Properties

Label 1360.2.e.d.1089.8
Level $1360$
Weight $2$
Character 1360.1089
Analytic conductor $10.860$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1360,2,Mod(1089,1360)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1360, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1360.1089");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1360 = 2^{4} \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1360.e (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.8596546749\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.619810816.2
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 2x^{5} + 14x^{4} - 8x^{3} + 2x^{2} + 2x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 85)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1089.8
Root \(-0.252709 + 0.252709i\) of defining polynomial
Character \(\chi\) \(=\) 1360.1089
Dual form 1360.2.e.d.1089.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.87228i q^{3} +(0.146426 - 2.23127i) q^{5} -1.42058i q^{7} -5.24997 q^{9} +O(q^{10})\) \(q+2.87228i q^{3} +(0.146426 - 2.23127i) q^{5} -1.42058i q^{7} -5.24997 q^{9} -0.0740063 q^{11} +5.70167i q^{13} +(6.40882 + 0.420575i) q^{15} -1.00000i q^{17} -4.90340 q^{19} +4.08029 q^{21} +3.88311i q^{23} +(-4.95712 - 0.653431i) q^{25} -6.46254i q^{27} -5.91424 q^{29} -0.388531 q^{31} -0.212567i q^{33} +(-3.16969 - 0.208009i) q^{35} +9.91424i q^{37} -16.3768 q^{39} -6.61055 q^{41} +6.94628i q^{43} +(-0.768731 + 11.7141i) q^{45} +5.70167i q^{47} +4.98197 q^{49} +2.87228 q^{51} +0.0216729i q^{53} +(-0.0108364 + 0.165128i) q^{55} -14.0839i q^{57} -2.00000 q^{59} -3.47337 q^{61} +7.45798i q^{63} +(12.7220 + 0.834872i) q^{65} +6.71251i q^{67} -11.1534 q^{69} -3.84023 q^{71} -13.5356i q^{73} +(1.87683 - 14.2382i) q^{75} +0.105132i q^{77} -1.06000 q^{79} +2.81228 q^{81} -11.8497i q^{83} +(-2.23127 - 0.146426i) q^{85} -16.9873i q^{87} +1.99452 q^{89} +8.09965 q^{91} -1.11597i q^{93} +(-0.717985 + 10.9408i) q^{95} +5.34109i q^{97} +0.388531 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 2 q^{5} - 8 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 8 q - 2 q^{5} - 8 q^{9} + 4 q^{11} + 8 q^{19} + 24 q^{21} - 12 q^{25} + 8 q^{29} + 24 q^{31} - 44 q^{39} - 12 q^{41} - 22 q^{45} - 16 q^{49} + 8 q^{51} + 8 q^{55} - 16 q^{59} + 12 q^{61} + 20 q^{65} - 8 q^{69} + 20 q^{71} - 4 q^{75} - 24 q^{79} - 8 q^{81} - 2 q^{85} - 48 q^{89} - 36 q^{91} - 4 q^{95} - 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1360\mathbb{Z}\right)^\times\).

\(n\) \(241\) \(341\) \(511\) \(817\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.87228i 1.65831i 0.559019 + 0.829155i \(0.311178\pi\)
−0.559019 + 0.829155i \(0.688822\pi\)
\(4\) 0 0
\(5\) 0.146426 2.23127i 0.0654836 0.997854i
\(6\) 0 0
\(7\) 1.42058i 0.536927i −0.963290 0.268464i \(-0.913484\pi\)
0.963290 0.268464i \(-0.0865159\pi\)
\(8\) 0 0
\(9\) −5.24997 −1.74999
\(10\) 0 0
\(11\) −0.0740063 −0.0223137 −0.0111569 0.999938i \(-0.503551\pi\)
−0.0111569 + 0.999938i \(0.503551\pi\)
\(12\) 0 0
\(13\) 5.70167i 1.58136i 0.612230 + 0.790680i \(0.290273\pi\)
−0.612230 + 0.790680i \(0.709727\pi\)
\(14\) 0 0
\(15\) 6.40882 + 0.420575i 1.65475 + 0.108592i
\(16\) 0 0
\(17\) 1.00000i 0.242536i
\(18\) 0 0
\(19\) −4.90340 −1.12492 −0.562459 0.826825i \(-0.690144\pi\)
−0.562459 + 0.826825i \(0.690144\pi\)
\(20\) 0 0
\(21\) 4.08029 0.890391
\(22\) 0 0
\(23\) 3.88311i 0.809685i 0.914386 + 0.404842i \(0.132674\pi\)
−0.914386 + 0.404842i \(0.867326\pi\)
\(24\) 0 0
\(25\) −4.95712 0.653431i −0.991424 0.130686i
\(26\) 0 0
\(27\) 6.46254i 1.24372i
\(28\) 0 0
\(29\) −5.91424 −1.09825 −0.549123 0.835741i \(-0.685038\pi\)
−0.549123 + 0.835741i \(0.685038\pi\)
\(30\) 0 0
\(31\) −0.388531 −0.0697822 −0.0348911 0.999391i \(-0.511108\pi\)
−0.0348911 + 0.999391i \(0.511108\pi\)
\(32\) 0 0
\(33\) 0.212567i 0.0370031i
\(34\) 0 0
\(35\) −3.16969 0.208009i −0.535775 0.0351599i
\(36\) 0 0
\(37\) 9.91424i 1.62989i 0.579538 + 0.814945i \(0.303233\pi\)
−0.579538 + 0.814945i \(0.696767\pi\)
\(38\) 0 0
\(39\) −16.3768 −2.62238
\(40\) 0 0
\(41\) −6.61055 −1.03239 −0.516197 0.856470i \(-0.672653\pi\)
−0.516197 + 0.856470i \(0.672653\pi\)
\(42\) 0 0
\(43\) 6.94628i 1.05930i 0.848217 + 0.529649i \(0.177676\pi\)
−0.848217 + 0.529649i \(0.822324\pi\)
\(44\) 0 0
\(45\) −0.768731 + 11.7141i −0.114596 + 1.74623i
\(46\) 0 0
\(47\) 5.70167i 0.831674i 0.909439 + 0.415837i \(0.136511\pi\)
−0.909439 + 0.415837i \(0.863489\pi\)
\(48\) 0 0
\(49\) 4.98197 0.711709
\(50\) 0 0
\(51\) 2.87228 0.402199
\(52\) 0 0
\(53\) 0.0216729i 0.00297700i 0.999999 + 0.00148850i \(0.000473804\pi\)
−0.999999 + 0.00148850i \(0.999526\pi\)
\(54\) 0 0
\(55\) −0.0108364 + 0.165128i −0.00146118 + 0.0222658i
