Properties

Label 54.8.c.a.19.1
Level $54$
Weight $8$
Character 54.19
Analytic conductor $16.869$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [54,8,Mod(19,54)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(54, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([4]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("54.19");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 54 = 2 \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 54.c (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(16.8687913761\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: 6.0.14601465675.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 3x^{5} + 52x^{4} - 99x^{3} + 709x^{2} - 660x + 1872 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{2}\cdot 3^{9} \)
Twist minimal: no (minimal twist has level 18)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 19.1
Root \(0.500000 + 5.21243i\) of defining polynomial
Character \(\chi\) \(=\) 54.19
Dual form 54.8.c.a.37.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(4.00000 - 6.92820i) q^{2} +(-32.0000 - 55.4256i) q^{4} +(-187.789 - 325.261i) q^{5} +(-528.867 + 916.024i) q^{7} -512.000 q^{8} -3004.63 q^{10} +(849.965 - 1472.18i) q^{11} +(6256.75 + 10837.0i) q^{13} +(4230.93 + 7328.19i) q^{14} +(-2048.00 + 3547.24i) q^{16} -16879.9 q^{17} -35281.9 q^{19} +(-12018.5 + 20816.7i) q^{20} +(-6799.72 - 11777.5i) q^{22} +(35482.7 + 61457.8i) q^{23} +(-31467.1 + 54502.6i) q^{25} +100108. q^{26} +67694.9 q^{28} +(-38827.4 + 67251.0i) q^{29} +(63093.8 + 109282. i) q^{31} +(16384.0 + 28377.9i) q^{32} +(-67519.4 + 116947. i) q^{34} +397262. q^{35} -528664. q^{37} +(-141128. + 244440. i) q^{38} +(96148.1 + 166533. i) q^{40} +(-258960. - 448533. i) q^{41} +(135830. - 235264. i) q^{43} -108795. q^{44} +567723. q^{46} +(-211814. + 366873. i) q^{47} +(-147628. - 255699. i) q^{49} +(251737. + 436021. i) q^{50} +(400432. - 693568. i) q^{52} -1.24314e6 q^{53} -638457. q^{55} +(270780. - 469004. i) q^{56} +(310619. + 538008. i) q^{58} +(-1.34086e6 - 2.32244e6i) q^{59} +(377040. - 653052. i) q^{61} +1.00950e6 q^{62} +262144. q^{64} +(2.34990e6 - 4.07014e6i) q^{65} +(131285. + 227392. i) q^{67} +(540156. + 935577. i) q^{68} +(1.58905e6 - 2.75231e6i) q^{70} -990913. q^{71} -1.04389e6 q^{73} +(-2.11466e6 + 3.66269e6i) q^{74} +(1.12902e6 + 1.95552e6i) q^{76} +(899036. + 1.55718e6i) q^{77} +(3.66860e6 - 6.35419e6i) q^{79} +1.53837e6 q^{80} -4.14337e6 q^{82} +(-1.94611e6 + 3.37075e6i) q^{83} +(3.16986e6 + 5.49035e6i) q^{85} +(-1.08664e6 - 1.88211e6i) q^{86} +(-435182. + 753757. i) q^{88} -675681. q^{89} -1.32359e7 q^{91} +(2.27089e6 - 3.93330e6i) q^{92} +(1.69452e6 + 2.93499e6i) q^{94} +(6.62556e6 + 1.14758e7i) q^{95} +(-8.12785e6 + 1.40779e7i) q^{97} -2.36205e6 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 24 q^{2} - 192 q^{4} - 54 q^{5} + 210 q^{7} - 3072 q^{8} - 864 q^{10} - 6579 q^{11} + 10092 q^{13} - 1680 q^{14} - 12288 q^{16} + 29790 q^{17} - 137490 q^{19} - 3456 q^{20} + 52632 q^{22} + 39654 q^{23}+ \cdots + 7714800 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/54\mathbb{Z}\right)^\times\).

\(n\) \(29\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 4.00000 6.92820i 0.353553 0.612372i
\(3\) 0 0
\(4\) −32.0000 55.4256i −0.250000 0.433013i
\(5\) −187.789 325.261i −0.671855 1.16369i −0.977377 0.211502i \(-0.932164\pi\)
0.305522 0.952185i \(-0.401169\pi\)
\(6\) 0 0
\(7\) −528.867 + 916.024i −0.582778 + 1.00940i 0.412371 + 0.911016i \(0.364701\pi\)
−0.995148 + 0.0983845i \(0.968633\pi\)
\(8\) −512.000 −0.353553
\(9\) 0 0
