Properties

Label 1445.2.b.e.579.3
Level $1445$
Weight $2$
Character 1445.579
Analytic conductor $11.538$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1445,2,Mod(579,1445)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1445, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1445.579");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1445 = 5 \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1445.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.5383830921\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.619810816.2
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 2x^{5} + 14x^{4} - 8x^{3} + 2x^{2} + 2x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 85)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 579.3
Root \(-0.252709 - 0.252709i\) of defining polynomial
Character \(\chi\) \(=\) 1445.579
Dual form 1445.2.b.e.579.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.57942i q^{2} -2.87228i q^{3} -0.494582 q^{4} +(-0.146426 - 2.23127i) q^{5} -4.53654 q^{6} +1.42058i q^{7} -2.37769i q^{8} -5.24997 q^{9} +(-3.52412 + 0.231269i) q^{10} -0.0740063 q^{11} +1.42058i q^{12} -5.70167i q^{13} +2.24369 q^{14} +(-6.40882 + 0.420575i) q^{15} -4.74455 q^{16} +8.29193i q^{18} +4.90340 q^{19} +(0.0724196 + 1.10354i) q^{20} +4.08029 q^{21} +0.116887i q^{22} -3.88311i q^{23} -6.82940 q^{24} +(-4.95712 + 0.653431i) q^{25} -9.00536 q^{26} +6.46254i q^{27} -0.702591i q^{28} +5.91424 q^{29} +(0.664267 + 10.1222i) q^{30} -0.388531 q^{31} +2.73827i q^{32} +0.212567i q^{33} +(3.16969 - 0.208009i) q^{35} +2.59654 q^{36} +9.91424i q^{37} -7.74455i q^{38} -16.3768 q^{39} +(-5.30527 + 0.348156i) q^{40} +6.61055 q^{41} -6.44450i q^{42} +6.94628i q^{43} +0.0366022 q^{44} +(0.768731 + 11.7141i) q^{45} -6.13308 q^{46} +5.70167i q^{47} +13.6277i q^{48} +4.98197 q^{49} +(1.03204 + 7.82940i) q^{50} +2.81994i q^{52} -0.0216729i q^{53} +10.2071 q^{54} +(0.0108364 + 0.165128i) q^{55} +3.37769 q^{56} -14.0839i q^{57} -9.34109i q^{58} +2.00000 q^{59} +(3.16969 - 0.208009i) q^{60} +3.47337 q^{61} +0.613655i q^{62} -7.45798i q^{63} -5.16421 q^{64} +(-12.7220 + 0.834872i) q^{65} +0.335733 q^{66} +6.71251i q^{67} -11.1534 q^{69} +(-0.328534 - 5.00628i) q^{70} -3.84023 q^{71} +12.4828i q^{72} -13.5356i q^{73} +15.6588 q^{74} +(1.87683 + 14.2382i) q^{75} -2.42513 q^{76} -0.105132i q^{77} +25.8659i q^{78} -1.06000 q^{79} +(0.694725 + 10.5864i) q^{80} +2.81228 q^{81} -10.4409i q^{82} -11.8497i q^{83} -2.01803 q^{84} +10.9711 q^{86} -16.9873i q^{87} +0.175964i q^{88} +1.99452 q^{89} +(18.5015 - 1.21415i) q^{90} +8.09965 q^{91} +1.92052i q^{92} +1.11597i q^{93} +9.00536 q^{94} +(-0.717985 - 10.9408i) q^{95} +7.86508 q^{96} +5.34109i q^{97} -7.86864i q^{98} +0.388531 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{4} + 2 q^{5} - 8 q^{9} - 6 q^{10} + 4 q^{11} - 12 q^{14} - 8 q^{16} - 8 q^{19} + 2 q^{20} + 24 q^{21} - 12 q^{24} - 12 q^{25} - 8 q^{29} - 16 q^{30} + 24 q^{31} - 44 q^{39} - 22 q^{40} + 12 q^{41}+ \cdots - 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1445\mathbb{Z}\right)^\times\).

\(n\) \(581\) \(1157\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.57942i 1.11682i −0.829565 0.558411i \(-0.811411\pi\)
0.829565 0.558411i \(-0.188589\pi\)
\(3\) 2.87228i 1.65831i −0.559019 0.829155i \(-0.688822\pi\)
0.559019 0.829155i \(-0.311178\pi\)
\(4\) −0.494582 −0.247291
\(5\) −0.146426 2.23127i −0.0654836 0.997854i
\(6\) −4.53654 −1.85204
\(7\) 1.42058i 0.536927i 0.963290 + 0.268464i \(0.0865159\pi\)
−0.963290 + 0.268464i \(0.913484\pi\)
\(8\) 2.37769i 0.840642i
\(9\) −5.24997 −1.74999
\(10\) −3.52412 + 0.231269i −1.11442 + 0.0731335i
\(11\) −0.0740063 −0.0223137 −0.0111569 0.999938i \(-0.503551\pi\)
−0.0111569 + 0.999938i \(0.503551\pi\)
\(12\) 1.42058i 0.410085i
\(13\) 5.70167i 1.58136i −0.612230 0.790680i \(-0.709727\pi\)
0.612230 0.790680i \(-0.290273\pi\)
\(14\) 2.24369 0.599652
\(15\) −6.40882 + 0.420575i −1.65475 + 0.108592i
\(16\) −4.74455 −1.18614
\(17\) 0 0
\(18\) 8.29193i 1.95443i
\(19\) 4.90340 1.12492 0.562459 0.826825i \(-0.309856\pi\)
0.562459 + 0.826825i \(0.309856\pi\)
\(20\) 0.0724196 + 1.10354i 0.0161935 + 0.246760i
\(21\) 4.08029 0.890391
\(22\) 0.116887i 0.0249205i
\(23\) 3.88311i 0.809685i −0.914386 0.404842i \(-0.867326\pi\)
0.914386 0.404842i \(-0.132674\pi\)
\(24\) −6.82940 −1.39404
\(25\) −4.95712 + 0.653431i −0.991424 + 0.130686i
\(26\) −9.00536 −1.76610
\(27\) 6.46254i 1.24372i
\(28\) 0.702591i 0.132777i
\(29\) 5.91424 1.09825 0.549123 0.835741i \(-0.314962\pi\)
0.549123 + 0.835741i \(0.314962\pi\)
\(30\) 0.664267 + 10.1222i 0.121278 + 1.84806i
\(31\) −0.388531 −0.0697822 −0.0348911 0.999391i \(-0.511108\pi\)
−0.0348911 + 0.999391i \(0.511108\pi\)
\(32\) 2.73827i 0.484063i
\(33\) 0.212567i 0.0370031i
\(34\) 0 0
\(35\) 3.16969 0.208009i 0.535775 0.0351599i
\(36\) 2.59654 0.432757
\(37\) 9.91424i 1.62989i 0.579538 + 0.814945i \(0.303233\pi\)
−0.579538 + 0.814945i \(0.696767\pi\)
\(38\) 7.74455i 1.25633i
\(39\) −16.3768 −2.62238
\(40\) −5.30527 + 0.348156i −0.838838 + 0.0550483i
\(41\) 6.61055 1.03239 0.516197 0.856470i \(-0.327347\pi\)
0.516197 + 0.856470i \(0.327347\pi\)
\(42\) 6.44450i 0.994408i
\(43\) 6.94628i 1.05930i 0.848217 + 0.529649i \(0.177676\pi\)
−0.848217 + 0.529649i \(0.822324\pi\)
\(44\) 0.0366022 0.00551798
\(45\) 0.768731 + 11.7141i 0.114596 + 1.74623i
\(46\) −6.13308 −0.904274
\(47\) 5.70167i 0.831674i 0.909439 + 0.415837i \(0.136511\pi\)
−0.909439 + 0.415837i \(0.863489\pi\)
\(48\) 13.6277i 1.96698i
\(49\) 4.98197 0.711709
\(50\) 1.03204 + 7.82940i 0.145953 + 1.10724i
\(51\) 0 0
\(52\) 2.81994i 0.391056i
\(53\) 0.0216729i 0.00297700i −0.999999 0.00148850i \(-0.999526\pi\)
0.999999 0.00148850i \(-0.000473804\pi\)
\(54\) 10.2071 1.38901
\(55\) 0.0108364 + 0.165128i 0.00146118 + 0.0222658i
\(56\) 3.37769 0.451363