\(56\) 0 0
\(57\) 14.0839i 1.86546i
\(58\) 0 0
\(59\) −2.00000 −0.260378 −0.130189 0.991489i \(-0.541558\pi\)
−0.130189 + 0.991489i \(0.541558\pi\)
\(60\) 0 0
\(61\) −3.47337 −0.444720 −0.222360 0.974965i \(-0.571376\pi\)
−0.222360 + 0.974965i \(0.571376\pi\)
\(62\) 0 0
\(63\) 7.45798i 0.939617i
\(64\) 0 0
\(65\) 12.7220 + 0.834872i 1.57796 + 0.103553i
\(66\) 0 0
\(67\) 6.71251i 0.820063i 0.912071 + 0.410032i \(0.134482\pi\)
−0.912071 + 0.410032i \(0.865518\pi\)
\(68\) 0 0
\(69\) −11.1534 −1.34271
\(70\) 0 0
\(71\) −3.84023 −0.455752 −0.227876 0.973690i \(-0.573178\pi\)
−0.227876 + 0.973690i \(0.573178\pi\)
\(72\) 0 0
\(73\) 13.5356i 1.58422i −0.610375 0.792112i \(-0.708981\pi\)
0.610375 0.792112i \(-0.291019\pi\)
\(74\) 0 0
\(75\) 1.87683 14.2382i 0.216718 1.64409i
\(76\) 0 0
\(77\) 0.105132i 0.0119808i
\(78\) 0 0
\(79\) −1.06000 −0.119259 −0.0596295 0.998221i \(-0.518992\pi\)
−0.0596295 + 0.998221i \(0.518992\pi\)
\(80\) 0 0
\(81\) 2.81228 0.312476
\(82\) 0 0
\(83\) 11.8497i 1.30067i −0.759647 0.650336i \(-0.774628\pi\)
0.759647 0.650336i \(-0.225372\pi\)
\(84\) 0 0
\(85\) −2.23127 0.146426i −0.242015 0.0158821i
\(86\) 0 0
\(87\) 16.9873i 1.82123i
\(88\) 0 0
\(89\) 1.99452 0.211419 0.105710 0.994397i \(-0.466289\pi\)
0.105710 + 0.994397i \(0.466289\pi\)
\(90\) 0 0
\(91\) 8.09965 0.849075
\(92\) 0 0
\(93\) 1.11597i 0.115720i
\(94\) 0 0
\(95\) −0.717985 + 10.9408i −0.0736637 + 1.12250i
\(96\) 0 0
\(97\) 5.34109i 0.542306i 0.962536 + 0.271153i \(0.0874049\pi\)
−0.962536 + 0.271153i \(0.912595\pi\)
\(98\) 0 0
\(99\) 0.388531 0.0390488
\(100\) 0 0
\(101\) 11.4305 1.13738 0.568688 0.822553i \(-0.307451\pi\)
0.568688 + 0.822553i \(0.307451\pi\)
\(102\) 0 0
\(103\) 8.21257i 0.809208i 0.914492 + 0.404604i \(0.132591\pi\)
−0.914492 + 0.404604i \(0.867409\pi\)
\(104\) 0 0
\(105\) 0.597459 9.10421i 0.0583061 0.888480i
\(106\) 0 0
\(107\) 6.34882i 0.613764i −0.951748 0.306882i \(-0.900714\pi\)
0.951748 0.306882i \(-0.0992857\pi\)
\(108\) 0 0
\(109\) −0.292852 −0.0280501 −0.0140251 0.999902i \(-0.504464\pi\)
−0.0140251 + 0.999902i \(0.504464\pi\)
\(110\) 0 0
\(111\) −28.4764 −2.70286
\(112\) 0 0
\(113\) 8.62311i 0.811194i −0.914052 0.405597i \(-0.867064\pi\)
0.914052 0.405597i \(-0.132936\pi\)
\(114\) 0 0
\(115\) 8.66427 + 0.568588i 0.807947 + 0.0530211i
\(116\) 0 0
\(117\) 29.9336i 2.76736i
\(118\) 0 0
\(119\) −1.42058 −0.130224
\(120\) 0 0
\(121\) −10.9945 −0.999502
\(122\) 0 0
\(123\) 18.9873i 1.71203i
\(124\) 0 0
\(125\) −2.18383 + 10.9650i −0.195328 + 0.980738i
\(126\) 0 0
\(127\) 17.2640i 1.53193i −0.642882 0.765965i \(-0.722261\pi\)
0.642882 0.765965i \(-0.277739\pi\)
\(128\) 0 0
\(129\) −19.9516 −1.75664
\(130\) 0 0
\(131\) 14.7188 1.28599 0.642993 0.765872i \(-0.277692\pi\)
0.642993 + 0.765872i \(0.277692\pi\)
\(132\) 0 0
\(133\) 6.96565i 0.603999i
\(134\) 0 0
\(135\) −14.4197 0.946283i −1.24105 0.0814430i
\(136\) 0 0
\(137\) 1.36230i 0.116389i −0.998305 0.0581946i \(-0.981466\pi\)
0.998305 0.0581946i \(-0.0185344\pi\)
\(138\) 0 0
\(139\) −13.7454 −1.16587 −0.582933 0.812520i \(-0.698095\pi\)
−0.582933 + 0.812520i \(0.698095\pi\)
\(140\) 0 0
\(141\) −16.3768 −1.37917
\(142\) 0 0
\(143\) 0.421960i 0.0352860i
\(144\) 0 0
\(145\) −0.865997 + 13.1963i −0.0719172 + 1.09589i
\(146\) 0 0
\(147\) 14.3096i 1.18023i
\(148\) 0 0
\(149\) 17.3628 1.42241 0.711207 0.702983i \(-0.248149\pi\)
0.711207 + 0.702983i \(0.248149\pi\)
\(150\) 0 0
\(151\) 3.59654 0.292682 0.146341 0.989234i \(-0.453250\pi\)
0.146341 + 0.989234i \(0.453250\pi\)
\(152\) 0 0
\(153\) 5.24997i 0.424435i
\(154\) 0 0
\(155\) −0.0568910 + 0.866917i −0.00456959 + 0.0696324i
\(156\) 0 0
\(157\) 5.19308i 0.414453i 0.978293 + 0.207226i \(0.0664437\pi\)
−0.978293 + 0.207226i \(0.933556\pi\)
\(158\) 0 0
\(159\) −0.0622505 −0.00493678
\(160\) 0 0
\(161\) 5.51625 0.434742
\(162\) 0 0
\(163\) 6.56687i 0.514357i 0.966364 + 0.257178i \(0.0827928\pi\)
−0.966364 + 0.257178i \(0.917207\pi\)
\(164\) 0 0
\(165\) −0.474293 0.0311252i −0.0369237 0.00242310i
\(166\) 0 0
\(167\) 0.897123i 0.0694214i 0.999397 + 0.0347107i \(0.0110510\pi\)
−0.999397 + 0.0347107i \(0.988949\pi\)
\(168\) 0 0
\(169\) −19.5091 −1.50070
\(170\) 0 0
\(171\) 25.7427 1.96859
\(172\) 0 0
\(173\) 3.83031i 0.291213i 0.989343 + 0.145607i \(0.0465134\pi\)
−0.989343 + 0.145607i \(0.953487\pi\)
\(174\) 0 0
\(175\) −0.928248 + 7.04196i −0.0701689 + 0.532322i
\(176\) 0 0
\(177\) 5.74455i 0.431787i
\(178\) 0 0
\(179\) 9.74455 0.728342 0.364171 0.931332i \(-0.381352\pi\)
0.364171 + 0.931332i \(0.381352\pi\)
\(180\) 0 0
\(181\) 22.4764 1.67066 0.835330 0.549749i \(-0.185277\pi\)
0.835330 + 0.549749i \(0.185277\pi\)
\(182\) 0 0
\(183\) 9.97649i 0.737483i
\(184\) 0 0
