Properties

Label 980.2.s.b.619.4
Level $980$
Weight $2$
Character 980.619
Analytic conductor $7.825$
Analytic rank $0$
Dimension $8$
CM discriminant -20
Inner twists $16$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [980,2,Mod(19,980)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(980, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 3, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("980.19");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 980 = 2^{2} \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 980.s (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.82533939809\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: 8.0.3317760000.3
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 4x^{6} + 7x^{4} - 36x^{2} + 81 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 140)
Sato-Tate group: $\mathrm{U}(1)[D_{6}]$

Embedding invariants

Embedding label 619.4
Root \(-1.72286 - 0.178197i\) of defining polynomial
Character \(\chi\) \(=\) 980.619
Dual form 980.2.s.b.19.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.707107 + 1.22474i) q^{2} +(2.73861 + 1.58114i) q^{3} +(-1.00000 + 1.73205i) q^{4} +(-1.93649 + 1.11803i) q^{5} +4.47214i q^{6} -2.82843 q^{8} +(3.50000 + 6.06218i) q^{9} +(-2.73861 - 1.58114i) q^{10} +(-5.47723 + 3.16228i) q^{12} -7.07107 q^{15} +(-2.00000 - 3.46410i) q^{16} +(-4.94975 + 8.57321i) q^{18} -4.47214i q^{20} +(-0.707107 - 1.22474i) q^{23} +(-7.74597 - 4.47214i) q^{24} +(2.50000 - 4.33013i) q^{25} +12.6491i q^{27} +6.00000 q^{29} +(-5.00000 - 8.66025i) q^{30} +(2.82843 - 4.89898i) q^{32} -14.0000 q^{36} +(5.47723 - 3.16228i) q^{40} +4.47214i q^{41} +12.7279 q^{43} +(-13.5554 - 7.82624i) q^{45} +(1.00000 - 1.73205i) q^{46} +(-8.21584 + 4.74342i) q^{47} -12.6491i q^{48} +7.07107 q^{50} +(-15.4919 + 8.94427i) q^{54} +(4.24264 + 7.34847i) q^{58} +(7.07107 - 12.2474i) q^{60} +(-11.6190 + 6.70820i) q^{61} +8.00000 q^{64} +(2.12132 - 3.67423i) q^{67} -4.47214i q^{69} +(-9.89949 - 17.1464i) q^{72} +(13.6931 - 7.90569i) q^{75} +(7.74597 + 4.47214i) q^{80} +(-9.50000 + 16.4545i) q^{81} +(-5.47723 + 3.16228i) q^{82} +9.48683i q^{83} +(9.00000 + 15.5885i) q^{86} +(16.4317 + 9.48683i) q^{87} +(15.4919 - 8.94427i) q^{89} -22.1359i q^{90} +2.82843 q^{92} +(-11.6190 - 6.70820i) q^{94} +(15.4919 - 8.94427i) q^{96} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{4} + 28 q^{9} - 16 q^{16} + 20 q^{25} + 48 q^{29} - 40 q^{30} - 112 q^{36} + 8 q^{46} + 64 q^{64} - 76 q^{81} + 72 q^{86}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/980\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(197\) \(491\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.707107 + 1.22474i 0.500000 + 0.866025i
\(3\) 2.73861 + 1.58114i 1.58114 + 0.912871i 0.994694 + 0.102882i \(0.0328064\pi\)
0.586445 + 0.809989i \(0.300527\pi\)
\(4\) −1.00000 + 1.73205i −0.500000 + 0.866025i
\(5\) −1.93649 + 1.11803i −0.866025 + 0.500000i
\(6\) 4.47214i 1.82574i
\(7\) 0 0
\(8\) −2.82843 −1.00000
\(9\) 3.50000 + 6.06218i 1.16667 + 2.02073i
\(10\) −2.73861 1.58114i −0.866025 0.500000i
\(11\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(12\) −5.47723 + 3.16228i −1.58114 + 0.912871i
\(13\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(14\) 0 0
\(15\) −7.07107 −1.82574
\(16\) −2.00000 3.46410i −0.500000 0.866025i
\(17\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(18\) −4.94975 + 8.57321i −1.16667 + 2.02073i
\(19\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(20\) 4.47214i 1.00000i
\(21\) 0 0
\(22\) 0 0
\(23\) −0.707107 1.22474i −0.147442 0.255377i 0.782839 0.622224i \(-0.213771\pi\)
−0.930281 + 0.366847i \(0.880437\pi\)
\(24\) −7.74597 4.47214i −1.58114 0.912871i
\(25\) 2.50000 4.33013i 0.500000 0.866025i
\(26\) 0 0
\(27\) 12.6491i 2.43432i
\(28\) 0 0
\(29\) 6.00000 1.11417 0.557086 0.830455i \(-0.311919\pi\)
0.557086 + 0.830455i \(0.311919\pi\)
\(30\) −5.00000 8.66025i −0.912871 1.58114i
\(31\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(32\) 2.82843 4.89898i 0.500000 0.866025i
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) −14.0000 −2.33333
\(37\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 5.47723 3.16228i 0.866025 0.500000i
\(41\) 4.47214i 0.698430i 0.937043 + 0.349215i \(0.113552\pi\)
−0.937043 + 0.349215i \(0.886448\pi\)
\(42\) 0 0
\(43\) 12.7279 1.94099 0.970495 0.241121i \(-0.0775152\pi\)
0.970495 + 0.241121i \(0.0775152\pi\)
\(44\) 0 0
\(45\) −13.5554 7.82624i −2.02073 1.16667i
