Properties

Label 144.8.i.a.49.2
Level $144$
Weight $8$
Character 144.49
Analytic conductor $44.983$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [144,8,Mod(49,144)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(144, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 2]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("144.49");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 144 = 2^{4} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 144.i (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(44.9834436697\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: 6.0.14601465675.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 3x^{5} + 52x^{4} - 99x^{3} + 709x^{2} - 660x + 1872 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2}\cdot 3^{6} \)
Twist minimal: no (minimal twist has level 18)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 49.2
Root \(0.500000 - 5.21243i\) of defining polynomial
Character \(\chi\) \(=\) 144.49
Dual form 144.8.i.a.97.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(11.7819 - 45.2569i) q^{3} +(187.789 - 325.261i) q^{5} +(528.867 + 916.024i) q^{7} +(-1909.38 - 1066.42i) q^{9} +(849.965 + 1472.18i) q^{11} +(6256.75 - 10837.0i) q^{13} +(-12507.8 - 12330.9i) q^{15} +16879.9 q^{17} +35281.9 q^{19} +(47687.4 - 13142.4i) q^{21} +(35482.7 - 61457.8i) q^{23} +(-31467.1 - 54502.6i) q^{25} +(-70758.9 + 73848.0i) q^{27} +(38827.4 + 67251.0i) q^{29} +(-63093.8 + 109282. i) q^{31} +(76640.6 - 21121.7i) q^{33} +397262. q^{35} -528664. q^{37} +(-416733. - 410841. i) q^{39} +(258960. - 448533. i) q^{41} +(-135830. - 235264. i) q^{43} +(-705425. + 420782. i) q^{45} +(-211814. - 366873. i) q^{47} +(-147628. + 255699. i) q^{49} +(198876. - 763930. i) q^{51} +1.24314e6 q^{53} +638457. q^{55} +(415687. - 1.59675e6i) q^{57} +(-1.34086e6 + 2.32244e6i) q^{59} +(377040. + 653052. i) q^{61} +(-32937.4 - 2.31303e6i) q^{63} +(-2.34990e6 - 4.07014e6i) q^{65} +(-131285. + 227392. i) q^{67} +(-2.36334e6 - 2.32993e6i) q^{69} -990913. q^{71} -1.04389e6 q^{73} +(-2.83736e6 + 781961. i) q^{75} +(-899036. + 1.55718e6i) q^{77} +(-3.66860e6 - 6.35419e6i) q^{79} +(2.50846e6 + 4.07240e6i) q^{81} +(-1.94611e6 - 3.37075e6i) q^{83} +(3.16986e6 - 5.49035e6i) q^{85} +(3.50103e6 - 964865. i) q^{87} +675681. q^{89} +1.32359e7 q^{91} +(4.20239e6 + 4.14298e6i) q^{93} +(6.62556e6 - 1.14758e7i) q^{95} +(-8.12785e6 - 1.40779e7i) q^{97} +(-52935.2 - 3.71737e6i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 27 q^{3} + 54 q^{5} - 210 q^{7} + 2295 q^{9} - 6579 q^{11} + 10092 q^{13} - 756 q^{15} - 29790 q^{17} + 137490 q^{19} + 85464 q^{21} + 39654 q^{23} - 7923 q^{25} - 87480 q^{27} + 239832 q^{29} - 145704 q^{31}+ \cdots + 11453238 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/144\mathbb{Z}\right)^\times\).

\(n\) \(37\) \(65\) \(127\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 11.7819 45.2569i 0.251936 0.967744i
\(4\) 0 0
\(5\) 187.789 325.261i 0.671855 1.16369i −0.305522 0.952185i \(-0.598831\pi\)
0.977377 0.211502i \(-0.0678356\pi\)
\(6\) 0 0
\(7\) 528.867 + 916.024i 0.582778 + 1.00940i 0.995148 + 0.0983845i \(0.0313675\pi\)
−0.412371 + 0.911016i \(0.635299\pi\)
\(8\) 0 0
\(9\) −1909.38 1066.42i −0.873057 0.487618i
\(10\) 0 0
\(11\) 849.965 + 1472.18i 0.192542 + 0.333493i 0.946092 0.323898i \(-0.104993\pi\)
−0.753550 + 0.657391i \(0.771660\pi\)
\(12\) 0 0
\(13\) 6256.75 10837.0i 0.789854 1.36807i −0.136202 0.990681i \(-0.543490\pi\)
0.926056 0.377386i \(-0.123177\pi\)
\(14\) 0 0
\(15\) −12507.8 12330.9i −0.956887 0.943358i
\(16\) 0 0
\(17\) 16879.9 0.833293 0.416646 0.909069i \(-0.363205\pi\)
0.416646 + 0.909069i \(0.363205\pi\)
\(18\) 0 0
\(19\) 35281.9 1.18009 0.590044 0.807371i \(-0.299110\pi\)
0.590044 + 0.807371i \(0.299110\pi\)
\(20\) 0 0
\(21\) 47687.4 13142.4i 1.12366 0.309676i
\(22\) 0 0
\(23\) 35482.7 61457.8i 0.608092 1.05325i −0.383463 0.923556i \(-0.625269\pi\)
0.991555 0.129690i \(-0.0413981\pi\)
\(24\) 0 0
\(25\) −31467.1 54502.6i −0.402779 0.697634i
\(26\) 0 0
\(27\) −70758.9 + 73848.0i −0.691844 + 0.722047i
\(28\) 0 0
\(29\) 38827.4 + 67251.0i 0.295628 + 0.512042i 0.975131 0.221631i \(-0.0711379\pi\)
−0.679503 + 0.733673i \(0.737805\pi\)
\(30\) 0 0
\(31\) −63093.8 + 109282.i −0.380383 + 0.658843i −0.991117 0.132993i \(-0.957541\pi\)
0.610734 + 0.791836i \(0.290874\pi\)
\(32\) 0 0
\(33\) 76640.6 21121.7i 0.371244 0.102313i
\(34\) 0 0
\(35\) 397262. 1.56617
\(36\) 0 0
\(37\) −528664. −1.71583 −0.857914 0.513794i \(-0.828240\pi\)
−0.857914 + 0.513794i \(0.828240\pi\)
\(38\) 0 0
\(39\) −416733. 410841.i −1.12495 1.10904i
\(40\) 0 0
\(41\) 258960. 448533.i 0.586800 1.01637i −0.407849 0.913050i \(-0.633721\pi\)
0.994648 0.103318i \(-0.0329458\pi\)
\(42\) 0 0
\(43\) −135830. 235264.i −0.260529 0.451249i 0.705854 0.708358i \(-0.250564\pi\)
−0.966383 + 0.257109i \(0.917230\pi\)
\(44\) 0 0
\(45\) −705425. + 420782.i −1.15400 + 0.688356i
\(46\) 0 0
\(47\) −211814. 366873.i −0.297586 0.515435i 0.677997 0.735065i \(-0.262848\pi\)
−0.975583 + 0.219630i \(0.929515\pi\)
\(48\) 0 0
\(49\) −147628. + 255699.i −0.179260 + 0.310487i
\(50\) 0 0
\(51\) 198876. 763930.i 0.209936 0.806414i
\(52\) 0 0
\(53\) 1.24314e6 1.14698 0.573490 0.819213i \(-0.305589\pi\)
0.573490 + 0.819213i \(0.305589\pi\)
\(54\) 0 0
\(55\) 638457. 0.517443
\(56\) 0 0
\(57\) 415687. 1.59675e6i 0.297306 1.14202i
\(58\) 0 0
\(59\) −1.34086e6 + 2.32244e6i −0.849968 + 1.47219i 0.0312678 + 0.999511i \(0.490046\pi\)
−0.881236 + 0.472677i \(0.843288\pi\)
\(60\) 0 0
\(61\) 377040. + 653052.i 0.212683 + 0.368378i 0.952553 0.304372i \(-0.0984465\pi\)
