Properties

Label 140.2.c.a.139.4
Level $140$
Weight $2$
Character 140.139
Analytic conductor $1.118$
Analytic rank $0$
Dimension $4$
CM discriminant -20
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [140,2,Mod(139,140)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(140, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("140.139");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 140 = 2^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 140.c (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.11790562830\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{2}, \sqrt{-5})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 4x^{2} + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

Embedding invariants

Embedding label 139.4
Root \(-0.707107 - 1.58114i\) of defining polynomial
Character \(\chi\) \(=\) 140.139
Dual form 140.2.c.a.139.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.41421 q^{2} +3.16228i q^{3} +2.00000 q^{4} -2.23607i q^{5} +4.47214i q^{6} +(-2.12132 - 1.58114i) q^{7} +2.82843 q^{8} -7.00000 q^{9} -3.16228i q^{10} +6.32456i q^{12} +(-3.00000 - 2.23607i) q^{14} +7.07107 q^{15} +4.00000 q^{16} -9.89949 q^{18} -4.47214i q^{20} +(5.00000 - 6.70820i) q^{21} -1.41421 q^{23} +8.94427i q^{24} -5.00000 q^{25} -12.6491i q^{27} +(-4.24264 - 3.16228i) q^{28} +6.00000 q^{29} +10.0000 q^{30} +5.65685 q^{32} +(-3.53553 + 4.74342i) q^{35} -14.0000 q^{36} -6.32456i q^{40} +4.47214i q^{41} +(7.07107 - 9.48683i) q^{42} -12.7279 q^{43} +15.6525i q^{45} -2.00000 q^{46} +9.48683i q^{47} +12.6491i q^{48} +(2.00000 + 6.70820i) q^{49} -7.07107 q^{50} -17.8885i q^{54} +(-6.00000 - 4.47214i) q^{56} +8.48528 q^{58} +14.1421 q^{60} -13.4164i q^{61} +(14.8492 + 11.0680i) q^{63} +8.00000 q^{64} +4.24264 q^{67} -4.47214i q^{69} +(-5.00000 + 6.70820i) q^{70} -19.7990 q^{72} -15.8114i q^{75} -8.94427i q^{80} +19.0000 q^{81} +6.32456i q^{82} -9.48683i q^{83} +(10.0000 - 13.4164i) q^{84} -18.0000 q^{86} +18.9737i q^{87} +17.8885i q^{89} +22.1359i q^{90} -2.82843 q^{92} +13.4164i q^{94} +17.8885i q^{96} +(2.82843 + 9.48683i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 8 q^{4} - 28 q^{9} - 12 q^{14} + 16 q^{16} + 20 q^{21} - 20 q^{25} + 24 q^{29} + 40 q^{30} - 56 q^{36} - 8 q^{46} + 8 q^{49} - 24 q^{56} + 32 q^{64} - 20 q^{70} + 76 q^{81} + 40 q^{84} - 72 q^{86}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/140\mathbb{Z}\right)^\times\).

\(n\) \(57\) \(71\) \(101\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.41421 1.00000
\(3\) 3.16228i 1.82574i 0.408248 + 0.912871i \(0.366140\pi\)
−0.408248 + 0.912871i \(0.633860\pi\)
\(4\) 2.00000 1.00000
\(5\) 2.23607i 1.00000i
\(6\) 4.47214i 1.82574i
\(7\) −2.12132 1.58114i −0.801784 0.597614i
\(8\) 2.82843 1.00000
\(9\) −7.00000 −2.33333
\(10\) 3.16228i 1.00000i
\(11\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(12\) 6.32456i 1.82574i
\(13\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(14\) −3.00000 2.23607i −0.801784 0.597614i
\(15\) 7.07107 1.82574
\(16\) 4.00000 1.00000
\(17\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(18\) −9.89949 −2.33333
\(19\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(20\) 4.47214i 1.00000i
\(21\) 5.00000 6.70820i 1.09109 1.46385i
\(22\) 0 0
\(23\) −1.41421 −0.294884 −0.147442 0.989071i \(-0.547104\pi\)
−0.147442 + 0.989071i \(0.547104\pi\)
\(24\) 8.94427i 1.82574i
\(25\) −5.00000 −1.00000
\(26\) 0 0
\(27\) 12.6491i 2.43432i
\(28\) −4.24264 3.16228i −0.801784 0.597614i
\(29\) 6.00000 1.11417 0.557086 0.830455i \(-0.311919\pi\)
0.557086 + 0.830455i \(0.311919\pi\)
\(30\) 10.0000 1.82574
\(31\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(32\) 5.65685 1.00000
\(33\) 0 0
\(34\) 0 0
\(35\) −3.53553 + 4.74342i −0.597614 + 0.801784i
\(36\) −14.0000 −2.33333
\(37\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 6.32456i 1.00000i
\(41\) 4.47214i 0.698430i 0.937043 + 0.349215i \(0.113552\pi\)
−0.937043 + 0.349215i \(0.886448\pi\)
\(42\) 7.07107 9.48683i 1.09109 1.46385i
\(43\) −12.7279 −1.94099 −0.970495 0.241121i \(-0.922485\pi\)
−0.970495 + 0.241121i \(0.922485\pi\)
\(44\) 0 0
\(45\) 15.6525i 2.33333i
\(46\) −2.00000 −0.294884
