Properties

Label 425.2.a.h.1.3
Level $425$
Weight $2$
Character 425.1
Self dual yes
Analytic conductor $3.394$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [425,2,Mod(1,425)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(425, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("425.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 425 = 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 425.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(3.39364208590\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.6224.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 6x^{2} - 2x + 5 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 85)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-1.87228\) of defining polynomial
Character \(\chi\) \(=\) 425.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.57942 q^{2} +2.87228 q^{3} +0.494582 q^{4} +4.53654 q^{6} +1.42058 q^{7} -2.37769 q^{8} +5.24997 q^{9} +O(q^{10})\) \(q+1.57942 q^{2} +2.87228 q^{3} +0.494582 q^{4} +4.53654 q^{6} +1.42058 q^{7} -2.37769 q^{8} +5.24997 q^{9} +0.0740063 q^{11} +1.42058 q^{12} -5.70167 q^{13} +2.24369 q^{14} -4.74455 q^{16} -1.00000 q^{17} +8.29193 q^{18} -4.90340 q^{19} +4.08029 q^{21} +0.116887 q^{22} +3.88311 q^{23} -6.82940 q^{24} -9.00536 q^{26} +6.46254 q^{27} +0.702591 q^{28} +5.91424 q^{29} +0.388531 q^{31} -2.73827 q^{32} +0.212567 q^{33} -1.57942 q^{34} +2.59654 q^{36} +9.91424 q^{37} -7.74455 q^{38} -16.3768 q^{39} -6.61055 q^{41} +6.44450 q^{42} +6.94628 q^{43} +0.0366022 q^{44} +6.13308 q^{46} -5.70167 q^{47} -13.6277 q^{48} -4.98197 q^{49} -2.87228 q^{51} -2.81994 q^{52} -0.0216729 q^{53} +10.2071 q^{54} -3.37769 q^{56} -14.0839 q^{57} +9.34109 q^{58} -2.00000 q^{59} -3.47337 q^{61} +0.613655 q^{62} +7.45798 q^{63} +5.16421 q^{64} +0.335733 q^{66} -6.71251 q^{67} -0.494582 q^{68} +11.1534 q^{69} +3.84023 q^{71} -12.4828 q^{72} +13.5356 q^{73} +15.6588 q^{74} -2.42513 q^{76} +0.105132 q^{77} -25.8659 q^{78} -1.06000 q^{79} +2.81228 q^{81} -10.4409 q^{82} -11.8497 q^{83} +2.01803 q^{84} +10.9711 q^{86} +16.9873 q^{87} -0.175964 q^{88} -1.99452 q^{89} -8.09965 q^{91} +1.92052 q^{92} +1.11597 q^{93} -9.00536 q^{94} -7.86508 q^{96} +5.34109 q^{97} -7.86864 q^{98} +0.388531 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{2} + 4 q^{3} + 4 q^{4} + 10 q^{7} + 4 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q + 2 q^{2} + 4 q^{3} + 4 q^{4} + 10 q^{7} + 4 q^{9} - 2 q^{11} + 10 q^{12} + 6 q^{13} - 6 q^{14} - 4 q^{16} - 4 q^{17} - 4 q^{18} + 4 q^{19} + 12 q^{21} + 12 q^{22} + 4 q^{23} - 6 q^{24} + 10 q^{27} + 8 q^{28} - 4 q^{29} - 12 q^{31} + 2 q^{32} + 2 q^{33} - 2 q^{34} + 12 q^{37} - 16 q^{38} - 22 q^{39} - 6 q^{41} - 18 q^{42} + 18 q^{43} + 16 q^{44} - 4 q^{46} + 6 q^{47} - 28 q^{48} + 8 q^{49} - 4 q^{51} + 2 q^{52} + 8 q^{53} + 10 q^{54} - 4 q^{56} - 16 q^{57} + 12 q^{58} - 8 q^{59} + 6 q^{61} - 14 q^{62} + 16 q^{63} - 24 q^{64} + 12 q^{66} + 6 q^{67} - 4 q^{68} + 4 q^{69} - 10 q^{71} - 22 q^{72} + 2 q^{73} + 20 q^{74} - 12 q^{76} - 18 q^{77} - 30 q^{78} - 12 q^{79} - 4 q^{81} - 34 q^{82} - 14 q^{83} + 36 q^{84} + 20 q^{86} + 4 q^{87} + 14 q^{88} + 24 q^{89} + 18 q^{91} - 22 q^{92} - 18 q^{93} + 8 q^{96} - 4 q^{97} - 60 q^{98} - 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.57942 1.11682 0.558411 0.829565i \(-0.311411\pi\)
0.558411 + 0.829565i \(0.311411\pi\)
\(3\) 2.87228 1.65831 0.829155 0.559019i \(-0.188822\pi\)
0.829155 + 0.559019i \(0.188822\pi\)
\(4\) 0.494582 0.247291
\(5\) 0 0
\(6\) 4.53654 1.85204
\(7\) 1.42058 0.536927 0.268464 0.963290i \(-0.413484\pi\)
0.268464 + 0.963290i \(0.413484\pi\)
\(8\) −2.37769 −0.840642
\(9\) 5.24997 1.74999
\(10\) 0 0
\(11\) 0.0740063 0.0223137 0.0111569 0.999938i \(-0.496449\pi\)
0.0111569 + 0.999938i \(0.496449\pi\)
\(12\) 1.42058 0.410085
\(13\) −5.70167 −1.58136 −0.790680 0.612230i \(-0.790273\pi\)
−0.790680 + 0.612230i \(0.790273\pi\)
\(14\) 2.24369 0.599652
\(15\) 0 0
\(16\) −4.74455 −1.18614
\(17\) −1.00000 −0.242536
\(18\) 8.29193 1.95443
\(19\) −4.90340 −1.12492 −0.562459 0.826825i \(-0.690144\pi\)
−0.562459 + 0.826825i \(0.690144\pi\)
\(20\) 0 0
\(21\) 4.08029 0.890391
\(22\) 0.116887 0.0249205
\(23\) 3.88311 0.809685 0.404842 0.914386i \(-0.367326\pi\)
0.404842 + 0.914386i \(0.367326\pi\)
\(24\) −6.82940 −1.39404
\(25\) 0 0
\(26\) −9.00536 −1.76610
\(27\) 6.46254 1.24372
\(28\) 0.702591 0.132777
\(29\) 5.91424 1.09825 0.549123 0.835741i \(-0.314962\pi\)
0.549123 + 0.835741i \(0.314962\pi\)
\(30\) 0 0
\(31\) 0.388531 0.0697822 0.0348911 0.999391i \(-0.488892\pi\)
0.0348911 + 0.999391i \(0.488892\pi\)
\(32\) −2.73827 −0.484063
\(33\) 0.212567 0.0370031
\(34\) −1.57942 −0.270869
\(35\) 0 0
\(36\) 2.59654 0.432757
\(37\) 9.91424 1.62989 0.814945 0.579538i \(-0.196767\pi\)
0.814945 + 0.579538i \(0.196767\pi\)
\(38\) −7.74455 −1.25633
\(39\) −16.3768 −2.62238
\(40\) 0 0
\(41\) −6.61055 −1.03239 −0.516197 0.856470i \(-0.672653\pi\)
−0.516197 + 0.856470i \(0.672653\pi\)
\(42\) 6.44450 0.994408