−0.739870 + 0.672750i \(0.765113\pi\)
\(62\) 0 0
\(63\) −32937.4 2.31303e6i −0.0165958 1.16544i
\(64\) 0 0
\(65\) −2.34990e6 4.07014e6i −1.06133 1.83829i
\(66\) 0 0
\(67\) −131285. + 227392.i −0.0533278 + 0.0923664i −0.891457 0.453105i \(-0.850316\pi\)
0.838129 + 0.545472i \(0.183649\pi\)
\(68\) 0 0
\(69\) −2.36334e6 2.32993e6i −0.866073 0.853828i
\(70\) 0 0
\(71\) −990913. −0.328573 −0.164286 0.986413i \(-0.552532\pi\)
−0.164286 + 0.986413i \(0.552532\pi\)
\(72\) 0 0
\(73\) −1.04389e6 −0.314068 −0.157034 0.987593i \(-0.550193\pi\)
−0.157034 + 0.987593i \(0.550193\pi\)
\(74\) 0 0
\(75\) −2.83736e6 + 781961.i −0.776605 + 0.214028i
\(76\) 0 0
\(77\) −899036. + 1.55718e6i −0.224419 + 0.388705i
\(78\) 0 0
\(79\) −3.66860e6 6.35419e6i −0.837153 1.44999i −0.892265 0.451512i \(-0.850885\pi\)
0.0551117 0.998480i \(-0.482449\pi\)
\(80\) 0 0
\(81\) 2.50846e6 + 4.07240e6i 0.524457 + 0.851437i
\(82\) 0 0
\(83\) −1.94611e6 3.37075e6i −0.373588 0.647074i 0.616526 0.787334i \(-0.288539\pi\)
−0.990115 + 0.140260i \(0.955206\pi\)
\(84\) 0 0
\(85\) 3.16986e6 5.49035e6i 0.559852 0.969692i
\(86\) 0 0
\(87\) 3.50103e6 964865.i 0.570005 0.157090i
\(88\) 0 0
\(89\) 675681. 0.101596 0.0507980 0.998709i \(-0.483824\pi\)
0.0507980 + 0.998709i \(0.483824\pi\)
\(90\) 0 0
\(91\) 1.32359e7 1.84124
\(92\) 0 0
\(93\) 4.20239e6 + 4.14298e6i 0.541759 + 0.534099i
\(94\) 0 0
\(95\) 6.62556e6 1.14758e7i 0.792849 1.37325i
\(96\) 0 0
\(97\) −8.12785e6 1.40779e7i −0.904221 1.56616i −0.821959 0.569546i \(-0.807119\pi\)
−0.0822619 0.996611i \(-0.526214\pi\)
\(98\) 0 0
\(99\) −52935.2 3.71737e6i −0.00548304 0.385046i
\(100\) 0 0
\(101\) 212270. + 367662.i 0.0205005 + 0.0355079i 0.876094 0.482141i \(-0.160141\pi\)
−0.855593 + 0.517649i \(0.826807\pi\)
\(102\) 0 0
\(103\) −2.43167e6 + 4.21178e6i −0.219268 + 0.379783i −0.954584 0.297941i \(-0.903700\pi\)
0.735317 + 0.677724i \(0.237033\pi\)
\(104\) 0 0
\(105\) 4.68048e6 1.79788e7i 0.394574 1.51565i
\(106\) 0 0
\(107\) −2.83648e6 −0.223839 −0.111920 0.993717i \(-0.535700\pi\)
−0.111920 + 0.993717i \(0.535700\pi\)
\(108\) 0 0
\(109\) 6.31389e6 0.466987 0.233493 0.972358i \(-0.424984\pi\)
0.233493 + 0.972358i \(0.424984\pi\)
\(110\) 0 0
\(111\) −6.22865e6 + 2.39257e7i −0.432278 + 1.66048i
\(112\) 0 0
\(113\) −1.07218e7 + 1.85708e7i −0.699029 + 1.21075i 0.269775 + 0.962923i \(0.413051\pi\)
−0.968804 + 0.247830i \(0.920283\pi\)
\(114\) 0 0
\(115\) −1.33265e7 2.30822e7i −0.817100 1.41526i
\(116\) 0 0
\(117\) −2.35033e7 + 1.40196e7i −1.35668 + 0.809253i
\(118\) 0 0
\(119\) 8.92719e6 + 1.54624e7i 0.485624 + 0.841126i
\(120\) 0 0
\(121\) 8.29871e6 1.43738e7i 0.425855 0.737602i
\(122\) 0 0
\(123\) −1.72482e7 1.70043e7i −0.835747 0.823931i
\(124\) 0 0
\(125\) 5.70534e6 0.261274
\(126\) 0 0
\(127\) −1.35681e7 −0.587768 −0.293884 0.955841i \(-0.594948\pi\)
−0.293884 + 0.955841i \(0.594948\pi\)
\(128\) 0 0
\(129\) −1.22477e7 + 3.37539e6i −0.502330 + 0.138439i
\(130\) 0 0
\(131\) −1.17657e7 + 2.03788e7i −0.457265 + 0.792005i −0.998815 0.0486627i \(-0.984504\pi\)
0.541551 + 0.840668i \(0.317837\pi\)
\(132\) 0 0
\(133\) 1.86594e7 + 3.23191e7i 0.687729 + 1.19118i
\(134\) 0 0
\(135\) 1.07321e7 + 3.68829e7i 0.375418 + 1.29020i
\(136\) 0 0
\(137\) 1.39952e7 + 2.42405e7i 0.465006 + 0.805414i 0.999202 0.0399467i \(-0.0127188\pi\)
−0.534196 + 0.845361i \(0.679385\pi\)
\(138\) 0 0
\(139\) −4.00094e6 + 6.92982e6i −0.126360 + 0.218862i −0.922264 0.386561i \(-0.873663\pi\)
0.795904 + 0.605423i \(0.206996\pi\)
\(140\) 0 0
\(141\) −1.90991e7 + 5.26361e6i −0.573781 + 0.158131i
\(142\) 0 0
\(143\) 2.12721e7 0.608322
\(144\) 0 0
\(145\) 2.91655e7 0.794476
\(146\) 0 0
\(147\) 9.83283e6 + 9.69381e6i 0.255310 + 0.251700i
\(148\) 0 0
\(149\) 1.35829e7 2.35262e7i 0.336387 0.582639i −0.647363 0.762182i \(-0.724128\pi\)
0.983750 + 0.179542i \(0.0574617\pi\)
\(150\) 0 0
\(151\) 2.09932e7 + 3.63612e7i 0.496202 + 0.859447i 0.999990 0.00438023i \(-0.00139427\pi\)
−0.503789 + 0.863827i \(0.668061\pi\)
\(152\) 0 0
\(153\) −3.22300e7 1.80010e7i −0.727512 0.406329i
\(154\) 0 0
\(155\) 2.36967e7 + 4.10439e7i 0.511125 + 0.885294i
\(156\) 0 0
\(157\) −4.10239e7 + 7.10556e7i −0.846036 + 1.46538i 0.0386831 + 0.999252i \(0.487684\pi\)
−0.884719 + 0.466125i \(0.845650\pi\)
\(158\) 0 0
\(159\) 1.46465e7 5.62608e7i 0.288965 1.10998i
\(160\) 0 0
\(161\) 7.50625e7 1.41753
\(162\) 0 0
\(163\) 2.89286e7 0.523203 0.261602 0.965176i \(-0.415749\pi\)
0.261602 + 0.965176i \(0.415749\pi\)
\(164\) 0 0
\(165\) 7.52221e6 2.88946e7i 0.130362 0.500752i
\(166\) 0 0
\(167\) 1.33585e7 2.31376e7i 0.221947 0.384424i −0.733452 0.679741i \(-0.762092\pi\)
0.955399 + 0.295318i \(0.0954254\pi\)
\(168\) 0 0
\(169\) −4.69195e7 8.12669e7i −0.747738 1.29512i
\(170\) 0 0
\(171\) −6.73664e7 3.76254e7i −1.03028 0.575433i
\(172\) 0 0
\(173\) 1.31561e7 + 2.27871e7i 0.193182 + 0.334601i 0.946303 0.323281i \(-0.104786\pi\)
−0.753121 + 0.657882i \(0.771453\pi\)
\(174\) 0 0
\(175\) 3.32838e7 5.76492e7i 0.469461 0.813131i
\(176\) 0 0
\(177\) 8.93088e7 + 8.80461e7i 1.21056 + 1.19345i
\(178\) 0 0
\(179\) 2.19724e7 0.286347 0.143174 0.989698i \(-0.454269\pi\)
0.143174 + 0.989698i \(0.454269\pi\)
\(180\) 0 0
\(181\) 1.26202e8 1.58195 0.790975 0.611849i \(-0.209574\pi\)
0.790975 + 0.611849i \(0.209574\pi\)
\(182\) 0 0
\(183\) 3.39974e7 9.36949e6i 0.410078 0.113015i
\(184\) 0 0
\(185\) −9.92774e7 + 1.71954e8i −1.15279 + 1.99669i
\(186\) 0 0
\(187\) 1.43473e7 + 2.48502e7i 0.160444 + 0.277898i
\(188\) 0 0
\(189\) −1.05069e8 2.57611e7i −1.13203 0.277555i
\(190\) 0 0
\(191\) 8.97257e7 + 1.55409e8i 0.931752 + 1.61384i 0.780326 + 0.625372i \(0.215053\pi\)
