Properties

Label 700.2.g.d.251.3
Level $700$
Weight $2$
Character 700.251
Analytic conductor $5.590$
Analytic rank $0$
Dimension $4$
CM discriminant -20
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [700,2,Mod(251,700)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(700, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("700.251");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 700 = 2^{2} \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 700.g (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.58952814149\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{-2}, \sqrt{-5})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 4x^{2} + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 140)
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

Embedding invariants

Embedding label 251.3
Root \(-1.58114 + 0.707107i\) of defining polynomial
Character \(\chi\) \(=\) 700.251
Dual form 700.2.g.d.251.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.41421i q^{2} -3.16228 q^{3} -2.00000 q^{4} -4.47214i q^{6} +(-1.58114 - 2.12132i) q^{7} -2.82843i q^{8} +7.00000 q^{9} +6.32456 q^{12} +(3.00000 - 2.23607i) q^{14} +4.00000 q^{16} +9.89949i q^{18} +(5.00000 + 6.70820i) q^{21} +1.41421i q^{23} +8.94427i q^{24} -12.6491 q^{27} +(3.16228 + 4.24264i) q^{28} -6.00000 q^{29} +5.65685i q^{32} -14.0000 q^{36} -4.47214i q^{41} +(-9.48683 + 7.07107i) q^{42} +12.7279i q^{43} -2.00000 q^{46} +9.48683 q^{47} -12.6491 q^{48} +(-2.00000 + 6.70820i) q^{49} -17.8885i q^{54} +(-6.00000 + 4.47214i) q^{56} -8.48528i q^{58} +13.4164i q^{61} +(-11.0680 - 14.8492i) q^{63} -8.00000 q^{64} +4.24264i q^{67} -4.47214i q^{69} -19.7990i q^{72} +19.0000 q^{81} +6.32456 q^{82} +9.48683 q^{83} +(-10.0000 - 13.4164i) q^{84} -18.0000 q^{86} +18.9737 q^{87} +17.8885i q^{89} -2.82843i q^{92} +13.4164i q^{94} -17.8885i q^{96} +(-9.48683 - 2.82843i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 8 q^{4} + 28 q^{9} + 12 q^{14} + 16 q^{16} + 20 q^{21} - 24 q^{29} - 56 q^{36} - 8 q^{46} - 8 q^{49} - 24 q^{56} - 32 q^{64} + 76 q^{81} - 40 q^{84} - 72 q^{86}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/700\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(351\) \(477\)
\(\chi(n)\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.41421i 1.00000i
\(3\) −3.16228 −1.82574 −0.912871 0.408248i \(-0.866140\pi\)
−0.912871 + 0.408248i \(0.866140\pi\)
\(4\) −2.00000 −1.00000
\(5\) 0 0
\(6\) 4.47214i 1.82574i
\(7\) −1.58114 2.12132i −0.597614 0.801784i
\(8\) 2.82843i 1.00000i
\(9\) 7.00000 2.33333
\(10\) 0 0
\(11\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(12\) 6.32456 1.82574
\(13\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(14\) 3.00000 2.23607i 0.801784 0.597614i
\(15\) 0 0
\(16\) 4.00000 1.00000
\(17\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(18\) 9.89949i 2.33333i
\(19\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(20\) 0 0
\(21\) 5.00000 + 6.70820i 1.09109 + 1.46385i
\(22\) 0 0
\(23\) 1.41421i 0.294884i 0.989071 + 0.147442i \(0.0471040\pi\)
−0.989071 + 0.147442i \(0.952896\pi\)
\(24\) 8.94427i 1.82574i
\(25\) 0 0
\(26\) 0 0
\(27\) −12.6491 −2.43432
\(28\) 3.16228 + 4.24264i 0.597614 + 0.801784i
\(29\) −6.00000 −1.11417 −0.557086 0.830455i \(-0.688081\pi\)
−0.557086 + 0.830455i \(0.688081\pi\)
\(30\) 0 0
\(31\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(32\) 5.65685i 1.00000i
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) −14.0000 −2.33333
\(37\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 4.47214i 0.698430i −0.937043 0.349215i \(-0.886448\pi\)
0.937043 0.349215i \(-0.113552\pi\)
\(42\) −9.48683 + 7.07107i −1.46385 + 1.09109i
\(43\) 12.7279i 1.94099i 0.241121 + 0.970495i \(0.422485\pi\)
−0.241121 + 0.970495i \(0.577515\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) −2.00000 −0.294884