\(46\) 1.00000 1.73205i 0.147442 0.255377i
\(47\) −8.21584 + 4.74342i −1.19840 + 0.691898i −0.960199 0.279317i \(-0.909892\pi\)
−0.238204 + 0.971215i \(0.576559\pi\)
\(48\) 12.6491i 1.82574i
\(49\) 0 0
\(50\) 7.07107 1.00000
\(51\) 0 0
\(52\) 0 0
\(53\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(54\) −15.4919 + 8.94427i −2.10819 + 1.21716i
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 4.24264 + 7.34847i 0.557086 + 0.964901i
\(59\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(60\) 7.07107 12.2474i 0.912871 1.58114i
\(61\) −11.6190 + 6.70820i −1.48765 + 0.858898i −0.999901 0.0140840i \(-0.995517\pi\)
−0.487753 + 0.872982i \(0.662183\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 8.00000 1.00000
\(65\) 0 0
\(66\) 0 0
\(67\) 2.12132 3.67423i 0.259161 0.448879i −0.706857 0.707357i \(-0.749887\pi\)
0.966017 + 0.258478i \(0.0832208\pi\)
\(68\) 0 0
\(69\) 4.47214i 0.538382i
\(70\) 0 0
\(71\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(72\) −9.89949 17.1464i −1.16667 2.02073i
\(73\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(74\) 0 0
\(75\) 13.6931 7.90569i 1.58114 0.912871i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(80\) 7.74597 + 4.47214i 0.866025 + 0.500000i
\(81\) −9.50000 + 16.4545i −1.05556 + 1.82828i
\(82\) −5.47723 + 3.16228i −0.604858 + 0.349215i
\(83\) 9.48683i 1.04132i 0.853766 + 0.520658i \(0.174313\pi\)
−0.853766 + 0.520658i \(0.825687\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 9.00000 + 15.5885i 0.970495 + 1.68095i
\(87\) 16.4317 + 9.48683i 1.76166 + 1.01710i
\(88\) 0 0
\(89\) 15.4919 8.94427i 1.64214 0.948091i 0.662071 0.749441i \(-0.269678\pi\)
0.980071 0.198650i \(-0.0636557\pi\)
\(90\) 22.1359i 2.33333i
\(91\) 0 0
\(92\) 2.82843 0.294884
\(93\) 0 0
\(94\) −11.6190 6.70820i −1.19840 0.691898i
\(95\) 0 0
\(96\) 15.4919 8.94427i 1.58114 0.912871i
\(97\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 5.00000 + 8.66025i 0.500000 + 0.866025i
\(101\) −7.74597 4.47214i −0.770752 0.444994i 0.0623905 0.998052i \(-0.480128\pi\)
−0.833143 + 0.553058i \(0.813461\pi\)
\(102\) 0 0
\(103\) 13.6931 7.90569i 1.34922 0.778971i 0.361079 0.932535i \(-0.382408\pi\)
0.988139 + 0.153564i \(0.0490751\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 9.19239 + 15.9217i 0.888662 + 1.53921i 0.841458 + 0.540322i \(0.181698\pi\)
0.0472033 + 0.998885i \(0.484969\pi\)
\(108\) −21.9089 12.6491i −2.10819 1.21716i
\(109\) 8.00000 13.8564i 0.766261 1.32720i −0.173316 0.984866i \(-0.555448\pi\)
0.939577 0.342337i \(-0.111218\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(114\) 0 0
\(115\) 2.73861 + 1.58114i 0.255377 + 0.147442i
\(116\) −6.00000 + 10.3923i −0.557086 + 0.964901i
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 20.0000 1.82574
\(121\) −5.50000 9.52628i −0.500000 0.866025i
\(122\) −16.4317 9.48683i −1.48765 0.858898i
\(123\) −7.07107 + 12.2474i −0.637577 + 1.10432i
\(124\) 0 0
\(125\) 11.1803i 1.00000i
\(126\) 0 0
\(127\) 4.24264 0.376473 0.188237 0.982124i \(-0.439723\pi\)
0.188237 + 0.982124i \(0.439723\pi\)
\(128\) 5.65685 + 9.79796i 0.500000 + 0.866025i
\(129\) 34.8569 + 20.1246i 3.06897 + 1.77187i
\(130\) 0 0
\(131\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 6.00000 0.518321
\(135\) −14.1421 24.4949i −1.21716 2.10819i
\(136\) 0 0
\(137\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(138\) 5.47723 3.16228i 0.466252 0.269191i
\(139\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(140\) 0 0
\(141\) −30.0000 −2.52646
\(142\) 0 0
\(143\) 0 0
\(144\) 14.0000 24.2487i 1.16667 2.02073i
\(145\) −11.6190 + 6.70820i −0.964901 + 0.557086i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −12.0000 20.7846i −0.983078 1.70274i −0.650183 0.759778i \(-0.725308\pi\)
−0.332896 0.942964i \(-0.608026\pi\)
\(150\) 19.3649 + 11.1803i 1.58114 + 0.912871i
\(151\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 12.6491i 1.00000i
\(161\) 0 0
\(162\) −26.8701 −2.11111
\(163\) 6.36396 + 11.0227i 0.498464 + 0.863365i 0.999998 0.00177283i \(-0.000564310\pi\)
−0.501535 + 0.865138i \(0.667231\pi\)
\(164\) −7.74597 4.47214i −0.604858 0.349215i
\(165\) 0 0
\(166\) −11.6190 + 6.70820i −0.901805 + 0.520658i
\(167\) 9.48683i 0.734113i 0.930199 + 0.367057i \(0.119634\pi\)
−0.930199 + 0.367057i \(0.880366\pi\)
\(168\) 0 0
\(169\) −13.0000 −1.00000
\(170\) 0 0
\(171\) 0 0
\(172\) −12.7279 + 22.0454i −0.970495 + 1.68095i
\(173\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(174\) 26.8328i 2.03419i