0.151425 + 0.988469i \(0.451614\pi\)
\(192\) 0 0
\(193\) 1.49157e7 2.58348e7i 0.149346 0.258675i −0.781640 0.623730i \(-0.785617\pi\)
0.930986 + 0.365055i \(0.118950\pi\)
\(194\) 0 0
\(195\) −2.11888e8 + 5.83953e7i −2.04638 + 0.563971i
\(196\) 0 0
\(197\) 6.70863e7 0.625176 0.312588 0.949889i \(-0.398804\pi\)
0.312588 + 0.949889i \(0.398804\pi\)
\(198\) 0 0
\(199\) 1.18177e8 1.06304 0.531519 0.847046i \(-0.321621\pi\)
0.531519 + 0.847046i \(0.321621\pi\)
\(200\) 0 0
\(201\) 8.74429e6 + 8.62066e6i 0.0759519 + 0.0748780i
\(202\) 0 0
\(203\) −4.10690e7 + 7.11336e7i −0.344570 + 0.596813i
\(204\) 0 0
\(205\) −9.72600e7 1.68459e8i −0.788489 1.36570i
\(206\) 0 0
\(207\) −1.33290e8 + 7.95066e7i −1.04448 + 0.623027i
\(208\) 0 0
\(209\) 2.99884e7 + 5.19414e7i 0.227217 + 0.393552i
\(210\) 0 0
\(211\) 5.19927e7 9.00540e7i 0.381025 0.659955i −0.610184 0.792260i \(-0.708904\pi\)
0.991209 + 0.132305i \(0.0422378\pi\)
\(212\) 0 0
\(213\) −1.16748e7 + 4.48457e7i −0.0827791 + 0.317974i
\(214\) 0 0
\(215\) −1.02030e8 −0.700150
\(216\) 0 0
\(217\) −1.33473e8 −0.886715
\(218\) 0 0
\(219\) −1.22989e7 + 4.72431e7i −0.0791249 + 0.303937i
\(220\) 0 0
\(221\) 1.05613e8 1.82927e8i 0.658180 1.14000i
\(222\) 0 0
\(223\) −8.07648e7 1.39889e8i −0.487703 0.844726i 0.512197 0.858868i \(-0.328832\pi\)
−0.999900 + 0.0141421i \(0.995498\pi\)
\(224\) 0 0
\(225\) 1.95975e6 + 1.37623e8i 0.0114700 + 0.805476i
\(226\) 0 0
\(227\) 1.90267e7 + 3.29553e7i 0.107963 + 0.186997i 0.914945 0.403579i \(-0.132234\pi\)
−0.806982 + 0.590576i \(0.798901\pi\)
\(228\) 0 0
\(229\) 1.44858e8 2.50901e8i 0.797110 1.38064i −0.124381 0.992235i \(-0.539694\pi\)
0.921491 0.388401i \(-0.126972\pi\)
\(230\) 0 0
\(231\) 5.98806e7 + 5.90340e7i 0.319628 + 0.315109i
\(232\) 0 0
\(233\) −7.45094e7 −0.385892 −0.192946 0.981209i \(-0.561804\pi\)
−0.192946 + 0.981209i \(0.561804\pi\)
\(234\) 0 0
\(235\) −1.59106e8 −0.799740
\(236\) 0 0
\(237\) −3.30794e8 + 9.11650e7i −1.61413 + 0.444845i
\(238\) 0 0
\(239\) 8.98328e7 1.55595e8i 0.425640 0.737230i −0.570840 0.821061i \(-0.693382\pi\)
0.996480 + 0.0838313i \(0.0267157\pi\)
\(240\) 0 0
\(241\) 3.04341e7 + 5.27134e7i 0.140056 + 0.242583i 0.927517 0.373780i \(-0.121939\pi\)
−0.787462 + 0.616364i \(0.788605\pi\)
\(242\) 0 0
\(243\) 2.13858e8 6.55447e7i 0.956103 0.293032i
\(244\) 0 0
\(245\) 5.54459e7 + 9.60352e7i 0.240873 + 0.417205i
\(246\) 0 0
\(247\) 2.20750e8 3.82350e8i 0.932098 1.61444i
\(248\) 0 0
\(249\) −1.75479e8 + 4.83610e7i −0.720322 + 0.198517i
\(250\) 0 0
\(251\) −2.14309e8 −0.855426 −0.427713 0.903915i \(-0.640681\pi\)
−0.427713 + 0.903915i \(0.640681\pi\)
\(252\) 0 0
\(253\) 1.20636e8 0.468334
\(254\) 0 0
\(255\) −2.11130e8 2.08144e8i −0.797367 0.786094i
\(256\) 0 0
\(257\) 2.63538e7 4.56461e7i 0.0968450 0.167740i −0.813532 0.581520i \(-0.802458\pi\)
0.910377 + 0.413779i \(0.135792\pi\)
\(258\) 0 0
\(259\) −2.79593e8 4.84269e8i −0.999946 1.73196i
\(260\) 0 0
\(261\) −2.41814e6 1.69814e8i −0.00841860 0.591195i
\(262\) 0 0
\(263\) 2.44289e8 + 4.23121e8i 0.828055 + 1.43423i 0.899562 + 0.436793i \(0.143886\pi\)
−0.0715077 + 0.997440i \(0.522781\pi\)
\(264\) 0 0
\(265\) 2.33449e8 4.04346e8i 0.770604 1.33473i
\(266\) 0 0
\(267\) 7.96078e6 3.05792e7i 0.0255956 0.0983189i
\(268\) 0 0
\(269\) −1.69083e8 −0.529622 −0.264811 0.964300i \(-0.585310\pi\)
−0.264811 + 0.964300i \(0.585310\pi\)
\(270\) 0 0
\(271\) 1.99531e8 0.609001 0.304501 0.952512i \(-0.401510\pi\)
0.304501 + 0.952512i \(0.401510\pi\)
\(272\) 0 0
\(273\) 1.55944e8 5.99017e8i 0.463873 1.78185i
\(274\) 0 0
\(275\) 5.34919e7 9.26506e7i 0.155104 0.268648i
\(276\) 0 0
\(277\) 1.77438e8 + 3.07331e8i 0.501611 + 0.868816i 0.999998 + 0.00186126i \(0.000592457\pi\)
−0.498387 + 0.866955i \(0.666074\pi\)
\(278\) 0 0
\(279\) 2.37010e8 1.41375e8i 0.653360 0.389725i
\(280\) 0 0
\(281\) 1.40245e8 + 2.42912e8i 0.377065 + 0.653096i 0.990634 0.136545i \(-0.0436000\pi\)
−0.613569 + 0.789641i \(0.710267\pi\)
\(282\) 0 0
\(283\) −7.95244e7 + 1.37740e8i −0.208568 + 0.361251i −0.951264 0.308379i \(-0.900214\pi\)
0.742696 + 0.669629i \(0.233547\pi\)
\(284\) 0 0
\(285\) −4.41298e8 4.35059e8i −1.12921 1.11325i
\(286\) 0 0
\(287\) 5.47822e8 1.36790
\(288\) 0 0
\(289\) −1.25409e8 −0.305623
\(290\) 0 0
\(291\) −7.32881e8 + 2.01978e8i −1.74344 + 0.480484i
\(292\) 0 0
\(293\) −1.72190e8 + 2.98242e8i −0.399918 + 0.692679i −0.993715 0.111936i \(-0.964295\pi\)
0.593797 + 0.804615i \(0.297628\pi\)
\(294\) 0 0
\(295\) 5.03600e8 + 8.72260e8i 1.14211 + 1.97819i
\(296\) 0 0
\(297\) −1.68860e8 4.14019e7i −0.374007 0.0917006i
\(298\) 0 0
\(299\) −4.44013e8 7.69052e8i −0.960608 1.66382i
\(300\) 0 0
\(301\) 1.43672e8 2.48847e8i 0.303661 0.525956i
\(302\) 0 0
\(303\) 1.91402e7 5.27494e6i 0.0395273 0.0108935i
\(304\) 0 0
\(305\) 2.83216e8 0.571569
\(306\) 0 0
\(307\) −5.28744e8 −1.04294 −0.521472 0.853269i \(-0.674617\pi\)
−0.521472 + 0.853269i \(0.674617\pi\)
\(308\) 0 0
\(309\) 1.61962e8 + 1.59673e8i 0.312291 + 0.307876i
\(310\) 0 0
\(311\) −1.43382e8 + 2.48345e8i −0.270292 + 0.468159i −0.968937 0.247310i \(-0.920454\pi\)
0.698645 + 0.715469i \(0.253787\pi\)
\(312\) 0 0
\(313\) −1.25124e7 2.16722e7i −0.0230641 0.0399482i 0.854263 0.519841i \(-0.174009\pi\)
−0.877327 + 0.479893i \(0.840676\pi\)
\(314\) 0 0
\(315\) −7.58522e8 4.23648e8i −1.36735 0.763693i
\(316\) 0 0
\(317\) 2.60137e8 + 4.50570e8i 0.458663 + 0.794428i 0.998891 0.0470910i \(-0.0149951\pi\)
−0.540227 + 0.841519i \(0.681662\pi\)
\(318\) 0 0
\(319\) −6.60038e7 + 1.14322e8i −0.113842 + 0.197180i
\(320\) 0 0
\(321\) −3.34190e7 + 1.28370e8i −0.0563931 + 0.216619i
\(322\) 0 0
\(323\) 5.95554e8 0.983359
\(324\) 0 0