\(10\) −3004.63 −0.950147
\(11\) 849.965 1472.18i 0.192542 0.333493i −0.753550 0.657391i \(-0.771660\pi\)
0.946092 + 0.323898i \(0.104993\pi\)
\(12\) 0 0
\(13\) 6256.75 + 10837.0i 0.789854 + 1.36807i 0.926056 + 0.377386i \(0.123177\pi\)
−0.136202 + 0.990681i \(0.543490\pi\)
\(14\) 4230.93 + 7328.19i 0.412086 + 0.713754i
\(15\) 0 0
\(16\) −2048.00 + 3547.24i −0.125000 + 0.216506i
\(17\) −16879.9 −0.833293 −0.416646 0.909069i \(-0.636795\pi\)
−0.416646 + 0.909069i \(0.636795\pi\)
\(18\) 0 0
\(19\) −35281.9 −1.18009 −0.590044 0.807371i \(-0.700890\pi\)
−0.590044 + 0.807371i \(0.700890\pi\)
\(20\) −12018.5 + 20816.7i −0.335928 + 0.581844i
\(21\) 0 0
\(22\) −6799.72 11777.5i −0.136148 0.235815i
\(23\) 35482.7 + 61457.8i 0.608092 + 1.05325i 0.991555 + 0.129690i \(0.0413981\pi\)
−0.383463 + 0.923556i \(0.625269\pi\)
\(24\) 0 0
\(25\) −31467.1 + 54502.6i −0.402779 + 0.697634i
\(26\) 100108. 1.11702
\(27\) 0 0
\(28\) 67694.9 0.582778
\(29\) −38827.4 + 67251.0i −0.295628 + 0.512042i −0.975131 0.221631i \(-0.928862\pi\)
0.679503 + 0.733673i \(0.262195\pi\)
\(30\) 0 0
\(31\) 63093.8 + 109282.i 0.380383 + 0.658843i 0.991117 0.132993i \(-0.0424588\pi\)
−0.610734 + 0.791836i \(0.709126\pi\)
\(32\) 16384.0 + 28377.9i 0.0883883 + 0.153093i
\(33\) 0 0
\(34\) −67519.4 + 116947.i −0.294614 + 0.510286i
\(35\) 397262. 1.56617
\(36\) 0 0
\(37\) −528664. −1.71583 −0.857914 0.513794i \(-0.828240\pi\)
−0.857914 + 0.513794i \(0.828240\pi\)
\(38\) −141128. + 244440.i −0.417224 + 0.722654i
\(39\) 0 0
\(40\) 96148.1 + 166533.i 0.237537 + 0.411426i
\(41\) −258960. 448533.i −0.586800 1.01637i −0.994648 0.103318i \(-0.967054\pi\)
0.407849 0.913050i \(-0.366279\pi\)
\(42\) 0 0
\(43\) 135830. 235264.i 0.260529 0.451249i −0.705854 0.708358i \(-0.749436\pi\)
0.966383 + 0.257109i \(0.0827698\pi\)
\(44\) −108795. −0.192542
\(45\) 0 0
\(46\) 567723. 0.859972
\(47\) −211814. + 366873.i −0.297586 + 0.515435i −0.975583 0.219630i \(-0.929515\pi\)
0.677997 + 0.735065i \(0.262848\pi\)
\(48\) 0 0
\(49\) −147628. 255699.i −0.179260 0.310487i
\(50\) 251737. + 436021.i 0.284808 + 0.493301i
\(51\) 0 0
\(52\) 400432. 693568.i 0.394927 0.684034i
\(53\) −1.24314e6 −1.14698 −0.573490 0.819213i \(-0.694411\pi\)
−0.573490 + 0.819213i \(0.694411\pi\)
\(54\) 0 0
\(55\) −638457. −0.517443
\(56\) 270780. 469004.i 0.206043 0.356877i
\(57\) 0 0
\(58\) 310619. + 538008.i 0.209040 + 0.362068i
\(59\) −1.34086e6 2.32244e6i −0.849968 1.47219i −0.881236 0.472677i \(-0.843288\pi\)
0.0312678 0.999511i \(-0.490046\pi\)
\(60\) 0 0
\(61\) 377040. 653052.i 0.212683 0.368378i −0.739870 0.672750i \(-0.765113\pi\)
0.952553 + 0.304372i \(0.0984465\pi\)
\(62\) 1.00950e6 0.537943
\(63\) 0 0
\(64\) 262144. 0.125000
\(65\) 2.34990e6 4.07014e6i 1.06133 1.83829i
\(66\) 0 0
\(67\) 131285. + 227392.i 0.0533278 + 0.0923664i 0.891457 0.453105i \(-0.149684\pi\)
−0.838129 + 0.545472i \(0.816351\pi\)
\(68\) 540156. + 935577.i 0.208323 + 0.360826i
\(69\) 0 0
\(70\) 1.58905e6 2.75231e6i 0.553724 0.959079i
\(71\) −990913. −0.328573 −0.164286 0.986413i \(-0.552532\pi\)
−0.164286 + 0.986413i \(0.552532\pi\)
\(72\) 0 0
\(73\) −1.04389e6 −0.314068 −0.157034 0.987593i \(-0.550193\pi\)
−0.157034 + 0.987593i \(0.550193\pi\)
\(74\) −2.11466e6 + 3.66269e6i −0.606637 + 1.05073i
\(75\) 0 0
\(76\) 1.12902e6 + 1.95552e6i 0.295022 + 0.510993i
\(77\) 899036. + 1.55718e6i 0.224419 + 0.388705i
\(78\) 0 0
\(79\) 3.66860e6 6.35419e6i 0.837153 1.44999i −0.0551117 0.998480i \(-0.517551\pi\)
0.892265 0.451512i \(-0.149115\pi\)
\(80\) 1.53837e6 0.335928
\(81\) 0 0
\(82\) −4.14337e6 −0.829860
