377i \(-0.00446850\pi\)
\(992\) 39.0807i 1.24081i
\(993\) 1.25530i 0.0398356i
\(994\) −1.31372 −0.0416687
\(995\) −17.8876 −0.567076
\(996\) − 57.4332i − 1.81984i
\(997\) 29.0009i 0.918467i 0.888315 + 0.459234i \(0.151876\pi\)
−0.888315 + 0.459234i \(0.848124\pi\)
\(998\) − 7.65728i − 0.242387i
\(999\) −1.80028 −0.0569582
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1445.2.d.g.866.4 12
17.2 even 8 85.2.e.a.81.2 yes 12
17.4 even 4 1445.2.a.o.1.5 6
17.8 even 8 85.2.e.a.21.5 12
17.13 even 4 1445.2.a.n.1.5 6
17.16 even 2 inner 1445.2.d.g.866.3 12
51.2 odd 8 765.2.k.b.676.5 12
51.8 odd 8 765.2.k.b.361.2 12
68.19 odd 8 1360.2.bt.d.81.1 12
68.59 odd 8 1360.2.bt.d.1041.1 12
85.2 odd 8 425.2.j.c.149.5 12
85.4 even 4 7225.2.a.z.1.2 6
85.8 odd 8 425.2.j.c.174.5 12
85.19 even 8 425.2.e.f.251.5 12
85.42 odd 8 425.2.j.b.174.2 12
85.53 odd 8 425.2.j.b.149.2 12
85.59 even 8 425.2.e.f.276.2 12
85.64 even 4 7225.2.a.bb.1.2 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
85.2.e.a.21.5 12 17.8 even 8
85.2.e.a.81.2 yes 12 17.2 even 8
425.2.e.f.251.5 12 85.19 even 8
425.2.e.f.276.2 12 85.59 even 8
425.2.j.b.149.2 12 85.53 odd 8
425.2.j.b.174.2 12 85.42 odd 8
425.2.j.c.149.5 12 85.2 odd 8
425.2.j.c.174.5 12 85.8 odd 8
765.2.k.b.361.2 12 51.8 odd 8
765.2.k.b.676.5 12 51.2 odd 8
1360.2.bt.d.81.1 12 68.19 odd 8
1360.2.bt.d.1041.1 12 68.59 odd 8
1445.2.a.n.1.5 6 17.13 even 4
1445.2.a.o.1.5 6 17.4 even 4
1445.2.d.g.866.3 12 17.16 even 2 inner
1445.2.d.g.866.4 12 1.1 even 1 trivial
7225.2.a.z.1.2 6 85.4 even 4
7225.2.a.bb.1.2 6 85.64 even 4