\(325\) −7.87527e8 −1.27255
\(326\) 0 0
\(327\) 7.43894e7 2.85747e8i 0.117651 0.451924i
\(328\) 0 0
\(329\) 2.24043e8 3.88054e8i 0.346853 0.600768i
\(330\) 0 0
\(331\) −2.52520e8 4.37377e8i −0.382734 0.662915i 0.608718 0.793387i \(-0.291684\pi\)
−0.991452 + 0.130472i \(0.958351\pi\)
\(332\) 0 0
\(333\) 1.00942e9 + 5.63779e8i 1.49802 + 0.836669i
\(334\) 0 0
\(335\) 4.93078e7 + 8.54037e7i 0.0716571 + 0.124114i
\(336\) 0 0
\(337\) 9.18750e7 1.59132e8i 0.130765 0.226492i −0.793206 0.608953i \(-0.791590\pi\)
0.923972 + 0.382461i \(0.124923\pi\)
\(338\) 0 0
\(339\) 7.14133e8 + 7.04036e8i 0.995589 + 0.981513i
\(340\) 0 0
\(341\) −2.14510e8 −0.292960
\(342\) 0 0
\(343\) 5.58786e8 0.747681
\(344\) 0 0
\(345\) −1.20164e9 + 3.31166e8i −1.57546 + 0.434189i
\(346\) 0 0
\(347\) −1.43066e8 + 2.47797e8i −0.183816 + 0.318378i −0.943177 0.332291i \(-0.892178\pi\)
0.759361 + 0.650670i \(0.225512\pi\)
\(348\) 0 0
\(349\) 1.83182e7 + 3.17281e7i 0.0230672 + 0.0399535i 0.877329 0.479890i \(-0.159324\pi\)
−0.854261 + 0.519844i \(0.825990\pi\)
\(350\) 0 0
\(351\) 3.57570e8 + 1.22886e9i 0.441353 + 1.51680i
\(352\) 0 0
\(353\) −2.38469e8 4.13040e8i −0.288549 0.499782i 0.684914 0.728624i \(-0.259840\pi\)
−0.973464 + 0.228841i \(0.926506\pi\)
\(354\) 0 0
\(355\) −1.86083e8 + 3.22305e8i −0.220753 + 0.382356i
\(356\) 0 0
\(357\) 8.04957e8 2.21842e8i 0.936341 0.258050i
\(358\) 0 0
\(359\) 3.73983e8 0.426600 0.213300 0.976987i \(-0.431579\pi\)
0.213300 + 0.976987i \(0.431579\pi\)
\(360\) 0 0
\(361\) 3.50942e8 0.392609
\(362\) 0 0
\(363\) −5.52739e8 5.44924e8i −0.606522 0.597947i
\(364\) 0 0
\(365\) −1.96031e8 + 3.39535e8i −0.211008 + 0.365477i
\(366\) 0 0
\(367\) −2.91624e8 5.05107e8i −0.307958 0.533399i 0.669957 0.742400i \(-0.266312\pi\)
−0.977916 + 0.209000i \(0.932979\pi\)
\(368\) 0 0
\(369\) −9.72778e8 + 5.80256e8i −1.00791 + 0.601212i
\(370\) 0 0
\(371\) 6.57457e8 + 1.13875e9i 0.668434 + 1.15776i
\(372\) 0 0
\(373\) −7.38605e8 + 1.27930e9i −0.736939 + 1.27642i 0.216928 + 0.976188i \(0.430396\pi\)
−0.953867 + 0.300228i \(0.902937\pi\)
\(374\) 0 0
\(375\) 6.72195e7 2.58206e8i 0.0658242 0.252846i
\(376\) 0 0
\(377\) 9.71732e8 0.934011
\(378\) 0 0
\(379\) 6.08958e8 0.574580 0.287290 0.957844i \(-0.407246\pi\)
0.287290 + 0.957844i \(0.407246\pi\)
\(380\) 0 0
\(381\) −1.59857e8 + 6.14050e8i −0.148080 + 0.568809i
\(382\) 0 0
\(383\) −4.24357e8 + 7.35008e8i −0.385954 + 0.668492i −0.991901 0.127013i \(-0.959461\pi\)
0.605947 + 0.795505i \(0.292794\pi\)
\(384\) 0 0
\(385\) 3.37659e8 + 5.84842e8i 0.301554 + 0.522307i
\(386\) 0 0
\(387\) 8.45939e6 + 5.94060e8i 0.00741909 + 0.521005i
\(388\) 0 0
\(389\) 1.26651e8 + 2.19367e8i 0.109090 + 0.188950i 0.915402 0.402541i \(-0.131873\pi\)
−0.806312 + 0.591491i \(0.798540\pi\)
\(390\) 0 0
\(391\) 5.98943e8 1.03740e9i 0.506719 0.877662i
\(392\) 0 0
\(393\) 7.83658e8 + 7.72578e8i 0.651257 + 0.642049i
\(394\) 0 0
\(395\) −2.75569e9 −2.24978
\(396\) 0 0
\(397\) 9.92215e8 0.795865 0.397932 0.917415i \(-0.369728\pi\)
0.397932 + 0.917415i \(0.369728\pi\)
\(398\) 0 0
\(399\) 1.68250e9 4.63689e8i 1.32602 0.365445i
\(400\) 0 0
\(401\) 4.74376e8 8.21644e8i 0.367382 0.636324i −0.621774 0.783197i \(-0.713588\pi\)
0.989155 + 0.146873i \(0.0469209\pi\)
\(402\) 0 0
\(403\) 7.89524e8 + 1.36750e9i 0.600894 + 1.04078i
\(404\) 0 0
\(405\) 1.79565e9 5.11504e7i 1.34317 0.0382610i
\(406\) 0 0
\(407\) −4.49346e8 7.78290e8i −0.330370 0.572217i
\(408\) 0 0
\(409\) −3.88383e8 + 6.72699e8i −0.280691 + 0.486171i −0.971555 0.236813i \(-0.923897\pi\)
0.690864 + 0.722985i \(0.257230\pi\)
\(410\) 0 0
\(411\) 1.26194e9 3.47784e8i 0.896586 0.247094i
\(412\) 0 0
\(413\) −2.83655e9 −1.98137
\(414\) 0 0
\(415\) −1.46183e9 −1.00399
\(416\) 0 0
\(417\) 2.66484e8 + 2.62716e8i 0.179968 + 0.177423i
\(418\) 0 0
\(419\) −3.14943e8 + 5.45498e8i −0.209162 + 0.362280i −0.951451 0.307801i \(-0.900407\pi\)
0.742289 + 0.670080i \(0.233740\pi\)
\(420\) 0 0
\(421\) −5.52425e8 9.56829e8i −0.360816 0.624952i 0.627279 0.778795i \(-0.284169\pi\)
−0.988095 + 0.153842i \(0.950835\pi\)
\(422\) 0 0
\(423\) 1.31917e7 + 9.26382e8i 0.00847438 + 0.595112i
\(424\) 0 0
\(425\) −5.31160e8 9.19997e8i −0.335633 0.581333i
\(426\) 0 0
\(427\) −3.98808e8 + 6.90755e8i −0.247894 + 0.429365i
\(428\) 0 0
\(429\) 2.50624e8 9.62707e8i 0.153258 0.588700i
\(430\) 0 0
\(431\) 2.85661e8 0.171863 0.0859313 0.996301i \(-0.472613\pi\)
0.0859313 + 0.996301i \(0.472613\pi\)
\(432\) 0 0
\(433\) 4.76788e8 0.282239 0.141120 0.989993i \(-0.454930\pi\)
0.141120 + 0.989993i \(0.454930\pi\)
\(434\) 0 0
\(435\) 3.43623e8 1.31994e9i 0.200157 0.768849i
\(436\) 0 0
\(437\) 1.25190e9 2.16835e9i 0.717602 1.24292i
\(438\) 0 0
\(439\) 1.25879e9 + 2.18029e9i 0.710112 + 1.22995i 0.964815 + 0.262931i \(0.0846890\pi\)
−0.254703 + 0.967019i \(0.581978\pi\)
\(440\) 0 0
\(441\) 5.54561e8 3.30792e8i 0.307903 0.183662i
\(442\) 0 0
\(443\) −2.29324e8 3.97201e8i −0.125325 0.217069i 0.796535 0.604592i \(-0.206664\pi\)
−0.921860 + 0.387523i \(0.873331\pi\)
\(444\) 0 0
\(445\) 1.26886e8 2.19772e8i 0.0682578 0.118226i
\(446\) 0 0
\(447\) −9.04691e8 8.91900e8i −0.479098 0.472324i
\(448\) 0 0
\(449\) −1.46433e9 −0.763444 −0.381722 0.924277i \(-0.624669\pi\)
−0.381722 + 0.924277i \(0.624669\pi\)
\(450\) 0 0
\(451\) 8.80429e8 0.451936
\(452\) 0 0
\(453\) 1.89293e9 5.21682e8i 0.956735 0.263671i
\(454\) 0 0
\(455\) 2.48557e9 4.30513e9i 1.23704 2.14262i
\(456\) 0 0
\(457\) −6.98299e8 1.20949e9i −0.342243 0.592783i 0.642606 0.766197i \(-0.277853\pi\)
−0.984849 + 0.173414i \(0.944520\pi\)
\(458\) 0 0
\(459\) −1.19440e9 + 1.24654e9i −0.576509 + 0.601677i
\(460\) 0 0