\(83\) −1.94611e6 + 3.37075e6i −0.373588 + 0.647074i −0.990115 0.140260i \(-0.955206\pi\)
0.616526 + 0.787334i \(0.288539\pi\)
\(84\) 0 0
\(85\) 3.16986e6 + 5.49035e6i 0.559852 + 0.969692i
\(86\) −1.08664e6 1.88211e6i −0.184222 0.319081i
\(87\) 0 0
\(88\) −435182. + 753757.i −0.0680740 + 0.117908i
\(89\) −675681. −0.101596 −0.0507980 0.998709i \(-0.516176\pi\)
−0.0507980 + 0.998709i \(0.516176\pi\)
\(90\) 0 0
\(91\) −1.32359e7 −1.84124
\(92\) 2.27089e6 3.93330e6i 0.304046 0.526623i
\(93\) 0 0
\(94\) 1.69452e6 + 2.93499e6i 0.210425 + 0.364467i
\(95\) 6.62556e6 + 1.14758e7i 0.792849 + 1.37325i
\(96\) 0 0
\(97\) −8.12785e6 + 1.40779e7i −0.904221 + 1.56616i −0.0822619 + 0.996611i \(0.526214\pi\)
−0.821959 + 0.569546i \(0.807119\pi\)
\(98\) −2.36205e6 −0.253512
\(99\) 0 0
\(100\) 4.02779e6 0.402779
\(101\) −212270. + 367662.i −0.0205005 + 0.0355079i −0.876094 0.482141i \(-0.839859\pi\)
0.855593 + 0.517649i \(0.173193\pi\)
\(102\) 0 0
\(103\) 2.43167e6 + 4.21178e6i 0.219268 + 0.379783i 0.954584 0.297941i \(-0.0962999\pi\)
−0.735317 + 0.677724i \(0.762967\pi\)
\(104\) −3.20345e6 5.54854e6i −0.279256 0.483685i
\(105\) 0 0
\(106\) −4.97257e6 + 8.61275e6i −0.405519 + 0.702379i
\(107\) −2.83648e6 −0.223839 −0.111920 0.993717i \(-0.535700\pi\)
−0.111920 + 0.993717i \(0.535700\pi\)
\(108\) 0 0
\(109\) 6.31389e6 0.466987 0.233493 0.972358i \(-0.424984\pi\)
0.233493 + 0.972358i \(0.424984\pi\)
\(110\) −2.55383e6 + 4.42336e6i −0.182944 + 0.316868i
\(111\) 0 0
\(112\) −2.16624e6 3.75203e6i −0.145694 0.252350i
\(113\) 1.07218e7 + 1.85708e7i 0.699029 + 1.21075i 0.968804 + 0.247830i \(0.0797174\pi\)
−0.269775 + 0.962923i \(0.586949\pi\)
\(114\) 0 0
\(115\) 1.33265e7 2.30822e7i 0.817100 1.41526i
\(116\) 4.96990e6 0.295628
\(117\) 0 0
\(118\) −2.14538e7 −1.20204
\(119\) 8.92719e6 1.54624e7i 0.485624 0.841126i
\(120\) 0 0
\(121\) 8.29871e6 + 1.43738e7i 0.425855 + 0.737602i
\(122\) −3.01632e6 5.22442e6i −0.150390 0.260483i
\(123\) 0 0
\(124\) 4.03801e6 6.99403e6i 0.190191 0.329421i
\(125\) −5.70534e6 −0.261274
\(126\) 0 0
\(127\) 1.35681e7 0.587768 0.293884 0.955841i \(-0.405052\pi\)
0.293884 + 0.955841i \(0.405052\pi\)
\(128\) 1.04858e6 1.81619e6i 0.0441942 0.0765466i
\(129\) 0 0
\(130\) −1.87992e7 3.25612e7i −0.750477 1.29986i
\(131\) −1.17657e7 2.03788e7i −0.457265 0.792005i 0.541551 0.840668i \(-0.317837\pi\)
−0.998815 + 0.0486627i \(0.984504\pi\)
\(132\) 0 0
\(133\) 1.86594e7 3.23191e7i 0.687729 1.19118i
\(134\) 2.10056e6 0.0754169
\(135\) 0 0
\(136\) 8.64249e6 0.294614
\(137\) −1.39952e7 + 2.42405e7i −0.465006 + 0.805414i −0.999202 0.0399467i \(-0.987281\pi\)
0.534196 + 0.845361i \(0.320615\pi\)
\(138\) 0 0
\(139\) 4.00094e6 + 6.92982e6i 0.126360 + 0.218862i 0.922264 0.386561i \(-0.126337\pi\)
−0.795904 + 0.605423i \(0.793004\pi\)
\(140\) −1.27124e7 2.20185e7i −0.391542 0.678171i
\(141\) 0 0
\(142\) −3.96365e6 + 6.86525e6i −0.116168 + 0.201209i
\(143\) 2.12721e7 0.608322
\(144\) 0 0
\(145\) 2.91655e7 0.794476
\(146\) −4.17555e6 + 7.23226e6i −0.111040 + 0.192327i
\(147\) 0 0
\(148\) 1.69172e7 + 2.93015e7i 0.428957 + 0.742975i
\(149\) −1.35829e7 2.35262e7i −0.336387 0.582639i 0.647363 0.762182i \(-0.275872\pi\)
−0.983750 + 0.179542i \(0.942538\pi\)
\(150\) 0 0
\(151\) −2.09932e7 + 3.63612e7i −0.496202 + 0.859447i −0.999990 0.00438023i \(-0.998606\pi\)
0.503789 + 0.863827i \(0.331939\pi\)
\(152\) 1.80643e7 0.417224
\(153\) 0 0
\(154\) 1.43846e7 0.317376
\(155\) 2.36967e7 4.10439e7i 0.511125 0.885294i
\(156\) 0 0
\(157\) −4.10239e7 7.10556e7i −0.846036 1.46538i −0.884719 0.466125i \(-0.845650\pi\)
0.0386831 0.999252i \(-0.487684\pi\)