\(47\) 9.48683i 1.38380i 0.721995 + 0.691898i \(0.243225\pi\)
−0.721995 + 0.691898i \(0.756775\pi\)
\(48\) 12.6491i 1.82574i
\(49\) 2.00000 + 6.70820i 0.285714 + 0.958315i
\(50\) −7.07107 −1.00000
\(51\) 0 0
\(52\) 0 0
\(53\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(54\) 17.8885i 2.43432i
\(55\) 0 0
\(56\) −6.00000 4.47214i −0.801784 0.597614i
\(57\) 0 0
\(58\) 8.48528 1.11417
\(59\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(60\) 14.1421 1.82574
\(61\) 13.4164i 1.71780i −0.512148 0.858898i \(-0.671150\pi\)
0.512148 0.858898i \(-0.328850\pi\)
\(62\) 0 0
\(63\) 14.8492 + 11.0680i 1.87083 + 1.39443i
\(64\) 8.00000 1.00000
\(65\) 0 0
\(66\) 0 0
\(67\) 4.24264 0.518321 0.259161 0.965834i \(-0.416554\pi\)
0.259161 + 0.965834i \(0.416554\pi\)
\(68\) 0 0
\(69\) 4.47214i 0.538382i
\(70\) −5.00000 + 6.70820i −0.597614 + 0.801784i
\(71\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(72\) −19.7990 −2.33333
\(73\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(74\) 0 0
\(75\) 15.8114i 1.82574i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(80\) 8.94427i 1.00000i
\(81\) 19.0000 2.11111
\(82\) 6.32456i 0.698430i
\(83\) 9.48683i 1.04132i −0.853766 0.520658i \(-0.825687\pi\)
0.853766 0.520658i \(-0.174313\pi\)
\(84\) 10.0000 13.4164i 1.09109 1.46385i
\(85\) 0 0
\(86\) −18.0000 −1.94099
\(87\) 18.9737i 2.03419i
\(88\) 0 0
\(89\) 17.8885i 1.89618i 0.317999 + 0.948091i \(0.396989\pi\)
−0.317999 + 0.948091i \(0.603011\pi\)
\(90\) 22.1359i 2.33333i
\(91\) 0 0
\(92\) −2.82843 −0.294884
\(93\) 0 0
\(94\) 13.4164i 1.38380i
\(95\) 0 0
\(96\) 17.8885i 1.82574i
\(97\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(98\) 2.82843 + 9.48683i 0.285714 + 0.958315i
\(99\) 0 0
\(100\) −10.0000 −1.00000
\(101\) 8.94427i 0.889988i 0.895533 + 0.444994i \(0.146794\pi\)
−0.895533 + 0.444994i \(0.853206\pi\)
\(102\) 0 0
\(103\) 15.8114i 1.55794i −0.627060 0.778971i \(-0.715742\pi\)
0.627060 0.778971i \(-0.284258\pi\)
\(104\) 0 0
\(105\) −15.0000 11.1803i −1.46385 1.09109i
\(106\) 0 0
\(107\) 18.3848 1.77732 0.888662 0.458563i \(-0.151636\pi\)
0.888662 + 0.458563i \(0.151636\pi\)
\(108\) 25.2982i 2.43432i
\(109\) −16.0000 −1.53252 −0.766261 0.642529i \(-0.777885\pi\)
−0.766261 + 0.642529i \(0.777885\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −8.48528 6.32456i −0.801784 0.597614i
\(113\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(114\) 0 0
\(115\) 3.16228i 0.294884i
\(116\) 12.0000 1.11417
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 20.0000 1.82574
\(121\) 11.0000 1.00000
\(122\) 18.9737i 1.71780i
\(123\) −14.1421 −1.27515
\(124\) 0 0
\(125\) 11.1803i 1.00000i
\(126\) 21.0000 + 15.6525i 1.87083 + 1.39443i
\(127\) −4.24264 −0.376473 −0.188237 0.982124i \(-0.560277\pi\)
−0.188237 + 0.982124i \(0.560277\pi\)
\(128\) 11.3137 1.00000
\(129\) 40.2492i 3.54375i
\(130\) 0 0
\(131\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 6.00000 0.518321
\(135\) −28.2843 −2.43432
\(136\) 0 0
\(137\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(138\) 6.32456i 0.538382i
\(139\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(140\) −7.07107 + 9.48683i −0.597614 + 0.801784i
\(141\) −30.0000 −2.52646
\(142\) 0 0
\(143\) 0 0
\(144\) −28.0000 −2.33333
\(145\) 13.4164i 1.11417i
\(146\) 0 0
\(147\) −21.2132 + 6.32456i −1.74964 + 0.521641i
\(148\) 0 0
\(149\) 24.0000 1.96616 0.983078 0.183186i \(-0.0586410\pi\)
0.983078 + 0.183186i \(0.0586410\pi\)
\(150\) 22.3607i 1.82574i
\(151\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 12.6491i 1.00000i
\(161\) 3.00000 + 2.23607i 0.236433 + 0.176227i
\(162\) 26.8701 2.11111
\(163\) 12.7279 0.996928 0.498464 0.866910i \(-0.333898\pi\)
0.498464 + 0.866910i \(0.333898\pi\)
\(164\) 8.94427i 0.698430i
\(165\) 0 0
\(166\) 13.4164i 1.04132i
\(167\) 9.48683i 0.734113i −0.930199 0.367057i \(-0.880366\pi\)
0.930199 0.367057i \(-0.119634\pi\)
\(168\) 14.1421 18.9737i 1.09109 1.46385i
\(169\) −13.0000 −1.00000
\(170\) 0 0
\(171\) 0 0
\(172\) −25.4558 −1.94099
\(173\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(174\) 26.8328i 2.03419i
\(175\) 10.6066 + 7.90569i 0.801784 + 0.597614i
\(176\) 0 0
\(177\) 0 0
\(178\) 25.2982i 1.89618i