\(47\) 9.48683 1.38380 0.691898 0.721995i \(-0.256775\pi\)
0.691898 + 0.721995i \(0.256775\pi\)
\(48\) −12.6491 −1.82574
\(49\) −2.00000 + 6.70820i −0.285714 + 0.958315i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(54\) 17.8885i 2.43432i
\(55\) 0 0
\(56\) −6.00000 + 4.47214i −0.801784 + 0.597614i
\(57\) 0 0
\(58\) 8.48528i 1.11417i
\(59\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(60\) 0 0
\(61\) 13.4164i 1.71780i 0.512148 + 0.858898i \(0.328850\pi\)
−0.512148 + 0.858898i \(0.671150\pi\)
\(62\) 0 0
\(63\) −11.0680 14.8492i −1.39443 1.87083i
\(64\) −8.00000 −1.00000
\(65\) 0 0
\(66\) 0 0
\(67\) 4.24264i 0.518321i 0.965834 + 0.259161i \(0.0834459\pi\)
−0.965834 + 0.259161i \(0.916554\pi\)
\(68\) 0 0
\(69\) 4.47214i 0.538382i
\(70\) 0 0
\(71\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(72\) 19.7990i 2.33333i
\(73\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(80\) 0 0
\(81\) 19.0000 2.11111
\(82\) 6.32456 0.698430
\(83\) 9.48683 1.04132 0.520658 0.853766i \(-0.325687\pi\)
0.520658 + 0.853766i \(0.325687\pi\)
\(84\) −10.0000 13.4164i −1.09109 1.46385i
\(85\) 0 0
\(86\) −18.0000 −1.94099
\(87\) 18.9737 2.03419
\(88\) 0 0
\(89\) 17.8885i 1.89618i 0.317999 + 0.948091i \(0.396989\pi\)
−0.317999 + 0.948091i \(0.603011\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 2.82843i 0.294884i
\(93\) 0 0
\(94\) 13.4164i 1.38380i
\(95\) 0 0
\(96\) 17.8885i 1.82574i
\(97\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(98\) −9.48683 2.82843i −0.958315 0.285714i
\(99\) 0 0
\(100\) 0 0
\(101\) 8.94427i 0.889988i −0.895533 0.444994i \(-0.853206\pi\)
0.895533 0.444994i \(-0.146794\pi\)
\(102\) 0 0
\(103\) 15.8114 1.55794 0.778971 0.627060i \(-0.215742\pi\)
0.778971 + 0.627060i \(0.215742\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 18.3848i 1.77732i 0.458563 + 0.888662i \(0.348364\pi\)
−0.458563 + 0.888662i \(0.651636\pi\)
\(108\) 25.2982 2.43432
\(109\) 16.0000 1.53252 0.766261 0.642529i \(-0.222115\pi\)
0.766261 + 0.642529i \(0.222115\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −6.32456 8.48528i −0.597614 0.801784i
\(113\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 12.0000 1.11417
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 11.0000 1.00000
\(122\) −18.9737 −1.71780
\(123\) 14.1421i 1.27515i
\(124\) 0 0
\(125\) 0 0
\(126\) 21.0000 15.6525i 1.87083 1.39443i
\(127\) 4.24264i 0.376473i −0.982124 0.188237i \(-0.939723\pi\)
0.982124 0.188237i \(-0.0602772\pi\)
\(128\) 11.3137i 1.00000i
\(129\) 40.2492i 3.54375i
\(130\) 0 0
\(131\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) −6.00000 −0.518321
\(135\) 0 0
\(136\) 0 0
\(137\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(138\) 6.32456 0.538382
\(139\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(140\) 0 0
\(141\) −30.0000 −2.52646
\(142\) 0 0
\(143\) 0 0
\(144\) 28.0000 2.33333
\(145\) 0 0
\(146\) 0 0
\(147\) 6.32456 21.2132i 0.521641 1.74964i
\(148\) 0 0
\(149\) −24.0000 −1.96616 −0.983078 0.183186i \(-0.941359\pi\)
−0.983078 + 0.183186i \(0.941359\pi\)
\(150\) 0 0
\(151\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 3.00000 2.23607i 0.236433 0.176227i
\(162\) 26.8701i 2.11111i
\(163\) 12.7279i 0.996928i −0.866910 0.498464i \(-0.833898\pi\)
0.866910 0.498464i \(-0.166102\pi\)
\(164\) 8.94427i 0.698430i
\(165\) 0 0
\(166\) 13.4164i 1.04132i
\(167\) −9.48683 −0.734113 −0.367057 0.930199i \(-0.619634\pi\)
−0.367057 + 0.930199i \(0.619634\pi\)
\(168\) 18.9737 14.1421i 1.46385 1.09109i
\(169\) 13.0000 1.00000
\(170\) 0 0
\(171\) 0 0
\(172\) 25.4558i 1.94099i
\(173\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(174\) 26.8328i 2.03419i
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) −25.2982 −1.89618
\(179\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(180\) 0 0