\(158\) −2.93488e7 5.08336e7i −0.591957 1.02530i
\(159\) 0 0
\(160\) 6.15348e6 1.06581e7i 0.118768 0.205713i
\(161\) −7.50625e7 −1.41753
\(162\) 0 0
\(163\) −2.89286e7 −0.523203 −0.261602 0.965176i \(-0.584251\pi\)
−0.261602 + 0.965176i \(0.584251\pi\)
\(164\) −1.65735e7 + 2.87061e7i −0.293400 + 0.508184i
\(165\) 0 0
\(166\) 1.55688e7 + 2.69660e7i 0.264167 + 0.457550i
\(167\) 1.33585e7 + 2.31376e7i 0.221947 + 0.384424i 0.955399 0.295318i \(-0.0954254\pi\)
−0.733452 + 0.679741i \(0.762092\pi\)
\(168\) 0 0
\(169\) −4.69195e7 + 8.12669e7i −0.747738 + 1.29512i
\(170\) 5.07177e7 0.791751
\(171\) 0 0
\(172\) −1.73862e7 −0.260529
\(173\) −1.31561e7 + 2.27871e7i −0.193182 + 0.334601i −0.946303 0.323281i \(-0.895214\pi\)
0.753121 + 0.657882i \(0.228547\pi\)
\(174\) 0 0
\(175\) −3.32838e7 5.76492e7i −0.469461 0.813131i
\(176\) 3.48146e6 + 6.03006e6i 0.0481356 + 0.0833733i
\(177\) 0 0
\(178\) −2.70272e6 + 4.68125e6i −0.0359196 + 0.0622146i
\(179\) 2.19724e7 0.286347 0.143174 0.989698i \(-0.454269\pi\)
0.143174 + 0.989698i \(0.454269\pi\)
\(180\) 0 0
\(181\) 1.26202e8 1.58195 0.790975 0.611849i \(-0.209574\pi\)
0.790975 + 0.611849i \(0.209574\pi\)
\(182\) −5.29437e7 + 9.17012e7i −0.650976 + 1.12752i
\(183\) 0 0
\(184\) −1.81671e7 3.14664e7i −0.214993 0.372379i
\(185\) 9.92774e7 + 1.71954e8i 1.15279 + 1.99669i
\(186\) 0 0
\(187\) −1.43473e7 + 2.48502e7i −0.160444 + 0.277898i
\(188\) 2.71122e7 0.297586
\(189\) 0 0
\(190\) 1.06009e8 1.12126
\(191\) 8.97257e7 1.55409e8i 0.931752 1.61384i 0.151425 0.988469i \(-0.451614\pi\)
0.780326 0.625372i \(-0.215053\pi\)
\(192\) 0 0
\(193\) 1.49157e7 + 2.58348e7i 0.149346 + 0.258675i 0.930986 0.365055i \(-0.118950\pi\)
−0.781640 + 0.623730i \(0.785617\pi\)
\(194\) 6.50228e7 + 1.12623e8i 0.639381 + 1.10744i
\(195\) 0 0
\(196\) −9.44820e6 + 1.63648e7i −0.0896299 + 0.155243i
\(197\) −6.70863e7 −0.625176 −0.312588 0.949889i \(-0.601196\pi\)
−0.312588 + 0.949889i \(0.601196\pi\)
\(198\) 0 0
\(199\) −1.18177e8 −1.06304 −0.531519 0.847046i \(-0.678379\pi\)
−0.531519 + 0.847046i \(0.678379\pi\)
\(200\) 1.61112e7 2.79053e7i 0.142404 0.246651i
\(201\) 0 0
\(202\) 1.69816e6 + 2.94130e6i 0.0144960 + 0.0251078i
\(203\) −4.10690e7 7.11336e7i −0.344570 0.596813i
\(204\) 0 0
\(205\) −9.72600e7 + 1.68459e8i −0.788489 + 1.36570i
\(206\) 3.89067e7 0.310091
\(207\) 0 0
\(208\) −5.12553e7 −0.394927
\(209\) −2.99884e7 + 5.19414e7i −0.227217 + 0.393552i
\(210\) 0 0
\(211\) −5.19927e7 9.00540e7i −0.381025 0.659955i 0.610184 0.792260i \(-0.291096\pi\)
−0.991209 + 0.132305i \(0.957762\pi\)
\(212\) 3.97806e7 + 6.89020e7i 0.286745 + 0.496657i
\(213\) 0 0
\(214\) −1.13459e7 + 1.96517e7i −0.0791392 + 0.137073i
\(215\) −1.02030e8 −0.700150
\(216\) 0 0
\(217\) −1.33473e8 −0.886715
\(218\) 2.52556e7 4.37439e7i 0.165105 0.285970i
\(219\) 0 0
\(220\) 2.04306e7 + 3.53869e7i 0.129361 + 0.224059i
\(221\) −1.05613e8 1.82927e8i −0.658180 1.14000i
\(222\) 0 0
\(223\) 8.07648e7 1.39889e8i 0.487703 0.844726i −0.512197 0.858868i \(-0.671168\pi\)
0.999900 + 0.0141421i \(0.00450171\pi\)
\(224\) −3.46598e7 −0.206043
\(225\) 0 0
\(226\) 1.71550e8 0.988576
\(227\) 1.90267e7 3.29553e7i 0.107963 0.186997i −0.806982 0.590576i \(-0.798901\pi\)
0.914945 + 0.403579i \(0.132234\pi\)
\(228\) 0 0
\(229\) 1.44858e8 + 2.50901e8i 0.797110 + 1.38064i 0.921491 + 0.388401i \(0.126972\pi\)
−0.124381 + 0.992235i \(0.539694\pi\)
\(230\) −1.06612e8 1.84658e8i −0.577777 1.00074i
\(231\) 0 0
\(232\) 1.98796e7 3.44325e7i 0.104520 0.181034i
\(233\) 7.45094e7 0.385892 0.192946 0.981209i \(-0.438196\pi\)
0.192946 + 0.981209i \(0.438196\pi\)