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 21.9089 + 12.6491i 1.64214 + 0.948091i
\(179\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(180\) 27.1109 15.6525i 2.02073 1.16667i
\(181\) 26.8328i 1.99447i −0.0743294 0.997234i \(-0.523682\pi\)
0.0743294 0.997234i \(-0.476318\pi\)
\(182\) 0 0
\(183\) −42.4264 −3.13625
\(184\) 2.00000 + 3.46410i 0.147442 + 0.255377i
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 18.9737i 1.38380i
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(192\) 21.9089 + 12.6491i 1.58114 + 0.912871i
\(193\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(198\) 0 0
\(199\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(200\) −7.07107 + 12.2474i −0.500000 + 0.866025i
\(201\) 11.6190 6.70820i 0.819538 0.473160i
\(202\) 12.6491i 0.889988i
\(203\) 0 0
\(204\) 0 0
\(205\) −5.00000 8.66025i −0.349215 0.604858i
\(206\) 19.3649 + 11.1803i 1.34922 + 0.778971i
\(207\) 4.94975 8.57321i 0.344031 0.595880i
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) −13.0000 + 22.5167i −0.888662 + 1.53921i
\(215\) −24.6475 + 14.2302i −1.68095 + 0.970495i
\(216\) 35.7771i 2.43432i
\(217\) 0 0
\(218\) 22.6274 1.53252
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 3.16228i 0.211762i 0.994379 + 0.105881i \(0.0337662\pi\)
−0.994379 + 0.105881i \(0.966234\pi\)
\(224\) 0 0
\(225\) 35.0000 2.33333
\(226\) 0 0
\(227\) −24.6475 14.2302i −1.63591 0.944495i −0.982220 0.187735i \(-0.939885\pi\)
−0.653693 0.756760i \(-0.726781\pi\)
\(228\) 0 0
\(229\) 23.2379 13.4164i 1.53560 0.886581i 0.536515 0.843891i \(-0.319740\pi\)
0.999088 0.0426906i \(-0.0135930\pi\)
\(230\) 4.47214i 0.294884i
\(231\) 0 0
\(232\) −16.9706 −1.11417
\(233\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(234\) 0 0
\(235\) 10.6066 18.3712i 0.691898 1.19840i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(240\) 14.1421 + 24.4949i 0.912871 + 1.58114i
\(241\) −11.6190 6.70820i −0.748442 0.432113i 0.0766885 0.997055i \(-0.475565\pi\)
−0.825131 + 0.564942i \(0.808899\pi\)
\(242\) 7.77817 13.4722i 0.500000 0.866025i
\(243\) −19.1703 + 11.0680i −1.22977 + 0.710011i
\(244\) 26.8328i 1.71780i
\(245\) 0 0
\(246\) −20.0000 −1.27515
\(247\) 0 0
\(248\) 0 0
\(249\) −15.0000 + 25.9808i −0.950586 + 1.64646i
\(250\) −13.6931 + 7.90569i −0.866025 + 0.500000i
\(251\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 3.00000 + 5.19615i 0.188237 + 0.326036i
\(255\) 0 0
\(256\) −8.00000 + 13.8564i −0.500000 + 0.866025i
\(257\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(258\) 56.9210i 3.54375i
\(259\) 0 0
\(260\) 0 0
\(261\) 21.0000 + 36.3731i 1.29987 + 2.25144i
\(262\) 0 0
\(263\) −7.77817 + 13.4722i −0.479623 + 0.830731i −0.999727 0.0233719i \(-0.992560\pi\)
0.520104 + 0.854103i \(0.325893\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 56.5685 3.46194
\(268\) 4.24264 + 7.34847i 0.259161 + 0.448879i
\(269\) 19.3649 + 11.1803i 1.18070 + 0.681677i 0.956176 0.292791i \(-0.0945841\pi\)
0.224523 + 0.974469i \(0.427917\pi\)
\(270\) 20.0000 34.6410i 1.21716 2.10819i
\(271\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 7.74597 + 4.47214i 0.466252 + 0.269191i
\(277\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −12.0000 −0.715860 −0.357930 0.933748i \(-0.616517\pi\)
−0.357930 + 0.933748i \(0.616517\pi\)
\(282\) −21.2132 36.7423i −1.26323 2.18797i
\(283\) 13.6931 + 7.90569i 0.813968 + 0.469945i 0.848332 0.529465i \(-0.177607\pi\)
−0.0343638 + 0.999409i \(0.510941\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 39.5980 2.33333
\(289\) 8.50000 + 14.7224i 0.500000 + 0.866025i
\(290\) −16.4317 9.48683i −0.964901 0.557086i
\(291\) 0 0
\(292\) 0 0
\(293\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 16.9706 29.3939i 0.983078 1.70274i
\(299\) 0 0
\(300\) 31.6228i 1.82574i
\(301\) 0 0
\(302\) 0 0
\(303\) −14.1421 24.4949i −0.812444 1.40720i
\(304\) 0 0
\(305\) 15.0000 25.9808i 0.858898 1.48765i
\(306\) 0 0
\(307\) 34.7851i 1.98529i −0.121070 0.992644i \(-0.538633\pi\)
0.121070 0.992644i \(-0.461367\pi\)
\(308\) 0 0
\(309\) 50.0000 2.84440
\(310\) 0 0
\(311\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(312\) 0 0
\(313\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) −15.4919 + 8.94427i −0.866025 + 0.500000i
\(321\) 58.1378i 3.24493i
\(322\) 0 0
\(323\) 0 0
\(324\) −19.0000 32.9090i −1.05556 1.82828i
\(325\) 0 0
\(326\) −9.00000 + 15.5885i −0.498464 + 0.863365i