\(185\) 22.1213 + 1.45170i 1.62639 + 0.106731i
\(186\) 0 0
\(187\) 0.0740063i 0.00541188i
\(188\) 0 0
\(189\) −9.18052 −0.667785
\(190\) 0 0
\(191\) 5.47655 0.396269 0.198135 0.980175i \(-0.436512\pi\)
0.198135 + 0.980175i \(0.436512\pi\)
\(192\) 0 0
\(193\) 2.14484i 0.154389i −0.997016 0.0771944i \(-0.975404\pi\)
0.997016 0.0771944i \(-0.0245962\pi\)
\(194\) 0 0
\(195\) −2.39798 + 36.5410i −0.171723 + 2.61675i
\(196\) 0 0
\(197\) 9.78513i 0.697162i 0.937279 + 0.348581i \(0.113336\pi\)
−0.937279 + 0.348581i \(0.886664\pi\)
\(198\) 0 0
\(199\) −1.47257 −0.104388 −0.0521939 0.998637i \(-0.516621\pi\)
−0.0521939 + 0.998637i \(0.516621\pi\)
\(200\) 0 0
\(201\) −19.2802 −1.35992
\(202\) 0 0
\(203\) 8.40162i 0.589678i
\(204\) 0 0
\(205\) −0.967955 + 14.7499i −0.0676049 + 1.03018i
\(206\) 0 0
\(207\) 20.3862i 1.41694i
\(208\) 0 0
\(209\) 0.362883 0.0251011
\(210\) 0 0
\(211\) 4.87591 0.335672 0.167836 0.985815i \(-0.446322\pi\)
0.167836 + 0.985815i \(0.446322\pi\)
\(212\) 0 0
\(213\) 11.0302i 0.755777i
\(214\) 0 0
\(215\) 15.4990 + 1.01712i 1.05702 + 0.0693667i
\(216\) 0 0
\(217\) 0.551937i 0.0374680i
\(218\) 0 0
\(219\) 38.8781 2.62714
\(220\) 0 0
\(221\) 5.70167 0.383536
\(222\) 0 0
\(223\) 20.0536i 1.34289i 0.741055 + 0.671444i \(0.234326\pi\)
−0.741055 + 0.671444i \(0.765674\pi\)
\(224\) 0 0
\(225\) 26.0247 + 3.43049i 1.73498 + 0.228700i
\(226\) 0 0
\(227\) 14.1308i 0.937893i 0.883227 + 0.468946i \(0.155366\pi\)
−0.883227 + 0.468946i \(0.844634\pi\)
\(228\) 0 0
\(229\) −11.2156 −0.741149 −0.370575 0.928803i \(-0.620839\pi\)
−0.370575 + 0.928803i \(0.620839\pi\)
\(230\) 0 0
\(231\) −0.301967 −0.0198680
\(232\) 0 0
\(233\) 13.8285i 0.905934i 0.891527 + 0.452967i \(0.149634\pi\)
−0.891527 + 0.452967i \(0.850366\pi\)
\(234\) 0 0
\(235\) 12.7220 + 0.834872i 0.829889 + 0.0544610i
\(236\) 0 0
\(237\) 3.04460i 0.197768i
\(238\) 0 0
\(239\) −16.2851 −1.05339 −0.526697 0.850053i \(-0.676570\pi\)
−0.526697 + 0.850053i \(0.676570\pi\)
\(240\) 0 0
\(241\) 4.94081 0.318265 0.159133 0.987257i \(-0.449130\pi\)
0.159133 + 0.987257i \(0.449130\pi\)
\(242\) 0 0
\(243\) 11.3100i 0.725535i
\(244\) 0 0
\(245\) 0.729489 11.1161i 0.0466053 0.710182i
\(246\) 0 0
\(247\) 27.9576i 1.77890i
\(248\) 0 0
\(249\) 34.0356 2.15692
\(250\) 0 0
\(251\) −12.9160 −0.815248 −0.407624 0.913150i \(-0.633643\pi\)
−0.407624 + 0.913150i \(0.633643\pi\)
\(252\) 0 0
\(253\) 0.287375i 0.0180671i
\(254\) 0 0
\(255\) 0.420575 6.40882i 0.0263375 0.401336i
\(256\) 0 0
\(257\) 13.6159i 0.849337i 0.905349 + 0.424669i \(0.139609\pi\)
−0.905349 + 0.424669i \(0.860391\pi\)
\(258\) 0 0
\(259\) 14.0839 0.875132
\(260\) 0 0
\(261\) 31.0496 1.92192
\(262\) 0 0
\(263\) 12.6719i 0.781385i 0.920521 + 0.390692i \(0.127764\pi\)
−0.920521 + 0.390692i \(0.872236\pi\)
\(264\) 0 0
\(265\) 0.0483580 + 0.00317347i 0.00297061 + 0.000194945i
\(266\) 0 0
\(267\) 5.72882i 0.350598i
\(268\) 0 0
\(269\) 25.8967 1.57895 0.789474 0.613784i \(-0.210354\pi\)
0.789474 + 0.613784i \(0.210354\pi\)
\(270\) 0 0
\(271\) −21.2211 −1.28909 −0.644545 0.764566i \(-0.722953\pi\)
−0.644545 + 0.764566i \(0.722953\pi\)
\(272\) 0 0
\(273\) 23.2644i 1.40803i
\(274\) 0 0
\(275\) 0.366858 + 0.0483580i 0.0221224 + 0.00291610i
\(276\) 0 0
\(277\) 2.05908i 0.123718i −0.998085 0.0618590i \(-0.980297\pi\)
0.998085 0.0618590i \(-0.0197029\pi\)
\(278\) 0 0
\(279\) 2.03978 0.122118
\(280\) 0 0
\(281\) −21.7336 −1.29652 −0.648259 0.761420i \(-0.724503\pi\)
−0.648259 + 0.761420i \(0.724503\pi\)
\(282\) 0 0
\(283\) 5.32226i 0.316375i 0.987409 + 0.158188i \(0.0505651\pi\)
−0.987409 + 0.158188i \(0.949435\pi\)
\(284\) 0 0
\(285\) −31.4250 2.06225i −1.86146 0.122157i
\(286\) 0 0
\(287\) 9.39078i 0.554321i
\(288\) 0 0
\(289\) −1.00000 −0.0588235
\(290\) 0 0
\(291\) −15.3411 −0.899311
\(292\) 0 0
\(293\) 23.3285i 1.36287i 0.731880 + 0.681434i \(0.238643\pi\)
−0.731880 + 0.681434i \(0.761357\pi\)
\(294\) 0 0
\(295\) −0.292852 + 4.46254i −0.0170505 + 0.259819i
\(296\) 0 0
\(297\) 0.478268i 0.0277519i
\(298\) 0 0
\(299\) −22.1402 −1.28040
\(300\) 0 0
\(301\) 9.86772 0.568766
\(302\) 0 0
\(303\) 32.8315i 1.88612i
\(304\) 0 0
\(305\) −0.508592 + 7.75003i −0.0291219 + 0.443765i
\(306\) 0 0
\(307\) 17.4588i 0.996425i 0.867055 + 0.498213i \(0.166010\pi\)
−0.867055 + 0.498213i \(0.833990\pi\)
\(308\) 0 0
\(309\) −23.5888 −1.34192
\(310\) 0 0
\(311\) −2.98997 −0.169545 −0.0847727 0.996400i \(-0.527016\pi\)
−0.0847727 + 0.996400i \(0.527016\pi\)
\(312\) 0 0
\(313\) 7.76028i 0.438637i 0.975653 + 0.219319i \(0.0703834\pi\)
−0.975653 + 0.219319i \(0.929617\pi\)
\(314\) 0 0
\(315\) 16.6408 + 1.09204i 0.937600 + 0.0615295i
\(316\) 0 0
\(317\) 6.88951i 0.386953i −0.981105 0.193477i \(-0.938024\pi\)