\(43\) 6.94628 1.05930 0.529649 0.848217i \(-0.322324\pi\)
0.529649 + 0.848217i \(0.322324\pi\)
\(44\) 0.0366022 0.00551798
\(45\) 0 0
\(46\) 6.13308 0.904274
\(47\) −5.70167 −0.831674 −0.415837 0.909439i \(-0.636511\pi\)
−0.415837 + 0.909439i \(0.636511\pi\)
\(48\) −13.6277 −1.96698
\(49\) −4.98197 −0.711709
\(50\) 0 0
\(51\) −2.87228 −0.402199
\(52\) −2.81994 −0.391056
\(53\) −0.0216729 −0.00297700 −0.00148850 0.999999i \(-0.500474\pi\)
−0.00148850 + 0.999999i \(0.500474\pi\)
\(54\) 10.2071 1.38901
\(55\) 0 0
\(56\) −3.37769 −0.451363
\(57\) −14.0839 −1.86546
\(58\) 9.34109 1.22655
\(59\) −2.00000 −0.260378 −0.130189 0.991489i \(-0.541558\pi\)
−0.130189 + 0.991489i \(0.541558\pi\)
\(60\) 0 0
\(61\) −3.47337 −0.444720 −0.222360 0.974965i \(-0.571376\pi\)
−0.222360 + 0.974965i \(0.571376\pi\)
\(62\) 0.613655 0.0779343
\(63\) 7.45798 0.939617
\(64\) 5.16421 0.645526
\(65\) 0 0
\(66\) 0.335733 0.0413258
\(67\) −6.71251 −0.820063 −0.410032 0.912071i \(-0.634482\pi\)
−0.410032 + 0.912071i \(0.634482\pi\)
\(68\) −0.494582 −0.0599769
\(69\) 11.1534 1.34271
\(70\) 0 0
\(71\) 3.84023 0.455752 0.227876 0.973690i \(-0.426822\pi\)
0.227876 + 0.973690i \(0.426822\pi\)
\(72\) −12.4828 −1.47112
\(73\) 13.5356 1.58422 0.792112 0.610375i \(-0.208981\pi\)
0.792112 + 0.610375i \(0.208981\pi\)
\(74\) 15.6588 1.82030
\(75\) 0 0
\(76\) −2.42513 −0.278182
\(77\) 0.105132 0.0119808
\(78\) −25.8659 −2.92873
\(79\) −1.06000 −0.119259 −0.0596295 0.998221i \(-0.518992\pi\)
−0.0596295 + 0.998221i \(0.518992\pi\)
\(80\) 0 0
\(81\) 2.81228 0.312476
\(82\) −10.4409 −1.15300
\(83\) −11.8497 −1.30067 −0.650336 0.759647i \(-0.725372\pi\)
−0.650336 + 0.759647i \(0.725372\pi\)
\(84\) 2.01803 0.220186
\(85\) 0 0
\(86\) 10.9711 1.18305
\(87\) 16.9873 1.82123
\(88\) −0.175964 −0.0187579
\(89\) −1.99452 −0.211419 −0.105710 0.994397i \(-0.533711\pi\)
−0.105710 + 0.994397i \(0.533711\pi\)
\(90\) 0 0
\(91\) −8.09965 −0.849075
\(92\) 1.92052 0.200228
\(93\) 1.11597 0.115720
\(94\) −9.00536 −0.928832
\(95\) 0 0
\(96\) −7.86508 −0.802726
\(97\) 5.34109 0.542306 0.271153 0.962536i \(-0.412595\pi\)
0.271153 + 0.962536i \(0.412595\pi\)
\(98\) −7.86864 −0.794852
\(99\) 0.388531 0.0390488
\(100\) 0 0
\(101\) 11.4305 1.13738 0.568688 0.822553i \(-0.307451\pi\)
0.568688 + 0.822553i \(0.307451\pi\)
\(102\) −4.53654 −0.449185
\(103\) 8.21257 0.809208 0.404604 0.914492i \(-0.367409\pi\)
0.404604 + 0.914492i \(0.367409\pi\)
\(104\) 13.5568 1.32936
\(105\) 0 0
\(106\) −0.0342307 −0.00332478
\(107\) 6.34882 0.613764 0.306882 0.951748i \(-0.400714\pi\)
0.306882 + 0.951748i \(0.400714\pi\)
\(108\) 3.19625 0.307560
\(109\) 0.292852 0.0280501 0.0140251 0.999902i \(-0.495536\pi\)
0.0140251 + 0.999902i \(0.495536\pi\)
\(110\) 0 0
\(111\) 28.4764 2.70286
\(112\) −6.73999 −0.636870
\(113\) 8.62311 0.811194 0.405597 0.914052i \(-0.367064\pi\)
0.405597 + 0.914052i \(0.367064\pi\)
\(114\) −22.2445 −2.08339
\(115\) 0 0
\(116\) 2.92507 0.271586
\(117\) −29.9336 −2.76736
\(118\) −3.15885 −0.290796
\(119\) −1.42058 −0.130224
\(120\) 0 0
\(121\) −10.9945 −0.999502
\(122\) −5.48593 −0.496673
\(123\) −18.9873 −1.71203
\(124\) 0.192160 0.0172565
\(125\) 0 0
\(126\) 11.7793 1.04938
\(127\) 17.2640 1.53193 0.765965 0.642882i \(-0.222261\pi\)
0.765965 + 0.642882i \(0.222261\pi\)
\(128\) 13.6330 1.20500
\(129\) 19.9516 1.75664
\(130\) 0 0
\(131\) −14.7188 −1.28599 −0.642993 0.765872i \(-0.722308\pi\)
−0.642993 + 0.765872i \(0.722308\pi\)
\(132\) 0.105132 0.00915052
\(133\) −6.96565 −0.603999
\(134\) −10.6019 −0.915865
\(135\) 0 0
\(136\) 2.37769 0.203886
\(137\) −1.36230 −0.116389 −0.0581946 0.998305i \(-0.518534\pi\)
−0.0581946 + 0.998305i \(0.518534\pi\)
\(138\) 17.6159 1.49957
\(139\) −13.7454 −1.16587 −0.582933 0.812520i \(-0.698095\pi\)
−0.582933 + 0.812520i \(0.698095\pi\)
\(140\) 0 0
\(141\) −16.3768 −1.37917
\(142\) 6.06536 0.508993
\(143\) −0.421960 −0.0352860
\(144\) −24.9088 −2.07573
\(145\) 0 0
\(146\) 21.3785 1.76930
\(147\) −14.3096 −1.18023
\(148\) 4.90340 0.403057
\(149\) −17.3628 −1.42241 −0.711207 0.702983i \(-0.751851\pi\)
−0.711207 + 0.702983i \(0.751851\pi\)
\(150\) 0 0
\(151\) −3.59654 −0.292682 −0.146341 0.989234i \(-0.546750\pi\)
−0.146341 + 0.989234i \(0.546750\pi\)
\(152\) 11.6588 0.945653
\(153\) −5.24997 −0.424435
\(154\) 0.166047 0.0133805
\(155\) 0 0
\(156\) −8.09965 −0.648491
\(157\) 5.19308 0.414453 0.207226 0.978293i \(-0.433556\pi\)
0.207226 + 0.978293i \(0.433556\pi\)
\(158\) −1.67418 −0.133191
\(159\) −0.0622505 −0.00493678
\(160\) 0 0
\(161\) 5.51625 0.434742
\(162\) 4.44178 0.348979
\(163\) 6.56687 0.514357 0.257178 0.966364i \(-0.417207\pi\)
0.257178 + 0.966364i \(0.417207\pi\)
\(164\) −3.26946 −0.255302
\(165\) 0 0
\(166\) −18.7157 −1.45262
\(167\) −0.897123 −0.0694214 −0.0347107 0.999397i \(-0.511051\pi\)
−0.0347107 + 0.999397i \(0.511051\pi\)
\(168\) −9.70167 −0.748500
\(169\) 19.5091 1.50070
\(170\) 0 0
\(171\) −25.7427 −1.96859
\(172\) 3.43550 0.261955
\(173\) −3.83031 −0.291213 −0.145607 0.989343i \(-0.546513\pi\)