\(234\) 0 0
\(235\) 1.59106e8 0.799740
\(236\) −8.58153e7 + 1.48636e8i −0.424984 + 0.736094i
\(237\) 0 0
\(238\) −7.14175e7 1.23699e8i −0.343388 0.594766i
\(239\) 8.98328e7 + 1.55595e8i 0.425640 + 0.737230i 0.996480 0.0838313i \(-0.0267157\pi\)
−0.570840 + 0.821061i \(0.693382\pi\)
\(240\) 0 0
\(241\) 3.04341e7 5.27134e7i 0.140056 0.242583i −0.787462 0.616364i \(-0.788605\pi\)
0.927517 + 0.373780i \(0.121939\pi\)
\(242\) 1.32779e8 0.602250
\(243\) 0 0
\(244\) −4.82611e7 −0.212683
\(245\) −5.54459e7 + 9.60352e7i −0.240873 + 0.417205i
\(246\) 0 0
\(247\) −2.20750e8 3.82350e8i −0.932098 1.61444i
\(248\) −3.23041e7 5.59523e7i −0.134486 0.232936i
\(249\) 0 0
\(250\) −2.28213e7 + 3.95277e7i −0.0923743 + 0.159997i
\(251\) −2.14309e8 −0.855426 −0.427713 0.903915i \(-0.640681\pi\)
−0.427713 + 0.903915i \(0.640681\pi\)
\(252\) 0 0
\(253\) 1.20636e8 0.468334
\(254\) 5.42724e7 9.40025e7i 0.207807 0.359933i
\(255\) 0 0
\(256\) −8.38861e6 1.45295e7i −0.0312500 0.0541266i
\(257\) −2.63538e7 4.56461e7i −0.0968450 0.167740i 0.813532 0.581520i \(-0.197542\pi\)
−0.910377 + 0.413779i \(0.864208\pi\)
\(258\) 0 0
\(259\) 2.79593e8 4.84269e8i 0.999946 1.73196i
\(260\) −3.00787e8 −1.06133
\(261\) 0 0
\(262\) −1.88251e8 −0.646670
\(263\) 2.44289e8 4.23121e8i 0.828055 1.43423i −0.0715077 0.997440i \(-0.522781\pi\)
0.899562 0.436793i \(-0.143886\pi\)
\(264\) 0 0
\(265\) 2.33449e8 + 4.04346e8i 0.770604 + 1.33473i
\(266\) −1.49275e8 2.58553e8i −0.486298 0.842293i
\(267\) 0 0
\(268\) 8.40224e6 1.45531e7i 0.0266639 0.0461832i
\(269\) 1.69083e8 0.529622 0.264811 0.964300i \(-0.414690\pi\)
0.264811 + 0.964300i \(0.414690\pi\)
\(270\) 0 0
\(271\) −1.99531e8 −0.609001 −0.304501 0.952512i \(-0.598490\pi\)
−0.304501 + 0.952512i \(0.598490\pi\)
\(272\) 3.45700e7 5.98769e7i 0.104162 0.180413i
\(273\) 0 0
\(274\) 1.11962e8 + 1.93924e8i 0.328809 + 0.569514i
\(275\) 5.34919e7 + 9.26506e7i 0.155104 + 0.268648i
\(276\) 0 0
\(277\) 1.77438e8 3.07331e8i 0.501611 0.868816i −0.498387 0.866955i \(-0.666074\pi\)
0.999998 0.00186126i \(-0.000592457\pi\)
\(278\) 6.40150e7 0.178700
\(279\) 0 0
\(280\) −2.03398e8 −0.553724
\(281\) −1.40245e8 + 2.42912e8i −0.377065 + 0.653096i −0.990634 0.136545i \(-0.956400\pi\)
0.613569 + 0.789641i \(0.289733\pi\)
\(282\) 0 0
\(283\) 7.95244e7 + 1.37740e8i 0.208568 + 0.361251i 0.951264 0.308379i \(-0.0997863\pi\)
−0.742696 + 0.669629i \(0.766453\pi\)
\(284\) 3.17092e7 + 5.49220e7i 0.0821431 + 0.142276i
\(285\) 0 0
\(286\) 8.50882e7 1.47377e8i 0.215074 0.372519i
\(287\) 5.47822e8 1.36790
\(288\) 0 0
\(289\) −1.25409e8 −0.305623
\(290\) 1.16662e8 2.02064e8i 0.280890 0.486515i
\(291\) 0 0
\(292\) 3.34044e7 + 5.78581e7i 0.0785170 + 0.135995i
\(293\) 1.72190e8 + 2.98242e8i 0.399918 + 0.692679i 0.993715 0.111936i \(-0.0357051\pi\)
−0.593797 + 0.804615i \(0.702372\pi\)
\(294\) 0 0
\(295\) −5.03600e8 + 8.72260e8i −1.14211 + 1.97819i
\(296\) 2.70676e8 0.606637
\(297\) 0 0
\(298\) −2.17326e8 −0.475723
\(299\) −4.44013e8 + 7.69052e8i −0.960608 + 1.66382i
\(300\) 0 0
\(301\) 1.43672e8 + 2.48847e8i 0.303661 + 0.525956i
\(302\) 1.67945e8 + 2.90890e8i 0.350868 + 0.607721i
\(303\) 0 0
\(304\) 7.22574e7 1.25153e8i 0.147511 0.255497i
\(305\) −2.83216e8 −0.571569
\(306\) 0 0
\(307\) 5.28744e8 1.04294 0.521472 0.853269i \(-0.325383\pi\)
0.521472 + 0.853269i \(0.325383\pi\)
\(308\) 5.75383e7 9.96592e7i 0.112209 0.194352i
\(309\) 0 0
\(310\) −1.89574e8 3.28351e8i −0.361420 0.625997i
\(311\) −1.43382e8 2.48345e8i −0.270292 0.468159i 0.698645 0.715469i \(-0.253787\pi\)
−0.968937 + 0.247310i \(0.920454\pi\)