0.981105 0.193477i \(-0.0619764\pi\)
\(318\) 0 0
\(319\) 0.437691 0.0245060
\(320\) 0 0
\(321\) 18.2356 1.01781
\(322\) 0 0
\(323\) 4.90340i 0.272833i
\(324\) 0 0
\(325\) 3.72565 28.2639i 0.206662 1.56780i
\(326\) 0 0
\(327\) 0.841151i 0.0465158i
\(328\) 0 0
\(329\) 8.09965 0.446548
\(330\) 0 0
\(331\) −15.8565 −0.871552 −0.435776 0.900055i \(-0.643526\pi\)
−0.435776 + 0.900055i \(0.643526\pi\)
\(332\) 0 0
\(333\) 52.0495i 2.85229i
\(334\) 0 0
\(335\) 14.9774 + 0.982885i 0.818303 + 0.0537007i
\(336\) 0 0
\(337\) 19.1787i 1.04473i −0.852722 0.522365i \(-0.825050\pi\)
0.852722 0.522365i \(-0.174950\pi\)
\(338\) 0 0
\(339\) 24.7679 1.34521
\(340\) 0 0
\(341\) 0.0287537 0.00155710
\(342\) 0 0
\(343\) 17.0213i 0.919063i
\(344\) 0 0
\(345\) −1.63314 + 24.8862i −0.0879254 + 1.33983i
\(346\) 0 0
\(347\) 33.5775i 1.80253i −0.433265 0.901266i \(-0.642639\pi\)
0.433265 0.901266i \(-0.357361\pi\)
\(348\) 0 0
\(349\) −8.61649 −0.461230 −0.230615 0.973045i \(-0.574074\pi\)
−0.230615 + 0.973045i \(0.574074\pi\)
\(350\) 0 0
\(351\) 36.8473 1.96676
\(352\) 0 0
\(353\) 0.596657i 0.0317569i 0.999874 + 0.0158784i \(0.00505447\pi\)
−0.999874 + 0.0158784i \(0.994946\pi\)
\(354\) 0 0
\(355\) −0.562309 + 8.56859i −0.0298443 + 0.454773i
\(356\) 0 0
\(357\) 4.08029i 0.215952i
\(358\) 0 0
\(359\) 31.5514 1.66522 0.832608 0.553862i \(-0.186847\pi\)
0.832608 + 0.553862i \(0.186847\pi\)
\(360\) 0 0
\(361\) 5.04335 0.265439
\(362\) 0 0
\(363\) 31.5793i 1.65748i
\(364\) 0 0
\(365\) −30.2016 1.98197i −1.58082 0.103741i
\(366\) 0 0
\(367\) 1.37723i 0.0718908i −0.999354 0.0359454i \(-0.988556\pi\)
0.999354 0.0359454i \(-0.0114442\pi\)
\(368\) 0 0
\(369\) 34.7052 1.80668
\(370\) 0 0
\(371\) 0.0307879 0.00159843
\(372\) 0 0
\(373\) 28.5627i 1.47892i 0.673201 + 0.739459i \(0.264919\pi\)
−0.673201 + 0.739459i \(0.735081\pi\)
\(374\) 0 0
\(375\) −31.4945 6.27256i −1.62637 0.323914i
\(376\) 0 0
\(377\) 33.7210i 1.73672i
\(378\) 0 0
\(379\) −24.2405 −1.24515 −0.622576 0.782559i \(-0.713914\pi\)
−0.622576 + 0.782559i \(0.713914\pi\)
\(380\) 0 0
\(381\) 49.5869 2.54041
\(382\) 0 0
\(383\) 24.4678i 1.25025i −0.780527 0.625123i \(-0.785049\pi\)
0.780527 0.625123i \(-0.214951\pi\)
\(384\) 0 0
\(385\) 0.234577 + 0.0153940i 0.0119551 + 0.000784550i
\(386\) 0 0
\(387\) 36.4678i 1.85376i
\(388\) 0 0
\(389\) 10.9711 0.556258 0.278129 0.960544i \(-0.410286\pi\)
0.278129 + 0.960544i \(0.410286\pi\)
\(390\) 0 0
\(391\) 3.88311 0.196377
\(392\) 0 0
\(393\) 42.2764i 2.13256i
\(394\) 0 0
\(395\) −0.155211 + 2.36514i −0.00780951 + 0.119003i
\(396\) 0 0
\(397\) 26.8550i 1.34782i −0.738815 0.673908i \(-0.764614\pi\)
0.738815 0.673908i \(-0.235386\pi\)
\(398\) 0 0
\(399\) −20.0073 −1.00162
\(400\) 0 0
\(401\) −17.5080 −0.874308 −0.437154 0.899387i \(-0.644014\pi\)
−0.437154 + 0.899387i \(0.644014\pi\)
\(402\) 0 0
\(403\) 2.21528i 0.110351i
\(404\) 0 0
\(405\) 0.411790 6.27495i 0.0204620 0.311805i
\(406\) 0 0
\(407\) 0.733716i 0.0363690i
\(408\) 0 0
\(409\) 17.8285 0.881561 0.440781 0.897615i \(-0.354702\pi\)
0.440781 + 0.897615i \(0.354702\pi\)
\(410\) 0 0
\(411\) 3.91290 0.193009
\(412\) 0 0
\(413\) 2.84115i 0.139804i
\(414\) 0 0
\(415\) −26.4398 1.73510i −1.29788 0.0851727i
\(416\) 0 0
\(417\) 39.4805i 1.93337i
\(418\) 0 0
\(419\) 34.7826 1.69924 0.849622 0.527393i \(-0.176830\pi\)
0.849622 + 0.527393i \(0.176830\pi\)
\(420\) 0 0
\(421\) −17.0676 −0.831824 −0.415912 0.909405i \(-0.636538\pi\)
−0.415912 + 0.909405i \(0.636538\pi\)
\(422\) 0 0
\(423\) 29.9336i 1.45542i
\(424\) 0 0
\(425\) −0.653431 + 4.95712i −0.0316960 + 0.240456i
\(426\) 0 0
\(427\) 4.93419i 0.238782i
\(428\) 0 0
\(429\) 1.21198 0.0585152
\(430\) 0 0
\(431\) 22.5970 1.08846 0.544229 0.838937i \(-0.316822\pi\)
0.544229 + 0.838937i \(0.316822\pi\)
\(432\) 0 0
\(433\) 13.3513i 0.641625i −0.947143 0.320812i \(-0.896044\pi\)
0.947143 0.320812i \(-0.103956\pi\)
\(434\) 0 0
\(435\) −37.9033 2.48738i −1.81732 0.119261i
\(436\) 0 0
\(437\) 19.0405i 0.910829i
\(438\) 0 0
\(439\) 5.73280 0.273611 0.136806 0.990598i \(-0.456316\pi\)
0.136806 + 0.990598i \(0.456316\pi\)
\(440\) 0 0
\(441\) −26.1552 −1.24548
\(442\) 0 0
\(443\) 38.8153i 1.84417i −0.386985 0.922086i \(-0.626483\pi\)
0.386985 0.922086i \(-0.373517\pi\)
\(444\) 0 0
\(445\) 0.292050 4.45032i 0.0138445 0.210965i
\(446\) 0 0
\(447\) 49.8707i 2.35880i
\(448\) 0 0
\(449\) 25.3848 1.19798 0.598992 0.800755i \(-0.295568\pi\)
0.598992 + 0.800755i \(0.295568\pi\)
\(450\) 0 0
\(451\) 0.489222 0.0230366
\(452\) 0 0
\(453\) 10.3303i 0.485358i
\(454\) 0 0
\(455\) 1.18600 18.0725i 0.0556005 0.847252i
\(456\) 0 0
\(457\) 8.90110i 0.416376i 0.978089 + 0.208188i \(0.0667566\pi\)
−0.978089 + 0.208188i \(0.933243\pi\)
\(458\) 0 0