−0.145607 + 0.989343i \(0.546513\pi\)
\(174\) 26.8302 2.03399
\(175\) 0 0
\(176\) −0.351127 −0.0264672
\(177\) −5.74455 −0.431787
\(178\) −3.15020 −0.236117
\(179\) 9.74455 0.728342 0.364171 0.931332i \(-0.381352\pi\)
0.364171 + 0.931332i \(0.381352\pi\)
\(180\) 0 0
\(181\) 22.4764 1.67066 0.835330 0.549749i \(-0.185277\pi\)
0.835330 + 0.549749i \(0.185277\pi\)
\(182\) −12.7928 −0.948265
\(183\) −9.97649 −0.737483
\(184\) −9.23286 −0.680655
\(185\) 0 0
\(186\) 1.76259 0.129239
\(187\) −0.0740063 −0.00541188
\(188\) −2.81994 −0.205665
\(189\) 9.18052 0.667785
\(190\) 0 0
\(191\) −5.47655 −0.396269 −0.198135 0.980175i \(-0.563488\pi\)
−0.198135 + 0.980175i \(0.563488\pi\)
\(192\) 14.8330 1.07048
\(193\) 2.14484 0.154389 0.0771944 0.997016i \(-0.475404\pi\)
0.0771944 + 0.997016i \(0.475404\pi\)
\(194\) 8.43585 0.605659
\(195\) 0 0
\(196\) −2.46399 −0.175999
\(197\) 9.78513 0.697162 0.348581 0.937279i \(-0.386664\pi\)
0.348581 + 0.937279i \(0.386664\pi\)
\(198\) 0.613655 0.0436106
\(199\) −1.47257 −0.104388 −0.0521939 0.998637i \(-0.516621\pi\)
−0.0521939 + 0.998637i \(0.516621\pi\)
\(200\) 0 0
\(201\) −19.2802 −1.35992
\(202\) 18.0536 1.27025
\(203\) 8.40162 0.589678
\(204\) −1.42058 −0.0994602
\(205\) 0 0
\(206\) 12.9711 0.903741
\(207\) 20.3862 1.41694
\(208\) 27.0519 1.87571
\(209\) −0.362883 −0.0251011
\(210\) 0 0
\(211\) −4.87591 −0.335672 −0.167836 0.985815i \(-0.553678\pi\)
−0.167836 + 0.985815i \(0.553678\pi\)
\(212\) −0.0107190 −0.000736184 0
\(213\) 11.0302 0.755777
\(214\) 10.0275 0.685465
\(215\) 0 0
\(216\) −15.3659 −1.04552
\(217\) 0.551937 0.0374680
\(218\) 0.462537 0.0313270
\(219\) 38.8781 2.62714
\(220\) 0 0
\(221\) 5.70167 0.383536
\(222\) 44.9764 3.01862
\(223\) 20.0536 1.34289 0.671444 0.741055i \(-0.265674\pi\)
0.671444 + 0.741055i \(0.265674\pi\)
\(224\) −3.88992 −0.259906
\(225\) 0 0
\(226\) 13.6195 0.905959
\(227\) −14.1308 −0.937893 −0.468946 0.883227i \(-0.655366\pi\)
−0.468946 + 0.883227i \(0.655366\pi\)
\(228\) −6.96565 −0.461312
\(229\) 11.2156 0.741149 0.370575 0.928803i \(-0.379161\pi\)
0.370575 + 0.928803i \(0.379161\pi\)
\(230\) 0 0
\(231\) 0.301967 0.0198680
\(232\) −14.0623 −0.923232
\(233\) −13.8285 −0.905934 −0.452967 0.891527i \(-0.649634\pi\)
−0.452967 + 0.891527i \(0.649634\pi\)
\(234\) −47.2779 −3.09065
\(235\) 0 0
\(236\) −0.989164 −0.0643891
\(237\) −3.04460 −0.197768
\(238\) −2.24369 −0.145437
\(239\) −16.2851 −1.05339 −0.526697 0.850053i \(-0.676570\pi\)
−0.526697 + 0.850053i \(0.676570\pi\)
\(240\) 0 0
\(241\) 4.94081 0.318265 0.159133 0.987257i \(-0.449130\pi\)
0.159133 + 0.987257i \(0.449130\pi\)
\(242\) −17.3650 −1.11627
\(243\) −11.3100 −0.725535
\(244\) −1.71787 −0.109975
\(245\) 0 0
\(246\) −29.9890 −1.91203
\(247\) 27.9576 1.77890
\(248\) −0.923808 −0.0586618
\(249\) −34.0356 −2.15692
\(250\) 0 0
\(251\) 12.9160 0.815248 0.407624 0.913150i \(-0.366357\pi\)
0.407624 + 0.913150i \(0.366357\pi\)
\(252\) 3.68858 0.232359
\(253\) 0.287375 0.0180671
\(254\) 27.2672 1.71089
\(255\) 0 0
\(256\) 11.2039 0.700245
\(257\) 13.6159 0.849337 0.424669 0.905349i \(-0.360391\pi\)
0.424669 + 0.905349i \(0.360391\pi\)
\(258\) 31.5121 1.96186
\(259\) 14.0839 0.875132
\(260\) 0 0
\(261\) 31.0496 1.92192
\(262\) −23.2472 −1.43622
\(263\) 12.6719 0.781385 0.390692 0.920521i \(-0.372236\pi\)
0.390692 + 0.920521i \(0.372236\pi\)
\(264\) −0.505418 −0.0311063
\(265\) 0 0
\(266\) −11.0017 −0.674559
\(267\) −5.72882 −0.350598
\(268\) −3.31988 −0.202794
\(269\) −25.8967 −1.57895 −0.789474 0.613784i \(-0.789646\pi\)
−0.789474 + 0.613784i \(0.789646\pi\)
\(270\) 0 0
\(271\) 21.2211 1.28909 0.644545 0.764566i \(-0.277047\pi\)
0.644545 + 0.764566i \(0.277047\pi\)
\(272\) 4.74455 0.287681
\(273\) −23.2644 −1.40803
\(274\) −2.15165 −0.129986
\(275\) 0 0
\(276\) 5.51625 0.332040
\(277\) −2.05908 −0.123718 −0.0618590 0.998085i \(-0.519703\pi\)
−0.0618590 + 0.998085i \(0.519703\pi\)
\(278\) −21.7097 −1.30206
\(279\) 2.03978 0.122118
\(280\) 0 0
\(281\) −21.7336 −1.29652 −0.648259 0.761420i \(-0.724503\pi\)
−0.648259 + 0.761420i \(0.724503\pi\)
\(282\) −25.8659 −1.54029
\(283\) 5.32226 0.316375 0.158188 0.987409i \(-0.449435\pi\)
0.158188 + 0.987409i \(0.449435\pi\)
\(284\) 1.89931 0.112703
\(285\) 0 0
\(286\) −0.666453 −0.0394082
\(287\) −9.39078 −0.554321
\(288\) −14.3759 −0.847105
\(289\) 1.00000 0.0588235
\(290\) 0 0
\(291\) 15.3411 0.899311
\(292\) 6.69447 0.391764
\(293\) −23.3285 −1.36287 −0.681434 0.731880i \(-0.738643\pi\)
−0.681434 + 0.731880i \(0.738643\pi\)
\(294\) −22.6009 −1.31811
\(295\) 0 0
\(296\) −23.5730 −1.37015
\(297\) 0.478268 0.0277519
\(298\) −27.4232 −1.58858
\(299\) −22.1402 −1.28040
\(300\) 0 0
\(301\) 9.86772 0.568766
\(302\) −5.68046 −0.326874
\(303\) 32.8315 1.88612
\(304\) 23.2644 1.33431
\(305\) 0 0
\(306\) −8.29193 −0.474018
\(307\) −17.4588 −0.996425 −0.498213 0.867055i \(-0.666010\pi\)
−0.498213 + 0.867055i \(0.666010\pi\)
\(308\) 0.0519961 0.00296275
\(309\) 23.5888 1.34192
\(310\) 0 0
\(311\) 2.98997 0.169545 0.0847727 0.996400i \(-0.472984\pi\)