\(179\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(180\) 31.3050i 2.33333i
\(181\) 26.8328i 1.99447i −0.0743294 0.997234i \(-0.523682\pi\)
0.0743294 0.997234i \(-0.476318\pi\)
\(182\) 0 0
\(183\) 42.4264 3.13625
\(184\) −4.00000 −0.294884
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 18.9737i 1.38380i
\(189\) −20.0000 + 26.8328i −1.45479 + 1.95180i
\(190\) 0 0
\(191\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(192\) 25.2982i 1.82574i
\(193\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 4.00000 + 13.4164i 0.285714 + 0.958315i
\(197\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(198\) 0 0
\(199\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(200\) −14.1421 −1.00000
\(201\) 13.4164i 0.946320i
\(202\) 12.6491i 0.889988i
\(203\) −12.7279 9.48683i −0.893325 0.665845i
\(204\) 0 0
\(205\) 10.0000 0.698430
\(206\) 22.3607i 1.55794i
\(207\) 9.89949 0.688062
\(208\) 0 0
\(209\) 0 0
\(210\) −21.2132 15.8114i −1.46385 1.09109i
\(211\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 26.0000 1.77732
\(215\) 28.4605i 1.94099i
\(216\) 35.7771i 2.43432i
\(217\) 0 0
\(218\) −22.6274 −1.53252
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 3.16228i 0.211762i −0.994379 0.105881i \(-0.966234\pi\)
0.994379 0.105881i \(-0.0337662\pi\)
\(224\) −12.0000 8.94427i −0.801784 0.597614i
\(225\) 35.0000 2.33333
\(226\) 0 0
\(227\) 28.4605i 1.88899i −0.328526 0.944495i \(-0.606552\pi\)
0.328526 0.944495i \(-0.393448\pi\)
\(228\) 0 0
\(229\) 26.8328i 1.77316i 0.462573 + 0.886581i \(0.346926\pi\)
−0.462573 + 0.886581i \(0.653074\pi\)
\(230\) 4.47214i 0.294884i
\(231\) 0 0
\(232\) 16.9706 1.11417
\(233\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(234\) 0 0
\(235\) 21.2132 1.38380
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(240\) 28.2843 1.82574
\(241\) 13.4164i 0.864227i 0.901819 + 0.432113i \(0.142232\pi\)
−0.901819 + 0.432113i \(0.857768\pi\)
\(242\) 15.5563 1.00000
\(243\) 22.1359i 1.42002i
\(244\) 26.8328i 1.71780i
\(245\) 15.0000 4.47214i 0.958315 0.285714i
\(246\) −20.0000 −1.27515
\(247\) 0 0
\(248\) 0 0
\(249\) 30.0000 1.90117
\(250\) 15.8114i 1.00000i
\(251\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(252\) 29.6985 + 22.1359i 1.87083 + 1.39443i
\(253\) 0 0
\(254\) −6.00000 −0.376473
\(255\) 0 0
\(256\) 16.0000 1.00000
\(257\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(258\) 56.9210i 3.54375i
\(259\) 0 0
\(260\) 0 0
\(261\) −42.0000 −2.59973
\(262\) 0 0
\(263\) −15.5563 −0.959246 −0.479623 0.877475i \(-0.659226\pi\)
−0.479623 + 0.877475i \(0.659226\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) −56.5685 −3.46194
\(268\) 8.48528 0.518321
\(269\) 22.3607i 1.36335i −0.731653 0.681677i \(-0.761251\pi\)
0.731653 0.681677i \(-0.238749\pi\)
\(270\) −40.0000 −2.43432
\(271\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 8.94427i 0.538382i
\(277\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) −10.0000 + 13.4164i −0.597614 + 0.801784i
\(281\) −12.0000 −0.715860 −0.357930 0.933748i \(-0.616517\pi\)
−0.357930 + 0.933748i \(0.616517\pi\)
\(282\) −42.4264 −2.52646
\(283\) 15.8114i 0.939889i 0.882696 + 0.469945i \(0.155726\pi\)
−0.882696 + 0.469945i \(0.844274\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 7.07107 9.48683i 0.417392 0.559990i
\(288\) −39.5980 −2.33333
\(289\) −17.0000 −1.00000
\(290\) 18.9737i 1.11417i
\(291\) 0 0
\(292\) 0 0
\(293\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(294\) −30.0000 + 8.94427i −1.74964 + 0.521641i
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 33.9411 1.96616
\(299\) 0 0
\(300\) 31.6228i 1.82574i
\(301\) 27.0000 + 20.1246i 1.55625 + 1.15996i
\(302\) 0 0
\(303\) −28.2843 −1.62489
\(304\) 0 0
\(305\) −30.0000 −1.71780
\(306\) 0 0
\(307\) 34.7851i 1.98529i 0.121070 + 0.992644i \(0.461367\pi\)
−0.121070 + 0.992644i \(0.538633\pi\)
\(308\) 0 0
\(309\) 50.0000 2.84440
\(310\) 0 0
\(311\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(312\) 0 0
\(313\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(314\) 0 0
\(315\) 24.7487 33.2039i 1.39443 1.87083i
\(316\) 0 0
\(317\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 17.8885i 1.00000i
\(321\) 58.1378i 3.24493i