\(57\) 14.0839i 1.86546i
\(58\) 9.34109i 1.22655i
\(59\) 2.00000 0.260378 0.130189 0.991489i \(-0.458442\pi\)
0.130189 + 0.991489i \(0.458442\pi\)
\(60\) 3.16969 0.208009i 0.409205 0.0268538i
\(61\) 3.47337 0.444720 0.222360 0.974965i \(-0.428624\pi\)
0.222360 + 0.974965i \(0.428624\pi\)
\(62\) 0.613655i 0.0779343i
\(63\) 7.45798i 0.939617i
\(64\) −5.16421 −0.645526
\(65\) −12.7220 + 0.834872i −1.57796 + 0.103553i
\(66\) 0.335733 0.0413258
\(67\) 6.71251i 0.820063i 0.912071 + 0.410032i \(0.134482\pi\)
−0.912071 + 0.410032i \(0.865518\pi\)
\(68\) 0 0
\(69\) −11.1534 −1.34271
\(70\) −0.328534 5.00628i −0.0392674 0.598365i
\(71\) −3.84023 −0.455752 −0.227876 0.973690i \(-0.573178\pi\)
−0.227876 + 0.973690i \(0.573178\pi\)
\(72\) 12.4828i 1.47112i
\(73\) 13.5356i 1.58422i −0.610375 0.792112i \(-0.708981\pi\)
0.610375 0.792112i \(-0.291019\pi\)
\(74\) 15.6588 1.82030
\(75\) 1.87683 + 14.2382i 0.216718 + 1.64409i
\(76\) −2.42513 −0.278182
\(77\) 0.105132i 0.0119808i
\(78\) 25.8659i 2.92873i
\(79\) −1.06000 −0.119259 −0.0596295 0.998221i \(-0.518992\pi\)
−0.0596295 + 0.998221i \(0.518992\pi\)
\(80\) 0.694725 + 10.5864i 0.0776726 + 1.18359i
\(81\) 2.81228 0.312476
\(82\) 10.4409i 1.15300i
\(83\) 11.8497i 1.30067i −0.759647 0.650336i \(-0.774628\pi\)
0.759647 0.650336i \(-0.225372\pi\)
\(84\) −2.01803 −0.220186
\(85\) 0 0
\(86\) 10.9711 1.18305
\(87\) 16.9873i 1.82123i
\(88\) 0.175964i 0.0187579i
\(89\) 1.99452 0.211419 0.105710 0.994397i \(-0.466289\pi\)
0.105710 + 0.994397i \(0.466289\pi\)
\(90\) 18.5015 1.21415i 1.95023 0.127983i
\(91\) 8.09965 0.849075
\(92\) 1.92052i 0.200228i
\(93\) 1.11597i 0.115720i
\(94\) 9.00536 0.928832
\(95\) −0.717985 10.9408i −0.0736637 1.12250i
\(96\) 7.86508 0.802726
\(97\) 5.34109i 0.542306i 0.962536 + 0.271153i \(0.0874049\pi\)
−0.962536 + 0.271153i \(0.912595\pi\)
\(98\) 7.86864i 0.794852i
\(99\) 0.388531 0.0390488
\(100\) 2.45170 0.323175i 0.245170 0.0323175i
\(101\) 11.4305 1.13738 0.568688 0.822553i \(-0.307451\pi\)
0.568688 + 0.822553i \(0.307451\pi\)
\(102\) 0 0
\(103\) 8.21257i 0.809208i 0.914492 + 0.404604i \(0.132591\pi\)
−0.914492 + 0.404604i \(0.867409\pi\)
\(104\) −13.5568 −1.32936
\(105\) −0.597459 9.10421i −0.0583061 0.888480i
\(106\) −0.0342307 −0.00332478
\(107\) 6.34882i 0.613764i 0.951748 + 0.306882i \(0.0992857\pi\)
−0.951748 + 0.306882i \(0.900714\pi\)
\(108\) 3.19625i 0.307560i
\(109\) 0.292852 0.0280501 0.0140251 0.999902i \(-0.495536\pi\)
0.0140251 + 0.999902i \(0.495536\pi\)
\(110\) 0.260807 0.0171153i 0.0248670 0.00163188i
\(111\) 28.4764 2.70286
\(112\) 6.73999i 0.636870i
\(113\) 8.62311i 0.811194i −0.914052 0.405597i \(-0.867064\pi\)
0.914052 0.405597i \(-0.132936\pi\)
\(114\) −22.2445 −2.08339
\(115\) −8.66427 + 0.568588i −0.807947 + 0.0530211i
\(116\) −2.92507 −0.271586
\(117\) 29.9336i 2.76736i
\(118\) 3.15885i 0.290796i
\(119\) 0 0
\(120\) 1.00000 + 15.2382i 0.0912871 + 1.39105i
\(121\) −10.9945 −0.999502
\(122\) 5.48593i 0.496673i
\(123\) 18.9873i 1.71203i
\(124\) 0.192160 0.0172565
\(125\) 2.18383 + 10.9650i 0.195328 + 0.980738i
\(126\) −11.7793 −1.04938
\(127\) 17.2640i 1.53193i −0.642882 0.765965i \(-0.722261\pi\)
0.642882 0.765965i \(-0.277739\pi\)
\(128\) 13.6330i 1.20500i
\(129\) 19.9516 1.75664
\(130\) 1.31862 + 20.0934i 0.115650 + 1.76231i
\(131\) 14.7188 1.28599 0.642993 0.765872i \(-0.277692\pi\)
0.642993 + 0.765872i \(0.277692\pi\)
\(132\) 0.105132i 0.00915052i
\(133\) 6.96565i 0.603999i
\(134\) 10.6019 0.915865
\(135\) 14.4197 0.946283i 1.24105 0.0814430i
\(136\) 0 0
\(137\) 1.36230i 0.116389i 0.998305 + 0.0581946i \(0.0185344\pi\)
−0.998305 + 0.0581946i \(0.981466\pi\)
\(138\) 17.6159i 1.49957i
\(139\) −13.7454 −1.16587 −0.582933 0.812520i \(-0.698095\pi\)
−0.582933 + 0.812520i \(0.698095\pi\)
\(140\) −1.56767 + 0.102877i −0.132492 + 0.00869473i
\(141\) 16.3768 1.37917
\(142\) 6.06536i 0.508993i
\(143\) 0.421960i 0.0352860i
\(144\) 24.9088 2.07573
\(145\) −0.865997 13.1963i −0.0719172 1.09589i
\(146\) −21.3785 −1.76930
\(147\) 14.3096i 1.18023i
\(148\) 4.90340i 0.403057i
\(149\) 17.3628 1.42241 0.711207 0.702983i \(-0.248149\pi\)
0.711207 + 0.702983i \(0.248149\pi\)
\(150\) 22.4882 2.96432i 1.83615 0.242035i
\(151\) −3.59654 −0.292682 −0.146341 0.989234i \(-0.546750\pi\)
−0.146341 + 0.989234i \(0.546750\pi\)
\(152\) 11.6588i 0.945653i
\(153\) 0 0
\(154\) −0.166047 −0.0133805
\(155\) 0.0568910 + 0.866917i 0.00456959 + 0.0696324i
\(156\) 8.09965 0.648491
\(157\) 5.19308i 0.414453i −0.978293 0.207226i \(-0.933556\pi\)
0.978293 0.207226i \(-0.0664437\pi\)
\(158\) 1.67418i 0.133191i
\(159\) −0.0622505 −0.00493678
\(160\) 6.10982 0.400954i 0.483024 0.0316982i
\(161\) 5.51625 0.434742
\(162\) 4.44178i 0.348979i
\(163\) 6.56687i 0.514357i −0.966364 0.257178i \(-0.917207\pi\)
0.966364 0.257178i \(-0.0827928\pi\)
\(164\) −3.26946 −0.255302
\(165\) 0.474293 0.0311252i 0.0369237 0.00242310i
\(166\) −18.7157 −1.45262
\(167\) 0.897123i 0.0694214i −0.999397 0.0347107i \(-0.988949\pi\)
0.999397 0.0347107i \(-0.0110510\pi\)
\(168\) 9.70167i 0.748500i
\(169\) −19.5091 −1.50070
\(170\) 0 0
\(171\) −25.7427 −1.96859
\(172\) 3.43550i 0.261955i
\(173\) 3.83031i 0.291213i 0.989343 + 0.145607i \(0.0465134\pi\)
−0.989343 + 0.145607i \(0.953487\pi\)
\(174\) −26.8302 −2.03399
\(175\) −0.928248 7.04196i −0.0701689 0.532322i
\(176\) 0.351127 0.0264672
\(177\) 5.74455i 0.431787i
\(178\) 3.15020i 0.236117i
\(179\) −9.74455 −0.728342 −0.364171 0.931332i \(-0.618648\pi\)
−0.364171 + 0.931332i \(0.618648\pi\)
\(180\) −0.380201 5.79358i −0.0283385 0.431828i
\(181\) −22.4764 −1.67066 −0.835330 0.549749i \(-0.814723\pi\)
−0.835330 + 0.549749i \(0.814723\pi\)
\(182\) 12.7928i 0.948265i
\(183\) 9.97649i 0.737483i
\(184\) −9.23286 −0.680655
\(185\) 22.1213 1.45170i 1.62639 0.106731i
\(186\) 1.76259 0.129239
\(187\) 0 0
\(188\) 2.81994i 0.205665i