0.0847727 + 0.996400i \(0.472984\pi\)
\(312\) 38.9390 2.20448
\(313\) −7.76028 −0.438637 −0.219319 0.975653i \(-0.570383\pi\)
−0.219319 + 0.975653i \(0.570383\pi\)
\(314\) 8.20208 0.462870
\(315\) 0 0
\(316\) −0.524255 −0.0294916
\(317\) −6.88951 −0.386953 −0.193477 0.981105i \(-0.561976\pi\)
−0.193477 + 0.981105i \(0.561976\pi\)
\(318\) −0.0983199 −0.00551351
\(319\) 0.437691 0.0245060
\(320\) 0 0
\(321\) 18.2356 1.01781
\(322\) 8.71251 0.485529
\(323\) 4.90340 0.272833
\(324\) 1.39090 0.0772724
\(325\) 0 0
\(326\) 10.3719 0.574445
\(327\) 0.841151 0.0465158
\(328\) 15.7179 0.867874
\(329\) −8.09965 −0.446548
\(330\) 0 0
\(331\) 15.8565 0.871552 0.435776 0.900055i \(-0.356474\pi\)
0.435776 + 0.900055i \(0.356474\pi\)
\(332\) −5.86064 −0.321644
\(333\) 52.0495 2.85229
\(334\) −1.41694 −0.0775314
\(335\) 0 0
\(336\) −19.3591 −1.05613
\(337\) −19.1787 −1.04473 −0.522365 0.852722i \(-0.674950\pi\)
−0.522365 + 0.852722i \(0.674950\pi\)
\(338\) 30.8131 1.67601
\(339\) 24.7679 1.34521
\(340\) 0 0
\(341\) 0.0287537 0.00155710
\(342\) −40.6587 −2.19857
\(343\) −17.0213 −0.919063
\(344\) −16.5161 −0.890490
\(345\) 0 0
\(346\) −6.04969 −0.325233
\(347\) 33.5775 1.80253 0.901266 0.433265i \(-0.142639\pi\)
0.901266 + 0.433265i \(0.142639\pi\)
\(348\) 8.40162 0.450374
\(349\) 8.61649 0.461230 0.230615 0.973045i \(-0.425926\pi\)
0.230615 + 0.973045i \(0.425926\pi\)
\(350\) 0 0
\(351\) −36.8473 −1.96676
\(352\) −0.202649 −0.0108013
\(353\) −0.596657 −0.0317569 −0.0158784 0.999874i \(-0.505054\pi\)
−0.0158784 + 0.999874i \(0.505054\pi\)
\(354\) −9.07309 −0.482229
\(355\) 0 0
\(356\) −0.986455 −0.0522820
\(357\) −4.08029 −0.215952
\(358\) 15.3908 0.813428
\(359\) 31.5514 1.66522 0.832608 0.553862i \(-0.186847\pi\)
0.832608 + 0.553862i \(0.186847\pi\)
\(360\) 0 0
\(361\) 5.04335 0.265439
\(362\) 35.4998 1.86583
\(363\) −31.5793 −1.65748
\(364\) −4.00594 −0.209968
\(365\) 0 0
\(366\) −15.7571 −0.823637
\(367\) 1.37723 0.0718908 0.0359454 0.999354i \(-0.488556\pi\)
0.0359454 + 0.999354i \(0.488556\pi\)
\(368\) −18.4236 −0.960398
\(369\) −34.7052 −1.80668
\(370\) 0 0
\(371\) −0.0307879 −0.00159843
\(372\) 0.551937 0.0286166
\(373\) −28.5627 −1.47892 −0.739459 0.673201i \(-0.764919\pi\)
−0.739459 + 0.673201i \(0.764919\pi\)
\(374\) −0.116887 −0.00604410
\(375\) 0 0
\(376\) 13.5568 0.699140
\(377\) −33.7210 −1.73672
\(378\) 14.4999 0.745797
\(379\) −24.2405 −1.24515 −0.622576 0.782559i \(-0.713914\pi\)
−0.622576 + 0.782559i \(0.713914\pi\)
\(380\) 0 0
\(381\) 49.5869 2.54041
\(382\) −8.64979 −0.442562
\(383\) −24.4678 −1.25025 −0.625123 0.780527i \(-0.714951\pi\)
−0.625123 + 0.780527i \(0.714951\pi\)
\(384\) 39.1578 1.99826
\(385\) 0 0
\(386\) 3.38761 0.172425
\(387\) 36.4678 1.85376
\(388\) 2.64161 0.134107
\(389\) −10.9711 −0.556258 −0.278129 0.960544i \(-0.589714\pi\)
−0.278129 + 0.960544i \(0.589714\pi\)
\(390\) 0 0
\(391\) −3.88311 −0.196377
\(392\) 11.8456 0.598293
\(393\) −42.2764 −2.13256
\(394\) 15.4549 0.778605
\(395\) 0 0
\(396\) 0.192160 0.00965642
\(397\) −26.8550 −1.34782 −0.673908 0.738815i \(-0.735386\pi\)
−0.673908 + 0.738815i \(0.735386\pi\)
\(398\) −2.32582 −0.116583
\(399\) −20.0073 −1.00162
\(400\) 0 0
\(401\) −17.5080 −0.874308 −0.437154 0.899387i \(-0.644014\pi\)
−0.437154 + 0.899387i \(0.644014\pi\)
\(402\) −30.4516 −1.51879
\(403\) −2.21528 −0.110351
\(404\) 5.65331 0.281263
\(405\) 0 0
\(406\) 13.2697 0.658565
\(407\) 0.733716 0.0363690
\(408\) 6.82940 0.338105
\(409\) −17.8285 −0.881561 −0.440781 0.897615i \(-0.645298\pi\)
−0.440781 + 0.897615i \(0.645298\pi\)
\(410\) 0 0
\(411\) −3.91290 −0.193009
\(412\) 4.06179 0.200110
\(413\) −2.84115 −0.139804
\(414\) 32.1985 1.58247
\(415\) 0 0
\(416\) 15.6127 0.765477
\(417\) −39.4805 −1.93337
\(418\) −0.573146 −0.0280335
\(419\) 34.7826 1.69924 0.849622 0.527393i \(-0.176830\pi\)
0.849622 + 0.527393i \(0.176830\pi\)
\(420\) 0 0
\(421\) −17.0676 −0.831824 −0.415912 0.909405i \(-0.636538\pi\)
−0.415912 + 0.909405i \(0.636538\pi\)
\(422\) −7.70114 −0.374886
\(423\) −29.9336 −1.45542
\(424\) 0.0515315 0.00250259
\(425\) 0 0
\(426\) 17.4214 0.844068
\(427\) −4.93419 −0.238782
\(428\) 3.14001 0.151778
\(429\) −1.21198 −0.0585152
\(430\) 0 0
\(431\) −22.5970 −1.08846 −0.544229 0.838937i \(-0.683178\pi\)
−0.544229 + 0.838937i \(0.683178\pi\)
\(432\) −30.6618 −1.47522
\(433\) 13.3513 0.641625 0.320812 0.947143i \(-0.396044\pi\)
0.320812 + 0.947143i \(0.396044\pi\)
\(434\) 0.871743 0.0418450
\(435\) 0 0
\(436\) 0.144839 0.00693654
\(437\) −19.0405 −0.910829
\(438\) 61.4049 2.93404
\(439\) 5.73280 0.273611 0.136806 0.990598i \(-0.456316\pi\)
0.136806 + 0.990598i \(0.456316\pi\)
\(440\) 0 0
\(441\) −26.1552 −1.24548
\(442\) 9.00536 0.428341
\(443\) −38.8153 −1.84417 −0.922086 0.386985i \(-0.873517\pi\)
−0.922086 + 0.386985i \(0.873517\pi\)
\(444\) 14.0839 0.668393
\(445\) 0 0
\(446\) 31.6731 1.49977
\(447\) −49.8707 −2.35880
\(448\) 7.33615 0.346600
\(449\) −25.3848 −1.19798 −0.598992 0.800755i \(-0.704432\pi\)