\(322\) 4.24264 + 3.16228i 0.236433 + 0.176227i
\(323\) 0 0
\(324\) 38.0000 2.11111
\(325\) 0 0
\(326\) 18.0000 0.996928
\(327\) 50.5964i 2.79799i
\(328\) 12.6491i 0.698430i
\(329\) 15.0000 20.1246i 0.826977 1.10951i
\(330\) 0 0
\(331\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(332\) 18.9737i 1.04132i
\(333\) 0 0
\(334\) 13.4164i 0.734113i
\(335\) 9.48683i 0.518321i
\(336\) 20.0000 26.8328i 1.09109 1.46385i
\(337\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(338\) −18.3848 −1.00000
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 6.36396 17.3925i 0.343622 0.939108i
\(344\) −36.0000 −1.94099
\(345\) −10.0000 −0.538382
\(346\) 0 0
\(347\) 24.0416 1.29062 0.645311 0.763920i \(-0.276728\pi\)
0.645311 + 0.763920i \(0.276728\pi\)
\(348\) 37.9473i 2.03419i
\(349\) 26.8328i 1.43633i −0.695874 0.718164i \(-0.744983\pi\)
0.695874 0.718164i \(-0.255017\pi\)
\(350\) 15.0000 + 11.1803i 0.801784 + 0.597614i
\(351\) 0 0
\(352\) 0 0
\(353\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 35.7771i 1.89618i
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(360\) 44.2719i 2.33333i
\(361\) −19.0000 −1.00000
\(362\) 37.9473i 1.99447i
\(363\) 34.7851i 1.82574i
\(364\) 0 0
\(365\) 0 0
\(366\) 60.0000 3.13625
\(367\) 3.16228i 0.165070i 0.996588 + 0.0825348i \(0.0263016\pi\)
−0.996588 + 0.0825348i \(0.973698\pi\)
\(368\) −5.65685 −0.294884
\(369\) 31.3050i 1.62967i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(374\) 0 0
\(375\) −35.3553 −1.82574
\(376\) 26.8328i 1.38380i
\(377\) 0 0
\(378\) −28.2843 + 37.9473i −1.45479 + 1.95180i
\(379\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(380\) 0 0
\(381\) 13.4164i 0.687343i
\(382\) 0 0
\(383\) 28.4605i 1.45426i 0.686498 + 0.727132i \(0.259147\pi\)
−0.686498 + 0.727132i \(0.740853\pi\)
\(384\) 35.7771i 1.82574i
\(385\) 0 0
\(386\) 0 0
\(387\) 89.0955 4.52898
\(388\) 0 0
\(389\) −24.0000 −1.21685 −0.608424 0.793612i \(-0.708198\pi\)
−0.608424 + 0.793612i \(0.708198\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 5.65685 + 18.9737i 0.285714 + 0.958315i
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) −20.0000 −1.00000
\(401\) −18.0000 −0.898877 −0.449439 0.893311i \(-0.648376\pi\)
−0.449439 + 0.893311i \(0.648376\pi\)
\(402\) 18.9737i 0.946320i
\(403\) 0 0
\(404\) 17.8885i 0.889988i
\(405\) 42.4853i 2.11111i
\(406\) −18.0000 13.4164i −0.893325 0.665845i
\(407\) 0 0
\(408\) 0 0
\(409\) 40.2492i 1.99020i 0.0988936 + 0.995098i \(0.468470\pi\)
−0.0988936 + 0.995098i \(0.531530\pi\)
\(410\) 14.1421 0.698430
\(411\) 0 0
\(412\) 31.6228i 1.55794i
\(413\) 0 0
\(414\) 14.0000 0.688062
\(415\) −21.2132 −1.04132
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(420\) −30.0000 22.3607i −1.46385 1.09109i
\(421\) −8.00000 −0.389896 −0.194948 0.980814i \(-0.562454\pi\)
−0.194948 + 0.980814i \(0.562454\pi\)
\(422\) 0 0
\(423\) 66.4078i 3.22886i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −21.2132 + 28.4605i −1.02658 + 1.37730i
\(428\) 36.7696 1.77732
\(429\) 0 0
\(430\) 40.2492i 1.94099i
\(431\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(432\) 50.5964i 2.43432i
\(433\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(434\) 0 0
\(435\) 42.4264 2.03419
\(436\) −32.0000 −1.53252
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(440\) 0 0
\(441\) −14.0000 46.9574i −0.666667 2.23607i
\(442\) 0 0
\(443\) −41.0122 −1.94855 −0.974274 0.225367i \(-0.927642\pi\)
−0.974274 + 0.225367i \(0.927642\pi\)
\(444\) 0 0
\(445\) 40.0000 1.89618
\(446\) 4.47214i 0.211762i
\(447\) 75.8947i 3.58969i
\(448\) −16.9706 12.6491i −0.801784 0.597614i
\(449\) −36.0000 −1.69895 −0.849473 0.527633i \(-0.823080\pi\)
−0.849473 + 0.527633i \(0.823080\pi\)
\(450\) 49.4975 2.33333
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) 40.2492i 1.88899i
\(455\) 0 0
\(456\) 0 0
\(457\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(458\) 37.9473i 1.77316i
\(459\) 0 0
\(460\) 6.32456i 0.294884i
\(461\) 8.94427i 0.416576i −0.978068 0.208288i \(-0.933211\pi\)
0.978068 0.208288i \(-0.0667892\pi\)
\(462\) 0 0
\(463\) −12.7279 −0.591517 −0.295758 0.955263i \(-0.595572\pi\)
−0.295758 + 0.955263i \(0.595572\pi\)
\(464\) 24.0000 1.11417
\(465\) 0 0
\(466\) 0 0