\(312\) 0 0
\(313\) −1.25124e7 + 2.16722e7i −0.0230641 + 0.0399482i −0.877327 0.479893i \(-0.840676\pi\)
0.854263 + 0.519841i \(0.174009\pi\)
\(314\) −6.56383e8 −1.19648
\(315\) 0 0
\(316\) −4.69580e8 −0.837153
\(317\) −2.60137e8 + 4.50570e8i −0.458663 + 0.794428i −0.998891 0.0470910i \(-0.985005\pi\)
0.540227 + 0.841519i \(0.318338\pi\)
\(318\) 0 0
\(319\) 6.60038e7 + 1.14322e8i 0.113842 + 0.197180i
\(320\) −4.92278e7 8.52651e7i −0.0839819 0.145461i
\(321\) 0 0
\(322\) −3.00250e8 + 5.20048e8i −0.501172 + 0.868056i
\(323\) 5.95554e8 0.983359
\(324\) 0 0
\(325\) −7.87527e8 −1.27255
\(326\) −1.15714e8 + 2.00423e8i −0.184980 + 0.320395i
\(327\) 0 0
\(328\) 1.32588e8 + 2.29649e8i 0.207465 + 0.359340i
\(329\) −2.24043e8 3.88054e8i −0.346853 0.600768i
\(330\) 0 0
\(331\) 2.52520e8 4.37377e8i 0.382734 0.662915i −0.608718 0.793387i \(-0.708316\pi\)
0.991452 + 0.130472i \(0.0416492\pi\)
\(332\) 2.49102e8 0.373588
\(333\) 0 0
\(334\) 2.13736e8 0.313881
\(335\) 4.93078e7 8.54037e7i 0.0716571 0.124114i
\(336\) 0 0
\(337\) 9.18750e7 + 1.59132e8i 0.130765 + 0.226492i 0.923972 0.382461i \(-0.124923\pi\)
−0.793206 + 0.608953i \(0.791590\pi\)
\(338\) 3.75356e8 + 6.50135e8i 0.528731 + 0.915789i
\(339\) 0 0
\(340\) 2.02871e8 3.51383e8i 0.279926 0.484846i
\(341\) 2.14510e8 0.292960
\(342\) 0 0
\(343\) −5.58786e8 −0.747681
\(344\) −6.95449e7 + 1.20455e8i −0.0921108 + 0.159541i
\(345\) 0 0
\(346\) 1.05249e8 + 1.82296e8i 0.136600 + 0.236598i
\(347\) −1.43066e8 2.47797e8i −0.183816 0.318378i 0.759361 0.650670i \(-0.225512\pi\)
−0.943177 + 0.332291i \(0.892178\pi\)
\(348\) 0 0
\(349\) 1.83182e7 3.17281e7i 0.0230672 0.0399535i −0.854261 0.519844i \(-0.825990\pi\)
0.877329 + 0.479890i \(0.159324\pi\)
\(350\) −5.32541e8 −0.663918
\(351\) 0 0
\(352\) 5.57033e7 0.0680740
\(353\) 2.38469e8 4.13040e8i 0.288549 0.499782i −0.684914 0.728624i \(-0.740160\pi\)
0.973464 + 0.228841i \(0.0734937\pi\)
\(354\) 0 0
\(355\) 1.86083e8 + 3.22305e8i 0.220753 + 0.382356i
\(356\) 2.16218e7 + 3.74500e7i 0.0253990 + 0.0439923i
\(357\) 0 0
\(358\) 8.78898e7 1.52230e8i 0.101239 0.175351i
\(359\) 3.73983e8 0.426600 0.213300 0.976987i \(-0.431579\pi\)
0.213300 + 0.976987i \(0.431579\pi\)
\(360\) 0 0
\(361\) 3.50942e8 0.392609
\(362\) 5.04809e8 8.74356e8i 0.559303 0.968742i
\(363\) 0 0
\(364\) 4.23550e8 + 7.33610e8i 0.460309 + 0.797279i
\(365\) 1.96031e8 + 3.39535e8i 0.211008 + 0.365477i
\(366\) 0 0
\(367\) 2.91624e8 5.05107e8i 0.307958 0.533399i −0.669957 0.742400i \(-0.733688\pi\)
0.977916 + 0.209000i \(0.0670209\pi\)
\(368\) −2.90674e8 −0.304046
\(369\) 0 0
\(370\) 1.58844e9 1.63029
\(371\) 6.57457e8 1.13875e9i 0.668434 1.15776i
\(372\) 0 0
\(373\) −7.38605e8 1.27930e9i −0.736939 1.27642i −0.953867 0.300228i \(-0.902937\pi\)
0.216928 0.976188i \(-0.430396\pi\)
\(374\) 1.14778e8 + 1.98802e8i 0.113451 + 0.196503i
\(375\) 0 0
\(376\) 1.08449e8 1.87839e8i 0.105213 0.182234i
\(377\) −9.71732e8 −0.934011
\(378\) 0 0
\(379\) −6.08958e8 −0.574580 −0.287290 0.957844i \(-0.592754\pi\)
−0.287290 + 0.957844i \(0.592754\pi\)
\(380\) 4.24036e8 7.34452e8i 0.396424 0.686627i
\(381\) 0 0
\(382\) −7.17806e8 1.24328e9i −0.658848 1.14116i
\(383\) −4.24357e8 7.35008e8i −0.385954 0.668492i 0.605947 0.795505i \(-0.292794\pi\)
−0.991901 + 0.127013i \(0.959461\pi\)
\(384\) 0 0
\(385\) 3.37659e8 5.84842e8i 0.301554 0.522307i
\(386\) 2.38651e8 0.211207
\(387\) 0 0
\(388\) 1.04036e9 0.904221
\(389\) −1.26651e8 + 2.19367e8i −0.109090 + 0.188950i −0.915402 0.402541i \(-0.868127\pi\)
0.806312 + 0.591491i \(0.201460\pi\)
\(390\) 0 0
\(391\) −5.98943e8 1.03740e9i −0.506719 0.877662i