−0.598992 + 0.800755i \(0.704432\pi\)
\(450\) 0 0
\(451\) −0.489222 −0.0230366
\(452\) 4.26483 0.200601
\(453\) −10.3303 −0.485358
\(454\) −22.3185 −1.04746
\(455\) 0 0
\(456\) 33.4873 1.56818
\(457\) 8.90110 0.416376 0.208188 0.978089i \(-0.433243\pi\)
0.208188 + 0.978089i \(0.433243\pi\)
\(458\) 17.7142 0.827732
\(459\) −6.46254 −0.301645
\(460\) 0 0
\(461\) −13.9124 −0.647965 −0.323983 0.946063i \(-0.605022\pi\)
−0.323983 + 0.946063i \(0.605022\pi\)
\(462\) 0.476934 0.0221890
\(463\) 37.5085 1.74317 0.871583 0.490247i \(-0.163094\pi\)
0.871583 + 0.490247i \(0.163094\pi\)
\(464\) −28.0604 −1.30267
\(465\) 0 0
\(466\) −21.8410 −1.01177
\(467\) −11.2108 −0.518776 −0.259388 0.965773i \(-0.583521\pi\)
−0.259388 + 0.965773i \(0.583521\pi\)
\(468\) −14.8046 −0.684344
\(469\) −9.53562 −0.440314
\(470\) 0 0
\(471\) 14.9160 0.687291
\(472\) 4.75539 0.218885
\(473\) 0.514069 0.0236369
\(474\) −4.80872 −0.220872
\(475\) 0 0
\(476\) −0.702591 −0.0322032
\(477\) −0.113782 −0.00520972
\(478\) −25.7210 −1.17645
\(479\) 5.16559 0.236022 0.118011 0.993012i \(-0.462348\pi\)
0.118011 + 0.993012i \(0.462348\pi\)
\(480\) 0 0
\(481\) −56.5277 −2.57744
\(482\) 7.80363 0.355446
\(483\) 15.8442 0.720936
\(484\) −5.43769 −0.247168
\(485\) 0 0
\(486\) −17.8632 −0.810293
\(487\) 34.0560 1.54322 0.771612 0.636094i \(-0.219451\pi\)
0.771612 + 0.636094i \(0.219451\pi\)
\(488\) 8.25862 0.373850
\(489\) 18.8619 0.852963
\(490\) 0 0
\(491\) −18.3051 −0.826099 −0.413050 0.910708i \(-0.635536\pi\)
−0.413050 + 0.910708i \(0.635536\pi\)
\(492\) −9.39078 −0.423369
\(493\) −5.91424 −0.266364
\(494\) 44.1569 1.98671
\(495\) 0 0
\(496\) −1.84341 −0.0827713
\(497\) 5.45534 0.244705
\(498\) −53.7566 −2.40889
\(499\) 40.7792 1.82553 0.912764 0.408488i \(-0.133944\pi\)
0.912764 + 0.408488i \(0.133944\pi\)
\(500\) 0 0
\(501\) −2.57678 −0.115122
\(502\) 20.3998 0.910487
\(503\) 10.7274 0.478313 0.239156 0.970981i \(-0.423129\pi\)
0.239156 + 0.970981i \(0.423129\pi\)
\(504\) −17.7328 −0.789882
\(505\) 0 0
\(506\) 0.453887 0.0201777
\(507\) 56.0354 2.48862
\(508\) 8.53845 0.378832
\(509\) −21.5278 −0.954205 −0.477102 0.878848i \(-0.658313\pi\)
−0.477102 + 0.878848i \(0.658313\pi\)
\(510\) 0 0
\(511\) 19.2284 0.850613
\(512\) −9.57031 −0.422952
\(513\) −31.6884 −1.39908
\(514\) 21.5053 0.948558
\(515\) 0 0
\(516\) 9.86772 0.434402
\(517\) −0.421960 −0.0185578
\(518\) 22.2445 0.977367
\(519\) −11.0017 −0.482922
\(520\) 0 0
\(521\) −20.5451 −0.900098 −0.450049 0.893004i \(-0.648594\pi\)
−0.450049 + 0.893004i \(0.648594\pi\)
\(522\) 49.0405 2.14644
\(523\) 20.0508 0.876762 0.438381 0.898789i \(-0.355552\pi\)
0.438381 + 0.898789i \(0.355552\pi\)
\(524\) −7.27964 −0.318013
\(525\) 0 0
\(526\) 20.0144 0.872667
\(527\) −0.388531 −0.0169247
\(528\) −1.00853 −0.0438908
\(529\) −7.92144 −0.344410
\(530\) 0 0
\(531\) −10.4999 −0.455659
\(532\) −3.44508 −0.149363
\(533\) 37.6912 1.63259
\(534\) −9.04824 −0.391556
\(535\) 0 0
\(536\) 15.9603 0.689380
\(537\) 27.9890 1.20782
\(538\) −40.9018 −1.76340
\(539\) −0.368697 −0.0158809
\(540\) 0 0
\(541\) −8.55768 −0.367924 −0.183962 0.982933i \(-0.558892\pi\)
−0.183962 + 0.982933i \(0.558892\pi\)
\(542\) 33.5171 1.43968
\(543\) 64.5585 2.77047
\(544\) 2.73827 0.117403
\(545\) 0 0
\(546\) −36.7444 −1.57252
\(547\) 11.2911 0.482771 0.241385 0.970429i \(-0.422398\pi\)
0.241385 + 0.970429i \(0.422398\pi\)
\(548\) −0.673769 −0.0287820
\(549\) −18.2351 −0.778256
\(550\) 0 0
\(551\) −28.9999 −1.23544
\(552\) −26.5193 −1.12874
\(553\) −1.50580 −0.0640333
\(554\) −3.25216 −0.138171
\(555\) 0 0
\(556\) −6.79820 −0.288308
\(557\) −22.4662 −0.951922 −0.475961 0.879466i \(-0.657900\pi\)
−0.475961 + 0.879466i \(0.657900\pi\)
\(558\) 3.22167 0.136384
\(559\) −39.6054 −1.67513
\(560\) 0 0
\(561\) −0.212567 −0.00897457
\(562\) −34.3266 −1.44798
\(563\) 6.32795 0.266691 0.133346 0.991070i \(-0.457428\pi\)
0.133346 + 0.991070i \(0.457428\pi\)
\(564\) −8.09965 −0.341057
\(565\) 0 0
\(566\) 8.40610 0.353335
\(567\) 3.99506 0.167777
\(568\) −9.13090 −0.383124
\(569\) −16.6885 −0.699620 −0.349810 0.936821i \(-0.613754\pi\)
−0.349810 + 0.936821i \(0.613754\pi\)
\(570\) 0 0
\(571\) −6.20629 −0.259725 −0.129863 0.991532i \(-0.541454\pi\)
−0.129863 + 0.991532i \(0.541454\pi\)
\(572\) −0.208694 −0.00872591
\(573\) −15.7302 −0.657137
\(574\) −14.8320 −0.619077
\(575\) 0 0
\(576\) 27.1119 1.12966
\(577\) 23.9273 0.996105 0.498052 0.867147i \(-0.334049\pi\)
0.498052 + 0.867147i \(0.334049\pi\)
\(578\) 1.57942 0.0656954
\(579\) 6.16057 0.256025
\(580\) 0 0
\(581\) −16.8334 −0.698366
\(582\) 24.2301 1.00437
\(583\) −0.00160393 −6.64279e−5 0
\(584\) −32.1836 −1.33177
\(585\) 0 0
\(586\) −36.8457 −1.52208
\(587\) −26.1140 −1.07784 −0.538920 0.842357i \(-0.681168\pi\)
−0.538920 + 0.842357i \(0.681168\pi\)
\(588\) −7.07726 −0.291861
\(589\) −1.90512 −0.0784992
\(590\) 0 0
\(591\) 28.1056 1.15611
\(592\) −47.0386 −1.93328
\(593\) 29.8969 1.22772 0.613860 0.789415i \(-0.289616\pi\)
0.613860 + 0.789415i \(0.289616\pi\)
\(594\) 0.755389 0.0309940