\(189\) −9.18052 −0.667785
\(190\) −17.2802 + 1.13400i −1.25364 + 0.0822692i
\(191\) −5.47655 −0.396269 −0.198135 0.980175i \(-0.563488\pi\)
−0.198135 + 0.980175i \(0.563488\pi\)
\(192\) 14.8330i 1.07048i
\(193\) 2.14484i 0.154389i −0.997016 0.0771944i \(-0.975404\pi\)
0.997016 0.0771944i \(-0.0245962\pi\)
\(194\) 8.43585 0.605659
\(195\) 2.39798 + 36.5410i 0.171723 + 2.61675i
\(196\) −2.46399 −0.175999
\(197\) 9.78513i 0.697162i 0.937279 + 0.348581i \(0.113336\pi\)
−0.937279 + 0.348581i \(0.886664\pi\)
\(198\) 0.613655i 0.0436106i
\(199\) −1.47257 −0.104388 −0.0521939 0.998637i \(-0.516621\pi\)
−0.0521939 + 0.998637i \(0.516621\pi\)
\(200\) 1.55366 + 11.7865i 0.109860 + 0.833432i
\(201\) 19.2802 1.35992
\(202\) 18.0536i 1.27025i
\(203\) 8.40162i 0.589678i
\(204\) 0 0
\(205\) −0.967955 14.7499i −0.0676049 1.03018i
\(206\) 12.9711 0.903741
\(207\) 20.3862i 1.41694i
\(208\) 27.0519i 1.87571i
\(209\) −0.362883 −0.0251011
\(210\) −14.3794 + 0.943642i −0.992274 + 0.0651175i
\(211\) 4.87591 0.335672 0.167836 0.985815i \(-0.446322\pi\)
0.167836 + 0.985815i \(0.446322\pi\)
\(212\) 0.0107190i 0.000736184i
\(213\) 11.0302i 0.755777i
\(214\) 10.0275 0.685465
\(215\) 15.4990 1.01712i 1.05702 0.0693667i
\(216\) 15.3659 1.04552
\(217\) 0.551937i 0.0374680i
\(218\) 0.462537i 0.0313270i
\(219\) −38.8781 −2.62714
\(220\) −0.00535950 0.0816693i −0.000361338 0.00550614i
\(221\) 0 0
\(222\) 44.9764i 3.01862i
\(223\) 20.0536i 1.34289i 0.741055 + 0.671444i \(0.234326\pi\)
−0.741055 + 0.671444i \(0.765674\pi\)
\(224\) −3.88992 −0.259906
\(225\) 26.0247 3.43049i 1.73498 0.228700i
\(226\) −13.6195 −0.905959
\(227\) 14.1308i 0.937893i −0.883227 0.468946i \(-0.844634\pi\)
0.883227 0.468946i \(-0.155366\pi\)
\(228\) 6.96565i 0.461312i
\(229\) −11.2156 −0.741149 −0.370575 0.928803i \(-0.620839\pi\)
−0.370575 + 0.928803i \(0.620839\pi\)
\(230\) 0.898042 + 13.6846i 0.0592151 + 0.902333i
\(231\) −0.301967 −0.0198680
\(232\) 14.0623i 0.923232i
\(233\) 13.8285i 0.905934i 0.891527 + 0.452967i \(0.149634\pi\)
−0.891527 + 0.452967i \(0.850366\pi\)
\(234\) 47.2779 3.09065
\(235\) 12.7220 0.834872i 0.829889 0.0544610i
\(236\) −0.989164 −0.0643891
\(237\) 3.04460i 0.197768i
\(238\) 0 0
\(239\) 16.2851 1.05339 0.526697 0.850053i \(-0.323430\pi\)
0.526697 + 0.850053i \(0.323430\pi\)
\(240\) 30.4070 1.99544i 1.96276 0.128805i
\(241\) −4.94081 −0.318265 −0.159133 0.987257i \(-0.550870\pi\)
−0.159133 + 0.987257i \(0.550870\pi\)
\(242\) 17.3650i 1.11627i
\(243\) 11.3100i 0.725535i
\(244\) −1.71787 −0.109975
\(245\) −0.729489 11.1161i −0.0466053 0.710182i
\(246\) −29.9890 −1.91203
\(247\) 27.9576i 1.77890i
\(248\) 0.923808i 0.0586618i
\(249\) −34.0356 −2.15692
\(250\) 17.3184 3.44919i 1.09531 0.218146i
\(251\) 12.9160 0.815248 0.407624 0.913150i \(-0.366357\pi\)
0.407624 + 0.913150i \(0.366357\pi\)
\(252\) 3.68858i 0.232359i
\(253\) 0.287375i 0.0180671i
\(254\) −27.2672 −1.71089
\(255\) 0 0
\(256\) 11.2039 0.700245
\(257\) 13.6159i 0.849337i −0.905349 0.424669i \(-0.860391\pi\)
0.905349 0.424669i \(-0.139609\pi\)
\(258\) 31.5121i 1.96186i
\(259\) −14.0839 −0.875132
\(260\) 6.29205 0.412913i 0.390216 0.0256077i
\(261\) −31.0496 −1.92192
\(262\) 23.2472i 1.43622i
\(263\) 12.6719i 0.781385i 0.920521 + 0.390692i \(0.127764\pi\)
−0.920521 + 0.390692i \(0.872236\pi\)
\(264\) 0.505418 0.0311063
\(265\) −0.0483580 + 0.00317347i −0.00297061 + 0.000194945i
\(266\) 11.0017 0.674559
\(267\) 5.72882i 0.350598i
\(268\) 3.31988i 0.202794i
\(269\) −25.8967 −1.57895 −0.789474 0.613784i \(-0.789646\pi\)
−0.789474 + 0.613784i \(0.789646\pi\)
\(270\) −1.49458 22.7748i −0.0909574 1.38603i
\(271\) 21.2211 1.28909 0.644545 0.764566i \(-0.277047\pi\)
0.644545 + 0.764566i \(0.277047\pi\)
\(272\) 0 0
\(273\) 23.2644i 1.40803i
\(274\) 2.15165 0.129986
\(275\) 0.366858 0.0483580i 0.0221224 0.00291610i
\(276\) 5.51625 0.332040
\(277\) 2.05908i 0.123718i −0.998085 0.0618590i \(-0.980297\pi\)
0.998085 0.0618590i \(-0.0197029\pi\)
\(278\) 21.7097i 1.30206i
\(279\) 2.03978 0.122118
\(280\) −0.494582 7.53654i −0.0295569 0.450395i
\(281\) −21.7336 −1.29652 −0.648259 0.761420i \(-0.724503\pi\)
−0.648259 + 0.761420i \(0.724503\pi\)
\(282\) 25.8659i 1.54029i
\(283\) 5.32226i 0.316375i −0.987409 0.158188i \(-0.949435\pi\)
0.987409 0.158188i \(-0.0505651\pi\)
\(284\) 1.89931 0.112703
\(285\) −31.4250 + 2.06225i −1.86146 + 0.122157i
\(286\) 0.666453 0.0394082
\(287\) 9.39078i 0.554321i
\(288\) 14.3759i 0.847105i
\(289\) 0 0
\(290\) −20.8425 + 1.36778i −1.22391 + 0.0803187i
\(291\) 15.3411 0.899311
\(292\) 6.69447i 0.391764i
\(293\) 23.3285i 1.36287i −0.731880 0.681434i \(-0.761357\pi\)
0.731880 0.681434i \(-0.238643\pi\)
\(294\) −22.6009 −1.31811
\(295\) −0.292852 4.46254i −0.0170505 0.259819i
\(296\) 23.5730 1.37015
\(297\) 0.478268i 0.0277519i
\(298\) 27.4232i 1.58858i
\(299\) −22.1402 −1.28040
\(300\) −0.928248 7.04196i −0.0535924 0.406568i
\(301\) −9.86772 −0.568766
\(302\) 5.68046i 0.326874i
\(303\) 32.8315i 1.88612i
\(304\) −23.2644 −1.33431
\(305\) −0.508592 7.75003i −0.0291219 0.443765i
\(306\) 0 0
\(307\) 17.4588i 0.996425i 0.867055 + 0.498213i \(0.166010\pi\)
−0.867055 + 0.498213i \(0.833990\pi\)
\(308\) 0.0519961i 0.00296275i
\(309\) 23.5888 1.34192
\(310\) 1.36923 0.0898550i 0.0777670 0.00510342i
\(311\) −2.98997 −0.169545 −0.0847727 0.996400i \(-0.527016\pi\)
−0.0847727 + 0.996400i \(0.527016\pi\)
\(312\) 38.9390i 2.20448i
\(313\) 7.76028i 0.438637i 0.975653 + 0.219319i \(0.0703834\pi\)
−0.975653 + 0.219319i \(0.929617\pi\)
\(314\) −8.20208 −0.462870
\(315\) −16.6408 + 1.09204i −0.937600 + 0.0615295i
\(316\) 0.524255 0.0294916
\(317\) 6.88951i 0.386953i −0.981105 0.193477i \(-0.938024\pi\)
0.981105 0.193477i \(-0.0619764\pi\)
\(318\) 0.0983199i 0.00551351i
\(319\) −0.437691 −0.0245060
\(320\) 0.756174 + 11.5227i 0.0422714 + 0.644141i