\(461\) 1.98110e9 + 3.43137e9i 0.941789 + 1.63123i 0.762056 + 0.647511i \(0.224190\pi\)
0.179733 + 0.983715i \(0.442476\pi\)
\(462\) 0 0
\(463\) −9.40813e8 + 1.62954e9i −0.440524 + 0.763010i −0.997728 0.0673653i \(-0.978541\pi\)
0.557204 + 0.830375i \(0.311874\pi\)
\(464\) 0 0
\(465\) 2.13671e9 5.88866e8i 0.985508 0.271601i
\(466\) 0 0
\(467\) −9.69518e8 −0.440501 −0.220250 0.975443i \(-0.570687\pi\)
−0.220250 + 0.975443i \(0.570687\pi\)
\(468\) 0 0
\(469\) −2.77729e8 −0.124313
\(470\) 0 0
\(471\) 2.73242e9 + 2.69378e9i 1.20496 + 1.18793i
\(472\) 0 0
\(473\) 2.30901e8 3.99933e8i 0.100326 0.173769i
\(474\) 0 0
\(475\) −1.11022e9 1.92296e9i −0.475315 0.823269i
\(476\) 0 0
\(477\) −2.37363e9 1.32571e9i −1.00138 0.559288i
\(478\) 0 0
\(479\) −1.00435e9 1.73959e9i −0.417552 0.723222i 0.578140 0.815937i \(-0.303779\pi\)
−0.995693 + 0.0927156i \(0.970445\pi\)
\(480\) 0 0
\(481\) −3.30772e9 + 5.72913e9i −1.35525 + 2.34737i
\(482\) 0 0
\(483\) 8.84376e8 3.39709e9i 0.357126 1.37181i
\(484\) 0 0
\(485\) −6.10529e9 −2.43002
\(486\) 0 0
\(487\) −3.02884e9 −1.18830 −0.594148 0.804356i \(-0.702510\pi\)
−0.594148 + 0.804356i \(0.702510\pi\)
\(488\) 0 0
\(489\) 3.40833e8 1.30922e9i 0.131814 0.506327i
\(490\) 0 0
\(491\) 2.25862e9 3.91204e9i 0.861107 1.49148i −0.00975413 0.999952i \(-0.503105\pi\)
0.870861 0.491529i \(-0.163562\pi\)
\(492\) 0 0
\(493\) 6.55401e8 + 1.13519e9i 0.246344 + 0.426681i
\(494\) 0 0
\(495\) −1.21905e9 6.80864e8i −0.451757 0.252315i
\(496\) 0 0
\(497\) −5.24061e8 9.07700e8i −0.191485 0.331661i
\(498\) 0 0
\(499\) −2.32832e9 + 4.03277e9i −0.838862 + 1.45295i 0.0519839 + 0.998648i \(0.483446\pi\)
−0.890846 + 0.454305i \(0.849888\pi\)
\(500\) 0 0
\(501\) −8.89747e8 8.77167e8i −0.316107 0.311638i
\(502\) 0 0
\(503\) −2.88413e9 −1.01048 −0.505239 0.862980i \(-0.668596\pi\)
−0.505239 + 0.862980i \(0.668596\pi\)
\(504\) 0 0
\(505\) 1.59448e8 0.0550934
\(506\) 0 0
\(507\) −4.23069e9 + 1.16595e9i −1.44173 + 0.397332i
\(508\) 0 0
\(509\) 6.60362e8 1.14378e9i 0.221957 0.384442i −0.733445 0.679749i \(-0.762089\pi\)
0.955402 + 0.295307i \(0.0954221\pi\)
\(510\) 0 0
\(511\) −5.52077e8 9.56225e8i −0.183032 0.317020i
\(512\) 0 0
\(513\) −2.49651e9 + 2.60550e9i −0.816437 + 0.852079i
\(514\) 0 0
\(515\) 9.13283e8 + 1.58185e9i 0.294632 + 0.510318i
\(516\) 0 0
\(517\) 3.60070e8 6.23659e8i 0.114596 0.198486i
\(518\) 0 0
\(519\) 1.18628e9 3.26931e8i 0.372477 0.102653i
\(520\) 0 0
\(521\) 5.14654e9 1.59435 0.797175 0.603749i \(-0.206327\pi\)
0.797175 + 0.603749i \(0.206327\pi\)
\(522\) 0 0
\(523\) 2.17050e9 0.663444 0.331722 0.943377i \(-0.392370\pi\)
0.331722 + 0.943377i \(0.392370\pi\)
\(524\) 0 0
\(525\) −2.21688e9 2.18554e9i −0.668628 0.659175i
\(526\) 0 0
\(527\) −1.06502e9 + 1.84466e9i −0.316970 + 0.549009i
\(528\) 0 0
\(529\) −8.15632e8 1.41272e9i −0.239552 0.414916i
\(530\) 0 0
\(531\) 5.03692e9 3.00449e9i 1.45994 0.870844i
\(532\) 0 0
\(533\) −3.24050e9 5.61271e9i −0.926972 1.60556i
\(534\) 0 0
\(535\) −5.32661e8 + 9.22595e8i −0.150388 + 0.260479i
\(536\) 0 0
\(537\) 2.58876e8 9.94405e8i 0.0721410 0.277111i
\(538\) 0 0
\(539\) −5.01915e8 −0.138060
\(540\) 0 0
\(541\) −9.27955e7 −0.0251963 −0.0125981 0.999921i \(-0.504010\pi\)
−0.0125981 + 0.999921i \(0.504010\pi\)
\(542\) 0 0
\(543\) 1.48690e9 5.71153e9i 0.398549 1.53092i
\(544\) 0 0
\(545\) 1.18568e9 2.05366e9i 0.313747 0.543427i
\(546\) 0 0
\(547\) −2.73518e9 4.73747e9i −0.714547 1.23763i −0.963134 0.269022i \(-0.913300\pi\)
0.248588 0.968609i \(-0.420034\pi\)
\(548\) 0 0
\(549\) −2.34818e7 1.64901e9i −0.00605659 0.425323i
\(550\) 0 0
\(551\) 1.36990e9 + 2.37274e9i 0.348867 + 0.604255i
\(552\) 0 0
\(553\) 3.88039e9 6.72104e9i 0.975749 1.69005i
\(554\) 0 0
\(555\) 6.61241e9 + 6.51892e9i 1.64185 + 1.61864i
\(556\) 0 0
\(557\) 4.50060e9 1.10351 0.551756 0.834006i \(-0.313958\pi\)
0.551756 + 0.834006i \(0.313958\pi\)
\(558\) 0 0
\(559\) −3.39941e9 −0.823119
\(560\) 0 0
\(561\) 1.29368e9 3.56532e8i 0.309355 0.0852567i
\(562\) 0 0
\(563\) 3.06529e9 5.30923e9i 0.723922 1.25387i −0.235494 0.971876i \(-0.575671\pi\)
0.959416 0.281994i \(-0.0909957\pi\)
\(564\) 0 0
\(565\) 4.02690e9 + 6.97479e9i 0.939292 + 1.62690i
\(566\) 0 0
\(567\) −2.40377e9 + 4.45156e9i −0.553800 + 1.02559i
\(568\) 0 0
\(569\) 1.71059e9 + 2.96282e9i 0.389271 + 0.674238i 0.992352 0.123443i \(-0.0393935\pi\)
−0.603080 + 0.797680i \(0.706060\pi\)
\(570\) 0 0
\(571\) 1.14292e9 1.97960e9i 0.256916 0.444991i −0.708498 0.705712i \(-0.750627\pi\)
0.965414 + 0.260721i \(0.0839604\pi\)
\(572\) 0 0
\(573\) 8.09049e9 2.22969e9i 1.79653 0.495113i
\(574\) 0 0
\(575\) −4.46615e9 −0.979706
\(576\) 0 0
\(577\) −7.03121e9 −1.52375 −0.761877 0.647722i \(-0.775722\pi\)
−0.761877 + 0.647722i \(0.775722\pi\)
\(578\) 0 0
\(579\) −9.93467e8 9.79420e8i −0.212705 0.209698i
\(580\) 0 0
\(581\) 2.05846e9 3.56536e9i 0.435438 0.754200i
\(582\) 0 0
\(583\) 1.05663e9 + 1.83013e9i 0.220842 + 0.382510i
\(584\) 0 0
\(585\) 1.46350e8 + 1.02774e10i 0.0302237 + 2.12245i
\(586\) 0 0
\(587\) −4.47158e8 7.74500e8i −0.0912488 0.158048i 0.816788 0.576938i \(-0.195753\pi\)
−0.908037 + 0.418890i \(0.862419\pi\)
\(588\) 0 0
\(589\) −2.22607e9 + 3.85567e9i −0.448886 + 0.777493i
\(590\) 0 0
\(591\) 7.90402e8 3.03612e9i 0.157504 0.605010i
\(592\) 0 0
\(593\) −8.80907e9 −1.73476 −0.867379 0.497649i \(-0.834197\pi\)
−0.867379 + 0.497649i \(0.834197\pi\)
\(594\) 0 0
\(595\) 6.70572e9 1.30508
\(596\) 0 0
\(597\) 1.39235e9 5.34835e9i 0.267817 1.02875i
\(598\) 0 0
\(599\) 4.91595e8 8.51468e8i 0.0934574 0.161873i −0.815506 0.578748i \(-0.803541\pi\)
0.908964 + 0.416875i \(0.136875\pi\)
\(600\) 0 0