\(595\) 0 0
\(596\) −8.58731 −0.351750
\(597\) −4.22963 −0.173107
\(598\) −34.9688 −1.42998
\(599\) 15.8194 0.646362 0.323181 0.946337i \(-0.395248\pi\)
0.323181 + 0.946337i \(0.395248\pi\)
\(600\) 0 0
\(601\) 32.4048 1.32182 0.660910 0.750466i \(-0.270171\pi\)
0.660910 + 0.750466i \(0.270171\pi\)
\(602\) 15.5853 0.635210
\(603\) −35.2405 −1.43510
\(604\) −1.77878 −0.0723777
\(605\) 0 0
\(606\) 51.8549 2.10646
\(607\) −20.4218 −0.828895 −0.414447 0.910073i \(-0.636025\pi\)
−0.414447 + 0.910073i \(0.636025\pi\)
\(608\) 13.4269 0.544531
\(609\) 24.1318 0.977869
\(610\) 0 0
\(611\) 32.5091 1.31518
\(612\) −2.59654 −0.104959
\(613\) 12.0930 0.488433 0.244217 0.969721i \(-0.421469\pi\)
0.244217 + 0.969721i \(0.421469\pi\)
\(614\) −27.5748 −1.11283
\(615\) 0 0
\(616\) −0.249971 −0.0100716
\(617\) −3.79742 −0.152878 −0.0764392 0.997074i \(-0.524355\pi\)
−0.0764392 + 0.997074i \(0.524355\pi\)
\(618\) 37.2567 1.49868
\(619\) −0.765306 −0.0307602 −0.0153801 0.999882i \(-0.504896\pi\)
−0.0153801 + 0.999882i \(0.504896\pi\)
\(620\) 0 0
\(621\) 25.0948 1.00702
\(622\) 4.72242 0.189352
\(623\) −2.83337 −0.113517
\(624\) 77.7005 3.11051
\(625\) 0 0
\(626\) −12.2568 −0.489880
\(627\) −1.04230 −0.0416254
\(628\) 2.56840 0.102490
\(629\) −9.91424 −0.395307
\(630\) 0 0
\(631\) 41.7318 1.66132 0.830658 0.556784i \(-0.187965\pi\)
0.830658 + 0.556784i \(0.187965\pi\)
\(632\) 2.52035 0.100254
\(633\) −14.0050 −0.556648
\(634\) −10.8815 −0.432158
\(635\) 0 0
\(636\) −0.0307879 −0.00122082
\(637\) 28.4055 1.12547
\(638\) 0.691300 0.0273688
\(639\) 20.1611 0.797561
\(640\) 0 0
\(641\) 22.6429 0.894342 0.447171 0.894448i \(-0.352431\pi\)
0.447171 + 0.894448i \(0.352431\pi\)
\(642\) 28.8017 1.13671
\(643\) −24.8814 −0.981226 −0.490613 0.871377i \(-0.663227\pi\)
−0.490613 + 0.871377i \(0.663227\pi\)
\(644\) 2.72824 0.107508
\(645\) 0 0
\(646\) 7.74455 0.304705
\(647\) −35.6376 −1.40106 −0.700529 0.713624i \(-0.747053\pi\)
−0.700529 + 0.713624i \(0.747053\pi\)
\(648\) −6.68674 −0.262680
\(649\) −0.148013 −0.00581000
\(650\) 0 0
\(651\) 1.58532 0.0621335
\(652\) 3.24785 0.127196
\(653\) −8.31930 −0.325559 −0.162780 0.986662i \(-0.552046\pi\)
−0.162780 + 0.986662i \(0.552046\pi\)
\(654\) 1.32853 0.0519498
\(655\) 0 0
\(656\) 31.3641 1.22456
\(657\) 71.0616 2.77238
\(658\) −12.7928 −0.498715
\(659\) −3.44669 −0.134264 −0.0671320 0.997744i \(-0.521385\pi\)
−0.0671320 + 0.997744i \(0.521385\pi\)
\(660\) 0 0
\(661\) −36.6867 −1.42695 −0.713473 0.700682i \(-0.752879\pi\)
−0.713473 + 0.700682i \(0.752879\pi\)
\(662\) 25.0441 0.973368
\(663\) 16.3768 0.636021
\(664\) 28.1749 1.09340
\(665\) 0 0
\(666\) 82.2082 3.18550
\(667\) 22.9657 0.889234
\(668\) −0.443700 −0.0171673
\(669\) 57.5995 2.22692
\(670\) 0 0
\(671\) −0.257052 −0.00992336
\(672\) −11.1729 −0.431005
\(673\) 41.5075 1.60000 0.799998 0.600002i \(-0.204834\pi\)
0.799998 + 0.600002i \(0.204834\pi\)
\(674\) −30.2913 −1.16678
\(675\) 0 0
\(676\) 9.64882 0.371109
\(677\) 26.7378 1.02762 0.513809 0.857905i \(-0.328234\pi\)
0.513809 + 0.857905i \(0.328234\pi\)
\(678\) 39.1191 1.50236
\(679\) 7.58742 0.291179
\(680\) 0 0
\(681\) −40.5875 −1.55532
\(682\) 0.0454143 0.00173901
\(683\) 37.8270 1.44741 0.723704 0.690110i \(-0.242438\pi\)
0.723704 + 0.690110i \(0.242438\pi\)
\(684\) −12.7319 −0.486815
\(685\) 0 0
\(686\) −26.8838 −1.02643
\(687\) 32.2144 1.22905
\(688\) −32.9570 −1.25647
\(689\) 0.123572 0.00470770
\(690\) 0 0
\(691\) 33.0739 1.25819 0.629095 0.777328i \(-0.283426\pi\)
0.629095 + 0.777328i \(0.283426\pi\)
\(692\) −1.89440 −0.0720144
\(693\) 0.551937 0.0209664
\(694\) 53.0331 2.01311
\(695\) 0 0
\(696\) −40.3907 −1.53100
\(697\) 6.61055 0.250392
\(698\) 13.6091 0.515112
\(699\) −39.7192 −1.50232
\(700\) 0 0
\(701\) −24.7292 −0.934008 −0.467004 0.884255i \(-0.654667\pi\)
−0.467004 + 0.884255i \(0.654667\pi\)
\(702\) −58.1975 −2.19652
\(703\) −48.6135 −1.83349
\(704\) 0.382184 0.0144041
\(705\) 0 0
\(706\) −0.942375 −0.0354668
\(707\) 16.2379 0.610688
\(708\) −2.84115 −0.106777
\(709\) 40.5902 1.52440 0.762199 0.647343i \(-0.224120\pi\)
0.762199 + 0.647343i \(0.224120\pi\)
\(710\) 0 0
\(711\) −5.56495 −0.208702
\(712\) 4.74237 0.177728
\(713\) 1.50871 0.0565016
\(714\) −6.44450 −0.241179
\(715\) 0 0
\(716\) 4.81948 0.180112
\(717\) −46.7752 −1.74685
\(718\) 49.8330 1.85975
\(719\) 32.1253 1.19807 0.599036 0.800722i \(-0.295551\pi\)
0.599036 + 0.800722i \(0.295551\pi\)
\(720\) 0 0
\(721\) 11.6666 0.434486
\(722\) 7.96558 0.296448
\(723\) 14.1914 0.527782
\(724\) 11.1164 0.413139
\(725\) 0 0
\(726\) −49.8771 −1.85111
\(727\) −11.3089 −0.419425 −0.209713 0.977763i \(-0.567253\pi\)
−0.209713 + 0.977763i \(0.567253\pi\)
\(728\) 19.2585 0.713768
\(729\) −40.9222 −1.51564
\(730\) 0 0
\(731\) −6.94628 −0.256918
\(732\) −4.93419 −0.182373
\(733\) −32.5450 −1.20208 −0.601039 0.799220i \(-0.705246\pi\)
−0.601039 + 0.799220i \(0.705246\pi\)
\(734\) 2.17523 0.0802892
\(735\) 0 0
\(736\) −10.6330 −0.391938
\(737\) −0.496768 −0.0182987
\(738\) −54.8142 −2.01774