\(321\) 18.2356 1.01781
\(322\) 8.71251i 0.485529i
\(323\) 0 0
\(324\) −1.39090 −0.0772724
\(325\) 3.72565 + 28.2639i 0.206662 + 1.56780i
\(326\) −10.3719 −0.574445
\(327\) 0.841151i 0.0465158i
\(328\) 15.7179i 0.867874i
\(329\) −8.09965 −0.446548
\(330\) −0.0491600 0.749110i −0.00270617 0.0412371i
\(331\) 15.8565 0.871552 0.435776 0.900055i \(-0.356474\pi\)
0.435776 + 0.900055i \(0.356474\pi\)
\(332\) 5.86064i 0.321644i
\(333\) 52.0495i 2.85229i
\(334\) −1.41694 −0.0775314
\(335\) 14.9774 0.982885i 0.818303 0.0537007i
\(336\) −19.3591 −1.05613
\(337\) 19.1787i 1.04473i −0.852722 0.522365i \(-0.825050\pi\)
0.852722 0.522365i \(-0.174950\pi\)
\(338\) 30.8131i 1.67601i
\(339\) −24.7679 −1.34521
\(340\) 0 0
\(341\) 0.0287537 0.00155710
\(342\) 40.6587i 2.19857i
\(343\) 17.0213i 0.919063i
\(344\) 16.5161 0.890490
\(345\) 1.63314 + 24.8862i 0.0879254 + 1.33983i
\(346\) 6.04969 0.325233
\(347\) 33.5775i 1.80253i 0.433265 + 0.901266i \(0.357361\pi\)
−0.433265 + 0.901266i \(0.642639\pi\)
\(348\) 8.40162i 0.450374i
\(349\) −8.61649 −0.461230 −0.230615 0.973045i \(-0.574074\pi\)
−0.230615 + 0.973045i \(0.574074\pi\)
\(350\) −11.1222 + 1.46610i −0.594509 + 0.0783662i
\(351\) 36.8473 1.96676
\(352\) 0.202649i 0.0108013i
\(353\) 0.596657i 0.0317569i −0.999874 0.0158784i \(-0.994946\pi\)
0.999874 0.0158784i \(-0.00505447\pi\)
\(354\) −9.07309 −0.482229
\(355\) 0.562309 + 8.56859i 0.0298443 + 0.454773i
\(356\) −0.986455 −0.0522820
\(357\) 0 0
\(358\) 15.3908i 0.813428i
\(359\) −31.5514 −1.66522 −0.832608 0.553862i \(-0.813153\pi\)
−0.832608 + 0.553862i \(0.813153\pi\)
\(360\) 27.8525 1.82781i 1.46796 0.0963340i
\(361\) 5.04335 0.265439
\(362\) 35.4998i 1.86583i
\(363\) 31.5793i 1.65748i
\(364\) −4.00594 −0.209968
\(365\) −30.2016 + 1.98197i −1.58082 + 0.103741i
\(366\) −15.7571 −0.823637
\(367\) 1.37723i 0.0718908i 0.999354 + 0.0359454i \(0.0114442\pi\)
−0.999354 + 0.0359454i \(0.988556\pi\)
\(368\) 18.4236i 0.960398i
\(369\) −34.7052 −1.80668
\(370\) −2.29285 34.9390i −0.119200 1.81639i
\(371\) 0.0307879 0.00159843
\(372\) 0.551937i 0.0286166i
\(373\) 28.5627i 1.47892i −0.673201 0.739459i \(-0.735081\pi\)
0.673201 0.739459i \(-0.264919\pi\)
\(374\) 0 0
\(375\) 31.4945 6.27256i 1.62637 0.323914i
\(376\) 13.5568 0.699140
\(377\) 33.7210i 1.73672i
\(378\) 14.4999i 0.745797i
\(379\) −24.2405 −1.24515 −0.622576 0.782559i \(-0.713914\pi\)
−0.622576 + 0.782559i \(0.713914\pi\)
\(380\) 0.355102 + 5.41112i 0.0182164 + 0.277585i
\(381\) −49.5869 −2.54041
\(382\) 8.64979i 0.442562i
\(383\) 24.4678i 1.25025i −0.780527 0.625123i \(-0.785049\pi\)
0.780527 0.625123i \(-0.214951\pi\)
\(384\) 39.1578 1.99826
\(385\) −0.234577 + 0.0153940i −0.0119551 + 0.000784550i
\(386\) −3.38761 −0.172425
\(387\) 36.4678i 1.85376i
\(388\) 2.64161i 0.134107i
\(389\) 10.9711 0.556258 0.278129 0.960544i \(-0.410286\pi\)
0.278129 + 0.960544i \(0.410286\pi\)
\(390\) 57.7137 3.78743i 2.92245 0.191784i
\(391\) 0 0
\(392\) 11.8456i 0.598293i
\(393\) 42.2764i 2.13256i
\(394\) 15.4549 0.778605
\(395\) 0.155211 + 2.36514i 0.00780951 + 0.119003i
\(396\) −0.192160 −0.00965642
\(397\) 26.8550i 1.34782i −0.738815 0.673908i \(-0.764614\pi\)
0.738815 0.673908i \(-0.235386\pi\)
\(398\) 2.32582i 0.116583i
\(399\) 20.0073 1.00162
\(400\) 23.5193 3.10024i 1.17597 0.155012i
\(401\) 17.5080 0.874308 0.437154 0.899387i \(-0.355986\pi\)
0.437154 + 0.899387i \(0.355986\pi\)
\(402\) 30.4516i 1.51879i
\(403\) 2.21528i 0.110351i
\(404\) −5.65331 −0.281263
\(405\) −0.411790 6.27495i −0.0204620 0.311805i
\(406\) 13.2697 0.658565
\(407\) 0.733716i 0.0363690i
\(408\) 0 0
\(409\) 17.8285 0.881561 0.440781 0.897615i \(-0.354702\pi\)
0.440781 + 0.897615i \(0.354702\pi\)
\(410\) −23.2964 + 1.52881i −1.15053 + 0.0755027i
\(411\) 3.91290 0.193009
\(412\) 4.06179i 0.200110i
\(413\) 2.84115i 0.139804i
\(414\) 32.1985 1.58247
\(415\) −26.4398 + 1.73510i −1.29788 + 0.0851727i
\(416\) 15.6127 0.765477
\(417\) 39.4805i 1.93337i
\(418\) 0.573146i 0.0280335i
\(419\) 34.7826 1.69924 0.849622 0.527393i \(-0.176830\pi\)
0.849622 + 0.527393i \(0.176830\pi\)
\(420\) 0.295492 + 4.50278i 0.0144186 + 0.219713i
\(421\) −17.0676 −0.831824 −0.415912 0.909405i \(-0.636538\pi\)
−0.415912 + 0.909405i \(0.636538\pi\)
\(422\) 7.70114i 0.374886i
\(423\) 29.9336i 1.45542i
\(424\) −0.0515315 −0.00250259
\(425\) 0 0
\(426\) 17.4214 0.844068
\(427\) 4.93419i 0.238782i
\(428\) 3.14001i 0.151778i
\(429\) 1.21198 0.0585152
\(430\) −1.60646 24.4795i −0.0774702 1.18051i
\(431\) 22.5970 1.08846 0.544229 0.838937i \(-0.316822\pi\)
0.544229 + 0.838937i \(0.316822\pi\)
\(432\) 30.6618i 1.47522i
\(433\) 13.3513i 0.641625i 0.947143 + 0.320812i \(0.103956\pi\)
−0.947143 + 0.320812i \(0.896044\pi\)
\(434\) −0.871743 −0.0418450
\(435\) −37.9033 + 2.48738i −1.81732 + 0.119261i
\(436\) −0.144839 −0.00693654
\(437\) 19.0405i 0.910829i
\(438\) 61.4049i 2.93404i
\(439\) 5.73280 0.273611 0.136806 0.990598i \(-0.456316\pi\)
0.136806 + 0.990598i \(0.456316\pi\)
\(440\) 0.392624 0.0257657i 0.0187176 0.00122833i
\(441\) −26.1552 −1.24548
\(442\) 0 0
\(443\) 38.8153i 1.84417i −0.386985 0.922086i \(-0.626483\pi\)
0.386985 0.922086i \(-0.373517\pi\)
\(444\) −14.0839 −0.668393
\(445\) −0.292050 4.45032i −0.0138445 0.210965i
\(446\) 31.6731 1.49977
\(447\) 49.8707i 2.35880i
\(448\) 7.33615i 0.346600i
\(449\) −25.3848 −1.19798 −0.598992 0.800755i \(-0.704432\pi\)
−0.598992 + 0.800755i \(0.704432\pi\)
\(450\) −5.41820 41.1041i −0.255417 1.93767i
\(451\) −0.489222 −0.0230366
\(452\) 4.26483i 0.200601i
\(453\) 10.3303i 0.485358i
\(454\) −22.3185 −1.04746
\(455\) −1.18600 18.0725i −0.0556005 0.847252i
\(456\) −33.4873 −1.56818
\(457\) 8.90110i 0.416376i −0.978089 0.208188i \(-0.933243\pi\)
0.978089 0.208188i \(-0.0667566\pi\)
\(458\) 17.7142i 0.827732i
\(459\) 0 0
\(460\) 4.28519 0.281213i 0.199798 0.0131116i
