Properties

Label 285.1.n.b
Level $285$
Weight $1$
Character orbit 285.n
Analytic conductor $0.142$
Analytic rank $0$
Dimension $2$
Projective image $D_{3}$
CM discriminant -15
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [285,1,Mod(239,285)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(285, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 3, 4]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("285.239");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 285 = 3 \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 285.n (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.142233528600\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{3}\)
Projective field: Galois closure of 3.1.5415.1
Artin image: $C_3\times S_3$
Artin field: Galois closure of 6.0.1218375.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

The \(q\)-expansion and trace form are shown below.

\(f(q)\) \(=\) \( q - \zeta_{6}^{2} q^{2} + \zeta_{6}^{2} q^{3} + \zeta_{6}^{2} q^{5} + \zeta_{6} q^{6} + q^{8} - \zeta_{6} q^{9} +O(q^{10}) \) Copy content Toggle raw display \( q - \zeta_{6}^{2} q^{2} + \zeta_{6}^{2} q^{3} + \zeta_{6}^{2} q^{5} + \zeta_{6} q^{6} + q^{8} - \zeta_{6} q^{9} + \zeta_{6} q^{10} - \zeta_{6} q^{15} - \zeta_{6}^{2} q^{16} - \zeta_{6}^{2} q^{17} - q^{18} + \zeta_{6}^{2} q^{19} - 2 \zeta_{6} q^{23} + \zeta_{6}^{2} q^{24} - \zeta_{6} q^{25} + q^{27} - q^{30} - q^{31} - \zeta_{6} q^{34} + \zeta_{6} q^{38} + \zeta_{6}^{2} q^{40} + q^{45} - 2 q^{46} + \zeta_{6} q^{47} + \zeta_{6} q^{48} + q^{49} - q^{50} + \zeta_{6} q^{51} + \zeta_{6} q^{53} - \zeta_{6}^{2} q^{54} - \zeta_{6} q^{57} - 2 \zeta_{6} q^{61} + \zeta_{6}^{2} q^{62} + q^{64} + 2 q^{69} - \zeta_{6} q^{72} + q^{75} + 2 \zeta_{6}^{2} q^{79} + \zeta_{6} q^{80} + \zeta_{6}^{2} q^{81} - q^{83} + \zeta_{6} q^{85} - \zeta_{6}^{2} q^{90} - \zeta_{6}^{2} q^{93} + q^{94} - \zeta_{6} q^{95} - \zeta_{6}^{2} q^{98} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + q^{2} - q^{3} - q^{5} + q^{6} + 2 q^{8} - q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + q^{2} - q^{3} - q^{5} + q^{6} + 2 q^{8} - q^{9} + q^{10} - q^{15} + q^{16} + q^{17} - 2 q^{18} - q^{19} - 2 q^{23} - q^{24} - q^{25} + 2 q^{27} - 2 q^{30} - 2 q^{31} - q^{34} + q^{38} - q^{40} + 2 q^{45} - 4 q^{46} + q^{47} + q^{48} + 2 q^{49} - 2 q^{50} + q^{51} + q^{53} + q^{54} - q^{57} - 2 q^{61} - q^{62} + 2 q^{64} + 4 q^{69} - q^{72} + 2 q^{75} - 2 q^{79} + q^{80} - q^{81} - 2 q^{83} + q^{85} + q^{90} + q^{93} + 2 q^{94} - q^{95} + q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/285\mathbb{Z}\right)^\times\).

\(n\) \(172\) \(191\) \(211\)
\(\chi(n)\) \(-1\) \(-1\) \(-\zeta_{6}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
239.1
0.500000 + 0.866025i
0.500000 0.866025i
0.500000 0.866025i −0.500000 + 0.866025i 0 −0.500000 + 0.866025i 0.500000 + 0.866025i 0 1.00000 −0.500000 0.866025i 0.500000 + 0.866025i
254.1 0.500000 + 0.866025i −0.500000 0.866025i 0 −0.500000 0.866025i 0.500000 0.866025i 0 1.00000 −0.500000 + 0.866025i 0.500000 0.866025i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
15.d odd 2 1 CM by \(\Q(\sqrt{-15}) \)
19.c even 3 1 inner
285.n odd 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 285.1.n.b yes 2
3.b odd 2 1 285.1.n.a 2
5.b even 2 1 285.1.n.a 2
5.c odd 4 2 1425.1.t.b 4
15.d odd 2 1 CM 285.1.n.b yes 2
15.e even 4 2 1425.1.t.b 4
19.c even 3 1 inner 285.1.n.b yes 2
57.h odd 6 1 285.1.n.a 2
95.i even 6 1 285.1.n.a 2
95.m odd 12 2 1425.1.t.b 4
285.n odd 6 1 inner 285.1.n.b yes 2
285.v even 12 2 1425.1.t.b 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
285.1.n.a 2 3.b odd 2 1
285.1.n.a 2 5.b even 2 1
285.1.n.a 2 57.h odd 6 1
285.1.n.a 2 95.i even 6 1
285.1.n.b yes 2 1.a even 1 1 trivial
285.1.n.b yes 2 15.d odd 2 1 CM
285.1.n.b yes 2 19.c even 3 1 inner
285.1.n.b yes 2 285.n odd 6 1 inner
1425.1.t.b 4 5.c odd 4 2
1425.1.t.b 4 15.e even 4 2
1425.1.t.b 4 95.m odd 12 2
1425.1.t.b 4 285.v even 12 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{2} - T_{2} + 1 \) acting on \(S_{1}^{\mathrm{new}}(285, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} - T + 1 \) Copy content Toggle raw display
$3$ \( T^{2} + T + 1 \) Copy content Toggle raw display
$5$ \( T^{2} + T + 1 \) Copy content Toggle raw display
$7$ \( T^{2} \) Copy content Toggle raw display
$11$ \( T^{2} \) Copy content Toggle raw display
$13$ \( T^{2} \) Copy content Toggle raw display
$17$ \( T^{2} - T + 1 \) Copy content Toggle raw display
$19$ \( T^{2} + T + 1 \) Copy content Toggle raw display
$23$ \( T^{2} + 2T + 4 \) Copy content Toggle raw display
$29$ \( T^{2} \) Copy content Toggle raw display
$31$ \( (T + 1)^{2} \) Copy content Toggle raw display
$37$ \( T^{2} \) Copy content Toggle raw display
$41$ \( T^{2} \) Copy content Toggle raw display
$43$ \( T^{2} \) Copy content Toggle raw display
$47$ \( T^{2} - T + 1 \) Copy content Toggle raw display
$53$ \( T^{2} - T + 1 \) Copy content Toggle raw display
$59$ \( T^{2} \) Copy content Toggle raw display
$61$ \( T^{2} + 2T + 4 \) Copy content Toggle raw display
$67$ \( T^{2} \) Copy content Toggle raw display
$71$ \( T^{2} \) Copy content Toggle raw display
$73$ \( T^{2} \) Copy content Toggle raw display
$79$ \( T^{2} + 2T + 4 \) Copy content Toggle raw display
$83$ \( (T + 1)^{2} \) Copy content Toggle raw display
$89$ \( T^{2} \) Copy content Toggle raw display
$97$ \( T^{2} \) Copy content Toggle raw display
show more
show less