\(181\) 26.8328i 1.99447i 0.0743294 + 0.997234i \(0.476318\pi\)
−0.0743294 + 0.997234i \(0.523682\pi\)
\(182\) 0 0
\(183\) 42.4264i 3.13625i
\(184\) 4.00000 0.294884
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) −18.9737 −1.38380
\(189\) 20.0000 + 26.8328i 1.45479 + 1.95180i
\(190\) 0 0
\(191\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(192\) 25.2982 1.82574
\(193\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 4.00000 13.4164i 0.285714 0.958315i
\(197\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(198\) 0 0
\(199\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(200\) 0 0
\(201\) 13.4164i 0.946320i
\(202\) 12.6491 0.889988
\(203\) 9.48683 + 12.7279i 0.665845 + 0.893325i
\(204\) 0 0
\(205\) 0 0
\(206\) 22.3607i 1.55794i
\(207\) 9.89949i 0.688062i
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) −26.0000 −1.77732
\(215\) 0 0
\(216\) 35.7771i 2.43432i
\(217\) 0 0
\(218\) 22.6274i 1.53252i
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 3.16228 0.211762 0.105881 0.994379i \(-0.466234\pi\)
0.105881 + 0.994379i \(0.466234\pi\)
\(224\) 12.0000 8.94427i 0.801784 0.597614i
\(225\) 0 0
\(226\) 0 0
\(227\) −28.4605 −1.88899 −0.944495 0.328526i \(-0.893448\pi\)
−0.944495 + 0.328526i \(0.893448\pi\)
\(228\) 0 0
\(229\) 26.8328i 1.77316i 0.462573 + 0.886581i \(0.346926\pi\)
−0.462573 + 0.886581i \(0.653074\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 16.9706i 1.11417i
\(233\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(240\) 0 0
\(241\) 13.4164i 0.864227i −0.901819 0.432113i \(-0.857768\pi\)
0.901819 0.432113i \(-0.142232\pi\)
\(242\) 15.5563i 1.00000i
\(243\) −22.1359 −1.42002
\(244\) 26.8328i 1.71780i
\(245\) 0 0
\(246\) −20.0000 −1.27515
\(247\) 0 0
\(248\) 0 0
\(249\) −30.0000 −1.90117
\(250\) 0 0
\(251\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(252\) 22.1359 + 29.6985i 1.39443 + 1.87083i
\(253\) 0 0
\(254\) 6.00000 0.376473
\(255\) 0 0
\(256\) 16.0000 1.00000
\(257\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(258\) 56.9210 3.54375
\(259\) 0 0
\(260\) 0 0
\(261\) −42.0000 −2.59973
\(262\) 0 0
\(263\) 15.5563i 0.959246i 0.877475 + 0.479623i \(0.159226\pi\)
−0.877475 + 0.479623i \(0.840774\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 56.5685i 3.46194i
\(268\) 8.48528i 0.518321i
\(269\) 22.3607i 1.36335i −0.731653 0.681677i \(-0.761251\pi\)
0.731653 0.681677i \(-0.238749\pi\)
\(270\) 0 0
\(271\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 8.94427i 0.538382i
\(277\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −12.0000 −0.715860 −0.357930 0.933748i \(-0.616517\pi\)
−0.357930 + 0.933748i \(0.616517\pi\)
\(282\) 42.4264i 2.52646i
\(283\) −15.8114 −0.939889 −0.469945 0.882696i \(-0.655726\pi\)
−0.469945 + 0.882696i \(0.655726\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −9.48683 + 7.07107i −0.559990 + 0.417392i
\(288\) 39.5980i 2.33333i
\(289\) 17.0000 1.00000
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(294\) 30.0000 + 8.94427i 1.74964 + 0.521641i
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 33.9411i 1.96616i
\(299\) 0 0
\(300\) 0 0
\(301\) 27.0000 20.1246i 1.55625 1.15996i
\(302\) 0 0
\(303\) 28.2843i 1.62489i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 34.7851 1.98529 0.992644 0.121070i \(-0.0386326\pi\)
0.992644 + 0.121070i \(0.0386326\pi\)
\(308\) 0 0
\(309\) −50.0000 −2.84440
\(310\) 0 0
\(311\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(312\) 0 0
\(313\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 58.1378i 3.24493i
\(322\) 3.16228 + 4.24264i 0.176227 + 0.236433i
\(323\) 0 0
\(324\) −38.0000 −2.11111
\(325\) 0 0
\(326\) 18.0000 0.996928
\(327\) −50.5964 −2.79799
\(328\) −12.6491 −0.698430
\(329\) −15.0000 20.1246i −0.826977 1.10951i
\(330\) 0 0