\(392\) 7.55856e7 + 1.30918e8i 0.0633779 + 0.109774i
\(393\) 0 0
\(394\) −2.68345e8 + 4.64788e8i −0.221033 + 0.382841i
\(395\) −2.75569e9 −2.24978
\(396\) 0 0
\(397\) 9.92215e8 0.795865 0.397932 0.917415i \(-0.369728\pi\)
0.397932 + 0.917415i \(0.369728\pi\)
\(398\) −4.72710e8 + 8.18758e8i −0.375841 + 0.650975i
\(399\) 0 0
\(400\) −1.28889e8 2.23243e8i −0.100695 0.174408i
\(401\) −4.74376e8 8.21644e8i −0.367382 0.636324i 0.621774 0.783197i \(-0.286412\pi\)
−0.989155 + 0.146873i \(0.953079\pi\)
\(402\) 0 0
\(403\) −7.89524e8 + 1.36750e9i −0.600894 + 1.04078i
\(404\) 2.71706e7 0.0205005
\(405\) 0 0
\(406\) −6.57104e8 −0.487296
\(407\) −4.49346e8 + 7.78290e8i −0.330370 + 0.572217i
\(408\) 0 0
\(409\) −3.88383e8 6.72699e8i −0.280691 0.486171i 0.690864 0.722985i \(-0.257230\pi\)
−0.971555 + 0.236813i \(0.923897\pi\)
\(410\) 7.78080e8 + 1.34767e9i 0.557546 + 0.965698i
\(411\) 0 0
\(412\) 1.55627e8 2.69554e8i 0.109634 0.189891i
\(413\) 2.83655e9 1.98137
\(414\) 0 0
\(415\) 1.46183e9 1.00399
\(416\) −2.05021e8 + 3.55107e8i −0.139628 + 0.241842i
\(417\) 0 0
\(418\) 2.39907e8 + 4.15531e8i 0.160667 + 0.278283i
\(419\) −3.14943e8 5.45498e8i −0.209162 0.362280i 0.742289 0.670080i \(-0.233740\pi\)
−0.951451 + 0.307801i \(0.900407\pi\)
\(420\) 0 0
\(421\) −5.52425e8 + 9.56829e8i −0.360816 + 0.624952i −0.988095 0.153842i \(-0.950835\pi\)
0.627279 + 0.778795i \(0.284169\pi\)
\(422\) −8.31883e8 −0.538851
\(423\) 0 0
\(424\) 6.36490e8 0.405519
\(425\) 5.31160e8 9.19997e8i 0.335633 0.581333i
\(426\) 0 0
\(427\) 3.98808e8 + 6.90755e8i 0.247894 + 0.429365i
\(428\) 9.07674e7 + 1.57214e8i 0.0559599 + 0.0969253i
\(429\) 0 0
\(430\) −4.08118e8 + 7.06881e8i −0.247541 + 0.428753i
\(431\) 2.85661e8 0.171863 0.0859313 0.996301i \(-0.472613\pi\)
0.0859313 + 0.996301i \(0.472613\pi\)
\(432\) 0 0
\(433\) 4.76788e8 0.282239 0.141120 0.989993i \(-0.454930\pi\)
0.141120 + 0.989993i \(0.454930\pi\)
\(434\) −5.33892e8 + 9.24727e8i −0.313501 + 0.543000i
\(435\) 0 0
\(436\) −2.02045e8 3.49952e8i −0.116747 0.202211i
\(437\) −1.25190e9 2.16835e9i −0.717602 1.24292i
\(438\) 0 0
\(439\) −1.25879e9 + 2.18029e9i −0.710112 + 1.22995i 0.254703 + 0.967019i \(0.418022\pi\)
−0.964815 + 0.262931i \(0.915311\pi\)
\(440\) 3.26890e8 0.182944
\(441\) 0 0
\(442\) −1.68981e9 −0.930807
\(443\) −2.29324e8 + 3.97201e8i −0.125325 + 0.217069i −0.921860 0.387523i \(-0.873331\pi\)
0.796535 + 0.604592i \(0.206664\pi\)
\(444\) 0 0
\(445\) 1.26886e8 + 2.19772e8i 0.0682578 + 0.118226i
\(446\) −6.46118e8 1.11911e9i −0.344858 0.597311i
\(447\) 0 0
\(448\) −1.38639e8 + 2.40130e8i −0.0728472 + 0.126175i
\(449\) 1.46433e9 0.763444 0.381722 0.924277i \(-0.375331\pi\)
0.381722 + 0.924277i \(0.375331\pi\)
\(450\) 0 0
\(451\) −8.80429e8 −0.451936
\(452\) 6.86198e8 1.18853e9i 0.349514 0.605377i
\(453\) 0 0
\(454\) −1.52214e8 2.63642e8i −0.0763411 0.132227i
\(455\) 2.48557e9 + 4.30513e9i 1.23704 + 2.14262i
\(456\) 0 0
\(457\) −6.98299e8 + 1.20949e9i −0.342243 + 0.592783i −0.984849 0.173414i \(-0.944520\pi\)
0.642606 + 0.766197i \(0.277853\pi\)
\(458\) 2.31773e9 1.12728
\(459\) 0 0
\(460\) −1.70580e9 −0.817100
\(461\) −1.98110e9 + 3.43137e9i −0.941789 + 1.63123i −0.179733 + 0.983715i \(0.557524\pi\)
−0.762056 + 0.647511i \(0.775810\pi\)
\(462\) 0 0
\(463\) 9.40813e8 + 1.62954e9i 0.440524 + 0.763010i 0.997728 0.0673653i \(-0.0214593\pi\)
−0.557204 + 0.830375i \(0.688126\pi\)
\(464\) −1.59037e8 2.75460e8i −0.0739069 0.128011i
\(465\) 0 0
\(466\) 2.98038e8 5.16217e8i 0.136433 0.236310i
\(467\) −9.69518e8 −0.440501 −0.220250 0.975443i \(-0.570687\pi\)