\(739\) −29.6821 −1.09187 −0.545936 0.837827i \(-0.683826\pi\)
−0.545936 + 0.837827i \(0.683826\pi\)
\(740\) 0 0
\(741\) 80.3019 2.94996
\(742\) −0.0486272 −0.00178516
\(743\) −27.9705 −1.02614 −0.513069 0.858348i \(-0.671491\pi\)
−0.513069 + 0.858348i \(0.671491\pi\)
\(744\) −2.65343 −0.0972795
\(745\) 0 0
\(746\) −45.1126 −1.65169
\(747\) −62.2105 −2.27616
\(748\) −0.0366022 −0.00133831
\(749\) 9.01898 0.329546
\(750\) 0 0
\(751\) −52.7167 −1.92366 −0.961829 0.273650i \(-0.911769\pi\)
−0.961829 + 0.273650i \(0.911769\pi\)
\(752\) 27.0519 0.986481
\(753\) 37.0982 1.35193
\(754\) −53.2598 −1.93961
\(755\) 0 0
\(756\) 4.54052 0.165137
\(757\) −7.80911 −0.283827 −0.141913 0.989879i \(-0.545325\pi\)
−0.141913 + 0.989879i \(0.545325\pi\)
\(758\) −38.2861 −1.39061
\(759\) 0.825420 0.0299608
\(760\) 0 0
\(761\) 19.2266 0.696963 0.348481 0.937316i \(-0.386697\pi\)
0.348481 + 0.937316i \(0.386697\pi\)
\(762\) 78.3188 2.83719
\(763\) 0.416018 0.0150609
\(764\) −2.70860 −0.0979937
\(765\) 0 0
\(766\) −38.6450 −1.39630
\(767\) 11.4033 0.411751
\(768\) 32.1807 1.16122
\(769\) −1.45851 −0.0525953 −0.0262977 0.999654i \(-0.508372\pi\)
−0.0262977 + 0.999654i \(0.508372\pi\)
\(770\) 0 0
\(771\) 39.1087 1.40846
\(772\) 1.06080 0.0381790
\(773\) −18.8055 −0.676388 −0.338194 0.941076i \(-0.609816\pi\)
−0.338194 + 0.941076i \(0.609816\pi\)
\(774\) 57.5981 2.07032
\(775\) 0 0
\(776\) −12.6995 −0.455885
\(777\) 40.4529 1.45124
\(778\) −17.3281 −0.621241
\(779\) 32.4142 1.16136
\(780\) 0 0
\(781\) 0.284201 0.0101695
\(782\) −6.13308 −0.219319
\(783\) 38.2210 1.36591
\(784\) 23.6372 0.844186
\(785\) 0 0
\(786\) −66.7724 −2.38169
\(787\) 19.0449 0.678877 0.339439 0.940628i \(-0.389763\pi\)
0.339439 + 0.940628i \(0.389763\pi\)
\(788\) 4.83955 0.172402
\(789\) 36.3973 1.29578
\(790\) 0 0
\(791\) 12.2498 0.435552
\(792\) −0.923808 −0.0328261
\(793\) 19.8040 0.703262
\(794\) −42.4155 −1.50527
\(795\) 0 0
\(796\) −0.728307 −0.0258142
\(797\) 49.6667 1.75929 0.879643 0.475634i \(-0.157781\pi\)
0.879643 + 0.475634i \(0.157781\pi\)
\(798\) −31.6000 −1.11863
\(799\) 5.70167 0.201711
\(800\) 0 0
\(801\) −10.4712 −0.369981
\(802\) −27.6526 −0.976447
\(803\) 1.00172 0.0353500
\(804\) −9.53562 −0.336296
\(805\) 0 0
\(806\) −3.49886 −0.123242
\(807\) −74.3824 −2.61838
\(808\) −27.1782 −0.956126
\(809\) 38.2625 1.34524 0.672619 0.739989i \(-0.265169\pi\)
0.672619 + 0.739989i \(0.265169\pi\)
\(810\) 0 0
\(811\) −31.4356 −1.10385 −0.551927 0.833893i \(-0.686107\pi\)
−0.551927 + 0.833893i \(0.686107\pi\)
\(812\) 4.15529 0.145822
\(813\) 60.9529 2.13771
\(814\) 1.15885 0.0406176
\(815\) 0 0
\(816\) 13.6277 0.477064
\(817\) −34.0604 −1.19162
\(818\) −28.1587 −0.984547
\(819\) −42.5229 −1.48587
\(820\) 0 0
\(821\) 42.9887 1.50031 0.750157 0.661259i \(-0.229978\pi\)
0.750157 + 0.661259i \(0.229978\pi\)
\(822\) −6.18014 −0.215557
\(823\) 12.7450 0.444263 0.222132 0.975017i \(-0.428699\pi\)
0.222132 + 0.975017i \(0.428699\pi\)
\(824\) −19.5270 −0.680254
\(825\) 0 0
\(826\) −4.48738 −0.156136
\(827\) −12.8443 −0.446639 −0.223319 0.974745i \(-0.571689\pi\)
−0.223319 + 0.974745i \(0.571689\pi\)
\(828\) 10.0827 0.350397
\(829\) −17.2491 −0.599087 −0.299543 0.954083i \(-0.596834\pi\)
−0.299543 + 0.954083i \(0.596834\pi\)
\(830\) 0 0
\(831\) −5.91424 −0.205163
\(832\) −29.4446 −1.02081
\(833\) 4.98197 0.172615
\(834\) −62.3564 −2.15923
\(835\) 0 0
\(836\) −0.179475 −0.00620728
\(837\) 2.51090 0.0867892
\(838\) 54.9366 1.89775
\(839\) −17.7454 −0.612638 −0.306319 0.951929i \(-0.599097\pi\)
−0.306319 + 0.951929i \(0.599097\pi\)
\(840\) 0 0
\(841\) 5.97821 0.206145
\(842\) −26.9570 −0.929000
\(843\) −62.4249 −2.15003
\(844\) −2.41154 −0.0830086
\(845\) 0 0
\(846\) −47.2779 −1.62545
\(847\) −15.6185 −0.536660
\(848\) 0.102828 0.00353113
\(849\) 15.2870 0.524648
\(850\) 0 0
\(851\) 38.4981 1.31970
\(852\) 5.45534 0.186897
\(853\) −45.1570 −1.54615 −0.773073 0.634317i \(-0.781282\pi\)
−0.773073 + 0.634317i \(0.781282\pi\)
\(854\) −7.79318 −0.266677
\(855\) 0 0
\(856\) −15.0956 −0.515956
\(857\) −40.5102 −1.38380 −0.691900 0.721993i \(-0.743226\pi\)
−0.691900 + 0.721993i \(0.743226\pi\)
\(858\) −1.91424 −0.0653510
\(859\) −25.4439 −0.868135 −0.434068 0.900880i \(-0.642922\pi\)
−0.434068 + 0.900880i \(0.642922\pi\)
\(860\) 0 0
\(861\) −26.9729 −0.919235
\(862\) −35.6902 −1.21561
\(863\) 21.6953 0.738517 0.369259 0.929327i \(-0.379612\pi\)
0.369259 + 0.929327i \(0.379612\pi\)
\(864\) −17.6962 −0.602037
\(865\) 0 0
\(866\) 21.0874 0.716581
\(867\) 2.87228 0.0975476
\(868\) 0.272978 0.00926548
\(869\) −0.0784464 −0.00266111
\(870\) 0 0
\(871\) 38.2725 1.29681
\(872\) −0.696312 −0.0235801
\(873\) 28.0406 0.949030
\(874\) −30.0730 −1.01723
\(875\) 0 0
\(876\) 19.2284 0.649667
\(877\) 15.4643 0.522191 0.261095 0.965313i \(-0.415916\pi\)
0.261095 + 0.965313i \(0.415916\pi\)
\(878\) 9.05452 0.305575
\(879\) −67.0060 −2.26006
\(880\) 0 0
\(881\) −13.2839 −0.447544 −0.223772 0.974641i \(-0.571837\pi\)
−0.223772 + 0.974641i \(0.571837\pi\)