\(331\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(332\) −18.9737 −1.04132
\(333\) 0 0
\(334\) 13.4164i 0.734113i
\(335\) 0 0
\(336\) 20.0000 + 26.8328i 1.09109 + 1.46385i
\(337\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(338\) 18.3848i 1.00000i
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 17.3925 6.36396i 0.939108 0.343622i
\(344\) 36.0000 1.94099
\(345\) 0 0
\(346\) 0 0
\(347\) 24.0416i 1.29062i 0.763920 + 0.645311i \(0.223272\pi\)
−0.763920 + 0.645311i \(0.776728\pi\)
\(348\) −37.9473 −2.03419
\(349\) 26.8328i 1.43633i −0.695874 0.718164i \(-0.744983\pi\)
0.695874 0.718164i \(-0.255017\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 35.7771i 1.89618i
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(360\) 0 0
\(361\) −19.0000 −1.00000
\(362\) −37.9473 −1.99447
\(363\) −34.7851 −1.82574
\(364\) 0 0
\(365\) 0 0
\(366\) 60.0000 3.13625
\(367\) 3.16228 0.165070 0.0825348 0.996588i \(-0.473698\pi\)
0.0825348 + 0.996588i \(0.473698\pi\)
\(368\) 5.65685i 0.294884i
\(369\) 31.3050i 1.62967i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 26.8328i 1.38380i
\(377\) 0 0
\(378\) −37.9473 + 28.2843i −1.95180 + 1.45479i
\(379\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(380\) 0 0
\(381\) 13.4164i 0.687343i
\(382\) 0 0
\(383\) −28.4605 −1.45426 −0.727132 0.686498i \(-0.759147\pi\)
−0.727132 + 0.686498i \(0.759147\pi\)
\(384\) 35.7771i 1.82574i
\(385\) 0 0
\(386\) 0 0
\(387\) 89.0955i 4.52898i
\(388\) 0 0
\(389\) 24.0000 1.21685 0.608424 0.793612i \(-0.291802\pi\)
0.608424 + 0.793612i \(0.291802\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 18.9737 + 5.65685i 0.958315 + 0.285714i
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −18.0000 −0.898877 −0.449439 0.893311i \(-0.648376\pi\)
−0.449439 + 0.893311i \(0.648376\pi\)
\(402\) 18.9737 0.946320
\(403\) 0 0
\(404\) 17.8885i 0.889988i
\(405\) 0 0
\(406\) −18.0000 + 13.4164i −0.893325 + 0.665845i
\(407\) 0 0
\(408\) 0 0
\(409\) 40.2492i 1.99020i 0.0988936 + 0.995098i \(0.468470\pi\)
−0.0988936 + 0.995098i \(0.531530\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) −31.6228 −1.55794
\(413\) 0 0
\(414\) −14.0000 −0.688062
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(420\) 0 0
\(421\) −8.00000 −0.389896 −0.194948 0.980814i \(-0.562454\pi\)
−0.194948 + 0.980814i \(0.562454\pi\)
\(422\) 0 0
\(423\) 66.4078 3.22886
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 28.4605 21.2132i 1.37730 1.02658i
\(428\) 36.7696i 1.77732i
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(432\) −50.5964 −2.43432
\(433\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −32.0000 −1.53252
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(440\) 0 0
\(441\) −14.0000 + 46.9574i −0.666667 + 2.23607i
\(442\) 0 0
\(443\) 41.0122i 1.94855i 0.225367 + 0.974274i \(0.427642\pi\)
−0.225367 + 0.974274i \(0.572358\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 4.47214i 0.211762i
\(447\) 75.8947 3.58969
\(448\) 12.6491 + 16.9706i 0.597614 + 0.801784i
\(449\) 36.0000 1.69895 0.849473 0.527633i \(-0.176920\pi\)
0.849473 + 0.527633i \(0.176920\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) 40.2492i 1.88899i
\(455\) 0 0
\(456\) 0 0
\(457\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(458\) −37.9473 −1.77316
\(459\) 0 0
\(460\) 0 0
\(461\) 8.94427i 0.416576i 0.978068 + 0.208288i \(0.0667892\pi\)
−0.978068 + 0.208288i \(0.933211\pi\)
\(462\) 0 0
\(463\) 12.7279i 0.591517i 0.955263 + 0.295758i \(0.0955723\pi\)
−0.955263 + 0.295758i \(0.904428\pi\)
\(464\) −24.0000 −1.11417
\(465\) 0 0
\(466\) 0 0
\(467\) 28.4605 1.31699 0.658497 0.752583i \(-0.271192\pi\)
0.658497 + 0.752583i \(0.271192\pi\)
\(468\) 0 0
\(469\) 9.00000 6.70820i 0.415581 0.309756i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 18.9737 0.864227