\(459\) −6.46254 −0.301645
\(460\) 0 0
\(461\) −13.9124 −0.647965 −0.323983 0.946063i \(-0.605022\pi\)
−0.323983 + 0.946063i \(0.605022\pi\)
\(462\) 0 0
\(463\) 37.5085i 1.74317i 0.490247 + 0.871583i \(0.336906\pi\)
−0.490247 + 0.871583i \(0.663094\pi\)
\(464\) 0 0
\(465\) −2.49002 0.163407i −0.115472 0.00757780i
\(466\) 0 0
\(467\) 11.2108i 0.518776i 0.965773 + 0.259388i \(0.0835208\pi\)
−0.965773 + 0.259388i \(0.916479\pi\)
\(468\) 0 0
\(469\) 9.53562 0.440314
\(470\) 0 0
\(471\) −14.9160 −0.687291
\(472\) 0 0
\(473\) 0.514069i 0.0236369i
\(474\) 0 0
\(475\) 24.3067 + 3.20403i 1.11527 + 0.147011i
\(476\) 0 0
\(477\) 0.113782i 0.00520972i
\(478\) 0 0
\(479\) 5.16559 0.236022 0.118011 0.993012i \(-0.462348\pi\)
0.118011 + 0.993012i \(0.462348\pi\)
\(480\) 0 0
\(481\) −56.5277 −2.57744
\(482\) 0 0
\(483\) 15.8442i 0.720936i
\(484\) 0 0
\(485\) 11.9174 + 0.782074i 0.541142 + 0.0355122i
\(486\) 0 0
\(487\) 34.0560i 1.54322i −0.636094 0.771612i \(-0.719451\pi\)
0.636094 0.771612i \(-0.280549\pi\)
\(488\) 0 0
\(489\) −18.8619 −0.852963
\(490\) 0 0
\(491\) 18.3051 0.826099 0.413050 0.910708i \(-0.364464\pi\)
0.413050 + 0.910708i \(0.364464\pi\)
\(492\) 0 0
\(493\) 5.91424i 0.266364i
\(494\) 0 0
\(495\) 0.0568910 0.866917i 0.00255706 0.0389650i
\(496\) 0 0
\(497\) 5.45534i 0.244705i
\(498\) 0 0
\(499\) 40.7792 1.82553 0.912764 0.408488i \(-0.133944\pi\)
0.912764 + 0.408488i \(0.133944\pi\)
\(500\) 0 0
\(501\) −2.57678 −0.115122
\(502\) 0 0
\(503\) 10.7274i 0.478313i 0.970981 + 0.239156i \(0.0768709\pi\)
−0.970981 + 0.239156i \(0.923129\pi\)
\(504\) 0 0
\(505\) 1.67372 25.5045i 0.0744795 1.13494i
\(506\) 0 0
\(507\) 56.0354i 2.48862i
\(508\) 0 0
\(509\) 21.5278 0.954205 0.477102 0.878848i \(-0.341687\pi\)
0.477102 + 0.878848i \(0.341687\pi\)
\(510\) 0 0
\(511\) −19.2284 −0.850613
\(512\) 0 0
\(513\) 31.6884i 1.39908i
\(514\) 0 0
\(515\) 18.3244 + 1.20253i 0.807471 + 0.0529899i
\(516\) 0 0
\(517\) 0.421960i 0.0185578i
\(518\) 0 0
\(519\) −11.0017 −0.482922
\(520\) 0 0
\(521\) −20.5451 −0.900098 −0.450049 0.893004i \(-0.648594\pi\)
−0.450049 + 0.893004i \(0.648594\pi\)
\(522\) 0 0
\(523\) 20.0508i 0.876762i 0.898789 + 0.438381i \(0.144448\pi\)
−0.898789 + 0.438381i \(0.855552\pi\)
\(524\) 0 0
\(525\) −20.2265 2.66618i −0.882755 0.116362i
\(526\) 0 0
\(527\) 0.388531i 0.0169247i
\(528\) 0 0
\(529\) 7.92144 0.344410
\(530\) 0 0
\(531\) 10.4999 0.455659
\(532\) 0 0
\(533\) 37.6912i 1.63259i
\(534\) 0 0
\(535\) −14.1659 0.929632i −0.612447 0.0401915i
\(536\) 0 0
\(537\) 27.9890i 1.20782i
\(538\) 0 0
\(539\) −0.368697 −0.0158809
\(540\) 0 0
\(541\) −8.55768 −0.367924 −0.183962 0.982933i \(-0.558892\pi\)
−0.183962 + 0.982933i \(0.558892\pi\)
\(542\) 0 0
\(543\) 64.5585i 2.77047i
\(544\) 0 0
\(545\) −0.0428811 + 0.653431i −0.00183682 + 0.0279899i
\(546\) 0 0
\(547\) 11.2911i 0.482771i −0.970429 0.241385i \(-0.922398\pi\)
0.970429 0.241385i \(-0.0776018\pi\)
\(548\) 0 0
\(549\) 18.2351 0.778256
\(550\) 0 0
\(551\) 28.9999 1.23544
\(552\) 0 0
\(553\) 1.50580i 0.0640333i
\(554\) 0 0
\(555\) −4.16969 + 63.5386i −0.176993 + 2.69706i
\(556\) 0 0
\(557\) 22.4662i 0.951922i −0.879466 0.475961i \(-0.842100\pi\)
0.879466 0.475961i \(-0.157900\pi\)
\(558\) 0 0
\(559\) −39.6054 −1.67513
\(560\) 0 0
\(561\) −0.212567 −0.00897457
\(562\) 0 0
\(563\) 6.32795i 0.266691i 0.991070 + 0.133346i \(0.0425721\pi\)
−0.991070 + 0.133346i \(0.957428\pi\)
\(564\) 0 0
\(565\) −19.2405 1.26265i −0.809453 0.0531199i
\(566\) 0 0
\(567\) 3.99506i 0.167777i
\(568\) 0 0
\(569\) 16.6885 0.699620 0.349810 0.936821i \(-0.386246\pi\)
0.349810 + 0.936821i \(0.386246\pi\)
\(570\) 0 0
\(571\) 6.20629 0.259725 0.129863 0.991532i \(-0.458546\pi\)
0.129863 + 0.991532i \(0.458546\pi\)
\(572\) 0 0
\(573\) 15.7302i 0.657137i
\(574\) 0 0
\(575\) 2.53735 19.2491i 0.105815 0.802741i
\(576\) 0 0
\(577\) 23.9273i 0.996105i 0.867147 + 0.498052i \(0.165951\pi\)
−0.867147 + 0.498052i \(0.834049\pi\)
\(578\) 0 0
\(579\) 6.16057 0.256025
\(580\) 0 0
\(581\) −16.8334 −0.698366
\(582\) 0 0
\(583\) 0.00160393i 6.64279e-5i
\(584\) 0 0
\(585\) −66.7899 4.38305i −2.76142 0.181217i
\(586\) 0 0
\(587\) 26.1140i 1.07784i 0.842357 + 0.538920i \(0.181168\pi\)
−0.842357 + 0.538920i \(0.818832\pi\)
\(588\) 0 0
\(589\) 1.90512 0.0784992
\(590\) 0 0
\(591\) −28.1056 −1.15611
\(592\) 0 0
\(593\) 29.8969i 1.22772i −0.789415 0.613860i \(-0.789616\pi\)
0.789415 0.613860i \(-0.210384\pi\)
\(594\) 0 0
\(595\) −0.208009 + 3.16969i −0.00852754 + 0.129944i
\(596\) 0 0
\(597\) 4.22963i 0.173107i
\(598\) 0 0
\(599\) 15.8194 0.646362 0.323181 0.946337i \(-0.395248\pi\)
0.323181 + 0.946337i \(0.395248\pi\)
\(600\) 0 0
\(601\) 32.4048 1.32182 0.660910 0.750466i \(-0.270171\pi\)