\(327\) 43.8178 25.2982i 2.42313 1.39899i
\(328\) 12.6491i 0.698430i
\(329\) 0 0
\(330\) 0 0
\(331\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(332\) −16.4317 9.48683i −0.901805 0.520658i
\(333\) 0 0
\(334\) −11.6190 + 6.70820i −0.635761 + 0.367057i
\(335\) 9.48683i 0.518321i
\(336\) 0 0
\(337\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(338\) −9.19239 15.9217i −0.500000 0.866025i
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 0 0
\(344\) −36.0000 −1.94099
\(345\) 5.00000 + 8.66025i 0.269191 + 0.466252i
\(346\) 0 0
\(347\) 12.0208 20.8207i 0.645311 1.11771i −0.338918 0.940816i \(-0.610061\pi\)
0.984230 0.176896i \(-0.0566056\pi\)
\(348\) −32.8634 + 18.9737i −1.76166 + 1.01710i
\(349\) 26.8328i 1.43633i −0.695874 0.718164i \(-0.744983\pi\)
0.695874 0.718164i \(-0.255017\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 35.7771i 1.89618i
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(360\) 38.3406 + 22.1359i 2.02073 + 1.16667i
\(361\) 9.50000 16.4545i 0.500000 0.866025i
\(362\) 32.8634 18.9737i 1.72726 0.997234i
\(363\) 34.7851i 1.82574i
\(364\) 0 0
\(365\) 0 0
\(366\) −30.0000 51.9615i −1.56813 2.71607i
\(367\) 2.73861 + 1.58114i 0.142954 + 0.0825348i 0.569771 0.821803i \(-0.307032\pi\)
−0.426817 + 0.904338i \(0.640365\pi\)
\(368\) −2.82843 + 4.89898i −0.147442 + 0.255377i
\(369\) −27.1109 + 15.6525i −1.41134 + 0.814835i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(374\) 0 0
\(375\) −17.6777 + 30.6186i −0.912871 + 1.58114i
\(376\) 23.2379 13.4164i 1.19840 0.691898i
\(377\) 0 0
\(378\) 0 0
\(379\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(380\) 0 0
\(381\) 11.6190 + 6.70820i 0.595257 + 0.343672i
\(382\) 0 0
\(383\) −24.6475 + 14.2302i −1.25943 + 0.727132i −0.972964 0.230959i \(-0.925814\pi\)
−0.286466 + 0.958091i \(0.592480\pi\)
\(384\) 35.7771i 1.82574i
\(385\) 0 0
\(386\) 0 0
\(387\) 44.5477 + 77.1589i 2.26449 + 3.92221i
\(388\) 0 0
\(389\) 12.0000 20.7846i 0.608424 1.05382i −0.383076 0.923717i \(-0.625135\pi\)
0.991500 0.130105i \(-0.0415314\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) −20.0000 −1.00000
\(401\) 9.00000 + 15.5885i 0.449439 + 0.778450i 0.998350 0.0574304i \(-0.0182907\pi\)
−0.548911 + 0.835881i \(0.684957\pi\)
\(402\) 16.4317 + 9.48683i 0.819538 + 0.473160i
\(403\) 0 0
\(404\) 15.4919 8.94427i 0.770752 0.444994i
\(405\) 42.4853i 2.11111i
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) −34.8569 20.1246i −1.72356 0.995098i −0.911227 0.411905i \(-0.864864\pi\)
−0.812333 0.583193i \(-0.801803\pi\)
\(410\) 7.07107 12.2474i 0.349215 0.604858i
\(411\) 0 0
\(412\) 31.6228i 1.55794i
\(413\) 0 0
\(414\) 14.0000 0.688062
\(415\) −10.6066 18.3712i −0.520658 0.901805i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(420\) 0 0
\(421\) −8.00000 −0.389896 −0.194948 0.980814i \(-0.562454\pi\)
−0.194948 + 0.980814i \(0.562454\pi\)
\(422\) 0 0
\(423\) −57.5109 33.2039i −2.79627 1.61443i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) −36.7696 −1.77732
\(429\) 0 0
\(430\) −34.8569 20.1246i −1.68095 0.970495i
\(431\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(432\) 43.8178 25.2982i 2.10819 1.21716i
\(433\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(434\) 0 0
\(435\) −42.4264 −2.03419
\(436\) 16.0000 + 27.7128i 0.766261 + 1.32720i
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −20.5061 35.5176i −0.974274 1.68749i −0.682310 0.731063i \(-0.739025\pi\)
−0.291964 0.956429i \(-0.594309\pi\)
\(444\) 0 0
\(445\) −20.0000 + 34.6410i −0.948091 + 1.64214i
\(446\) −3.87298 + 2.23607i −0.183391 + 0.105881i
\(447\) 75.8947i 3.58969i
\(448\) 0 0
\(449\) −36.0000 −1.69895 −0.849473 0.527633i \(-0.823080\pi\)
−0.849473 + 0.527633i \(0.823080\pi\)
\(450\) 24.7487 + 42.8661i 1.16667 + 2.02073i
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) 40.2492i 1.88899i
\(455\) 0 0
\(456\) 0 0
\(457\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(458\) 32.8634 + 18.9737i 1.53560 + 0.886581i
\(459\) 0 0
\(460\) −5.47723 + 3.16228i −0.255377 + 0.147442i
\(461\) 8.94427i 0.416576i −0.978068 0.208288i \(-0.933211\pi\)
0.978068 0.208288i \(-0.0667892\pi\)
\(462\) 0 0
\(463\) 12.7279 0.591517 0.295758 0.955263i \(-0.404428\pi\)
0.295758 + 0.955263i \(0.404428\pi\)
\(464\) −12.0000 20.7846i −0.557086 0.964901i
\(465\) 0 0
\(466\) 0 0
\(467\) −24.6475 + 14.2302i −1.14055 + 0.658497i −0.946567 0.322507i \(-0.895474\pi\)
−0.193984 + 0.981005i \(0.562141\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 30.0000 1.38380