\(483\) −9.48683 + 7.07107i −0.431666 + 0.321745i
\(484\) −22.0000 −1.00000
\(485\) 0 0
\(486\) 31.3050i 1.42002i
\(487\) 38.1838i 1.73027i −0.501538 0.865136i \(-0.667232\pi\)
0.501538 0.865136i \(-0.332768\pi\)
\(488\) 37.9473 1.71780
\(489\) 40.2492i 1.82013i
\(490\) 0 0
\(491\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(492\) 28.2843i 1.27515i
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 42.4264i 1.90117i
\(499\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(500\) 0 0
\(501\) 30.0000 1.34030
\(502\) 0 0
\(503\) 9.48683 0.422997 0.211498 0.977378i \(-0.432166\pi\)
0.211498 + 0.977378i \(0.432166\pi\)
\(504\) −42.0000 + 31.3050i −1.87083 + 1.39443i
\(505\) 0 0
\(506\) 0 0
\(507\) −41.1096 −1.82574
\(508\) 8.48528i 0.376473i
\(509\) 44.7214i 1.98224i −0.132973 0.991120i \(-0.542452\pi\)
0.132973 0.991120i \(-0.457548\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 22.6274i 1.00000i
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 80.4984i 3.54375i
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 17.8885i 0.783711i 0.920027 + 0.391856i \(0.128167\pi\)
−0.920027 + 0.391856i \(0.871833\pi\)
\(522\) 59.3970i 2.59973i
\(523\) 34.7851 1.52104 0.760522 0.649312i \(-0.224943\pi\)
0.760522 + 0.649312i \(0.224943\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) −22.0000 −0.959246
\(527\) 0 0
\(528\) 0 0
\(529\) 21.0000 0.913043
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 80.0000 3.46194
\(535\) 0 0
\(536\) 12.0000 0.518321
\(537\) 0 0
\(538\) 31.6228 1.36335
\(539\) 0 0
\(540\) 0 0
\(541\) 38.0000 1.63375 0.816874 0.576816i \(-0.195705\pi\)
0.816874 + 0.576816i \(0.195705\pi\)
\(542\) 0 0
\(543\) 84.8528i 3.64138i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 46.6690i 1.99542i 0.0676046 + 0.997712i \(0.478464\pi\)
−0.0676046 + 0.997712i \(0.521536\pi\)
\(548\) 0 0
\(549\) 93.9149i 4.00819i
\(550\) 0 0
\(551\) 0 0
\(552\) −12.6491 −0.538382
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 16.9706i 0.715860i
\(563\) −47.4342 −1.99911 −0.999556 0.0298010i \(-0.990513\pi\)
−0.999556 + 0.0298010i \(0.990513\pi\)
\(564\) 60.0000 2.52646
\(565\) 0 0
\(566\) 22.3607i 0.939889i
\(567\) −30.0416 40.3051i −1.26163 1.69265i
\(568\) 0 0
\(569\) −36.0000 −1.50920 −0.754599 0.656186i \(-0.772169\pi\)
−0.754599 + 0.656186i \(0.772169\pi\)
\(570\) 0 0
\(571\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) −10.0000 13.4164i −0.417392 0.559990i
\(575\) 0 0
\(576\) −56.0000 −2.33333
\(577\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(578\) 24.0416i 1.00000i
\(579\) 0 0
\(580\) 0 0
\(581\) −15.0000 20.1246i −0.622305 0.834910i
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −47.4342 −1.95782 −0.978909 0.204298i \(-0.934509\pi\)
−0.978909 + 0.204298i \(0.934509\pi\)
\(588\) −12.6491 + 42.4264i −0.521641 + 1.74964i
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 48.0000 1.96616
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(600\) 0 0
\(601\) 40.2492i 1.64180i 0.571072 + 0.820900i \(0.306528\pi\)
−0.571072 + 0.820900i \(0.693472\pi\)
\(602\) 28.4605 + 38.1838i 1.15996 + 1.55625i
\(603\) 29.6985i 1.20942i
\(604\) 0 0
\(605\) 0 0
\(606\) −40.0000 −1.62489
\(607\) −15.8114 −0.641764 −0.320882 0.947119i \(-0.603979\pi\)
−0.320882 + 0.947119i \(0.603979\pi\)
\(608\) 0 0
\(609\) −30.0000 40.2492i −1.21566 1.63098i
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(614\) 49.1935i 1.98529i
\(615\) 0 0
\(616\) 0 0
\(617\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(618\) 70.7107i 2.84440i
\(619\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(620\) 0 0
\(621\) 17.8885i 0.717843i
\(622\) 0 0
\(623\) 37.9473 28.2843i 1.52033 1.13319i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 12.0000 0.473972 0.236986 0.971513i \(-0.423841\pi\)