\(467\) 28.4605i 1.31699i 0.752583 + 0.658497i \(0.228808\pi\)
−0.752583 + 0.658497i \(0.771192\pi\)
\(468\) 0 0
\(469\) −9.00000 6.70820i −0.415581 0.309756i
\(470\) 30.0000 1.38380
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(480\) 40.0000 1.82574
\(481\) 0 0
\(482\) 18.9737i 0.864227i
\(483\) −7.07107 + 9.48683i −0.321745 + 0.431666i
\(484\) 22.0000 1.00000
\(485\) 0 0
\(486\) 31.3050i 1.42002i
\(487\) −38.1838 −1.73027 −0.865136 0.501538i \(-0.832768\pi\)
−0.865136 + 0.501538i \(0.832768\pi\)
\(488\) 37.9473i 1.71780i
\(489\) 40.2492i 1.82013i
\(490\) 21.2132 6.32456i 0.958315 0.285714i
\(491\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(492\) −28.2843 −1.27515
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 42.4264 1.90117
\(499\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(500\) 22.3607i 1.00000i
\(501\) 30.0000 1.34030
\(502\) 0 0
\(503\) 9.48683i 0.422997i −0.977378 0.211498i \(-0.932166\pi\)
0.977378 0.211498i \(-0.0678343\pi\)
\(504\) 42.0000 + 31.3050i 1.87083 + 1.39443i
\(505\) 20.0000 0.889988
\(506\) 0 0
\(507\) 41.1096i 1.82574i
\(508\) −8.48528 −0.376473
\(509\) 44.7214i 1.98224i −0.132973 0.991120i \(-0.542452\pi\)
0.132973 0.991120i \(-0.457548\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 22.6274 1.00000
\(513\) 0 0
\(514\) 0 0
\(515\) −35.3553 −1.55794
\(516\) 80.4984i 3.54375i
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 17.8885i 0.783711i −0.920027 0.391856i \(-0.871833\pi\)
0.920027 0.391856i \(-0.128167\pi\)
\(522\) −59.3970 −2.59973
\(523\) 34.7851i 1.52104i −0.649312 0.760522i \(-0.724943\pi\)
0.649312 0.760522i \(-0.275057\pi\)
\(524\) 0 0
\(525\) −25.0000 + 33.5410i −1.09109 + 1.46385i
\(526\) −22.0000 −0.959246
\(527\) 0 0
\(528\) 0 0
\(529\) −21.0000 −0.913043
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) −80.0000 −3.46194
\(535\) 41.1096i 1.77732i
\(536\) 12.0000 0.518321
\(537\) 0 0
\(538\) 31.6228i 1.36335i
\(539\) 0 0
\(540\) −56.5685 −2.43432
\(541\) 38.0000 1.63375 0.816874 0.576816i \(-0.195705\pi\)
0.816874 + 0.576816i \(0.195705\pi\)
\(542\) 0 0
\(543\) 84.8528 3.64138
\(544\) 0 0
\(545\) 35.7771i 1.53252i
\(546\) 0 0
\(547\) 46.6690 1.99542 0.997712 0.0676046i \(-0.0215356\pi\)
0.997712 + 0.0676046i \(0.0215356\pi\)
\(548\) 0 0
\(549\) 93.9149i 4.00819i
\(550\) 0 0
\(551\) 0 0
\(552\) 12.6491i 0.538382i
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) −14.1421 + 18.9737i −0.597614 + 0.801784i
\(561\) 0 0
\(562\) −16.9706 −0.715860
\(563\) 47.4342i 1.99911i 0.0298010 + 0.999556i \(0.490513\pi\)
−0.0298010 + 0.999556i \(0.509487\pi\)
\(564\) −60.0000 −2.52646
\(565\) 0 0
\(566\) 22.3607i 0.939889i
\(567\) −40.3051 30.0416i −1.69265 1.26163i
\(568\) 0 0
\(569\) 36.0000 1.50920 0.754599 0.656186i \(-0.227831\pi\)
0.754599 + 0.656186i \(0.227831\pi\)
\(570\) 0 0
\(571\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 10.0000 13.4164i 0.417392 0.559990i
\(575\) 7.07107 0.294884
\(576\) −56.0000 −2.33333
\(577\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(578\) −24.0416 −1.00000
\(579\) 0 0
\(580\) 26.8328i 1.11417i
\(581\) −15.0000 + 20.1246i −0.622305 + 0.834910i
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 47.4342i 1.95782i −0.204298 0.978909i \(-0.565491\pi\)
0.204298 0.978909i \(-0.434509\pi\)
\(588\) −42.4264 + 12.6491i −1.74964 + 0.521641i
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 48.0000 1.96616
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(600\) 44.7214i 1.82574i
\(601\) 40.2492i 1.64180i −0.571072 0.820900i \(-0.693472\pi\)
0.571072 0.820900i \(-0.306528\pi\)
\(602\) 38.1838 + 28.4605i 1.55625 + 1.15996i
\(603\) −29.6985 −1.20942
\(604\) 0 0
\(605\) 24.5967i 1.00000i
\(606\) −40.0000 −1.62489
\(607\) 15.8114i 0.641764i −0.947119 0.320882i \(-0.896021\pi\)
0.947119 0.320882i \(-0.103979\pi\)
\(608\) 0 0
\(609\) 30.0000 40.2492i 1.21566 1.63098i
\(610\) −42.4264 −1.71780
\(611\) 0 0
\(612\) 0 0
\(613\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(614\) 49.1935i 1.98529i
\(615\) 31.6228i 1.27515i
\(616\) 0 0
\(617\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(618\) 70.7107 2.84440
\(619\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(620\) 0 0