\(461\) −13.9124 −0.647965 −0.323983 0.946063i \(-0.605022\pi\)
−0.323983 + 0.946063i \(0.605022\pi\)
\(462\) 0.476934i 0.0221890i
\(463\) 37.5085i 1.74317i 0.490247 + 0.871583i \(0.336906\pi\)
−0.490247 + 0.871583i \(0.663094\pi\)
\(464\) −28.0604 −1.30267
\(465\) 2.49002 0.163407i 0.115472 0.00757780i
\(466\) 21.8410 1.01177
\(467\) 11.2108i 0.518776i 0.965773 + 0.259388i \(0.0835208\pi\)
−0.965773 + 0.259388i \(0.916479\pi\)
\(468\) 14.8046i 0.684344i
\(469\) −9.53562 −0.440314
\(470\) −1.31862 20.0934i −0.0608233 0.926838i
\(471\) −14.9160 −0.687291
\(472\) 4.75539i 0.218885i
\(473\) 0.514069i 0.0236369i
\(474\) 4.80872 0.220872
\(475\) −24.3067 + 3.20403i −1.11527 + 0.147011i
\(476\) 0 0
\(477\) 0.113782i 0.00520972i
\(478\) 25.7210i 1.17645i
\(479\) 5.16559 0.236022 0.118011 0.993012i \(-0.462348\pi\)
0.118011 + 0.993012i \(0.462348\pi\)
\(480\) −1.15165 17.5491i −0.0525654 0.801003i
\(481\) 56.5277 2.57744
\(482\) 7.80363i 0.355446i
\(483\) 15.8442i 0.720936i
\(484\) 5.43769 0.247168
\(485\) 11.9174 0.782074i 0.541142 0.0355122i
\(486\) 17.8632 0.810293
\(487\) 34.0560i 1.54322i 0.636094 + 0.771612i \(0.280549\pi\)
−0.636094 + 0.771612i \(0.719451\pi\)
\(488\) 8.25862i 0.373850i
\(489\) −18.8619 −0.852963
\(490\) −17.5570 + 1.15217i −0.793146 + 0.0520498i
\(491\) −18.3051 −0.826099 −0.413050 0.910708i \(-0.635536\pi\)
−0.413050 + 0.910708i \(0.635536\pi\)
\(492\) 9.39078i 0.423369i
\(493\) 0 0
\(494\) −44.1569 −1.98671
\(495\) −0.0568910 0.866917i −0.00255706 0.0389650i
\(496\) 1.84341 0.0827713
\(497\) 5.45534i 0.244705i
\(498\) 53.7566i 2.40889i
\(499\) 40.7792 1.82553 0.912764 0.408488i \(-0.133944\pi\)
0.912764 + 0.408488i \(0.133944\pi\)
\(500\) −1.08008 5.42308i −0.0483028 0.242528i
\(501\) −2.57678 −0.115122
\(502\) 20.3998i 0.910487i
\(503\) 10.7274i 0.478313i −0.970981 0.239156i \(-0.923129\pi\)
0.970981 0.239156i \(-0.0768709\pi\)
\(504\) −17.7328 −0.789882
\(505\) −1.67372 25.5045i −0.0744795 1.13494i
\(506\) 0.453887 0.0201777
\(507\) 56.0354i 2.48862i
\(508\) 8.53845i 0.378832i
\(509\) 21.5278 0.954205 0.477102 0.878848i \(-0.341687\pi\)
0.477102 + 0.878848i \(0.341687\pi\)
\(510\) 0 0
\(511\) 19.2284 0.850613
\(512\) 9.57031i 0.422952i
\(513\) 31.6884i 1.39908i
\(514\) −21.5053 −0.948558
\(515\) 18.3244 1.20253i 0.807471 0.0529899i
\(516\) −9.86772 −0.434402
\(517\) 0.421960i 0.0185578i
\(518\) 22.2445i 0.977367i
\(519\) 11.0017 0.482922
\(520\) 1.98507 + 30.2489i 0.0870511 + 1.32650i
\(521\) 20.5451 0.900098 0.450049 0.893004i \(-0.351406\pi\)
0.450049 + 0.893004i \(0.351406\pi\)
\(522\) 49.0405i 2.14644i
\(523\) 20.0508i 0.876762i 0.898789 + 0.438381i \(0.144448\pi\)
−0.898789 + 0.438381i \(0.855552\pi\)
\(524\) −7.27964 −0.318013
\(525\) −20.2265 + 2.66618i −0.882755 + 0.116362i
\(526\) 20.0144 0.872667
\(527\) 0 0
\(528\) 1.00853i 0.0438908i
\(529\) 7.92144 0.344410
\(530\) 0.00501225 + 0.0763778i 0.000217718 + 0.00331764i
\(531\) −10.4999 −0.455659
\(532\) 3.44508i 0.149363i
\(533\) 37.6912i 1.63259i
\(534\) −9.04824 −0.391556
\(535\) 14.1659 0.929632i 0.612447 0.0401915i
\(536\) 15.9603 0.689380
\(537\) 27.9890i 1.20782i
\(538\) 40.9018i 1.76340i
\(539\) −0.368697 −0.0158809
\(540\) −7.13170 + 0.468014i −0.306899 + 0.0201401i
\(541\) 8.55768 0.367924 0.183962 0.982933i \(-0.441108\pi\)
0.183962 + 0.982933i \(0.441108\pi\)
\(542\) 33.5171i 1.43968i
\(543\) 64.5585i 2.77047i
\(544\) 0 0
\(545\) −0.0428811 0.653431i −0.00183682 0.0279899i
\(546\) −36.7444 −1.57252
\(547\) 11.2911i 0.482771i 0.970429 + 0.241385i \(0.0776018\pi\)
−0.970429 + 0.241385i \(0.922398\pi\)
\(548\) 0.673769i 0.0287820i
\(549\) −18.2351 −0.778256
\(550\) −0.0763778 0.579425i −0.00325676 0.0247067i
\(551\) 28.9999 1.23544
\(552\) 26.5193i 1.12874i
\(553\) 1.50580i 0.0640333i
\(554\) −3.25216 −0.138171
\(555\) −4.16969 63.5386i −0.176993 2.69706i
\(556\) 6.79820 0.288308
\(557\) 22.4662i 0.951922i 0.879466 + 0.475961i \(0.157900\pi\)
−0.879466 + 0.475961i \(0.842100\pi\)
\(558\) 3.22167i 0.136384i
\(559\) 39.6054 1.67513
\(560\) −15.0387 + 0.986909i −0.635503 + 0.0417045i
\(561\) 0 0
\(562\) 34.3266i 1.44798i
\(563\) 6.32795i 0.266691i 0.991070 + 0.133346i \(0.0425721\pi\)
−0.991070 + 0.133346i \(0.957428\pi\)
\(564\) −8.09965 −0.341057
\(565\) −19.2405 + 1.26265i −0.809453 + 0.0531199i
\(566\) −8.40610 −0.353335
\(567\) 3.99506i 0.167777i
\(568\) 9.13090i 0.383124i
\(569\) 16.6885 0.699620 0.349810 0.936821i \(-0.386246\pi\)
0.349810 + 0.936821i \(0.386246\pi\)
\(570\) 3.25717 + 49.6334i 0.136428 + 2.07892i
\(571\) 6.20629 0.259725 0.129863 0.991532i \(-0.458546\pi\)
0.129863 + 0.991532i \(0.458546\pi\)
\(572\) 0.208694i 0.00872591i
\(573\) 15.7302i 0.657137i
\(574\) 14.8320 0.619077
\(575\) 2.53735 + 19.2491i 0.105815 + 0.802741i
\(576\) 27.1119 1.12966
\(577\) 23.9273i 0.996105i −0.867147 0.498052i \(-0.834049\pi\)
0.867147 0.498052i \(-0.165951\pi\)
\(578\) 0 0
\(579\) −6.16057 −0.256025
\(580\) 0.428306 + 6.52663i 0.0177845 + 0.271003i
\(581\) 16.8334 0.698366
\(582\) 24.2301i 1.00437i
\(583\) 0.00160393i 6.64279e-5i
\(584\) −32.1836 −1.33177
\(585\) 66.7899 4.38305i 2.76142 0.181217i
\(586\) −36.8457 −1.52208
\(587\) 26.1140i 1.07784i 0.842357 + 0.538920i \(0.181168\pi\)
−0.842357 + 0.538920i \(0.818832\pi\)
\(588\) 7.07726i 0.291861i
\(589\) −1.90512 −0.0784992
\(590\) −7.04824 + 0.462537i −0.290171 + 0.0190424i
\(591\) 28.1056 1.15611
\(592\) 47.0386i 1.93328i
\(593\) 29.8969i 1.22772i 0.789415 + 0.613860i \(0.210384\pi\)
−0.789415 + 0.613860i \(0.789616\pi\)
\(594\) −0.755389 −0.0309940
\(595\) 0 0
\(596\) −8.58731 −0.351750
\(597\) 4.22963i 0.173107i
\(598\) 34.9688i 1.42998i
\(599\) −15.8194 −0.646362 −0.323181 0.946337i \(-0.604752\pi\)
−0.323181 + 0.946337i \(0.604752\pi\)
\(600\) 33.8541 4.46254i 1.38209 0.182182i
\(601\) −32.4048 −1.32182 −0.660910 0.750466i \(-0.729829\pi\)
