Properties

Label 1425.1.t.b
Level $1425$
Weight $1$
Character orbit 1425.t
Analytic conductor $0.711$
Analytic rank $0$
Dimension $4$
Projective image $D_{3}$
CM discriminant -15
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1425,1,Mod(26,1425)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1425, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 0, 2]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1425.26");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1425 = 3 \cdot 5^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 1425.t (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.711167643002\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 285)
Projective image: \(D_{3}\)
Projective field: Galois closure of 3.1.5415.1
Artin image: $S_3\times C_{12}$
Artin field: Galois closure of \(\mathbb{Q}[x]/(x^{24} - \cdots)\)

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

The \(q\)-expansion and trace form are shown below.

\(f(q)\) \(=\) \( q + \zeta_{12}^{5} q^{2} + \zeta_{12}^{5} q^{3} - \zeta_{12}^{4} q^{6} - \zeta_{12}^{3} q^{8} - \zeta_{12}^{4} q^{9} +O(q^{10}) \) Copy content Toggle raw display \( q + \zeta_{12}^{5} q^{2} + \zeta_{12}^{5} q^{3} - \zeta_{12}^{4} q^{6} - \zeta_{12}^{3} q^{8} - \zeta_{12}^{4} q^{9} + \zeta_{12}^{2} q^{16} + \zeta_{12}^{5} q^{17} + \zeta_{12}^{3} q^{18} + \zeta_{12}^{2} q^{19} + 2 \zeta_{12} q^{23} + \zeta_{12}^{2} q^{24} + \zeta_{12}^{3} q^{27} - q^{31} - \zeta_{12}^{4} q^{34} - \zeta_{12} q^{38} - 2 q^{46} + \zeta_{12} q^{47} - \zeta_{12} q^{48} - q^{49} - \zeta_{12}^{4} q^{51} - \zeta_{12} q^{53} - \zeta_{12}^{2} q^{54} - \zeta_{12} q^{57} + 2 \zeta_{12}^{4} q^{61} - \zeta_{12}^{5} q^{62} - q^{64} - 2 q^{69} - \zeta_{12} q^{72} + 2 \zeta_{12}^{2} q^{79} - \zeta_{12}^{2} q^{81} + \zeta_{12}^{3} q^{83} - \zeta_{12}^{5} q^{93} - q^{94} - \zeta_{12}^{5} q^{98} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{6} + 2 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q + 2 q^{6} + 2 q^{9} + 2 q^{16} + 2 q^{19} + 2 q^{24} - 4 q^{31} + 2 q^{34} - 8 q^{46} - 4 q^{49} + 2 q^{51} - 2 q^{54} - 4 q^{61} - 4 q^{64} - 8 q^{69} + 4 q^{79} - 2 q^{81} - 4 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1425\mathbb{Z}\right)^\times\).

\(n\) \(476\) \(1027\) \(1351\)
\(\chi(n)\) \(-1\) \(1\) \(\zeta_{12}^{4}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
26.1
0.866025 + 0.500000i
−0.866025 0.500000i
0.866025 0.500000i
−0.866025 + 0.500000i
−0.866025 + 0.500000i −0.866025 + 0.500000i 0 0 0.500000 0.866025i 0 1.00000i 0.500000 0.866025i 0
26.2 0.866025 0.500000i 0.866025 0.500000i 0 0 0.500000 0.866025i 0 1.00000i 0.500000 0.866025i 0
1151.1 −0.866025 0.500000i −0.866025 0.500000i 0 0 0.500000 + 0.866025i 0 1.00000i 0.500000 + 0.866025i 0
1151.2 0.866025 + 0.500000i 0.866025 + 0.500000i 0 0 0.500000 + 0.866025i 0 1.00000i 0.500000 + 0.866025i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
15.d odd 2 1 CM by \(\Q(\sqrt{-15}) \)
3.b odd 2 1 inner
5.b even 2 1 inner
19.c even 3 1 inner
57.h odd 6 1 inner
95.i even 6 1 inner
285.n odd 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1425.1.t.b 4
3.b odd 2 1 inner 1425.1.t.b 4
5.b even 2 1 inner 1425.1.t.b 4
5.c odd 4 1 285.1.n.a 2
5.c odd 4 1 285.1.n.b yes 2
15.d odd 2 1 CM 1425.1.t.b 4
15.e even 4 1 285.1.n.a 2
15.e even 4 1 285.1.n.b yes 2
19.c even 3 1 inner 1425.1.t.b 4
57.h odd 6 1 inner 1425.1.t.b 4
95.i even 6 1 inner 1425.1.t.b 4
95.m odd 12 1 285.1.n.a 2
95.m odd 12 1 285.1.n.b yes 2
285.n odd 6 1 inner 1425.1.t.b 4
285.v even 12 1 285.1.n.a 2
285.v even 12 1 285.1.n.b yes 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
285.1.n.a 2 5.c odd 4 1
285.1.n.a 2 15.e even 4 1
285.1.n.a 2 95.m odd 12 1
285.1.n.a 2 285.v even 12 1
285.1.n.b yes 2 5.c odd 4 1
285.1.n.b yes 2 15.e even 4 1
285.1.n.b yes 2 95.m odd 12 1
285.1.n.b yes 2 285.v even 12 1
1425.1.t.b 4 1.a even 1 1 trivial
1425.1.t.b 4 3.b odd 2 1 inner
1425.1.t.b 4 5.b even 2 1 inner
1425.1.t.b 4 15.d odd 2 1 CM
1425.1.t.b 4 19.c even 3 1 inner
1425.1.t.b 4 57.h odd 6 1 inner
1425.1.t.b 4 95.i even 6 1 inner
1425.1.t.b 4 285.n odd 6 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{4} - T_{2}^{2} + 1 \) acting on \(S_{1}^{\mathrm{new}}(1425, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} - T^{2} + 1 \) Copy content Toggle raw display
$3$ \( T^{4} - T^{2} + 1 \) Copy content Toggle raw display
$5$ \( T^{4} \) Copy content Toggle raw display
$7$ \( T^{4} \) Copy content Toggle raw display
$11$ \( T^{4} \) Copy content Toggle raw display
$13$ \( T^{4} \) Copy content Toggle raw display
$17$ \( T^{4} - T^{2} + 1 \) Copy content Toggle raw display
$19$ \( (T^{2} - T + 1)^{2} \) Copy content Toggle raw display
$23$ \( T^{4} - 4T^{2} + 16 \) Copy content Toggle raw display
$29$ \( T^{4} \) Copy content Toggle raw display
$31$ \( (T + 1)^{4} \) Copy content Toggle raw display
$37$ \( T^{4} \) Copy content Toggle raw display
$41$ \( T^{4} \) Copy content Toggle raw display
$43$ \( T^{4} \) Copy content Toggle raw display
$47$ \( T^{4} - T^{2} + 1 \) Copy content Toggle raw display
$53$ \( T^{4} - T^{2} + 1 \) Copy content Toggle raw display
$59$ \( T^{4} \) Copy content Toggle raw display
$61$ \( (T^{2} + 2 T + 4)^{2} \) Copy content Toggle raw display
$67$ \( T^{4} \) Copy content Toggle raw display
$71$ \( T^{4} \) Copy content Toggle raw display
$73$ \( T^{4} \) Copy content Toggle raw display
$79$ \( (T^{2} - 2 T + 4)^{2} \) Copy content Toggle raw display
$83$ \( (T^{2} + 1)^{2} \) Copy content Toggle raw display
$89$ \( T^{4} \) Copy content Toggle raw display
$97$ \( T^{4} \) Copy content Toggle raw display
show more
show less