\(601\) −1.02236e9 1.77078e9i −0.192107 0.332739i 0.753841 0.657056i \(-0.228199\pi\)
−0.945948 + 0.324317i \(0.894865\pi\)
\(602\) 0 0
\(603\) 4.93169e8 2.94172e8i 0.0915978 0.0546375i
\(604\) 0 0
\(605\) −3.11682e9 5.39848e9i −0.572226 0.991124i
\(606\) 0 0
\(607\) 1.78806e9 3.09701e9i 0.324505 0.562059i −0.656907 0.753971i \(-0.728136\pi\)
0.981412 + 0.191913i \(0.0614690\pi\)
\(608\) 0 0
\(609\) 2.73542e9 + 2.69674e9i 0.490753 + 0.483815i
\(610\) 0 0
\(611\) −5.30108e9 −0.940199
\(612\) 0 0
\(613\) 1.22567e9 0.214913 0.107457 0.994210i \(-0.465729\pi\)
0.107457 + 0.994210i \(0.465729\pi\)
\(614\) 0 0
\(615\) −8.76985e9 + 2.41692e9i −1.52030 + 0.418986i
\(616\) 0 0
\(617\) −3.80166e9 + 6.58468e9i −0.651592 + 1.12859i 0.331145 + 0.943580i \(0.392565\pi\)
−0.982737 + 0.185010i \(0.940768\pi\)
\(618\) 0 0
\(619\) 2.87850e9 + 4.98571e9i 0.487808 + 0.844908i 0.999902 0.0140213i \(-0.00446327\pi\)
−0.512094 + 0.858930i \(0.671130\pi\)
\(620\) 0 0
\(621\) 2.02782e9 + 6.96902e9i 0.339789 + 1.16775i
\(622\) 0 0
\(623\) 3.57345e8 + 6.18940e8i 0.0592079 + 0.102551i
\(624\) 0 0
\(625\) 3.52977e9 6.11374e9i 0.578317 1.00167i
\(626\) 0 0
\(627\) 2.70403e9 7.45215e8i 0.438101 0.120738i
\(628\) 0 0
\(629\) −8.92377e9 −1.42979
\(630\) 0 0
\(631\) 2.41912e9 0.383313 0.191657 0.981462i \(-0.438614\pi\)
0.191657 + 0.981462i \(0.438614\pi\)
\(632\) 0 0
\(633\) −3.46299e9 3.41403e9i −0.542674 0.535001i
\(634\) 0 0
\(635\) −2.54794e9 + 4.41316e9i −0.394895 + 0.683978i
\(636\) 0 0
\(637\) 1.84734e9 + 3.19969e9i 0.283178 + 0.490479i
\(638\) 0 0
\(639\) 1.89202e9 + 1.05673e9i 0.286863 + 0.160218i
\(640\) 0 0
\(641\) 3.95891e9 + 6.85703e9i 0.593707 + 1.02833i 0.993728 + 0.111825i \(0.0356696\pi\)
−0.400021 + 0.916506i \(0.630997\pi\)
\(642\) 0 0
\(643\) −5.35854e9 + 9.28126e9i −0.794891 + 1.37679i 0.128017 + 0.991772i \(0.459139\pi\)
−0.922908 + 0.385020i \(0.874195\pi\)
\(644\) 0 0
\(645\) −1.20210e9 + 4.61754e9i −0.176393 + 0.677566i
\(646\) 0 0
\(647\) −8.06643e9 −1.17089 −0.585446 0.810712i \(-0.699080\pi\)
−0.585446 + 0.810712i \(0.699080\pi\)
\(648\) 0 0
\(649\) −4.55875e9 −0.654620
\(650\) 0 0
\(651\) −1.57256e9 + 6.04057e9i −0.223395 + 0.858113i
\(652\) 0 0
\(653\) −5.00680e9 + 8.67202e9i −0.703661 + 1.21878i 0.263511 + 0.964656i \(0.415119\pi\)
−0.967172 + 0.254121i \(0.918214\pi\)
\(654\) 0 0
\(655\) 4.41894e9 + 7.65382e9i 0.614431 + 1.06423i
\(656\) 0 0
\(657\) 1.99317e9 + 1.11322e9i 0.274199 + 0.153145i
\(658\) 0 0
\(659\) 7.05570e9 + 1.22208e10i 0.960376 + 1.66342i 0.721555 + 0.692357i \(0.243428\pi\)
0.238821 + 0.971064i \(0.423239\pi\)
\(660\) 0 0
\(661\) −4.81075e9 + 8.33246e9i −0.647899 + 1.12219i 0.335725 + 0.941960i \(0.391019\pi\)
−0.983624 + 0.180234i \(0.942315\pi\)
\(662\) 0 0
\(663\) −7.03440e9 6.93494e9i −0.937410 0.924156i
\(664\) 0 0
\(665\) 1.40162e10 1.84822
\(666\) 0 0
\(667\) 5.51080e9 0.719075
\(668\) 0 0
\(669\) −7.28249e9 + 2.00701e9i −0.940348 + 0.259155i
\(670\) 0 0
\(671\) −6.40941e8 + 1.11014e9i −0.0819011 + 0.141857i
\(672\) 0 0
\(673\) −5.84290e9 1.01202e10i −0.738884 1.27978i −0.952998 0.302975i \(-0.902020\pi\)
0.214115 0.976808i \(-0.431313\pi\)
\(674\) 0 0
\(675\) 6.25149e9 + 1.53276e9i 0.782384 + 0.191828i
\(676\) 0 0
\(677\) 5.55719e9 + 9.62534e9i 0.688327 + 1.19222i 0.972379 + 0.233409i \(0.0749881\pi\)
−0.284051 + 0.958809i \(0.591679\pi\)
\(678\) 0 0
\(679\) 8.59710e9 1.48906e10i 1.05392 1.82544i
\(680\) 0 0
\(681\) 1.71562e9 4.72817e8i 0.208165 0.0573691i
\(682\) 0 0
\(683\) 1.61450e10 1.93894 0.969472 0.245201i \(-0.0788539\pi\)
0.969472 + 0.245201i \(0.0788539\pi\)
\(684\) 0 0
\(685\) 1.05126e10 1.24967
\(686\) 0 0
\(687\) −9.64833e9 9.51191e9i −1.13528 1.11923i
\(688\) 0 0
\(689\) 7.77803e9 1.34719e10i 0.905946 1.56915i
\(690\) 0 0
\(691\) −6.98902e8 1.21053e9i −0.0805829 0.139574i 0.822918 0.568161i \(-0.192345\pi\)
−0.903500 + 0.428587i \(0.859012\pi\)
\(692\) 0 0
\(693\) 3.37720e9 2.01448e9i 0.385470 0.229931i
\(694\) 0 0
\(695\) 1.50267e9 + 2.60269e9i 0.169791 + 0.294087i
\(696\) 0 0
\(697\) 4.37122e9 7.57117e9i 0.488976 0.846931i
\(698\) 0 0
\(699\) −8.77860e8 + 3.37207e9i −0.0972199 + 0.373445i
\(700\) 0 0
\(701\) −1.34244e9 −0.147191 −0.0735956 0.997288i \(-0.523447\pi\)
−0.0735956 + 0.997288i \(0.523447\pi\)
\(702\) 0 0
\(703\) −1.86523e10 −2.02483
\(704\) 0 0
\(705\) −1.87456e9 + 7.20064e9i −0.201483 + 0.773943i
\(706\) 0 0
\(707\) −2.24525e8 + 3.88889e8i −0.0238944 + 0.0413864i
\(708\) 0 0
\(709\) 7.93153e9 + 1.37378e10i 0.835786 + 1.44762i 0.893389 + 0.449285i \(0.148321\pi\)
−0.0576025 + 0.998340i \(0.518346\pi\)
\(710\) 0 0
\(711\) 2.28478e8 + 1.60448e10i 0.0238397 + 1.67414i
\(712\) 0 0
\(713\) 4.47748e9 + 7.75522e9i 0.462616 + 0.801274i
\(714\) 0 0
\(715\) 3.99466e9 6.91896e9i 0.408704 0.707896i
\(716\) 0 0
\(717\) −5.98335e9 5.89875e9i −0.606216 0.597645i
\(718\) 0 0
\(719\) −2.14766e9 −0.215483 −0.107742 0.994179i \(-0.534362\pi\)
−0.107742 + 0.994179i \(0.534362\pi\)
\(720\) 0 0
\(721\) −5.14412e9 −0.511137
\(722\) 0 0
\(723\) 2.74421e9 7.56291e8i 0.270044 0.0744226i
\(724\) 0 0
\(725\) 2.44357e9 4.23239e9i 0.238145 0.412480i
\(726\) 0 0
\(727\) −5.14336e9 8.90856e9i −0.496451 0.859879i 0.503540 0.863972i \(-0.332031\pi\)
−0.999992 + 0.00409288i \(0.998697\pi\)
\(728\) 0 0
\(729\) −4.46699e8 1.04508e10i −0.0427040 0.999088i
\(730\) 0 0
\(731\) −2.29279e9 3.97123e9i −0.217097 0.376023i
\(732\) 0 0
\(733\) 1.60210e9 2.77493e9i 0.150254 0.260248i −0.781067 0.624448i \(-0.785324\pi\)
0.931321 + 0.364200i \(0.118657\pi\)
\(734\) 0 0
\(735\) 4.99951e9 1.37784e9i 0.464432 0.127995i
\(736\) 0 0
\(737\) −4.46351e8 −0.0410715
\(738\) 0 0