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(480\) −20.0000 + 34.6410i −0.912871 + 1.58114i
\(481\) 0 0
\(482\) 18.9737i 0.864227i
\(483\) 0 0
\(484\) 22.0000 1.00000
\(485\) 0 0
\(486\) −27.1109 15.6525i −1.22977 0.710011i
\(487\) −19.0919 + 33.0681i −0.865136 + 1.49846i 0.00177647 + 0.999998i \(0.499435\pi\)
−0.866912 + 0.498461i \(0.833899\pi\)
\(488\) 32.8634 18.9737i 1.48765 0.858898i
\(489\) 40.2492i 1.82013i
\(490\) 0 0
\(491\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(492\) −14.1421 24.4949i −0.637577 1.10432i
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) −42.4264 −1.90117
\(499\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(500\) −19.3649 11.1803i −0.866025 0.500000i
\(501\) −15.0000 + 25.9808i −0.670151 + 1.16073i
\(502\) 0 0
\(503\) 9.48683i 0.422997i 0.977378 + 0.211498i \(0.0678343\pi\)
−0.977378 + 0.211498i \(0.932166\pi\)
\(504\) 0 0
\(505\) 20.0000 0.889988
\(506\) 0 0
\(507\) −35.6020 20.5548i −1.58114 0.912871i
\(508\) −4.24264 + 7.34847i −0.188237 + 0.326036i
\(509\) −38.7298 + 22.3607i −1.71667 + 0.991120i −0.791849 + 0.610718i \(0.790881\pi\)
−0.924821 + 0.380402i \(0.875786\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −22.6274 −1.00000
\(513\) 0 0
\(514\) 0 0
\(515\) −17.6777 + 30.6186i −0.778971 + 1.34922i
\(516\) −69.7137 + 40.2492i −3.06897 + 1.77187i
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 15.4919 + 8.94427i 0.678714 + 0.391856i 0.799370 0.600839i \(-0.205167\pi\)
−0.120656 + 0.992694i \(0.538500\pi\)
\(522\) −29.6985 + 51.4393i −1.29987 + 2.25144i
\(523\) 30.1247 17.3925i 1.31726 0.760522i 0.333975 0.942582i \(-0.391610\pi\)
0.983287 + 0.182060i \(0.0582764\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) −22.0000 −0.959246
\(527\) 0 0
\(528\) 0 0
\(529\) 10.5000 18.1865i 0.456522 0.790719i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 40.0000 + 69.2820i 1.73097 + 2.99813i
\(535\) −35.6020 20.5548i −1.53921 0.888662i
\(536\) −6.00000 + 10.3923i −0.259161 + 0.448879i
\(537\) 0 0
\(538\) 31.6228i 1.36335i
\(539\) 0 0
\(540\) 56.5685 2.43432
\(541\) −19.0000 32.9090i −0.816874 1.41487i −0.907975 0.419025i \(-0.862372\pi\)
0.0911008 0.995842i \(-0.470961\pi\)
\(542\) 0 0
\(543\) 42.4264 73.4847i 1.82069 3.15353i
\(544\) 0 0
\(545\) 35.7771i 1.53252i
\(546\) 0 0
\(547\) −46.6690 −1.99542 −0.997712 0.0676046i \(-0.978464\pi\)
−0.997712 + 0.0676046i \(0.978464\pi\)
\(548\) 0 0
\(549\) −81.3327 46.9574i −3.47119 2.00409i
\(550\) 0 0
\(551\) 0 0
\(552\) 12.6491i 0.538382i
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) −8.48528 14.6969i −0.357930 0.619953i
\(563\) 41.0792 + 23.7171i 1.73128 + 0.999556i 0.880541 + 0.473970i \(0.157179\pi\)
0.850740 + 0.525586i \(0.176154\pi\)
\(564\) 30.0000 51.9615i 1.26323 2.18797i
\(565\) 0 0
\(566\) 22.3607i 0.939889i
\(567\) 0 0
\(568\) 0 0
\(569\) −18.0000 31.1769i −0.754599 1.30700i −0.945573 0.325409i \(-0.894498\pi\)
0.190974 0.981595i \(-0.438835\pi\)
\(570\) 0 0
\(571\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −7.07107 −0.294884
\(576\) 28.0000 + 48.4974i 1.16667 + 2.02073i
\(577\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(578\) −12.0208 + 20.8207i −0.500000 + 0.866025i
\(579\) 0 0
\(580\) 26.8328i 1.11417i
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 47.4342i 1.95782i 0.204298 + 0.978909i \(0.434509\pi\)
−0.204298 + 0.978909i \(0.565491\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 48.0000 1.96616
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(600\) −38.7298 + 22.3607i −1.58114 + 0.912871i
\(601\) 40.2492i 1.64180i −0.571072 0.820900i \(-0.693472\pi\)
0.571072 0.820900i \(-0.306528\pi\)
\(602\) 0 0
\(603\) 29.6985 1.20942
\(604\) 0 0
\(605\) 21.3014 + 12.2984i 0.866025 + 0.500000i
\(606\) 20.0000 34.6410i 0.812444 1.40720i
\(607\) 13.6931 7.90569i 0.555784 0.320882i −0.195667 0.980670i \(-0.562687\pi\)
0.751452 + 0.659788i \(0.229354\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 42.4264 1.71780
\(611\) 0 0
\(612\) 0 0
\(613\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(614\) 42.6028 24.5967i 1.71931 0.992644i
\(615\) 31.6228i 1.27515i
\(616\) 0 0
\(617\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(618\) 35.3553 + 61.2372i 1.42220 + 2.46332i
\(619\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(620\) 0 0