0.236986 + 0.971513i \(0.423841\pi\)
\(642\) 82.2192 3.24493
\(643\) −41.1096 −1.62120 −0.810602 0.585597i \(-0.800860\pi\)
−0.810602 + 0.585597i \(0.800860\pi\)
\(644\) −6.00000 + 4.47214i −0.236433 + 0.176227i
\(645\) 0 0
\(646\) 0 0
\(647\) 47.4342 1.86483 0.932415 0.361390i \(-0.117698\pi\)
0.932415 + 0.361390i \(0.117698\pi\)
\(648\) 53.7401i 2.11111i
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 25.4558i 0.996928i
\(653\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(654\) 71.5542i 2.79799i
\(655\) 0 0
\(656\) 17.8885i 0.698430i
\(657\) 0 0
\(658\) 28.4605 21.2132i 1.10951 0.826977i
\(659\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(660\) 0 0
\(661\) 40.2492i 1.56551i −0.622328 0.782757i \(-0.713813\pi\)
0.622328 0.782757i \(-0.286187\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 26.8328i 1.04132i
\(665\) 0 0
\(666\) 0 0
\(667\) 8.48528i 0.328551i
\(668\) 18.9737 0.734113
\(669\) −10.0000 −0.386622
\(670\) 0 0
\(671\) 0 0
\(672\) −37.9473 + 28.2843i −1.46385 + 1.09109i
\(673\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) −26.0000 −1.00000
\(677\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 90.0000 3.44881
\(682\) 0 0
\(683\) 43.8406i 1.67751i −0.544505 0.838757i \(-0.683283\pi\)
0.544505 0.838757i \(-0.316717\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 9.00000 + 24.5967i 0.343622 + 0.939108i
\(687\) 84.8528i 3.23734i
\(688\) 50.9117i 1.94099i
\(689\) 0 0
\(690\) 0 0
\(691\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) −34.0000 −1.29062
\(695\) 0 0
\(696\) 53.6656i 2.03419i
\(697\) 0 0
\(698\) 37.9473 1.43633
\(699\) 0 0
\(700\) 0 0
\(701\) 48.0000 1.81293 0.906467 0.422276i \(-0.138769\pi\)
0.906467 + 0.422276i \(0.138769\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −18.9737 + 14.1421i −0.713578 + 0.531870i
\(708\) 0 0
\(709\) 46.0000 1.72757 0.863783 0.503864i \(-0.168089\pi\)
0.863783 + 0.503864i \(0.168089\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 50.5964 1.89618
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(720\) 0 0
\(721\) −25.0000 33.5410i −0.931049 1.24913i
\(722\) 26.8701i 1.00000i
\(723\) 42.4264i 1.57786i
\(724\) 53.6656i 1.99447i
\(725\) 0 0
\(726\) 49.1935i 1.82574i
\(727\) −53.7587 −1.99380 −0.996900 0.0786754i \(-0.974931\pi\)
−0.996900 + 0.0786754i \(0.974931\pi\)
\(728\) 0 0
\(729\) 13.0000 0.481481
\(730\) 0 0
\(731\) 0 0
\(732\) 84.8528i 3.13625i
\(733\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(734\) 4.47214i 0.165070i
\(735\) 0 0
\(736\) −8.00000 −0.294884
\(737\) 0 0
\(738\) 44.2719 1.62967
\(739\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 26.8701i 0.985767i −0.870095 0.492883i \(-0.835943\pi\)
0.870095 0.492883i \(-0.164057\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 66.4078 2.42974
\(748\) 0 0
\(749\) 39.0000 29.0689i 1.42503 1.06215i
\(750\) 0 0
\(751\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(752\) 37.9473 1.38380
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) −40.0000 53.6656i −1.45479 1.95180i
\(757\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 35.7771i 1.29692i 0.761249 + 0.648459i \(0.224586\pi\)
−0.761249 + 0.648459i \(0.775414\pi\)
\(762\) −18.9737 −0.687343
\(763\) −25.2982 33.9411i −0.915857 1.22875i
\(764\) 0 0
\(765\) 0 0
\(766\) 40.2492i 1.45426i
\(767\) 0 0
\(768\) −50.5964 −1.82574
\(769\) 53.6656i 1.93523i 0.252426 + 0.967616i \(0.418771\pi\)
−0.252426 + 0.967616i \(0.581229\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(774\) −126.000 −4.52898
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 33.9411i 1.21685i
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 75.8947 2.71225
\(784\) −8.00000 + 26.8328i −0.285714 + 0.958315i
\(785\) 0 0
\(786\) 0 0
\(787\) −41.1096 −1.46540 −0.732700 0.680552i \(-0.761740\pi\)