\(621\) 17.8885i 0.717843i
\(622\) 0 0
\(623\) 28.2843 37.9473i 1.13319 1.52033i
\(624\) 0 0
\(625\) 25.0000 1.00000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 35.0000 46.9574i 1.39443 1.87083i
\(631\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 9.48683i 0.376473i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 25.2982i 1.00000i
\(641\) 12.0000 0.473972 0.236986 0.971513i \(-0.423841\pi\)
0.236986 + 0.971513i \(0.423841\pi\)
\(642\) 82.2192i 3.24493i
\(643\) 41.1096i 1.62120i 0.585597 + 0.810602i \(0.300860\pi\)
−0.585597 + 0.810602i \(0.699140\pi\)
\(644\) 6.00000 + 4.47214i 0.236433 + 0.176227i
\(645\) −90.0000 −3.54375
\(646\) 0 0
\(647\) 47.4342i 1.86483i 0.361390 + 0.932415i \(0.382302\pi\)
−0.361390 + 0.932415i \(0.617698\pi\)
\(648\) 53.7401 2.11111
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 25.4558 0.996928
\(653\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(654\) 71.5542i 2.79799i
\(655\) 0 0
\(656\) 17.8885i 0.698430i
\(657\) 0 0
\(658\) 21.2132 28.4605i 0.826977 1.10951i
\(659\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(660\) 0 0
\(661\) 40.2492i 1.56551i 0.622328 + 0.782757i \(0.286187\pi\)
−0.622328 + 0.782757i \(0.713813\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 26.8328i 1.04132i
\(665\) 0 0
\(666\) 0 0
\(667\) −8.48528 −0.328551
\(668\) 18.9737i 0.734113i
\(669\) 10.0000 0.386622
\(670\) 13.4164i 0.518321i
\(671\) 0 0
\(672\) 28.2843 37.9473i 1.09109 1.46385i
\(673\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(674\) 0 0
\(675\) 63.2456i 2.43432i
\(676\) −26.0000 −1.00000
\(677\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 90.0000 3.44881
\(682\) 0 0
\(683\) 43.8406 1.67751 0.838757 0.544505i \(-0.183283\pi\)
0.838757 + 0.544505i \(0.183283\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 9.00000 24.5967i 0.343622 0.939108i
\(687\) −84.8528 −3.23734
\(688\) −50.9117 −1.94099
\(689\) 0 0
\(690\) −14.1421 −0.538382
\(691\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 34.0000 1.29062
\(695\) 0 0
\(696\) 53.6656i 2.03419i
\(697\) 0 0
\(698\) 37.9473i 1.43633i
\(699\) 0 0
\(700\) 21.2132 + 15.8114i 0.801784 + 0.597614i
\(701\) 48.0000 1.81293 0.906467 0.422276i \(-0.138769\pi\)
0.906467 + 0.422276i \(0.138769\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 67.0820i 2.52646i
\(706\) 0 0
\(707\) 14.1421 18.9737i 0.531870 0.713578i
\(708\) 0 0
\(709\) −46.0000 −1.72757 −0.863783 0.503864i \(-0.831911\pi\)
−0.863783 + 0.503864i \(0.831911\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 50.5964i 1.89618i
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(720\) 62.6099i 2.33333i
\(721\) −25.0000 + 33.5410i −0.931049 + 1.24913i
\(722\) −26.8701 −1.00000
\(723\) −42.4264 −1.57786
\(724\) 53.6656i 1.99447i
\(725\) −30.0000 −1.11417
\(726\) 49.1935i 1.82574i
\(727\) 53.7587i 1.99380i −0.0786754 0.996900i \(-0.525069\pi\)
0.0786754 0.996900i \(-0.474931\pi\)
\(728\) 0 0
\(729\) −13.0000 −0.481481
\(730\) 0 0
\(731\) 0 0
\(732\) 84.8528 3.13625
\(733\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(734\) 4.47214i 0.165070i
\(735\) 14.1421 + 47.4342i 0.521641 + 1.74964i
\(736\) −8.00000 −0.294884
\(737\) 0 0
\(738\) 44.2719i 1.62967i
\(739\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 26.8701 0.985767 0.492883 0.870095i \(-0.335943\pi\)
0.492883 + 0.870095i \(0.335943\pi\)
\(744\) 0 0
\(745\) 53.6656i 1.96616i
\(746\) 0 0
\(747\) 66.4078i 2.42974i
\(748\) 0 0
\(749\) −39.0000 29.0689i −1.42503 1.06215i
\(750\) −50.0000 −1.82574
\(751\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(752\) 37.9473i 1.38380i
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) −40.0000 + 53.6656i −1.45479 + 1.95180i
\(757\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 35.7771i 1.29692i −0.761249 0.648459i \(-0.775414\pi\)
0.761249 0.648459i \(-0.224586\pi\)
\(762\) 18.9737i 0.687343i
\(763\) 33.9411 + 25.2982i 1.22875 + 0.915857i
\(764\) 0 0
\(765\) 0 0
\(766\) 40.2492i 1.45426i
\(767\) 0 0
\(768\) 50.5964i 1.82574i
\(769\) 53.6656i 1.93523i 0.252426 + 0.967616i \(0.418771\pi\)
−0.252426 + 0.967616i \(0.581229\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(774\) 126.000 4.52898