\(621\) 15.4919 8.94427i 0.621670 0.358921i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −12.5000 21.6506i −0.500000 0.866025i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −8.21584 + 4.74342i −0.326036 + 0.188237i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) −21.9089 12.6491i −0.866025 0.500000i
\(641\) −6.00000 + 10.3923i −0.236986 + 0.410471i −0.959848 0.280521i \(-0.909493\pi\)
0.722862 + 0.690992i \(0.242826\pi\)
\(642\) −71.2039 + 41.1096i −2.81020 + 1.62247i
\(643\) 41.1096i 1.62120i −0.585597 0.810602i \(-0.699140\pi\)
0.585597 0.810602i \(-0.300860\pi\)
\(644\) 0 0
\(645\) −90.0000 −3.54375
\(646\) 0 0
\(647\) 41.0792 + 23.7171i 1.61499 + 0.932415i 0.988190 + 0.153234i \(0.0489689\pi\)
0.626800 + 0.779180i \(0.284364\pi\)
\(648\) 26.8701 46.5403i 1.05556 1.82828i
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) −25.4558 −0.996928
\(653\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(654\) 61.9677 + 35.7771i 2.42313 + 1.39899i
\(655\) 0 0
\(656\) 15.4919 8.94427i 0.604858 0.349215i
\(657\) 0 0
\(658\) 0 0
\(659\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(660\) 0 0
\(661\) −34.8569 20.1246i −1.35577 0.782757i −0.366723 0.930330i \(-0.619520\pi\)
−0.989051 + 0.147573i \(0.952854\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 26.8328i 1.04132i
\(665\) 0 0
\(666\) 0 0
\(667\) −4.24264 7.34847i −0.164276 0.284534i
\(668\) −16.4317 9.48683i −0.635761 0.367057i
\(669\) −5.00000 + 8.66025i −0.193311 + 0.334825i
\(670\) −11.6190 + 6.70820i −0.448879 + 0.259161i
\(671\) 0 0
\(672\) 0 0
\(673\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(674\) 0 0
\(675\) 54.7723 + 31.6228i 2.10819 + 1.21716i
\(676\) 13.0000 22.5167i 0.500000 0.866025i
\(677\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) −45.0000 77.9423i −1.72440 2.98675i
\(682\) 0 0
\(683\) 21.9203 37.9671i 0.838757 1.45277i −0.0521768 0.998638i \(-0.516616\pi\)
0.890934 0.454132i \(-0.150051\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 84.8528 3.23734
\(688\) −25.4558 44.0908i −0.970495 1.68095i
\(689\) 0 0
\(690\) −7.07107 + 12.2474i −0.269191 + 0.466252i
\(691\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 34.0000 1.29062
\(695\) 0 0
\(696\) −46.4758 26.8328i −1.76166 1.01710i
\(697\) 0 0
\(698\) 32.8634 18.9737i 1.24390 0.718164i
\(699\) 0 0
\(700\) 0 0
\(701\) 48.0000 1.81293 0.906467 0.422276i \(-0.138769\pi\)
0.906467 + 0.422276i \(0.138769\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 58.0948 33.5410i 2.18797 1.26323i
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 23.0000 + 39.8372i 0.863783 + 1.49612i 0.868250 + 0.496126i \(0.165245\pi\)
−0.00446726 + 0.999990i \(0.501422\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) −43.8178 + 25.2982i −1.64214 + 0.948091i
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(720\) 62.6099i 2.33333i
\(721\) 0 0
\(722\) 26.8701 1.00000
\(723\) −21.2132 36.7423i −0.788928 1.36646i
\(724\) 46.4758 + 26.8328i 1.72726 + 0.997234i
\(725\) 15.0000 25.9808i 0.557086 0.964901i
\(726\) 42.6028 24.5967i 1.58114 0.912871i
\(727\) 53.7587i 1.99380i 0.0786754 + 0.996900i \(0.474931\pi\)
−0.0786754 + 0.996900i \(0.525069\pi\)
\(728\) 0 0
\(729\) −13.0000 −0.481481
\(730\) 0 0
\(731\) 0 0
\(732\) 42.4264 73.4847i 1.56813 2.71607i
\(733\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(734\) 4.47214i 0.165070i
\(735\) 0 0
\(736\) −8.00000 −0.294884
\(737\) 0 0
\(738\) −38.3406 22.1359i −1.41134 0.814835i
\(739\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −26.8701 −0.985767 −0.492883 0.870095i \(-0.664057\pi\)
−0.492883 + 0.870095i \(0.664057\pi\)
\(744\) 0 0
\(745\) 46.4758 + 26.8328i 1.70274 + 0.983078i
\(746\) 0 0
\(747\) −57.5109 + 33.2039i −2.10421 + 1.21487i
\(748\) 0 0
\(749\) 0 0
\(750\) −50.0000 −1.82574
\(751\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(752\) 32.8634 + 18.9737i 1.19840 + 0.691898i
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −30.9839 + 17.8885i −1.12316 + 0.648459i −0.942207 0.335032i \(-0.891253\pi\)
−0.180957 + 0.983491i \(0.557920\pi\)
\(762\) 18.9737i 0.687343i
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) −34.8569 20.1246i −1.25943 0.727132i
\(767\) 0 0
\(768\) −43.8178 + 25.2982i −1.58114 + 0.912871i
\(769\) 53.6656i 1.93523i 0.252426 + 0.967616i \(0.418771\pi\)
−0.252426 + 0.967616i \(0.581229\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(774\) −63.0000 + 109.119i −2.26449 + 3.92221i
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 33.9411 1.21685