−0.660910 + 0.750466i \(0.729829\pi\)
\(602\) 15.5853i 0.635210i
\(603\) 35.2405i 1.43510i
\(604\) 1.77878 0.0723777
\(605\) 1.60988 + 24.5317i 0.0654510 + 0.997357i
\(606\) −51.8549 −2.10646
\(607\) 20.4218i 0.828895i −0.910073 0.414447i \(-0.863975\pi\)
0.910073 0.414447i \(-0.136025\pi\)
\(608\) 13.4269i 0.544531i
\(609\) 24.1318 0.977869
\(610\) −12.2406 + 0.803282i −0.495607 + 0.0325239i
\(611\) 32.5091 1.31518
\(612\) 0 0
\(613\) 12.0930i 0.488433i 0.969721 + 0.244217i \(0.0785308\pi\)
−0.969721 + 0.244217i \(0.921469\pi\)
\(614\) 27.5748 1.11283
\(615\) −42.3658 + 2.78024i −1.70835 + 0.112110i
\(616\) −0.249971 −0.0100716
\(617\) 3.79742i 0.152878i −0.997074 0.0764392i \(-0.975645\pi\)
0.997074 0.0764392i \(-0.0243551\pi\)
\(618\) 37.2567i 1.49868i
\(619\) −0.765306 −0.0307602 −0.0153801 0.999882i \(-0.504896\pi\)
−0.0153801 + 0.999882i \(0.504896\pi\)
\(620\) −0.0281372 0.428761i −0.00113002 0.0172195i
\(621\) 25.0948 1.00702
\(622\) 4.72242i 0.189352i
\(623\) 2.83337i 0.113517i
\(624\) 77.7005 3.11051
\(625\) 24.1461 6.47827i 0.965842 0.259131i
\(626\) 12.2568 0.489880
\(627\) 1.04230i 0.0416254i
\(628\) 2.56840i 0.102490i
\(629\) 0 0
\(630\) 1.72480 + 26.2828i 0.0687175 + 1.04713i
\(631\) 41.7318 1.66132 0.830658 0.556784i \(-0.187965\pi\)
0.830658 + 0.556784i \(0.187965\pi\)
\(632\) 2.52035i 0.100254i
\(633\) 14.0050i 0.556648i
\(634\) −10.8815 −0.432158
\(635\) −38.5206 + 2.52789i −1.52864 + 0.100316i
\(636\) 0.0307879 0.00122082
\(637\) 28.4055i 1.12547i
\(638\) 0.691300i 0.0273688i
\(639\) 20.1611 0.797561
\(640\) 30.4189 1.99623i 1.20241 0.0789078i
\(641\) −22.6429 −0.894342 −0.447171 0.894448i \(-0.647569\pi\)
−0.447171 + 0.894448i \(0.647569\pi\)
\(642\) 28.8017i 1.13671i
\(643\) 24.8814i 0.981226i 0.871377 + 0.490613i \(0.163227\pi\)
−0.871377 + 0.490613i \(0.836773\pi\)
\(644\) −2.72824 −0.107508
\(645\) −2.92144 44.5175i −0.115031 1.75287i
\(646\) 0 0
\(647\) 35.6376i 1.40106i 0.713624 + 0.700529i \(0.247053\pi\)
−0.713624 + 0.700529i \(0.752947\pi\)
\(648\) 6.68674i 0.262680i
\(649\) −0.148013 −0.00581000
\(650\) 44.6406 5.88438i 1.75095 0.230804i
\(651\) −1.58532 −0.0621335
\(652\) 3.24785i 0.127196i
\(653\) 8.31930i 0.325559i 0.986662 + 0.162780i \(0.0520460\pi\)
−0.986662 + 0.162780i \(0.947954\pi\)
\(654\) −1.32853 −0.0519498
\(655\) −2.15521 32.8416i −0.0842111 1.28323i
\(656\) −31.3641 −1.22456
\(657\) 71.0616i 2.77238i
\(658\) 12.7928i 0.498715i
\(659\) 3.44669 0.134264 0.0671320 0.997744i \(-0.478615\pi\)
0.0671320 + 0.997744i \(0.478615\pi\)
\(660\) −0.234577 + 0.0153940i −0.00913088 + 0.000599210i
\(661\) −36.6867 −1.42695 −0.713473 0.700682i \(-0.752879\pi\)
−0.713473 + 0.700682i \(0.752879\pi\)
\(662\) 25.0441i 0.973368i
\(663\) 0 0
\(664\) −28.1749 −1.09340
\(665\) 15.5422 1.01995i 0.602702 0.0395520i
\(666\) −82.2082 −3.18550
\(667\) 22.9657i 0.889234i
\(668\) 0.443700i 0.0171673i
\(669\) 57.5995 2.22692
\(670\) −1.55239 23.6557i −0.0599741 0.913899i
\(671\) −0.257052 −0.00992336
\(672\) 11.1729i 0.431005i
\(673\) 41.5075i 1.60000i −0.600002 0.799998i \(-0.704834\pi\)
0.600002 0.799998i \(-0.295166\pi\)
\(674\) −30.2913 −1.16678
\(675\) −4.22282 32.0356i −0.162536 1.23305i
\(676\) 9.64882 0.371109
\(677\) 26.7378i 1.02762i 0.857905 + 0.513809i \(0.171766\pi\)
−0.857905 + 0.513809i \(0.828234\pi\)
\(678\) 39.1191i 1.50236i
\(679\) −7.58742 −0.291179
\(680\) 0 0
\(681\) −40.5875 −1.55532
\(682\) 0.0454143i 0.00173901i
\(683\) 37.8270i 1.44741i −0.690110 0.723704i \(-0.742438\pi\)
0.690110 0.723704i \(-0.257562\pi\)
\(684\) 12.7319 0.486815
\(685\) 3.03966 0.199476i 0.116139 0.00762159i
\(686\) 26.8838 1.02643
\(687\) 32.2144i 1.22905i
\(688\) 32.9570i 1.25647i
\(689\) −0.123572 −0.00470770
\(690\) 39.3058 2.57942i 1.49635 0.0981970i
\(691\) −33.0739 −1.25819 −0.629095 0.777328i \(-0.716574\pi\)
−0.629095 + 0.777328i \(0.716574\pi\)
\(692\) 1.89440i 0.0720144i
\(693\) 0.551937i 0.0209664i
\(694\) 53.0331 2.01311
\(695\) 2.01268 + 30.6696i 0.0763451 + 1.16336i
\(696\) −40.3907 −1.53100
\(697\) 0 0
\(698\) 13.6091i 0.515112i
\(699\) 39.7192 1.50232
\(700\) 0.459094 + 3.48283i 0.0173521 + 0.131638i
\(701\) −24.7292 −0.934008 −0.467004 0.884255i \(-0.654667\pi\)
−0.467004 + 0.884255i \(0.654667\pi\)
\(702\) 58.1975i 2.19652i
\(703\) 48.6135i 1.83349i
\(704\) 0.382184 0.0144041
\(705\) −2.39798 36.5410i −0.0903133 1.37621i
\(706\) −0.942375 −0.0354668
\(707\) 16.2379i 0.610688i
\(708\) 2.84115i 0.106777i
\(709\) 40.5902 1.52440 0.762199 0.647343i \(-0.224120\pi\)
0.762199 + 0.647343i \(0.224120\pi\)
\(710\) 13.5334 0.888125i 0.507901 0.0333307i
\(711\) 5.56495 0.208702
\(712\) 4.74237i 0.177728i
\(713\) 1.50871i 0.0565016i
\(714\) 0 0
\(715\) 0.941505 0.0617858i 0.0352103 0.00231066i
\(716\) 4.81948 0.180112
\(717\) 46.7752i 1.74685i
\(718\) 49.8330i 1.85975i
\(719\) 32.1253 1.19807 0.599036 0.800722i \(-0.295551\pi\)
0.599036 + 0.800722i \(0.295551\pi\)
\(720\) −3.64729 55.5781i −0.135926 2.07127i
\(721\) −11.6666 −0.434486
\(722\) 7.96558i 0.296448i
\(723\) 14.1914i 0.527782i
\(724\) 11.1164 0.413139
\(725\) −29.3176 + 3.86455i −1.08883 + 0.143526i
\(726\) 49.8771 1.85111
\(727\) 11.3089i 0.419425i 0.977763 + 0.209713i \(0.0672528\pi\)
−0.977763 + 0.209713i \(0.932747\pi\)
\(728\) 19.2585i 0.713768i
\(729\) 40.9222 1.51564
\(730\) 3.13036 + 47.7012i 0.115860 + 1.76550i
\(731\) 0 0
\(732\) 4.93419i 0.182373i
\(733\) 32.5450i 1.20208i −0.799220 0.601039i \(-0.794754\pi\)
0.799220 0.601039i \(-0.205246\pi\)
\(734\) 2.17523 0.0802892
\(735\) −31.9285 + 2.09529i −1.17770 + 0.0772860i
\(736\) 10.6330 0.391938
\(737\) 0.496768i 0.0182987i
\(738\) 54.8142i 2.01774i
\(739\) 29.6821 1.09187 0.545936 0.837827i \(-0.316174\pi\)
0.545936 + 0.837827i \(0.316174\pi\)
\(740\) −10.9408 + 0.717985i −0.402192 + 0.0263936i
\(741\) −80.3019 −2.94996