\(882\) −41.3101 −1.39098
\(883\) −30.1936 −1.01609 −0.508047 0.861329i \(-0.669632\pi\)
−0.508047 + 0.861329i \(0.669632\pi\)
\(884\) 2.81994 0.0948449
\(885\) 0 0
\(886\) −61.3059 −2.05961
\(887\) 39.7258 1.33386 0.666930 0.745120i \(-0.267608\pi\)
0.666930 + 0.745120i \(0.267608\pi\)
\(888\) −67.7082 −2.27214
\(889\) 24.5248 0.822535
\(890\) 0 0
\(891\) 0.208126 0.00697250
\(892\) 9.91815 0.332084
\(893\) 27.9576 0.935565
\(894\) −78.7669 −2.63436
\(895\) 0 0
\(896\) 19.3667 0.646997
\(897\) −63.5929 −2.12330
\(898\) −40.0934 −1.33794
\(899\) 2.29786 0.0766381
\(900\) 0 0
\(901\) 0.0216729 0.000722028 0
\(902\) −0.772690 −0.0257278
\(903\) 28.3428 0.943190
\(904\) −20.5031 −0.681923
\(905\) 0 0
\(906\) −16.3159 −0.542058
\(907\) −20.4051 −0.677541 −0.338771 0.940869i \(-0.610011\pi\)
−0.338771 + 0.940869i \(0.610011\pi\)
\(908\) −6.98883 −0.231932
\(909\) 60.0098 1.99040
\(910\) 0 0
\(911\) −44.1137 −1.46155 −0.730776 0.682618i \(-0.760841\pi\)
−0.730776 + 0.682618i \(0.760841\pi\)
\(912\) 66.8219 2.21269
\(913\) −0.876951 −0.0290228
\(914\) 14.0586 0.465018
\(915\) 0 0
\(916\) 5.54704 0.183279
\(917\) −20.9091 −0.690481
\(918\) −10.2071 −0.336884
\(919\) 38.1261 1.25766 0.628832 0.777541i \(-0.283533\pi\)
0.628832 + 0.777541i \(0.283533\pi\)
\(920\) 0 0
\(921\) −50.1464 −1.65238
\(922\) −21.9736 −0.723661
\(923\) −21.8957 −0.720707
\(924\) 0.149347 0.00491316
\(925\) 0 0
\(926\) 59.2418 1.94681
\(927\) 43.1157 1.41611
\(928\) −16.1948 −0.531620
\(929\) 11.6168 0.381134 0.190567 0.981674i \(-0.438967\pi\)
0.190567 + 0.981674i \(0.438967\pi\)
\(930\) 0 0
\(931\) 24.4286 0.800614
\(932\) −6.83931 −0.224029
\(933\) 8.58801 0.281159
\(934\) −17.7067 −0.579380
\(935\) 0 0
\(936\) 71.1730 2.32636
\(937\) −39.8889 −1.30311 −0.651557 0.758600i \(-0.725884\pi\)
−0.651557 + 0.758600i \(0.725884\pi\)
\(938\) −15.0608 −0.491752
\(939\) −22.2897 −0.727396
\(940\) 0 0
\(941\) −21.8113 −0.711028 −0.355514 0.934671i \(-0.615694\pi\)
−0.355514 + 0.934671i \(0.615694\pi\)
\(942\) 23.5586 0.767582
\(943\) −25.6695 −0.835914
\(944\) 9.48910 0.308844
\(945\) 0 0
\(946\) 0.811933 0.0263982
\(947\) 18.2678 0.593625 0.296812 0.954936i \(-0.404076\pi\)
0.296812 + 0.954936i \(0.404076\pi\)
\(948\) −1.50580 −0.0489063
\(949\) −77.1757 −2.50523
\(950\) 0 0
\(951\) −19.7886 −0.641688
\(952\) 3.37769 0.109472
\(953\) −27.5942 −0.893865 −0.446932 0.894568i \(-0.647484\pi\)
−0.446932 + 0.894568i \(0.647484\pi\)
\(954\) −0.179710 −0.00581832
\(955\) 0 0
\(956\) −8.05430 −0.260495
\(957\) 1.25717 0.0406385
\(958\) 8.15866 0.263594
\(959\) −1.93525 −0.0624925
\(960\) 0 0
\(961\) −30.8490 −0.995130
\(962\) −89.2813 −2.87854
\(963\) 33.3311 1.07408
\(964\) 2.44363 0.0787041
\(965\) 0 0
\(966\) 25.0247 0.805157
\(967\) 36.3289 1.16826 0.584129 0.811661i \(-0.301436\pi\)
0.584129 + 0.811661i \(0.301436\pi\)
\(968\) 26.1416 0.840223
\(969\) 14.0839 0.452441
\(970\) 0 0
\(971\) 45.2409 1.45185 0.725925 0.687774i \(-0.241412\pi\)
0.725925 + 0.687774i \(0.241412\pi\)
\(972\) −5.59370 −0.179418
\(973\) −19.5263 −0.625985
\(974\) 53.7888 1.72351
\(975\) 0 0
\(976\) 16.4796 0.527499
\(977\) 10.8393 0.346780 0.173390 0.984853i \(-0.444528\pi\)
0.173390 + 0.984853i \(0.444528\pi\)
\(978\) 29.7909 0.952607
\(979\) −0.147607 −0.00471755
\(980\) 0 0
\(981\) 1.53746 0.0490874
\(982\) −28.9116 −0.922606
\(983\) −3.69018 −0.117699 −0.0588493 0.998267i \(-0.518743\pi\)
−0.0588493 + 0.998267i \(0.518743\pi\)
\(984\) 45.1461 1.43920
\(985\) 0 0
\(986\) −9.34109 −0.297481
\(987\) −23.2644 −0.740515
\(988\) 13.8273 0.439905
\(989\) 26.9732 0.857698
\(990\) 0 0
\(991\) 36.6378 1.16384 0.581919 0.813247i \(-0.302302\pi\)
0.581919 + 0.813247i \(0.302302\pi\)
\(992\) −1.06390 −0.0337790
\(993\) 45.5442 1.44530
\(994\) 8.61630 0.273292
\(995\) 0 0
\(996\) −16.8334 −0.533386
\(997\) 32.6021 1.03252 0.516259 0.856432i \(-0.327324\pi\)
0.516259 + 0.856432i \(0.327324\pi\)
\(998\) 64.4077 2.03879
\(999\) 64.0711 2.02712
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 425.2.a.h.1.3 4
3.2 odd 2 3825.2.a.bh.1.2 4
4.3 odd 2 6800.2.a.bt.1.1 4
5.2 odd 4 85.2.b.a.69.6 yes 8
5.3 odd 4 85.2.b.a.69.3 8
5.4 even 2 425.2.a.g.1.2 4
15.2 even 4 765.2.b.c.154.3 8
15.8 even 4 765.2.b.c.154.6 8
15.14 odd 2 3825.2.a.bj.1.3 4
17.16 even 2 7225.2.a.w.1.3 4
20.3 even 4 1360.2.e.d.1089.1 8
20.7 even 4 1360.2.e.d.1089.8 8
20.19 odd 2 6800.2.a.bw.1.4 4
85.33 odd 4 1445.2.b.e.579.3 8
85.67 odd 4 1445.2.b.e.579.6 8
85.84 even 2 7225.2.a.v.1.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
85.2.b.a.69.3 8 5.3 odd 4
85.2.b.a.69.6 yes 8 5.2 odd 4
425.2.a.g.1.2 4 5.4 even 2
425.2.a.h.1.3 4 1.1 even 1 trivial
765.2.b.c.154.3 8 15.2 even 4
765.2.b.c.154.6 8 15.8 even 4
1360.2.e.d.1089.1 8 20.3 even 4
1360.2.e.d.1089.8 8 20.7 even 4
1445.2.b.e.579.3 8 85.33 odd 4
1445.2.b.e.579.6 8 85.67 odd 4
3825.2.a.bh.1.2 4 3.2 odd 2
3825.2.a.bj.1.3 4 15.14 odd 2
6800.2.a.bt.1.1 4 4.3 odd 2
6800.2.a.bw.1.4 4 20.19 odd 2
7225.2.a.v.1.2 4 85.84 even 2
7225.2.a.w.1.3 4 17.16 even 2