−0.732700 + 0.680552i \(0.761740\pi\)
\(788\) 0 0
\(789\) 49.1935i 1.75133i
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 125.220i 4.42442i
\(802\) 25.4558i 0.898877i
\(803\) 0 0
\(804\) 26.8328i 0.946320i
\(805\) 0 0
\(806\) 0 0
\(807\) 70.7107i 2.48913i
\(808\) −25.2982 −0.889988
\(809\) −54.0000 −1.89854 −0.949269 0.314464i \(-0.898175\pi\)
−0.949269 + 0.314464i \(0.898175\pi\)
\(810\) 0 0
\(811\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(812\) −18.9737 25.4558i −0.665845 0.893325i
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) −56.9210 −1.99020
\(819\) 0 0
\(820\) 0 0
\(821\) −48.0000 −1.67521 −0.837606 0.546275i \(-0.816045\pi\)
−0.837606 + 0.546275i \(0.816045\pi\)
\(822\) 0 0
\(823\) 55.1543i 1.92256i 0.275575 + 0.961280i \(0.411132\pi\)
−0.275575 + 0.961280i \(0.588868\pi\)
\(824\) 44.7214i 1.55794i
\(825\) 0 0
\(826\) 0 0
\(827\) 32.5269i 1.13107i −0.824724 0.565536i \(-0.808669\pi\)
0.824724 0.565536i \(-0.191331\pi\)
\(828\) 19.7990i 0.688062i
\(829\) 13.4164i 0.465971i 0.972480 + 0.232986i \(0.0748495\pi\)
−0.972480 + 0.232986i \(0.925151\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(840\) 0 0
\(841\) 7.00000 0.241379
\(842\) 11.3137i 0.389896i
\(843\) 37.9473 1.30698
\(844\) 0 0
\(845\) 0 0
\(846\) 93.9149i 3.22886i
\(847\) −17.3925 23.3345i −0.597614 0.801784i
\(848\) 0 0
\(849\) 50.0000 1.71600
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(854\) 30.0000 + 40.2492i 1.02658 + 1.37730i
\(855\) 0 0
\(856\) 52.0000 1.77732
\(857\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(858\) 0 0
\(859\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(860\) 0 0
\(861\) 30.0000 22.3607i 1.02240 0.762050i
\(862\) 0 0
\(863\) 57.9828i 1.97376i −0.161468 0.986878i \(-0.551623\pi\)
0.161468 0.986878i \(-0.448377\pi\)
\(864\) 71.5542i 2.43432i
\(865\) 0 0
\(866\) 0 0
\(867\) −53.7587 −1.82574
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 45.2548i 1.53252i
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 58.1378i 1.95871i 0.202145 + 0.979356i \(0.435209\pi\)
−0.202145 + 0.979356i \(0.564791\pi\)
\(882\) −66.4078 19.7990i −2.23607 0.666667i
\(883\) 55.1543i 1.85609i −0.372467 0.928045i \(-0.621488\pi\)
0.372467 0.928045i \(-0.378512\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) −58.0000 −1.94855
\(887\) 28.4605 0.955610 0.477805 0.878466i \(-0.341433\pi\)
0.477805 + 0.878466i \(0.341433\pi\)
\(888\) 0 0
\(889\) −9.00000 + 6.70820i −0.301850 + 0.224986i
\(890\) 0 0
\(891\) 0 0
\(892\) −6.32456 −0.211762
\(893\) 0 0
\(894\) 107.331i 3.58969i
\(895\) 0 0
\(896\) −24.0000 + 17.8885i −0.801784 + 0.597614i
\(897\) 0 0
\(898\) 50.9117i 1.69895i
\(899\) 0 0
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) −85.3815 + 63.6396i −2.84132 + 2.11779i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 4.24264i 0.140875i 0.997516 + 0.0704373i \(0.0224395\pi\)
−0.997516 + 0.0704373i \(0.977561\pi\)
\(908\) 56.9210 1.88899
\(909\) 62.6099i 2.07664i
\(910\) 0 0
\(911\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) 53.6656i 1.77316i
\(917\) 0 0
\(918\) 0 0
\(919\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(920\) 0 0
\(921\) −110.000 −3.62462
\(922\) −12.6491 −0.416576
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) −18.0000 −0.591517
\(927\) 110.680 3.63520
\(928\) 33.9411i 1.11417i
\(929\) 49.1935i 1.61399i 0.590561 + 0.806993i \(0.298907\pi\)
−0.590561 + 0.806993i \(0.701093\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 0 0
\(934\) 40.2492i 1.31699i
\(935\) 0 0
\(936\) 0 0
\(937\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(938\) 9.48683 + 12.7279i 0.309756 + 0.415581i
\(939\) 0 0
\(940\) 0 0
\(941\) 44.7214i 1.45787i −0.684580 0.728937i \(-0.740015\pi\)
0.684580 0.728937i \(-0.259985\pi\)
\(942\) 0 0
\(943\) 6.32456 0.205956