\(739\) −1.29766e10 −1.18279 −0.591394 0.806383i \(-0.701422\pi\)
−0.591394 + 0.806383i \(0.701422\pi\)
\(740\) 0 0
\(741\) −1.47031e10 1.44953e10i −1.32754 1.30877i
\(742\) 0 0
\(743\) 3.62353e9 6.27614e9i 0.324094 0.561348i −0.657234 0.753686i \(-0.728274\pi\)
0.981329 + 0.192339i \(0.0616072\pi\)
\(744\) 0 0
\(745\) −5.10143e9 8.83593e9i −0.452007 0.782898i
\(746\) 0 0
\(747\) 1.21202e8 + 8.51141e9i 0.0106387 + 0.747101i
\(748\) 0 0
\(749\) −1.50012e9 2.59828e9i −0.130449 0.225944i
\(750\) 0 0
\(751\) −4.47123e9 + 7.74440e9i −0.385201 + 0.667188i −0.991797 0.127822i \(-0.959201\pi\)
0.606596 + 0.795010i \(0.292535\pi\)
\(752\) 0 0
\(753\) −2.52496e9 + 9.69897e9i −0.215512 + 0.827834i
\(754\) 0 0
\(755\) 1.57692e10 1.33350
\(756\) 0 0
\(757\) 1.36108e10 1.14037 0.570187 0.821515i \(-0.306871\pi\)
0.570187 + 0.821515i \(0.306871\pi\)
\(758\) 0 0
\(759\) 1.42132e9 5.45962e9i 0.117990 0.453228i
\(760\) 0 0
\(761\) 1.10122e10 1.90738e10i 0.905794 1.56888i 0.0859464 0.996300i \(-0.472609\pi\)
0.819848 0.572582i \(-0.194058\pi\)
\(762\) 0 0
\(763\) 3.33921e9 + 5.78368e9i 0.272149 + 0.471377i
\(764\) 0 0
\(765\) −1.19075e10 + 7.10274e9i −0.961623 + 0.573602i
\(766\) 0 0
\(767\) 1.67789e10 + 2.90619e10i 1.34270 + 2.32563i
\(768\) 0 0
\(769\) −5.17112e9 + 8.95663e9i −0.410055 + 0.710236i −0.994895 0.100912i \(-0.967824\pi\)
0.584840 + 0.811148i \(0.301157\pi\)
\(770\) 0 0
\(771\) −1.75531e9 1.73049e9i −0.137931 0.135981i
\(772\) 0 0
\(773\) 3.65169e9 0.284358 0.142179 0.989841i \(-0.454589\pi\)
0.142179 + 0.989841i \(0.454589\pi\)
\(774\) 0 0
\(775\) 7.94152e9 0.612841
\(776\) 0 0
\(777\) −2.52106e10 + 6.94791e9i −1.92801 + 0.531350i
\(778\) 0 0
\(779\) 9.13662e9 1.58251e10i 0.692476 1.19940i
\(780\) 0 0
\(781\) −8.42241e8 1.45880e9i −0.0632642 0.109577i
\(782\) 0 0
\(783\) −7.71373e9 1.89128e9i −0.574247 0.140796i
\(784\) 0 0
\(785\) 1.54077e10 + 2.66869e10i 1.13683 + 1.96904i
\(786\) 0 0
\(787\) 1.19537e10 2.07044e10i 0.874158 1.51409i 0.0165008 0.999864i \(-0.494747\pi\)
0.857657 0.514222i \(-0.171919\pi\)
\(788\) 0 0
\(789\) 2.20273e10 6.07061e9i 1.59659 0.440011i
\(790\) 0 0
\(791\) −2.26817e10 −1.62951
\(792\) 0 0
\(793\) 9.43617e9 0.671954
\(794\) 0 0
\(795\) −1.55490e10 1.53291e10i −1.09753 1.08201i
\(796\) 0 0
\(797\) −1.36082e10 + 2.35700e10i −0.952128 + 1.64913i −0.211321 + 0.977417i \(0.567777\pi\)
−0.740807 + 0.671718i \(0.765557\pi\)
\(798\) 0 0
\(799\) −3.57540e9 6.19277e9i −0.247977 0.429508i
\(800\) 0 0
\(801\) −1.29013e9 7.20560e8i −0.0886991 0.0495401i
\(802\) 0 0
\(803\) −8.87267e8 1.53679e9i −0.0604714 0.104740i
\(804\) 0 0
\(805\) 1.40959e10 2.44149e10i 0.952375 1.64956i
\(806\) 0 0
\(807\) −1.99211e9 + 7.65216e9i −0.133431 + 0.512538i
\(808\) 0 0
\(809\) −2.09999e10 −1.39443 −0.697216 0.716861i \(-0.745578\pi\)
−0.697216 + 0.716861i \(0.745578\pi\)
\(810\) 0 0
\(811\) 1.21414e10 0.799276 0.399638 0.916673i \(-0.369136\pi\)
0.399638 + 0.916673i \(0.369136\pi\)
\(812\) 0 0
\(813\) 2.35085e9 9.03016e9i 0.153429 0.589357i
\(814\) 0 0
\(815\) 5.43248e9 9.40933e9i 0.351517 0.608845i
\(816\) 0 0
\(817\) −4.79234e9 8.30057e9i −0.307447 0.532514i
\(818\) 0 0
\(819\) −2.52724e10 1.41151e10i −1.60750 0.897821i
\(820\) 0 0
\(821\) 5.66101e9 + 9.80516e9i 0.357020 + 0.618377i 0.987462 0.157860i \(-0.0504593\pi\)
−0.630441 + 0.776237i \(0.717126\pi\)
\(822\) 0 0
\(823\) −2.91399e9 + 5.04718e9i −0.182217 + 0.315609i −0.942635 0.333825i \(-0.891661\pi\)
0.760418 + 0.649434i \(0.224994\pi\)
\(824\) 0 0
\(825\) −3.56285e9 3.51247e9i −0.220906 0.217783i
\(826\) 0 0
\(827\) −2.11794e10 −1.30210 −0.651050 0.759034i \(-0.725671\pi\)
−0.651050 + 0.759034i \(0.725671\pi\)
\(828\) 0 0
\(829\) −1.77492e10 −1.08203 −0.541013 0.841014i \(-0.681959\pi\)
−0.541013 + 0.841014i \(0.681959\pi\)
\(830\) 0 0
\(831\) 1.59994e10 4.40935e9i 0.967165 0.266545i
\(832\) 0 0
\(833\) −2.49194e9 + 4.31617e9i −0.149376 + 0.258727i
\(834\) 0 0
\(835\) −5.01716e9 8.68997e9i −0.298233 0.516554i
\(836\) 0 0
\(837\) −3.60578e9 1.23920e10i −0.212550 0.730471i
\(838\) 0 0
\(839\) −1.31911e10 2.28476e10i −0.771104 1.33559i −0.936959 0.349441i \(-0.886372\pi\)
0.165855 0.986150i \(-0.446962\pi\)
\(840\) 0 0
\(841\) 5.60981e9 9.71647e9i 0.325209 0.563278i
\(842\) 0 0
\(843\) 1.26458e10 3.48511e9i 0.727026 0.200364i
\(844\) 0 0
\(845\) −3.52439e10 −2.00949
\(846\) 0 0
\(847\) 1.75556e10 0.992715
\(848\) 0 0
\(849\) 5.29676e9 + 5.22187e9i 0.297052 + 0.292853i
\(850\) 0 0
\(851\) −1.87584e10 + 3.24905e10i −1.04338 + 1.80719i
\(852\) 0 0
\(853\) −1.33903e10 2.31927e10i −0.738701 1.27947i −0.953080 0.302717i \(-0.902106\pi\)
0.214379 0.976750i \(-0.431227\pi\)
\(854\) 0 0
\(855\) −2.48887e10 + 1.48460e10i −1.36183 + 0.812321i
\(856\) 0 0
\(857\) −6.44399e9 1.11613e10i −0.349721 0.605735i 0.636479 0.771294i \(-0.280390\pi\)
−0.986200 + 0.165560i \(0.947057\pi\)
\(858\) 0 0
\(859\) 2.13794e9 3.70302e9i 0.115085 0.199333i −0.802729 0.596344i \(-0.796619\pi\)
0.917814 + 0.397011i \(0.129953\pi\)
\(860\) 0 0
\(861\) 6.45437e9 2.47927e10i 0.344622 1.32377i
\(862\) 0 0
\(863\) 2.63998e10 1.39818 0.699089 0.715035i \(-0.253589\pi\)
0.699089 + 0.715035i \(0.253589\pi\)
\(864\) 0 0
\(865\) 9.88231e9 0.519161
\(866\) 0 0
\(867\) −1.47755e9 + 5.67562e9i −0.0769973 + 0.295765i
\(868\) 0 0
\(869\) 6.23635e9 1.08017e10i 0.322375 0.558370i
\(870\) 0 0
\(871\) 1.64283e9 + 2.84547e9i 0.0842423 + 0.145912i
\(872\) 0 0
\(873\) 5.06197e8 + 3.55476e10i 0.0257495 + 1.80826i
\(874\) 0 0
\(875\) 3.01736e9 + 5.22622e9i 0.152265 + 0.263730i
\(876\) 0 0
\(877\) −7.19624e9 + 1.24642e10i −0.360252 + 0.623975i −0.988002 0.154440i \(-0.950643\pi\)