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 75.8947i 2.71225i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −35.6020 20.5548i −1.26907 0.732700i −0.294260 0.955725i \(-0.595073\pi\)
−0.974813 + 0.223026i \(0.928407\pi\)
\(788\) 0 0
\(789\) −42.6028 + 24.5967i −1.51670 + 0.875667i
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) −14.1421 24.4949i −0.500000 0.866025i
\(801\) 108.444 + 62.6099i 3.83166 + 2.21221i
\(802\) −12.7279 + 22.0454i −0.449439 + 0.778450i
\(803\) 0 0
\(804\) 26.8328i 0.946320i
\(805\) 0 0
\(806\) 0 0
\(807\) 35.3553 + 61.2372i 1.24457 + 2.15565i
\(808\) 21.9089 + 12.6491i 0.770752 + 0.444994i
\(809\) −27.0000 + 46.7654i −0.949269 + 1.64418i −0.202301 + 0.979323i \(0.564842\pi\)
−0.746968 + 0.664860i \(0.768491\pi\)
\(810\) 52.0336 30.0416i 1.82828 1.05556i
\(811\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −24.6475 14.2302i −0.863365 0.498464i
\(816\) 0 0
\(817\) 0 0
\(818\) 56.9210i 1.99020i
\(819\) 0 0
\(820\) 20.0000 0.698430
\(821\) 24.0000 + 41.5692i 0.837606 + 1.45078i 0.891891 + 0.452250i \(0.149379\pi\)
−0.0542853 + 0.998525i \(0.517288\pi\)
\(822\) 0 0
\(823\) −27.5772 + 47.7650i −0.961280 + 1.66498i −0.241985 + 0.970280i \(0.577798\pi\)
−0.719295 + 0.694705i \(0.755535\pi\)
\(824\) −38.7298 + 22.3607i −1.34922 + 0.778971i
\(825\) 0 0
\(826\) 0 0
\(827\) 32.5269 1.13107 0.565536 0.824724i \(-0.308669\pi\)
0.565536 + 0.824724i \(0.308669\pi\)
\(828\) 9.89949 + 17.1464i 0.344031 + 0.595880i
\(829\) −11.6190 6.70820i −0.403543 0.232986i 0.284469 0.958685i \(-0.408183\pi\)
−0.688012 + 0.725700i \(0.741516\pi\)
\(830\) 15.0000 25.9808i 0.520658 0.901805i
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) −10.6066 18.3712i −0.367057 0.635761i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(840\) 0 0
\(841\) 7.00000 0.241379
\(842\) −5.65685 9.79796i −0.194948 0.337660i
\(843\) −32.8634 18.9737i −1.13187 0.653488i
\(844\) 0 0
\(845\) 25.1744 14.5344i 0.866025 0.500000i
\(846\) 93.9149i 3.22886i
\(847\) 0 0
\(848\) 0 0
\(849\) 25.0000 + 43.3013i 0.857998 + 1.48610i
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) −26.0000 45.0333i −0.888662 1.53921i
\(857\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(858\) 0 0
\(859\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(860\) 56.9210i 1.94099i
\(861\) 0 0
\(862\) 0 0
\(863\) 28.9914 + 50.2145i 0.986878 + 1.70932i 0.633274 + 0.773928i \(0.281711\pi\)
0.353604 + 0.935395i \(0.384956\pi\)
\(864\) 61.9677 + 35.7771i 2.10819 + 1.21716i
\(865\) 0 0
\(866\) 0 0
\(867\) 53.7587i 1.82574i
\(868\) 0 0
\(869\) 0 0
\(870\) −30.0000 51.9615i −1.01710 1.76166i
\(871\) 0 0
\(872\) −22.6274 + 39.1918i −0.766261 + 1.32720i
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 58.1378i 1.95871i −0.202145 0.979356i \(-0.564791\pi\)
0.202145 0.979356i \(-0.435209\pi\)
\(882\) 0 0
\(883\) −55.1543 −1.85609 −0.928045 0.372467i \(-0.878512\pi\)
−0.928045 + 0.372467i \(0.878512\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 29.0000 50.2295i 0.974274 1.68749i
\(887\) −24.6475 + 14.2302i −0.827583 + 0.477805i −0.853024 0.521871i \(-0.825234\pi\)
0.0254417 + 0.999676i \(0.491901\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) −56.5685 −1.89618
\(891\) 0 0
\(892\) −5.47723 3.16228i −0.183391 0.105881i
\(893\) 0 0
\(894\) 92.9516 53.6656i 3.10877 1.79485i
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) −25.4558 44.0908i −0.849473 1.47133i
\(899\) 0 0
\(900\) −35.0000 + 60.6218i −1.16667 + 2.02073i
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 30.0000 + 51.9615i 0.997234 + 1.72726i
\(906\) 0 0
\(907\) 2.12132 3.67423i 0.0704373 0.122001i −0.828656 0.559759i \(-0.810894\pi\)
0.899093 + 0.437758i \(0.144227\pi\)
\(908\) 49.2950 28.4605i 1.63591 0.944495i
\(909\) 62.6099i 2.07664i
\(910\) 0 0
\(911\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 82.1584 47.4342i 2.71607 1.56813i
\(916\) 53.6656i 1.77316i
\(917\) 0 0
\(918\) 0 0
\(919\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(920\) −7.74597 4.47214i −0.255377 0.147442i
\(921\) 55.0000 95.2628i 1.81231 3.13902i
\(922\) 10.9545 6.32456i 0.360766 0.208288i
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) 9.00000 + 15.5885i 0.295758 + 0.512268i
\(927\) 95.8514 + 55.3399i 3.14817 + 1.81760i
\(928\) 16.9706 29.3939i 0.557086 0.964901i
\(929\) 42.6028 24.5967i 1.39775 0.806993i 0.403596 0.914937i \(-0.367760\pi\)
0.994157 + 0.107944i \(0.0344268\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 0 0