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) −33.9411 −1.21685
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 75.8947i 2.71225i
\(784\) 8.00000 + 26.8328i 0.285714 + 0.958315i
\(785\) 0 0
\(786\) 0 0
\(787\) 41.1096i 1.46540i −0.680552 0.732700i \(-0.738260\pi\)
0.680552 0.732700i \(-0.261740\pi\)
\(788\) 0 0
\(789\) 49.1935i 1.75133i
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) −28.2843 −1.00000
\(801\) 125.220i 4.42442i
\(802\) −25.4558 −0.898877
\(803\) 0 0
\(804\) 26.8328i 0.946320i
\(805\) 5.00000 6.70820i 0.176227 0.236433i
\(806\) 0 0
\(807\) 70.7107 2.48913
\(808\) 25.2982i 0.889988i
\(809\) 54.0000 1.89854 0.949269 0.314464i \(-0.101825\pi\)
0.949269 + 0.314464i \(0.101825\pi\)
\(810\) 60.0833i 2.11111i
\(811\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(812\) −25.4558 18.9737i −0.893325 0.665845i
\(813\) 0 0
\(814\) 0 0
\(815\) 28.4605i 0.996928i
\(816\) 0 0
\(817\) 0 0
\(818\) 56.9210i 1.99020i
\(819\) 0 0
\(820\) 20.0000 0.698430
\(821\) −48.0000 −1.67521 −0.837606 0.546275i \(-0.816045\pi\)
−0.837606 + 0.546275i \(0.816045\pi\)
\(822\) 0 0
\(823\) −55.1543 −1.92256 −0.961280 0.275575i \(-0.911132\pi\)
−0.961280 + 0.275575i \(0.911132\pi\)
\(824\) 44.7214i 1.55794i
\(825\) 0 0
\(826\) 0 0
\(827\) −32.5269 −1.13107 −0.565536 0.824724i \(-0.691331\pi\)
−0.565536 + 0.824724i \(0.691331\pi\)
\(828\) 19.7990 0.688062
\(829\) 13.4164i 0.465971i 0.972480 + 0.232986i \(0.0748495\pi\)
−0.972480 + 0.232986i \(0.925151\pi\)
\(830\) −30.0000 −1.04132
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) −21.2132 −0.734113
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(840\) −42.4264 31.6228i −1.46385 1.09109i
\(841\) 7.00000 0.241379
\(842\) −11.3137 −0.389896
\(843\) 37.9473i 1.30698i
\(844\) 0 0
\(845\) 29.0689i 1.00000i
\(846\) 93.9149i 3.22886i
\(847\) −23.3345 17.3925i −0.801784 0.597614i
\(848\) 0 0
\(849\) −50.0000 −1.71600
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(854\) −30.0000 + 40.2492i −1.02658 + 1.37730i
\(855\) 0 0
\(856\) 52.0000 1.77732
\(857\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(858\) 0 0
\(859\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(860\) 56.9210i 1.94099i
\(861\) 30.0000 + 22.3607i 1.02240 + 0.762050i
\(862\) 0 0
\(863\) 57.9828 1.97376 0.986878 0.161468i \(-0.0516228\pi\)
0.986878 + 0.161468i \(0.0516228\pi\)
\(864\) 71.5542i 2.43432i
\(865\) 0 0
\(866\) 0 0
\(867\) 53.7587i 1.82574i
\(868\) 0 0
\(869\) 0 0
\(870\) 60.0000 2.03419
\(871\) 0 0
\(872\) −45.2548 −1.53252
\(873\) 0 0
\(874\) 0 0
\(875\) 17.6777 23.7171i 0.597614 0.801784i
\(876\) 0 0
\(877\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 58.1378i 1.95871i −0.202145 0.979356i \(-0.564791\pi\)
0.202145 0.979356i \(-0.435209\pi\)
\(882\) −19.7990 66.4078i −0.666667 2.23607i
\(883\) 55.1543 1.85609 0.928045 0.372467i \(-0.121488\pi\)
0.928045 + 0.372467i \(0.121488\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) −58.0000 −1.94855
\(887\) 28.4605i 0.955610i 0.878466 + 0.477805i \(0.158567\pi\)
−0.878466 + 0.477805i \(0.841433\pi\)
\(888\) 0 0
\(889\) 9.00000 + 6.70820i 0.301850 + 0.224986i
\(890\) 56.5685 1.89618
\(891\) 0 0
\(892\) 6.32456i 0.211762i
\(893\) 0 0
\(894\) 107.331i 3.58969i
\(895\) 0 0
\(896\) −24.0000 17.8885i −0.801784 0.597614i
\(897\) 0 0
\(898\) −50.9117 −1.69895
\(899\) 0 0
\(900\) 70.0000 2.33333
\(901\) 0 0
\(902\) 0 0
\(903\) −63.6396 + 85.3815i −2.11779 + 2.84132i
\(904\) 0 0
\(905\) −60.0000 −1.99447
\(906\) 0 0
\(907\) 4.24264 0.140875 0.0704373 0.997516i \(-0.477561\pi\)
0.0704373 + 0.997516i \(0.477561\pi\)
\(908\) 56.9210i 1.88899i
\(909\) 62.6099i 2.07664i
\(910\) 0 0
\(911\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 94.8683i 3.13625i
\(916\) 53.6656i 1.77316i
\(917\) 0 0
\(918\) 0 0
\(919\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(920\) 8.94427i 0.294884i
\(921\) −110.000 −3.62462
\(922\) 12.6491i 0.416576i
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) −18.0000 −0.591517
\(927\) 110.680i 3.63520i
\(928\) 33.9411 1.11417
\(929\) 49.1935i 1.61399i 0.590561 + 0.806993i \(0.298907\pi\)
−0.590561 + 0.806993i \(0.701093\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 0 0