0.660910 + 0.750466i \(0.270171\pi\)
\(602\) 0 0
\(603\) 35.2405i 1.43510i
\(604\) 0 0
\(605\) −1.60988 + 24.5317i −0.0654510 + 0.997357i
\(606\) 0 0
\(607\) 20.4218i 0.828895i 0.910073 + 0.414447i \(0.136025\pi\)
−0.910073 + 0.414447i \(0.863975\pi\)
\(608\) 0 0
\(609\) −24.1318 −0.977869
\(610\) 0 0
\(611\) −32.5091 −1.31518
\(612\) 0 0
\(613\) 12.0930i 0.488433i −0.969721 0.244217i \(-0.921469\pi\)
0.969721 0.244217i \(-0.0785308\pi\)
\(614\) 0 0
\(615\) −42.3658 2.78024i −1.70835 0.112110i
\(616\) 0 0
\(617\) 3.79742i 0.152878i −0.997074 0.0764392i \(-0.975645\pi\)
0.997074 0.0764392i \(-0.0243551\pi\)
\(618\) 0 0
\(619\) −0.765306 −0.0307602 −0.0153801 0.999882i \(-0.504896\pi\)
−0.0153801 + 0.999882i \(0.504896\pi\)
\(620\) 0 0
\(621\) 25.0948 1.00702
\(622\) 0 0
\(623\) 2.83337i 0.113517i
\(624\) 0 0
\(625\) 24.1461 + 6.47827i 0.965842 + 0.259131i
\(626\) 0 0
\(627\) 1.04230i 0.0416254i
\(628\) 0 0
\(629\) 9.91424 0.395307
\(630\) 0 0
\(631\) −41.7318 −1.66132 −0.830658 0.556784i \(-0.812035\pi\)
−0.830658 + 0.556784i \(0.812035\pi\)
\(632\) 0 0
\(633\) 14.0050i 0.556648i
\(634\) 0 0
\(635\) −38.5206 2.52789i −1.52864 0.100316i
\(636\) 0 0
\(637\) 28.4055i 1.12547i
\(638\) 0 0
\(639\) 20.1611 0.797561
\(640\) 0 0
\(641\) 22.6429 0.894342 0.447171 0.894448i \(-0.352431\pi\)
0.447171 + 0.894448i \(0.352431\pi\)
\(642\) 0 0
\(643\) 24.8814i 0.981226i −0.871377 0.490613i \(-0.836773\pi\)
0.871377 0.490613i \(-0.163227\pi\)
\(644\) 0 0
\(645\) −2.92144 + 44.5175i −0.115031 + 1.75287i
\(646\) 0 0
\(647\) 35.6376i 1.40106i 0.713624 + 0.700529i \(0.247053\pi\)
−0.713624 + 0.700529i \(0.752947\pi\)
\(648\) 0 0
\(649\) 0.148013 0.00581000
\(650\) 0 0
\(651\) −1.58532 −0.0621335
\(652\) 0 0
\(653\) 8.31930i 0.325559i 0.986662 + 0.162780i \(0.0520460\pi\)
−0.986662 + 0.162780i \(0.947954\pi\)
\(654\) 0 0
\(655\) 2.15521 32.8416i 0.0842111 1.28323i
\(656\) 0 0
\(657\) 71.0616i 2.77238i
\(658\) 0 0
\(659\) −3.44669 −0.134264 −0.0671320 0.997744i \(-0.521385\pi\)
−0.0671320 + 0.997744i \(0.521385\pi\)
\(660\) 0 0
\(661\) −36.6867 −1.42695 −0.713473 0.700682i \(-0.752879\pi\)
−0.713473 + 0.700682i \(0.752879\pi\)
\(662\) 0 0
\(663\) 16.3768i 0.636021i
\(664\) 0 0
\(665\) 15.5422 + 1.01995i 0.602702 + 0.0395520i
\(666\) 0 0
\(667\) 22.9657i 0.889234i
\(668\) 0 0
\(669\) −57.5995 −2.22692
\(670\) 0 0
\(671\) 0.257052 0.00992336
\(672\) 0 0
\(673\) 41.5075i 1.60000i −0.600002 0.799998i \(-0.704834\pi\)
0.600002 0.799998i \(-0.295166\pi\)
\(674\) 0 0
\(675\) −4.22282 + 32.0356i −0.162536 + 1.23305i
\(676\) 0 0
\(677\) 26.7378i 1.02762i 0.857905 + 0.513809i \(0.171766\pi\)
−0.857905 + 0.513809i \(0.828234\pi\)
\(678\) 0 0
\(679\) 7.58742 0.291179
\(680\) 0 0
\(681\) −40.5875 −1.55532
\(682\) 0 0
\(683\) 37.8270i 1.44741i 0.690110 + 0.723704i \(0.257562\pi\)
−0.690110 + 0.723704i \(0.742438\pi\)
\(684\) 0 0
\(685\) −3.03966 0.199476i −0.116139 0.00762159i
\(686\) 0 0
\(687\) 32.2144i 1.22905i
\(688\) 0 0
\(689\) −0.123572 −0.00470770
\(690\) 0 0
\(691\) −33.0739 −1.25819 −0.629095 0.777328i \(-0.716574\pi\)
−0.629095 + 0.777328i \(0.716574\pi\)
\(692\) 0 0
\(693\) 0.551937i 0.0209664i
\(694\) 0 0
\(695\) −2.01268 + 30.6696i −0.0763451 + 1.16336i
\(696\) 0 0
\(697\) 6.61055i 0.250392i
\(698\) 0 0
\(699\) −39.7192 −1.50232
\(700\) 0 0
\(701\) −24.7292 −0.934008 −0.467004 0.884255i \(-0.654667\pi\)
−0.467004 + 0.884255i \(0.654667\pi\)
\(702\) 0 0
\(703\) 48.6135i 1.83349i
\(704\) 0 0
\(705\) −2.39798 + 36.5410i −0.0903133 + 1.37621i
\(706\) 0 0
\(707\) 16.2379i 0.610688i
\(708\) 0 0
\(709\) −40.5902 −1.52440 −0.762199 0.647343i \(-0.775880\pi\)
−0.762199 + 0.647343i \(0.775880\pi\)
\(710\) 0 0
\(711\) 5.56495 0.208702
\(712\) 0 0
\(713\) 1.50871i 0.0565016i
\(714\) 0 0
\(715\) −0.941505 0.0617858i −0.0352103 0.00231066i
\(716\) 0 0
\(717\) 46.7752i 1.74685i
\(718\) 0 0
\(719\) 32.1253 1.19807 0.599036 0.800722i \(-0.295551\pi\)
0.599036 + 0.800722i \(0.295551\pi\)
\(720\) 0 0
\(721\) 11.6666 0.434486
\(722\) 0 0
\(723\) 14.1914i 0.527782i
\(724\) 0 0
\(725\) 29.3176 + 3.86455i 1.08883 + 0.143526i
\(726\) 0 0
\(727\) 11.3089i 0.419425i 0.977763 + 0.209713i \(0.0672528\pi\)
−0.977763 + 0.209713i \(0.932747\pi\)
\(728\) 0 0
\(729\) 40.9222 1.51564
\(730\) 0 0
\(731\) 6.94628 0.256918
\(732\) 0 0
\(733\) 32.5450i 1.20208i 0.799220 + 0.601039i \(0.205246\pi\)
−0.799220 + 0.601039i \(0.794754\pi\)
\(734\) 0 0
\(735\) 31.9285 + 2.09529i 1.17770 + 0.0772860i
\(736\) 0 0
\(737\) 0.496768i 0.0182987i
\(738\) 0 0
\(739\) −29.6821 −1.09187 −0.545936 0.837827i \(-0.683826\pi\)
−0.545936 + 0.837827i \(0.683826\pi\)
\(740\) 0 0
\(741\) 80.3019 2.94996
\(742\) 0 0
\(743\) 27.9705i 1.02614i −0.858348 0.513069i \(-0.828509\pi\)