\(934\) −34.8569 20.1246i −1.14055 0.658497i
\(935\) 0 0
\(936\) 0 0
\(937\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 21.2132 + 36.7423i 0.691898 + 1.19840i
\(941\) −38.7298 22.3607i −1.26256 0.728937i −0.288988 0.957333i \(-0.593319\pi\)
−0.973568 + 0.228395i \(0.926652\pi\)
\(942\) 0 0
\(943\) 5.47723 3.16228i 0.178363 0.102978i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −30.4056 52.6640i −0.988049 1.71135i −0.627514 0.778605i \(-0.715927\pi\)
−0.360535 0.932746i \(-0.617406\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) −56.5685 −1.82574
\(961\) 15.5000 + 26.8468i 0.500000 + 0.866025i
\(962\) 0 0
\(963\) −64.3467 + 111.452i −2.07354 + 3.59148i
\(964\) 23.2379 13.4164i 0.748442 0.432113i
\(965\) 0 0
\(966\) 0 0
\(967\) −46.6690 −1.50078 −0.750388 0.660998i \(-0.770133\pi\)
−0.750388 + 0.660998i \(0.770133\pi\)
\(968\) 15.5563 + 26.9444i 0.500000 + 0.866025i
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(972\) 44.2719i 1.42002i
\(973\) 0 0
\(974\) −54.0000 −1.73027
\(975\) 0 0
\(976\) 46.4758 + 26.8328i 1.48765 + 0.858898i
\(977\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(978\) −49.2950 + 28.4605i −1.57628 + 0.910066i
\(979\) 0 0
\(980\) 0 0
\(981\) 112.000 3.57588
\(982\) 0 0
\(983\) 41.0792 + 23.7171i 1.31022 + 0.756457i 0.982133 0.188189i \(-0.0602618\pi\)
0.328090 + 0.944646i \(0.393595\pi\)
\(984\) 20.0000 34.6410i 0.637577 1.10432i
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −9.00000 15.5885i −0.286183 0.495684i
\(990\) 0 0
\(991\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) −30.0000 51.9615i −0.950586 1.64646i
\(997\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 980.2.s.b.619.4 8
4.3 odd 2 inner 980.2.s.b.619.1 8
5.4 even 2 inner 980.2.s.b.619.1 8
7.2 even 3 inner 980.2.s.b.19.3 8
7.3 odd 6 140.2.c.a.139.2 yes 4
7.4 even 3 140.2.c.a.139.1 4
7.5 odd 6 inner 980.2.s.b.19.4 8
7.6 odd 2 inner 980.2.s.b.619.3 8
20.19 odd 2 CM 980.2.s.b.619.4 8
28.3 even 6 140.2.c.a.139.3 yes 4
28.11 odd 6 140.2.c.a.139.4 yes 4
28.19 even 6 inner 980.2.s.b.19.1 8
28.23 odd 6 inner 980.2.s.b.19.2 8
28.27 even 2 inner 980.2.s.b.619.2 8
35.3 even 12 700.2.g.d.251.3 4
35.4 even 6 140.2.c.a.139.4 yes 4
35.9 even 6 inner 980.2.s.b.19.2 8
35.17 even 12 700.2.g.d.251.2 4
35.18 odd 12 700.2.g.d.251.4 4
35.19 odd 6 inner 980.2.s.b.19.1 8
35.24 odd 6 140.2.c.a.139.3 yes 4
35.32 odd 12 700.2.g.d.251.1 4
35.34 odd 2 inner 980.2.s.b.619.2 8
56.3 even 6 2240.2.e.a.2239.3 4
56.11 odd 6 2240.2.e.a.2239.2 4
56.45 odd 6 2240.2.e.a.2239.1 4
56.53 even 6 2240.2.e.a.2239.4 4
140.3 odd 12 700.2.g.d.251.2 4
140.19 even 6 inner 980.2.s.b.19.4 8
140.39 odd 6 140.2.c.a.139.1 4
140.59 even 6 140.2.c.a.139.2 yes 4
140.67 even 12 700.2.g.d.251.4 4
140.79 odd 6 inner 980.2.s.b.19.3 8
140.87 odd 12 700.2.g.d.251.3 4
140.123 even 12 700.2.g.d.251.1 4
140.139 even 2 inner 980.2.s.b.619.3 8
280.59 even 6 2240.2.e.a.2239.1 4
280.109 even 6 2240.2.e.a.2239.2 4
280.179 odd 6 2240.2.e.a.2239.4 4
280.269 odd 6 2240.2.e.a.2239.3 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
140.2.c.a.139.1 4 7.4 even 3
140.2.c.a.139.1 4 140.39 odd 6
140.2.c.a.139.2 yes 4 7.3 odd 6
140.2.c.a.139.2 yes 4 140.59 even 6
140.2.c.a.139.3 yes 4 28.3 even 6
140.2.c.a.139.3 yes 4 35.24 odd 6
140.2.c.a.139.4 yes 4 28.11 odd 6
140.2.c.a.139.4 yes 4 35.4 even 6
700.2.g.d.251.1 4 35.32 odd 12
700.2.g.d.251.1 4 140.123 even 12
700.2.g.d.251.2 4 35.17 even 12
700.2.g.d.251.2 4 140.3 odd 12
700.2.g.d.251.3 4 35.3 even 12
700.2.g.d.251.3 4 140.87 odd 12
700.2.g.d.251.4 4 35.18 odd 12
700.2.g.d.251.4 4 140.67 even 12
980.2.s.b.19.1 8 28.19 even 6 inner
980.2.s.b.19.1 8 35.19 odd 6 inner
980.2.s.b.19.2 8 28.23 odd 6 inner
980.2.s.b.19.2 8 35.9 even 6 inner
980.2.s.b.19.3 8 7.2 even 3 inner
980.2.s.b.19.3 8 140.79 odd 6 inner
980.2.s.b.19.4 8 7.5 odd 6 inner
980.2.s.b.19.4 8 140.19 even 6 inner
980.2.s.b.619.1 8 4.3 odd 2 inner
980.2.s.b.619.1 8 5.4 even 2 inner
980.2.s.b.619.2 8 28.27 even 2 inner
980.2.s.b.619.2 8 35.34 odd 2 inner
980.2.s.b.619.3 8 7.6 odd 2 inner
980.2.s.b.619.3 8 140.139 even 2 inner
980.2.s.b.619.4 8 1.1 even 1 trivial
980.2.s.b.619.4 8 20.19 odd 2 CM
2240.2.e.a.2239.1 4 56.45 odd 6
2240.2.e.a.2239.1 4 280.59 even 6
2240.2.e.a.2239.2 4 56.11 odd 6
2240.2.e.a.2239.2 4 280.109 even 6
2240.2.e.a.2239.3 4 56.3 even 6
2240.2.e.a.2239.3 4 280.269 odd 6
2240.2.e.a.2239.4 4 56.53 even 6
2240.2.e.a.2239.4 4 280.179 odd 6