\(934\) 40.2492i 1.31699i
\(935\) 0 0
\(936\) 0 0
\(937\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(938\) −12.7279 9.48683i −0.415581 0.309756i
\(939\) 0 0
\(940\) 42.4264 1.38380
\(941\) 44.7214i 1.45787i 0.684580 + 0.728937i \(0.259985\pi\)
−0.684580 + 0.728937i \(0.740015\pi\)
\(942\) 0 0
\(943\) 6.32456i 0.205956i
\(944\) 0 0
\(945\) 60.0000 + 44.7214i 1.95180 + 1.45479i
\(946\) 0 0
\(947\) −60.8112 −1.97610 −0.988049 0.154140i \(-0.950739\pi\)
−0.988049 + 0.154140i \(0.950739\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 56.5685 1.82574
\(961\) −31.0000 −1.00000
\(962\) 0 0
\(963\) −128.693 −4.14709
\(964\) 26.8328i 0.864227i
\(965\) 0 0
\(966\) −10.0000 + 13.4164i −0.321745 + 0.431666i
\(967\) 46.6690 1.50078 0.750388 0.660998i \(-0.229867\pi\)
0.750388 + 0.660998i \(0.229867\pi\)
\(968\) 31.1127 1.00000
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(972\) 44.2719i 1.42002i
\(973\) 0 0
\(974\) −54.0000 −1.73027
\(975\) 0 0
\(976\) 53.6656i 1.71780i
\(977\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(978\) 56.9210i 1.82013i
\(979\) 0 0
\(980\) 30.0000 8.94427i 0.958315 0.285714i
\(981\) 112.000 3.57588
\(982\) 0 0
\(983\) 47.4342i 1.51291i 0.654043 + 0.756457i \(0.273072\pi\)
−0.654043 + 0.756457i \(0.726928\pi\)
\(984\) −40.0000 −1.27515
\(985\) 0 0
\(986\) 0 0
\(987\) 63.6396 + 47.4342i 2.02567 + 1.50985i
\(988\) 0 0
\(989\) 18.0000 0.572367
\(990\) 0 0
\(991\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 60.0000 1.90117
\(997\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 140.2.c.a.139.4 yes 4
4.3 odd 2 inner 140.2.c.a.139.1 4
5.2 odd 4 700.2.g.d.251.4 4
5.3 odd 4 700.2.g.d.251.1 4
5.4 even 2 inner 140.2.c.a.139.1 4
7.2 even 3 980.2.s.b.619.1 8
7.3 odd 6 980.2.s.b.19.1 8
7.4 even 3 980.2.s.b.19.2 8
7.5 odd 6 980.2.s.b.619.2 8
7.6 odd 2 inner 140.2.c.a.139.3 yes 4
8.3 odd 2 2240.2.e.a.2239.4 4
8.5 even 2 2240.2.e.a.2239.2 4
20.3 even 4 700.2.g.d.251.4 4
20.7 even 4 700.2.g.d.251.1 4
20.19 odd 2 CM 140.2.c.a.139.4 yes 4
28.3 even 6 980.2.s.b.19.4 8
28.11 odd 6 980.2.s.b.19.3 8
28.19 even 6 980.2.s.b.619.3 8
28.23 odd 6 980.2.s.b.619.4 8
28.27 even 2 inner 140.2.c.a.139.2 yes 4
35.4 even 6 980.2.s.b.19.3 8
35.9 even 6 980.2.s.b.619.4 8
35.13 even 4 700.2.g.d.251.2 4
35.19 odd 6 980.2.s.b.619.3 8
35.24 odd 6 980.2.s.b.19.4 8
35.27 even 4 700.2.g.d.251.3 4
35.34 odd 2 inner 140.2.c.a.139.2 yes 4
40.19 odd 2 2240.2.e.a.2239.2 4
40.29 even 2 2240.2.e.a.2239.4 4
56.13 odd 2 2240.2.e.a.2239.3 4
56.27 even 2 2240.2.e.a.2239.1 4
140.19 even 6 980.2.s.b.619.2 8
140.27 odd 4 700.2.g.d.251.2 4
140.39 odd 6 980.2.s.b.19.2 8
140.59 even 6 980.2.s.b.19.1 8
140.79 odd 6 980.2.s.b.619.1 8
140.83 odd 4 700.2.g.d.251.3 4
140.139 even 2 inner 140.2.c.a.139.3 yes 4
280.69 odd 2 2240.2.e.a.2239.1 4
280.139 even 2 2240.2.e.a.2239.3 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
140.2.c.a.139.1 4 4.3 odd 2 inner
140.2.c.a.139.1 4 5.4 even 2 inner
140.2.c.a.139.2 yes 4 28.27 even 2 inner
140.2.c.a.139.2 yes 4 35.34 odd 2 inner
140.2.c.a.139.3 yes 4 7.6 odd 2 inner
140.2.c.a.139.3 yes 4 140.139 even 2 inner
140.2.c.a.139.4 yes 4 1.1 even 1 trivial
140.2.c.a.139.4 yes 4 20.19 odd 2 CM
700.2.g.d.251.1 4 5.3 odd 4
700.2.g.d.251.1 4 20.7 even 4
700.2.g.d.251.2 4 35.13 even 4
700.2.g.d.251.2 4 140.27 odd 4
700.2.g.d.251.3 4 35.27 even 4
700.2.g.d.251.3 4 140.83 odd 4
700.2.g.d.251.4 4 5.2 odd 4
700.2.g.d.251.4 4 20.3 even 4
980.2.s.b.19.1 8 7.3 odd 6
980.2.s.b.19.1 8 140.59 even 6
980.2.s.b.19.2 8 7.4 even 3
980.2.s.b.19.2 8 140.39 odd 6
980.2.s.b.19.3 8 28.11 odd 6
980.2.s.b.19.3 8 35.4 even 6
980.2.s.b.19.4 8 28.3 even 6
980.2.s.b.19.4 8 35.24 odd 6
980.2.s.b.619.1 8 7.2 even 3
980.2.s.b.619.1 8 140.79 odd 6
980.2.s.b.619.2 8 7.5 odd 6
980.2.s.b.619.2 8 140.19 even 6
980.2.s.b.619.3 8 28.19 even 6
980.2.s.b.619.3 8 35.19 odd 6
980.2.s.b.619.4 8 28.23 odd 6
980.2.s.b.619.4 8 35.9 even 6
2240.2.e.a.2239.1 4 56.27 even 2
2240.2.e.a.2239.1 4 280.69 odd 2
2240.2.e.a.2239.2 4 8.5 even 2
2240.2.e.a.2239.2 4 40.19 odd 2
2240.2.e.a.2239.3 4 56.13 odd 2
2240.2.e.a.2239.3 4 280.139 even 2
2240.2.e.a.2239.4 4 8.3 odd 2
2240.2.e.a.2239.4 4 40.29 even 2