\(742\) 0.0486272i 0.00178516i
\(743\) 27.9705i 1.02614i 0.858348 + 0.513069i \(0.171491\pi\)
−0.858348 + 0.513069i \(0.828509\pi\)
\(744\) 2.65343 0.0972795
\(745\) −2.54236 38.7410i −0.0931448 1.41936i
\(746\) −45.1126 −1.65169
\(747\) 62.2105i 2.27616i
\(748\) 0 0
\(749\) −9.01898 −0.329546
\(750\) −9.90704 49.7431i −0.361754 1.81636i
\(751\) 52.7167 1.92366 0.961829 0.273650i \(-0.0882309\pi\)
0.961829 + 0.273650i \(0.0882309\pi\)
\(752\) 27.0519i 0.986481i
\(753\) 37.0982i 1.35193i
\(754\) −53.2598 −1.93961
\(755\) 0.526626 + 8.02485i 0.0191659 + 0.292054i
\(756\) 4.54052 0.165137
\(757\) 7.80911i 0.283827i 0.989879 + 0.141913i \(0.0453255\pi\)
−0.989879 + 0.141913i \(0.954675\pi\)
\(758\) 38.2861i 1.39061i
\(759\) 0.825420 0.0299608
\(760\) −26.0139 + 1.70715i −0.943623 + 0.0619248i
\(761\) 19.2266 0.696963 0.348481 0.937316i \(-0.386697\pi\)
0.348481 + 0.937316i \(0.386697\pi\)
\(762\) 78.3188i 2.83719i
\(763\) 0.416018i 0.0150609i
\(764\) 2.70860 0.0979937
\(765\) 0 0
\(766\) −38.6450 −1.39630
\(767\) 11.4033i 0.411751i
\(768\) 32.1807i 1.16122i
\(769\) 1.45851 0.0525953 0.0262977 0.999654i \(-0.491628\pi\)
0.0262977 + 0.999654i \(0.491628\pi\)
\(770\) 0.0243136 + 0.370496i 0.000876202 + 0.0133518i
\(771\) −39.1087 −1.40846
\(772\) 1.06080i 0.0381790i
\(773\) 18.8055i 0.676388i −0.941076 0.338194i \(-0.890184\pi\)
0.941076 0.338194i \(-0.109816\pi\)
\(774\) −57.5981 −2.07032
\(775\) 1.92599 0.253878i 0.0691837 0.00911957i
\(776\) 12.6995 0.455885
\(777\) 40.4529i 1.45124i
\(778\) 17.3281i 0.621241i
\(779\) 32.4142 1.16136
\(780\) −1.18600 18.0725i −0.0424656 0.647099i
\(781\) 0.284201 0.0101695
\(782\) 0 0
\(783\) 38.2210i 1.36591i
\(784\) −23.6372 −0.844186
\(785\) −11.5872 + 0.760401i −0.413563 + 0.0271399i
\(786\) −66.7724 −2.38169
\(787\) 19.0449i 0.678877i 0.940628 + 0.339439i \(0.110237\pi\)
−0.940628 + 0.339439i \(0.889763\pi\)
\(788\) 4.83955i 0.172402i
\(789\) 36.3973 1.29578
\(790\) 3.73555 0.245144i 0.132905 0.00872183i
\(791\) 12.2498 0.435552
\(792\) 0.923808i 0.0328261i
\(793\) 19.8040i 0.703262i
\(794\) −42.4155 −1.50527
\(795\) 0.00911508 + 0.138898i 0.000323278 + 0.00492619i
\(796\) 0.728307 0.0258142
\(797\) 49.6667i 1.75929i −0.475634 0.879643i \(-0.657781\pi\)
0.475634 0.879643i \(-0.342219\pi\)
\(798\) 31.6000i 1.11863i
\(799\) 0 0
\(800\) −1.78927 13.5739i −0.0632603 0.479912i
\(801\) −10.4712 −0.369981
\(802\) 27.6526i 0.976447i
\(803\) 1.00172i 0.0353500i
\(804\) −9.53562 −0.336296
\(805\) −0.807722 12.3082i −0.0284685 0.433809i
\(806\) 3.49886 0.123242
\(807\) 74.3824i 2.61838i
\(808\) 27.1782i 0.956126i
\(809\) 38.2625 1.34524 0.672619 0.739989i \(-0.265169\pi\)
0.672619 + 0.739989i \(0.265169\pi\)
\(810\) −9.91081 + 0.650392i −0.348230 + 0.0228524i
\(811\) 31.4356 1.10385 0.551927 0.833893i \(-0.313893\pi\)
0.551927 + 0.833893i \(0.313893\pi\)
\(812\) 4.15529i 0.145822i
\(813\) 60.9529i 2.13771i
\(814\) −1.15885 −0.0406176
\(815\) −14.6524 + 0.961559i −0.513253 + 0.0336819i
\(816\) 0 0
\(817\) 34.0604i 1.19162i
\(818\) 28.1587i 0.984547i
\(819\) −42.5229 −1.48587
\(820\) 0.478733 + 7.29504i 0.0167181 + 0.254754i
\(821\) −42.9887 −1.50031 −0.750157 0.661259i \(-0.770022\pi\)
−0.750157 + 0.661259i \(0.770022\pi\)
\(822\) 6.18014i 0.215557i
\(823\) 12.7450i 0.444263i −0.975017 0.222132i \(-0.928699\pi\)
0.975017 0.222132i \(-0.0713014\pi\)
\(824\) 19.5270 0.680254
\(825\) −0.138898 1.05372i −0.00483579 0.0366857i
\(826\) 4.48738 0.156136
\(827\) 12.8443i 0.446639i −0.974745 0.223319i \(-0.928311\pi\)
0.974745 0.223319i \(-0.0716893\pi\)
\(828\) 10.0827i 0.350397i
\(829\) 17.2491 0.599087 0.299543 0.954083i \(-0.403166\pi\)
0.299543 + 0.954083i \(0.403166\pi\)
\(830\) 2.74046 + 41.7597i 0.0951227 + 1.44950i
\(831\) −5.91424 −0.205163
\(832\) 29.4446i 1.02081i
\(833\) 0 0
\(834\) 62.3564 2.15923
\(835\) −2.00172 + 0.131362i −0.0692724 + 0.00454597i
\(836\) 0.179475 0.00620728
\(837\) 2.51090i 0.0867892i
\(838\) 54.9366i 1.89775i
\(839\) −17.7454 −0.612638 −0.306319 0.951929i \(-0.599097\pi\)
−0.306319 + 0.951929i \(0.599097\pi\)
\(840\) −21.6470 + 1.42058i −0.746894 + 0.0490145i
\(841\) 5.97821 0.206145
\(842\) 26.9570i 0.929000i
\(843\) 62.4249i 2.15003i
\(844\) −2.41154 −0.0830086
\(845\) 2.85663 + 43.5299i 0.0982711 + 1.49748i
\(846\) −47.2779 −1.62545
\(847\) 15.6185i 0.536660i
\(848\) 0.102828i 0.00353113i
\(849\) −15.2870 −0.524648
\(850\) 0 0
\(851\) 38.4981 1.31970
\(852\) 5.45534i 0.186897i
\(853\) 45.1570i 1.54615i 0.634317 + 0.773073i \(0.281282\pi\)
−0.634317 + 0.773073i \(0.718718\pi\)
\(854\) 7.79318 0.266677
\(855\) 3.76940 + 57.4389i 0.128911 + 1.96437i
\(856\) 15.0956 0.515956
\(857\) 40.5102i 1.38380i −0.721993 0.691900i \(-0.756774\pi\)
0.721993 0.691900i \(-0.243226\pi\)
\(858\) 1.91424i 0.0653510i
\(859\) 25.4439 0.868135 0.434068 0.900880i \(-0.357078\pi\)
0.434068 + 0.900880i \(0.357078\pi\)
\(860\) −7.66553 + 0.503047i −0.261393 + 0.0171538i
\(861\) 26.9729 0.919235
\(862\) 35.6902i 1.21561i
\(863\) 21.6953i 0.738517i 0.929327 + 0.369259i \(0.120388\pi\)
−0.929327 + 0.369259i \(0.879612\pi\)
\(864\) −17.6962 −0.602037
\(865\) 8.54646 0.560857i 0.290588 0.0190697i
\(866\) 21.0874 0.716581
\(867\) 0 0
\(868\) 0.272978i 0.00926548i
\(869\) 0.0784464 0.00266111
\(870\) 3.92863 + 59.8654i 0.133193 + 2.02963i
\(871\) 38.2725 1.29681
\(872\) 0.696312i 0.0235801i
\(873\) 28.0406i 0.949030i
\(874\) −30.0730 −1.01723
\(875\) −15.5766 + 3.10230i −0.526585 + 0.104877i
\(876\) 19.2284 0.649667
\(877\) 15.4643i 0.522191i 0.965313 + 0.261095i \(0.0840837\pi\)
−0.965313 + 0.261095i \(0.915916\pi\)
\(878\) 9.05452i 0.305575i
\(879\) −67.0060 −2.26006
\(880\) −0.0514140 0.783458i −0.00173317 0.0264104i
\(881\) 13.2839 0.447544 0.223772 0.974641i \(-0.428163\pi\)
0.223772 + 0.974641i \(0.428163\pi\)
\(882\) 41.3101i 1.39098i