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 60.8112i 1.97610i −0.154140 0.988049i \(-0.549261\pi\)
0.154140 0.988049i \(-0.450739\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −31.0000 −1.00000
\(962\) 0 0
\(963\) 128.693i 4.14709i
\(964\) 26.8328i 0.864227i
\(965\) 0 0
\(966\) −10.0000 13.4164i −0.321745 0.431666i
\(967\) 46.6690i 1.50078i 0.660998 + 0.750388i \(0.270133\pi\)
−0.660998 + 0.750388i \(0.729867\pi\)
\(968\) 31.1127i 1.00000i
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(972\) 44.2719 1.42002
\(973\) 0 0
\(974\) 54.0000 1.73027
\(975\) 0 0
\(976\) 53.6656i 1.71780i
\(977\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(978\) −56.9210 −1.82013
\(979\) 0 0
\(980\) 0 0
\(981\) 112.000 3.57588
\(982\) 0 0
\(983\) −47.4342 −1.51291 −0.756457 0.654043i \(-0.773072\pi\)
−0.756457 + 0.654043i \(0.773072\pi\)
\(984\) 40.0000 1.27515
\(985\) 0 0
\(986\) 0 0
\(987\) 47.4342 + 63.6396i 1.50985 + 2.02567i
\(988\) 0 0
\(989\) −18.0000 −0.572367
\(990\) 0 0
\(991\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 60.0000 1.90117
\(997\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 700.2.g.d.251.3 4
4.3 odd 2 inner 700.2.g.d.251.2 4
5.2 odd 4 140.2.c.a.139.2 yes 4
5.3 odd 4 140.2.c.a.139.3 yes 4
5.4 even 2 inner 700.2.g.d.251.2 4
7.6 odd 2 inner 700.2.g.d.251.4 4
20.3 even 4 140.2.c.a.139.2 yes 4
20.7 even 4 140.2.c.a.139.3 yes 4
20.19 odd 2 CM 700.2.g.d.251.3 4
28.27 even 2 inner 700.2.g.d.251.1 4
35.2 odd 12 980.2.s.b.619.3 8
35.3 even 12 980.2.s.b.19.2 8
35.12 even 12 980.2.s.b.619.4 8
35.13 even 4 140.2.c.a.139.4 yes 4
35.17 even 12 980.2.s.b.19.3 8
35.18 odd 12 980.2.s.b.19.1 8
35.23 odd 12 980.2.s.b.619.2 8
35.27 even 4 140.2.c.a.139.1 4
35.32 odd 12 980.2.s.b.19.4 8
35.33 even 12 980.2.s.b.619.1 8
35.34 odd 2 inner 700.2.g.d.251.1 4
40.3 even 4 2240.2.e.a.2239.1 4
40.13 odd 4 2240.2.e.a.2239.3 4
40.27 even 4 2240.2.e.a.2239.3 4
40.37 odd 4 2240.2.e.a.2239.1 4
140.3 odd 12 980.2.s.b.19.3 8
140.23 even 12 980.2.s.b.619.3 8
140.27 odd 4 140.2.c.a.139.4 yes 4
140.47 odd 12 980.2.s.b.619.1 8
140.67 even 12 980.2.s.b.19.1 8
140.83 odd 4 140.2.c.a.139.1 4
140.87 odd 12 980.2.s.b.19.2 8
140.103 odd 12 980.2.s.b.619.4 8
140.107 even 12 980.2.s.b.619.2 8
140.123 even 12 980.2.s.b.19.4 8
140.139 even 2 inner 700.2.g.d.251.4 4
280.13 even 4 2240.2.e.a.2239.2 4
280.27 odd 4 2240.2.e.a.2239.2 4
280.83 odd 4 2240.2.e.a.2239.4 4
280.237 even 4 2240.2.e.a.2239.4 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
140.2.c.a.139.1 4 35.27 even 4
140.2.c.a.139.1 4 140.83 odd 4
140.2.c.a.139.2 yes 4 5.2 odd 4
140.2.c.a.139.2 yes 4 20.3 even 4
140.2.c.a.139.3 yes 4 5.3 odd 4
140.2.c.a.139.3 yes 4 20.7 even 4
140.2.c.a.139.4 yes 4 35.13 even 4
140.2.c.a.139.4 yes 4 140.27 odd 4
700.2.g.d.251.1 4 28.27 even 2 inner
700.2.g.d.251.1 4 35.34 odd 2 inner
700.2.g.d.251.2 4 4.3 odd 2 inner
700.2.g.d.251.2 4 5.4 even 2 inner
700.2.g.d.251.3 4 1.1 even 1 trivial
700.2.g.d.251.3 4 20.19 odd 2 CM
700.2.g.d.251.4 4 7.6 odd 2 inner
700.2.g.d.251.4 4 140.139 even 2 inner
980.2.s.b.19.1 8 35.18 odd 12
980.2.s.b.19.1 8 140.67 even 12
980.2.s.b.19.2 8 35.3 even 12
980.2.s.b.19.2 8 140.87 odd 12
980.2.s.b.19.3 8 35.17 even 12
980.2.s.b.19.3 8 140.3 odd 12
980.2.s.b.19.4 8 35.32 odd 12
980.2.s.b.19.4 8 140.123 even 12
980.2.s.b.619.1 8 35.33 even 12
980.2.s.b.619.1 8 140.47 odd 12
980.2.s.b.619.2 8 35.23 odd 12
980.2.s.b.619.2 8 140.107 even 12
980.2.s.b.619.3 8 35.2 odd 12
980.2.s.b.619.3 8 140.23 even 12
980.2.s.b.619.4 8 35.12 even 12
980.2.s.b.619.4 8 140.103 odd 12
2240.2.e.a.2239.1 4 40.3 even 4
2240.2.e.a.2239.1 4 40.37 odd 4
2240.2.e.a.2239.2 4 280.13 even 4
2240.2.e.a.2239.2 4 280.27 odd 4
2240.2.e.a.2239.3 4 40.13 odd 4
2240.2.e.a.2239.3 4 40.27 even 4
2240.2.e.a.2239.4 4 280.83 odd 4
2240.2.e.a.2239.4 4 280.237 even 4