0.858348 0.513069i \(-0.171491\pi\)
\(744\) 0 0
\(745\) 2.54236 38.7410i 0.0931448 1.41936i
\(746\) 0 0
\(747\) 62.2105i 2.27616i
\(748\) 0 0
\(749\) −9.01898 −0.329546
\(750\) 0 0
\(751\) 52.7167 1.92366 0.961829 0.273650i \(-0.0882309\pi\)
0.961829 + 0.273650i \(0.0882309\pi\)
\(752\) 0 0
\(753\) 37.0982i 1.35193i
\(754\) 0 0
\(755\) 0.526626 8.02485i 0.0191659 0.292054i
\(756\) 0 0
\(757\) 7.80911i 0.283827i −0.989879 0.141913i \(-0.954675\pi\)
0.989879 0.141913i \(-0.0453255\pi\)
\(758\) 0 0
\(759\) 0.825420 0.0299608
\(760\) 0 0
\(761\) 19.2266 0.696963 0.348481 0.937316i \(-0.386697\pi\)
0.348481 + 0.937316i \(0.386697\pi\)
\(762\) 0 0
\(763\) 0.416018i 0.0150609i
\(764\) 0 0
\(765\) 11.7141 + 0.768731i 0.423524 + 0.0277935i
\(766\) 0 0
\(767\) 11.4033i 0.411751i
\(768\) 0 0
\(769\) 1.45851 0.0525953 0.0262977 0.999654i \(-0.491628\pi\)
0.0262977 + 0.999654i \(0.491628\pi\)
\(770\) 0 0
\(771\) −39.1087 −1.40846
\(772\) 0 0
\(773\) 18.8055i 0.676388i 0.941076 + 0.338194i \(0.109816\pi\)
−0.941076 + 0.338194i \(0.890184\pi\)
\(774\) 0 0
\(775\) 1.92599 + 0.253878i 0.0691837 + 0.00911957i
\(776\) 0 0
\(777\) 40.4529i 1.45124i
\(778\) 0 0
\(779\) 32.4142 1.16136
\(780\) 0 0
\(781\) 0.284201 0.0101695
\(782\) 0 0
\(783\) 38.2210i 1.36591i
\(784\) 0 0
\(785\) 11.5872 + 0.760401i 0.413563 + 0.0271399i
\(786\) 0 0
\(787\) 19.0449i 0.678877i −0.940628 0.339439i \(-0.889763\pi\)
0.940628 0.339439i \(-0.110237\pi\)
\(788\) 0 0
\(789\) −36.3973 −1.29578
\(790\) 0 0
\(791\) −12.2498 −0.435552
\(792\) 0 0
\(793\) 19.8040i 0.703262i
\(794\) 0 0
\(795\) −0.00911508 + 0.138898i −0.000323278 + 0.00492619i
\(796\) 0 0
\(797\) 49.6667i 1.75929i 0.475634 + 0.879643i \(0.342219\pi\)
−0.475634 + 0.879643i \(0.657781\pi\)
\(798\) 0 0
\(799\) 5.70167 0.201711
\(800\) 0 0
\(801\) −10.4712 −0.369981
\(802\) 0 0
\(803\) 1.00172i 0.0353500i
\(804\) 0 0
\(805\) 0.807722 12.3082i 0.0284685 0.433809i
\(806\) 0 0
\(807\) 74.3824i 2.61838i
\(808\) 0 0
\(809\) −38.2625 −1.34524 −0.672619 0.739989i \(-0.734831\pi\)
−0.672619 + 0.739989i \(0.734831\pi\)
\(810\) 0 0
\(811\) 31.4356 1.10385 0.551927 0.833893i \(-0.313893\pi\)
0.551927 + 0.833893i \(0.313893\pi\)
\(812\) 0 0
\(813\) 60.9529i 2.13771i
\(814\) 0 0
\(815\) 14.6524 + 0.961559i 0.513253 + 0.0336819i
\(816\) 0 0
\(817\) 34.0604i 1.19162i
\(818\) 0 0
\(819\) −42.5229 −1.48587
\(820\) 0 0
\(821\) 42.9887 1.50031 0.750157 0.661259i \(-0.229978\pi\)
0.750157 + 0.661259i \(0.229978\pi\)
\(822\) 0 0
\(823\) 12.7450i 0.444263i 0.975017 + 0.222132i \(0.0713014\pi\)
−0.975017 + 0.222132i \(0.928699\pi\)
\(824\) 0 0
\(825\) −0.138898 + 1.05372i −0.00483579 + 0.0366857i
\(826\) 0 0
\(827\) 12.8443i 0.446639i 0.974745 + 0.223319i \(0.0716893\pi\)
−0.974745 + 0.223319i \(0.928311\pi\)
\(828\) 0 0
\(829\) 17.2491 0.599087 0.299543 0.954083i \(-0.403166\pi\)
0.299543 + 0.954083i \(0.403166\pi\)
\(830\) 0 0
\(831\) 5.91424 0.205163
\(832\) 0 0
\(833\) 4.98197i 0.172615i
\(834\) 0 0
\(835\) 2.00172 + 0.131362i 0.0692724 + 0.00454597i
\(836\) 0 0
\(837\) 2.51090i 0.0867892i
\(838\) 0 0
\(839\) −17.7454 −0.612638 −0.306319 0.951929i \(-0.599097\pi\)
−0.306319 + 0.951929i \(0.599097\pi\)
\(840\) 0 0
\(841\) 5.97821 0.206145
\(842\) 0 0
\(843\) 62.4249i 2.15003i
\(844\) 0 0
\(845\) −2.85663 + 43.5299i −0.0982711 + 1.49748i
\(846\) 0 0
\(847\) 15.6185i 0.536660i
\(848\) 0 0
\(849\) −15.2870 −0.524648
\(850\) 0 0
\(851\) −38.4981 −1.31970
\(852\) 0 0
\(853\) 45.1570i 1.54615i 0.634317 + 0.773073i \(0.281282\pi\)
−0.634317 + 0.773073i \(0.718718\pi\)
\(854\) 0 0
\(855\) 3.76940 57.4389i 0.128911 1.96437i
\(856\) 0 0
\(857\) 40.5102i 1.38380i −0.721993 0.691900i \(-0.756774\pi\)
0.721993 0.691900i \(-0.243226\pi\)
\(858\) 0 0
\(859\) −25.4439 −0.868135 −0.434068 0.900880i \(-0.642922\pi\)
−0.434068 + 0.900880i \(0.642922\pi\)
\(860\) 0 0
\(861\) −26.9729 −0.919235
\(862\) 0 0
\(863\) 21.6953i 0.738517i 0.929327 + 0.369259i \(0.120388\pi\)
−0.929327 + 0.369259i \(0.879612\pi\)
\(864\) 0 0
\(865\) 8.54646 + 0.560857i 0.290588 + 0.0190697i
\(866\) 0 0
\(867\) 2.87228i 0.0975476i
\(868\) 0 0
\(869\) 0.0784464 0.00266111
\(870\) 0 0
\(871\) −38.2725 −1.29681
\(872\) 0 0
\(873\) 28.0406i 0.949030i
\(874\) 0 0
\(875\) 15.5766 + 3.10230i 0.526585 + 0.104877i
\(876\) 0 0
\(877\) 15.4643i 0.522191i 0.965313 + 0.261095i \(0.0840837\pi\)
−0.965313 + 0.261095i \(0.915916\pi\)
\(878\) 0 0
\(879\) −67.0060 −2.26006
\(880\) 0 0
\(881\) −13.2839 −0.447544 −0.223772 0.974641i \(-0.571837\pi\)
−0.223772 + 0.974641i \(0.571837\pi\)
\(882\) 0 0
\(883\) 30.1936i 1.01609i −0.861329 0.508047i \(-0.830368\pi\)
0.861329 0.508047i \(-0.169632\pi\)
\(884\) 0 0