\(883\) 30.1936i 1.01609i −0.861329 0.508047i \(-0.830368\pi\)
0.861329 0.508047i \(-0.169632\pi\)
\(884\) 0 0
\(885\) −12.8176 + 0.841151i −0.430860 + 0.0282750i
\(886\) −61.3059 −2.05961
\(887\) 39.7258i 1.33386i 0.745120 + 0.666930i \(0.232392\pi\)
−0.745120 + 0.666930i \(0.767608\pi\)
\(888\) 67.7082i 2.27214i
\(889\) 24.5248 0.822535
\(890\) −7.02894 + 0.461271i −0.235611 + 0.0154618i
\(891\) −0.208126 −0.00697250
\(892\) 9.91815i 0.332084i
\(893\) 27.9576i 0.935565i
\(894\) −78.7669 −2.63436
\(895\) 1.42685 + 21.7427i 0.0476945 + 0.726779i
\(896\) −19.3667 −0.646997
\(897\) 63.5929i 2.12330i
\(898\) 40.0934i 1.33794i
\(899\) −2.29786 −0.0766381
\(900\) −12.8714 + 1.69666i −0.429045 + 0.0565553i
\(901\) 0 0
\(902\) 0.772690i 0.0257278i
\(903\) 28.3428i 0.943190i
\(904\) −20.5031 −0.681923
\(905\) 3.29113 + 50.1510i 0.109401 + 1.66707i
\(906\) 16.3159 0.542058
\(907\) 20.4051i 0.677541i −0.940869 0.338771i \(-0.889989\pi\)
0.940869 0.338771i \(-0.110011\pi\)
\(908\) 6.98883i 0.231932i
\(909\) −60.0098 −1.99040
\(910\) −28.5442 + 1.87320i −0.946230 + 0.0620958i
\(911\) 44.1137 1.46155 0.730776 0.682618i \(-0.239159\pi\)
0.730776 + 0.682618i \(0.239159\pi\)
\(912\) 66.8219i 2.21269i
\(913\) 0.876951i 0.0290228i
\(914\) −14.0586 −0.465018
\(915\) −22.2602 + 1.46082i −0.735900 + 0.0482931i
\(916\) 5.54704 0.183279
\(917\) 20.9091i 0.690481i
\(918\) 0 0
\(919\) −38.1261 −1.25766 −0.628832 0.777541i \(-0.716467\pi\)
−0.628832 + 0.777541i \(0.716467\pi\)
\(920\) 1.35193 + 20.6010i 0.0445718 + 0.679194i
\(921\) 50.1464 1.65238
\(922\) 21.9736i 0.723661i
\(923\) 21.8957i 0.720707i
\(924\) 0.149347 0.00491316
\(925\) −6.47827 49.1461i −0.213004 1.61591i
\(926\) 59.2418 1.94681
\(927\) 43.1157i 1.41611i
\(928\) 16.1948i 0.531620i
\(929\) 11.6168 0.381134 0.190567 0.981674i \(-0.438967\pi\)
0.190567 + 0.981674i \(0.438967\pi\)
\(930\) −0.258088 3.93281i −0.00846305 0.128962i
\(931\) 24.4286 0.800614
\(932\) 6.83931i 0.224029i
\(933\) 8.58801i 0.281159i
\(934\) 17.7067 0.579380
\(935\) 0 0
\(936\) 71.1730 2.32636
\(937\) 39.8889i 1.30311i 0.758600 + 0.651557i \(0.225884\pi\)
−0.758600 + 0.651557i \(0.774116\pi\)
\(938\) 15.0608i 0.491752i
\(939\) 22.2897 0.727396
\(940\) −6.29205 + 0.412913i −0.205224 + 0.0134677i
\(941\) 21.8113 0.711028 0.355514 0.934671i \(-0.384306\pi\)
0.355514 + 0.934671i \(0.384306\pi\)
\(942\) 23.5586i 0.767582i
\(943\) 25.6695i 0.835914i
\(944\) −9.48910 −0.308844
\(945\) 1.34427 + 20.4842i 0.0437290 + 0.666351i
\(946\) −0.811933 −0.0263982
\(947\) 18.2678i 0.593625i 0.954936 + 0.296812i \(0.0959236\pi\)
−0.954936 + 0.296812i \(0.904076\pi\)
\(948\) 1.50580i 0.0489063i
\(949\) −77.1757 −2.50523
\(950\) 5.06053 + 38.3907i 0.164185 + 1.24556i
\(951\) −19.7886 −0.641688
\(952\) 0 0
\(953\) 27.5942i 0.893865i −0.894568 0.446932i \(-0.852516\pi\)
0.894568 0.446932i \(-0.147484\pi\)
\(954\) 0.179710 0.00581832
\(955\) 0.801908 + 12.2196i 0.0259491 + 0.395419i
\(956\) −8.05430 −0.260495
\(957\) 1.25717i 0.0406385i
\(958\) 8.15866i 0.263594i
\(959\) −1.93525 −0.0624925
\(960\) 33.0965 2.17194i 1.06818 0.0700990i
\(961\) −30.8490 −0.995130
\(962\) 89.2813i 2.87854i
\(963\) 33.3311i 1.07408i
\(964\) 2.44363 0.0787041
\(965\) −4.78571 + 0.314060i −0.154058 + 0.0101099i
\(966\) −25.0247 −0.805157
\(967\) 36.3289i 1.16826i −0.811661 0.584129i \(-0.801436\pi\)
0.811661 0.584129i \(-0.198564\pi\)
\(968\) 26.1416i 0.840223i
\(969\) 0 0
\(970\) −1.23523 18.8227i −0.0396607 0.604359i
\(971\) 45.2409 1.45185 0.725925 0.687774i \(-0.241412\pi\)
0.725925 + 0.687774i \(0.241412\pi\)
\(972\) 5.59370i 0.179418i
\(973\) 19.5263i 0.625985i
\(974\) 53.7888 1.72351
\(975\) 81.1816 10.7011i 2.59989 0.342709i
\(976\) −16.4796 −0.527499
\(977\) 10.8393i 0.346780i −0.984853 0.173390i \(-0.944528\pi\)
0.984853 0.173390i \(-0.0554722\pi\)
\(978\) 29.7909i 0.952607i
\(979\) −0.147607 −0.00471755
\(980\) 0.360792 + 5.49782i 0.0115251 + 0.175621i
\(981\) −1.53746 −0.0490874
\(982\) 28.9116i 0.922606i
\(983\) 3.69018i 0.117699i 0.998267 + 0.0588493i \(0.0187431\pi\)
−0.998267 + 0.0588493i \(0.981257\pi\)
\(984\) −45.1461 −1.43920
\(985\) 21.8333 1.43280i 0.695665 0.0456527i
\(986\) 0 0
\(987\) 23.2644i 0.740515i
\(988\) 13.8273i 0.439905i
\(989\) 26.9732 0.857698
\(990\) −1.36923 + 0.0898550i −0.0435170 + 0.00285578i
\(991\) −36.6378 −1.16384 −0.581919 0.813247i \(-0.697698\pi\)
−0.581919 + 0.813247i \(0.697698\pi\)
\(992\) 1.06390i 0.0337790i
\(993\) 45.5442i 1.44530i
\(994\) −8.61630 −0.273292
\(995\) 0.215623 + 3.28570i 0.00683569 + 0.104164i
\(996\) 16.8334 0.533386
\(997\) 32.6021i 1.03252i 0.856432 + 0.516259i \(0.172676\pi\)
−0.856432 + 0.516259i \(0.827324\pi\)
\(998\) 64.4077i 2.03879i
\(999\) −64.0711 −2.02712
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1445.2.b.e.579.3 8
5.2 odd 4 7225.2.a.w.1.3 4
5.3 odd 4 7225.2.a.v.1.2 4
5.4 even 2 inner 1445.2.b.e.579.6 8
17.16 even 2 85.2.b.a.69.3 8
51.50 odd 2 765.2.b.c.154.6 8
68.67 odd 2 1360.2.e.d.1089.1 8
85.33 odd 4 425.2.a.g.1.2 4
85.67 odd 4 425.2.a.h.1.3 4
85.84 even 2 85.2.b.a.69.6 yes 8
255.152 even 4 3825.2.a.bh.1.2 4
255.203 even 4 3825.2.a.bj.1.3 4
255.254 odd 2 765.2.b.c.154.3 8
340.67 even 4 6800.2.a.bt.1.1 4
340.203 even 4 6800.2.a.bw.1.4 4
340.339 odd 2 1360.2.e.d.1089.8 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
85.2.b.a.69.3 8 17.16 even 2
85.2.b.a.69.6 yes 8 85.84 even 2
425.2.a.g.1.2 4 85.33 odd 4
425.2.a.h.1.3 4 85.67 odd 4
765.2.b.c.154.3 8 255.254 odd 2
765.2.b.c.154.6 8 51.50 odd 2
1360.2.e.d.1089.1 8 68.67 odd 2
1360.2.e.d.1089.8 8 340.339 odd 2
1445.2.b.e.579.3 8 1.1 even 1 trivial
1445.2.b.e.579.6 8 5.4 even 2 inner
3825.2.a.bh.1.2 4 255.152 even 4
3825.2.a.bj.1.3 4 255.203 even 4
6800.2.a.bt.1.1 4 340.67 even 4
6800.2.a.bw.1.4 4 340.203 even 4
7225.2.a.v.1.2 4 5.3 odd 4
7225.2.a.w.1.3 4 5.2 odd 4