0.627750 + 0.778415i \(0.283976\pi\)
\(878\) 0 0
\(879\) 1.14688e10 + 1.13066e10i 0.569582 + 0.561529i
\(880\) 0 0
\(881\) 2.86878e10 1.41345 0.706727 0.707487i \(-0.250171\pi\)
0.706727 + 0.707487i \(0.250171\pi\)
\(882\) 0 0
\(883\) −1.10176e10 −0.538550 −0.269275 0.963063i \(-0.586784\pi\)
−0.269275 + 0.963063i \(0.586784\pi\)
\(884\) 0 0
\(885\) 4.54091e10 1.25145e10i 2.20212 0.606893i
\(886\) 0 0
\(887\) 8.77534e9 1.51993e10i 0.422213 0.731294i −0.573943 0.818895i \(-0.694587\pi\)
0.996156 + 0.0876014i \(0.0279202\pi\)
\(888\) 0 0
\(889\) −7.17571e9 1.24287e10i −0.342538 0.593293i
\(890\) 0 0
\(891\) −3.86321e9 + 7.15430e9i −0.182968 + 0.338841i
\(892\) 0 0
\(893\) −7.47322e9 1.29440e10i −0.351178 0.608259i
\(894\) 0 0
\(895\) 4.12619e9 7.14677e9i 0.192384 0.333218i
\(896\) 0 0
\(897\) −4.00362e10 + 1.10338e10i −1.85216 + 0.510446i
\(898\) 0 0
\(899\) −9.79907e9 −0.449807
\(900\) 0 0
\(901\) 2.09841e10 0.955770
\(902\) 0 0
\(903\) −9.56931e9 9.43402e9i −0.432488 0.426373i
\(904\) 0 0
\(905\) 2.36994e10 4.10486e10i 1.06284 1.84089i
\(906\) 0 0
\(907\) −8.42225e9 1.45878e10i −0.374803 0.649177i 0.615495 0.788141i \(-0.288956\pi\)
−0.990297 + 0.138964i \(0.955623\pi\)
\(908\) 0 0
\(909\) −1.32200e7 9.28375e8i −0.000583793 0.0409968i
\(910\) 0 0
\(911\) 7.36357e9 + 1.27541e10i 0.322682 + 0.558901i 0.981040 0.193803i \(-0.0620823\pi\)
−0.658359 + 0.752704i \(0.728749\pi\)
\(912\) 0 0
\(913\) 3.30824e9 5.73005e9i 0.143863 0.249178i
\(914\) 0 0
\(915\) 3.33682e9 1.28175e10i 0.143999 0.553133i
\(916\) 0 0
\(917\) −2.48899e10 −1.06593
\(918\) 0 0
\(919\) −7.11506e9 −0.302395 −0.151197 0.988504i \(-0.548313\pi\)
−0.151197 + 0.988504i \(0.548313\pi\)
\(920\) 0 0
\(921\) −6.22958e9 + 2.39293e10i −0.262755 + 1.00930i
\(922\) 0 0
\(923\) −6.19989e9 + 1.07385e10i −0.259524 + 0.449509i
\(924\) 0 0
\(925\) 1.66355e10 + 2.88136e10i 0.691099 + 1.19702i
\(926\) 0 0
\(927\) 9.13450e9 5.44868e9i 0.376622 0.224653i
\(928\) 0 0
\(929\) 1.69702e10 + 2.93933e10i 0.694437 + 1.20280i 0.970370 + 0.241624i \(0.0776799\pi\)
−0.275933 + 0.961177i \(0.588987\pi\)
\(930\) 0 0
\(931\) −5.20860e9 + 9.02156e9i −0.211542 + 0.366402i
\(932\) 0 0
\(933\) 9.55001e9 + 9.41499e9i 0.384962 + 0.379519i
\(934\) 0 0
\(935\) 1.07771e10 0.431181
\(936\) 0 0
\(937\) −3.78364e10 −1.50252 −0.751261 0.660005i \(-0.770554\pi\)
−0.751261 + 0.660005i \(0.770554\pi\)
\(938\) 0 0
\(939\) −1.12823e9 + 3.10935e8i −0.0444703 + 0.0122558i
\(940\) 0 0
\(941\) −8.44461e9 + 1.46265e10i −0.330382 + 0.572238i −0.982587 0.185805i \(-0.940511\pi\)
0.652205 + 0.758043i \(0.273844\pi\)
\(942\) 0 0
\(943\) −1.83772e10 3.18303e10i −0.713657 1.23609i
\(944\) 0 0
\(945\) −2.81098e10 + 2.93370e10i −1.08354 + 1.13085i
\(946\) 0 0
\(947\) 5.84561e9 + 1.01249e10i 0.223668 + 0.387405i 0.955919 0.293630i \(-0.0948634\pi\)
−0.732251 + 0.681035i \(0.761530\pi\)
\(948\) 0 0
\(949\) −6.53134e9 + 1.13126e10i −0.248068 + 0.429666i
\(950\) 0 0
\(951\) 2.34563e10 6.46443e9i 0.884357 0.243724i
\(952\) 0 0
\(953\) 5.10551e10 1.91079 0.955397 0.295323i \(-0.0954274\pi\)
0.955397 + 0.295323i \(0.0954274\pi\)
\(954\) 0 0
\(955\) 6.73981e10 2.50401
\(956\) 0 0
\(957\) 4.39621e9 + 4.33405e9i 0.162139 + 0.159846i
\(958\) 0 0
\(959\) −1.48032e10 + 2.56400e10i −0.541990 + 0.938755i
\(960\) 0 0
\(961\) 5.79464e9 + 1.00366e10i 0.210618 + 0.364800i
\(962\) 0 0
\(963\) 5.41591e9 + 3.02488e9i 0.195425 + 0.109148i
\(964\) 0 0
\(965\) −5.60202e9 9.70298e9i −0.200678 0.347584i
\(966\) 0 0
\(967\) −4.34365e9 + 7.52343e9i −0.154476 + 0.267561i −0.932868 0.360218i \(-0.882702\pi\)
0.778392 + 0.627779i \(0.216036\pi\)
\(968\) 0 0
\(969\) 7.01673e9 2.69529e10i 0.247743 0.951640i
\(970\) 0 0
\(971\) −3.91347e10 −1.37181 −0.685906 0.727690i \(-0.740594\pi\)
−0.685906 + 0.727690i \(0.740594\pi\)
\(972\) 0 0
\(973\) −8.46384e9 −0.294559
\(974\) 0 0
\(975\) −9.27853e9 + 3.56410e10i −0.320600 + 1.23150i
\(976\) 0 0
\(977\) 1.36255e10 2.36001e10i 0.467437 0.809624i −0.531871 0.846825i \(-0.678511\pi\)
0.999308 + 0.0372010i \(0.0118442\pi\)
\(978\) 0 0
\(979\) 5.74305e8 + 9.94725e8i 0.0195615 + 0.0338816i
\(980\) 0 0
\(981\) −1.20556e10 6.73327e9i −0.407706 0.227711i
\(982\) 0 0
\(983\) 3.56677e9 + 6.17782e9i 0.119767 + 0.207443i 0.919675 0.392680i \(-0.128452\pi\)
−0.799908 + 0.600122i \(0.795119\pi\)
\(984\) 0 0
\(985\) 1.25981e10 2.18205e10i 0.420028 0.727509i
\(986\) 0 0
\(987\) −1.49225e10 1.47115e10i −0.494005 0.487020i
\(988\) 0 0
\(989\) −1.92784e10 −0.633702
\(990\) 0 0
\(991\) 1.99378e10 0.650760 0.325380 0.945583i \(-0.394508\pi\)
0.325380 + 0.945583i \(0.394508\pi\)
\(992\) 0 0
\(993\) −2.27695e10 + 6.27514e9i −0.737956 + 0.203377i
\(994\) 0 0
\(995\) 2.21925e10 3.84385e10i 0.714208 1.23704i
\(996\) 0 0
\(997\) 6.37020e9 + 1.10335e10i 0.203573 + 0.352598i 0.949677 0.313231i \(-0.101411\pi\)
−0.746104 + 0.665829i \(0.768078\pi\)
\(998\) 0 0
\(999\) 3.74077e10 3.90408e10i 1.18708 1.23891i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 144.8.i.a.49.2 6
3.2 odd 2 432.8.i.a.145.1 6
4.3 odd 2 18.8.c.a.13.2 yes 6
9.2 odd 6 432.8.i.a.289.1 6
9.7 even 3 inner 144.8.i.a.97.2 6
12.11 even 2 54.8.c.a.37.1 6
36.7 odd 6 18.8.c.a.7.2 6
36.11 even 6 54.8.c.a.19.1 6
36.23 even 6 162.8.a.e.1.3 3
36.31 odd 6 162.8.a.f.1.1 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
18.8.c.a.7.2 6 36.7 odd 6
18.8.c.a.13.2 yes 6 4.3 odd 2
54.8.c.a.19.1 6 36.11 even 6
54.8.c.a.37.1 6 12.11 even 2
144.8.i.a.49.2 6 1.1 even 1 trivial
144.8.i.a.97.2 6 9.7 even 3 inner
162.8.a.e.1.3 3 36.23 even 6
162.8.a.f.1.1 3 36.31 odd 6
432.8.i.a.145.1 6 3.2 odd 2
432.8.i.a.289.1 6 9.2 odd 6