\(885\) −12.8176 0.841151i −0.430860 0.0282750i
\(886\) 0 0
\(887\) 39.7258i 1.33386i −0.745120 0.666930i \(-0.767608\pi\)
0.745120 0.666930i \(-0.232392\pi\)
\(888\) 0 0
\(889\) −24.5248 −0.822535
\(890\) 0 0
\(891\) −0.208126 −0.00697250
\(892\) 0 0
\(893\) 27.9576i 0.935565i
\(894\) 0 0
\(895\) 1.42685 21.7427i 0.0476945 0.726779i
\(896\) 0 0
\(897\) 63.5929i 2.12330i
\(898\) 0 0
\(899\) 2.29786 0.0766381
\(900\) 0 0
\(901\) 0.0216729 0.000722028
\(902\) 0 0
\(903\) 28.3428i 0.943190i
\(904\) 0 0
\(905\) 3.29113 50.1510i 0.109401 1.66707i
\(906\) 0 0
\(907\) 20.4051i 0.677541i 0.940869 + 0.338771i \(0.110011\pi\)
−0.940869 + 0.338771i \(0.889989\pi\)
\(908\) 0 0
\(909\) −60.0098 −1.99040
\(910\) 0 0
\(911\) 44.1137 1.46155 0.730776 0.682618i \(-0.239159\pi\)
0.730776 + 0.682618i \(0.239159\pi\)
\(912\) 0 0
\(913\) 0.876951i 0.0290228i
\(914\) 0 0
\(915\) −22.2602 1.46082i −0.735900 0.0482931i
\(916\) 0 0
\(917\) 20.9091i 0.690481i
\(918\) 0 0
\(919\) 38.1261 1.25766 0.628832 0.777541i \(-0.283533\pi\)
0.628832 + 0.777541i \(0.283533\pi\)
\(920\) 0 0
\(921\) −50.1464 −1.65238
\(922\) 0 0
\(923\) 21.8957i 0.720707i
\(924\) 0 0
\(925\) 6.47827 49.1461i 0.213004 1.61591i
\(926\) 0 0
\(927\) 43.1157i 1.41611i
\(928\) 0 0
\(929\) −11.6168 −0.381134 −0.190567 0.981674i \(-0.561033\pi\)
−0.190567 + 0.981674i \(0.561033\pi\)
\(930\) 0 0
\(931\) −24.4286 −0.800614
\(932\) 0 0
\(933\) 8.58801i 0.281159i
\(934\) 0 0
\(935\) 0.165128 + 0.0108364i 0.00540026 + 0.000354389i
\(936\) 0 0
\(937\) 39.8889i 1.30311i −0.758600 0.651557i \(-0.774116\pi\)
0.758600 0.651557i \(-0.225884\pi\)
\(938\) 0 0
\(939\) −22.2897 −0.727396
\(940\) 0 0
\(941\) −21.8113 −0.711028 −0.355514 0.934671i \(-0.615694\pi\)
−0.355514 + 0.934671i \(0.615694\pi\)
\(942\) 0 0
\(943\) 25.6695i 0.835914i
\(944\) 0 0
\(945\) −1.34427 + 20.4842i −0.0437290 + 0.666351i
\(946\) 0 0
\(947\) 18.2678i 0.593625i −0.954936 0.296812i \(-0.904076\pi\)
0.954936 0.296812i \(-0.0959236\pi\)
\(948\) 0 0
\(949\) 77.1757 2.50523
\(950\) 0 0
\(951\) 19.7886 0.641688
\(952\) 0 0
\(953\) 27.5942i 0.893865i 0.894568 + 0.446932i \(0.147484\pi\)
−0.894568 + 0.446932i \(0.852516\pi\)
\(954\) 0 0
\(955\) 0.801908 12.2196i 0.0259491 0.395419i
\(956\) 0 0
\(957\) 1.25717i 0.0406385i
\(958\) 0 0
\(959\) −1.93525 −0.0624925
\(960\) 0 0
\(961\) −30.8490 −0.995130
\(962\) 0 0
\(963\) 33.3311i 1.07408i
\(964\) 0 0
\(965\) −4.78571 0.314060i −0.154058 0.0101099i
\(966\) 0 0
\(967\) 36.3289i 1.16826i −0.811661 0.584129i \(-0.801436\pi\)
0.811661 0.584129i \(-0.198564\pi\)
\(968\) 0 0
\(969\) −14.0839 −0.452441
\(970\) 0 0
\(971\) −45.2409 −1.45185 −0.725925 0.687774i \(-0.758588\pi\)
−0.725925 + 0.687774i \(0.758588\pi\)
\(972\) 0 0
\(973\) 19.5263i 0.625985i
\(974\) 0 0
\(975\) 81.1816 + 10.7011i 2.59989 + 0.342709i
\(976\) 0 0
\(977\) 10.8393i 0.346780i 0.984853 + 0.173390i \(0.0554722\pi\)
−0.984853 + 0.173390i \(0.944528\pi\)
\(978\) 0 0
\(979\) −0.147607 −0.00471755
\(980\) 0 0
\(981\) 1.53746 0.0490874
\(982\) 0 0
\(983\) 3.69018i 0.117699i −0.998267 0.0588493i \(-0.981257\pi\)
0.998267 0.0588493i \(-0.0187431\pi\)
\(984\) 0 0
\(985\) 21.8333 + 1.43280i 0.695665 + 0.0456527i
\(986\) 0 0
\(987\) 23.2644i 0.740515i
\(988\) 0 0
\(989\) −26.9732 −0.857698
\(990\) 0 0
\(991\) −36.6378 −1.16384 −0.581919 0.813247i \(-0.697698\pi\)
−0.581919 + 0.813247i \(0.697698\pi\)
\(992\) 0 0
\(993\) 45.5442i 1.44530i
\(994\) 0 0
\(995\) −0.215623 + 3.28570i −0.00683569 + 0.104164i
\(996\) 0 0
\(997\) 32.6021i 1.03252i 0.856432 + 0.516259i \(0.172676\pi\)
−0.856432 + 0.516259i \(0.827324\pi\)
\(998\) 0 0
\(999\) 64.0711 2.02712
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1360.2.e.d.1089.8 8
4.3 odd 2 85.2.b.a.69.6 yes 8
5.2 odd 4 6800.2.a.bw.1.4 4
5.3 odd 4 6800.2.a.bt.1.1 4
5.4 even 2 inner 1360.2.e.d.1089.1 8
12.11 even 2 765.2.b.c.154.3 8
20.3 even 4 425.2.a.h.1.3 4
20.7 even 4 425.2.a.g.1.2 4
20.19 odd 2 85.2.b.a.69.3 8
60.23 odd 4 3825.2.a.bh.1.2 4
60.47 odd 4 3825.2.a.bj.1.3 4
60.59 even 2 765.2.b.c.154.6 8
68.67 odd 2 1445.2.b.e.579.6 8
340.67 even 4 7225.2.a.v.1.2 4
340.203 even 4 7225.2.a.w.1.3 4
340.339 odd 2 1445.2.b.e.579.3 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
85.2.b.a.69.3 8 20.19 odd 2
85.2.b.a.69.6 yes 8 4.3 odd 2
425.2.a.g.1.2 4 20.7 even 4
425.2.a.h.1.3 4 20.3 even 4
765.2.b.c.154.3 8 12.11 even 2
765.2.b.c.154.6 8 60.59 even 2
1360.2.e.d.1089.1 8 5.4 even 2 inner
1360.2.e.d.1089.8 8 1.1 even 1 trivial
1445.2.b.e.579.3 8 340.339 odd 2
1445.2.b.e.579.6 8 68.67 odd 2
3825.2.a.bh.1.2 4 60.23 odd 4
3825.2.a.bj.1.3 4 60.47 odd 4
6800.2.a.bt.1.1 4 5.3 odd 4
6800.2.a.bw.1.4 4 5.2 odd 4
7225.2.a.v.1.2 4 340.67 even 4
7225.2.a.w.1.3 4 340.203 even 4