−0.220250 + 0.975443i \(0.570687\pi\)
\(468\) 0 0
\(469\) −2.77729e8 −0.124313
\(470\) 6.36424e8 1.10232e9i 0.282751 0.489739i
\(471\) 0 0
\(472\) 6.86522e8 + 1.18909e9i 0.300509 + 0.520497i
\(473\) −2.30901e8 3.99933e8i −0.100326 0.173769i
\(474\) 0 0
\(475\) 1.11022e9 1.92296e9i 0.475315 0.823269i
\(476\) −1.14268e9 −0.485624
\(477\) 0 0
\(478\) 1.43733e9 0.601946
\(479\) −1.00435e9 + 1.73959e9i −0.417552 + 0.723222i −0.995693 0.0927156i \(-0.970445\pi\)
0.578140 + 0.815937i \(0.303779\pi\)
\(480\) 0 0
\(481\) −3.30772e9 5.72913e9i −1.35525 2.34737i
\(482\) −2.43473e8 4.21707e8i −0.0990343 0.171532i
\(483\) 0 0
\(484\) 5.31117e8 9.19922e8i 0.212927 0.368801i
\(485\) 6.10529e9 2.43002
\(486\) 0 0
\(487\) 3.02884e9 1.18830 0.594148 0.804356i \(-0.297490\pi\)
0.594148 + 0.804356i \(0.297490\pi\)
\(488\) −1.93044e8 + 3.34363e8i −0.0751948 + 0.130241i
\(489\) 0 0
\(490\) 4.43567e8 + 7.68281e8i 0.170323 + 0.295008i
\(491\) 2.25862e9 + 3.91204e9i 0.861107 + 1.49148i 0.870861 + 0.491529i \(0.163562\pi\)
−0.00975413 + 0.999952i \(0.503105\pi\)
\(492\) 0 0
\(493\) 6.55401e8 1.13519e9i 0.246344 0.426681i
\(494\) −3.53200e9 −1.31819
\(495\) 0 0
\(496\) −5.16865e8 −0.190191
\(497\) 5.24061e8 9.07700e8i 0.191485 0.331661i
\(498\) 0 0
\(499\) 2.32832e9 + 4.03277e9i 0.838862 + 1.45295i 0.890846 + 0.454305i \(0.150112\pi\)
−0.0519839 + 0.998648i \(0.516554\pi\)
\(500\) 1.82571e8 + 3.16222e8i 0.0653185 + 0.113135i
\(501\) 0 0
\(502\) −8.57236e8 + 1.48478e9i −0.302439 + 0.523840i
\(503\) −2.88413e9 −1.01048 −0.505239 0.862980i \(-0.668596\pi\)
−0.505239 + 0.862980i \(0.668596\pi\)
\(504\) 0 0
\(505\) 1.59448e8 0.0550934
\(506\) 4.82545e8 8.35792e8i 0.165581 0.286795i
\(507\) 0 0
\(508\) −4.34179e8 7.52020e8i −0.146942 0.254511i
\(509\) −6.60362e8 1.14378e9i −0.221957 0.384442i 0.733445 0.679749i \(-0.237911\pi\)
−0.955402 + 0.295307i \(0.904578\pi\)
\(510\) 0 0
\(511\) 5.52077e8 9.56225e8i 0.183032 0.317020i
\(512\) −1.34218e8 −0.0441942
\(513\) 0 0
\(514\) −4.21661e8 −0.136960
\(515\) 9.13283e8 1.58185e9i 0.294632 0.510318i
\(516\) 0 0
\(517\) 3.60070e8 + 6.23659e8i 0.114596 + 0.198486i
\(518\) −2.23674e9 3.87415e9i −0.707069 1.22468i
\(519\) 0 0
\(520\) −1.20315e9 + 2.08391e9i −0.375239 + 0.649932i
\(521\) −5.14654e9 −1.59435 −0.797175 0.603749i \(-0.793673\pi\)
−0.797175 + 0.603749i \(0.793673\pi\)
\(522\) 0 0
\(523\) −2.17050e9 −0.663444 −0.331722 0.943377i \(-0.607630\pi\)
−0.331722 + 0.943377i \(0.607630\pi\)
\(524\) −7.53004e8 + 1.30424e9i −0.228632 + 0.396003i
\(525\) 0 0
\(526\) −1.95431e9 3.38497e9i −0.585523 1.01416i
\(527\) −1.06502e9 1.84466e9i −0.316970 0.549009i
\(528\) 0 0
\(529\) −8.15632e8 + 1.41272e9i −0.239552 + 0.414916i
\(530\) 3.73518e9 1.08980
\(531\) 0 0
\(532\) −2.38841e9 −0.687729
\(533\) 3.24050e9 5.61271e9i 0.926972 1.60556i
\(534\) 0 0
\(535\) 5.32661e8 + 9.22595e8i 0.150388 + 0.260479i
\(536\) −6.72180e7 1.16425e8i −0.0188542 0.0326565i
\(537\) 0 0
\(538\) 6.76330e8 1.17144e9i 0.187250 0.324326i
\(539\) −5.01915e8 −0.138060
\(540\) 0 0
\(541\) −9.27955e7 −0.0251963 −0.0125981 0.999921i \(-0.504010\pi\)
−0.0125981 + 0.999921i \(0.504010\pi\)
\(542\) −7.98125e8 + 1.38239e9i −0.215314 + 0.372936i
\(543\) 0 0
\(544\) −2.76560e8 4.79015e8i −0.0736534 0.127571i
\(545\) −1.18568e9 2.05366e9i −0.313747 0.543427i
\(546\) 0 0
\(547\) 2.73518e9 4.73747e9i 0.714547 1.23763i −0.248588 0.968609i \(-0.579966\pi\)
0.963134 0.269022i \(-0.0867003\pi\)
\(548\) 1.79139e9 0.465006
\(549\) 0 0
\(550\) 8.55870e8 0.219350
\(551\) 1.36990e9 2.37274e9i 0.348867 0.604255i
\(552\) 0 0
\(553\) 3.88039e9 + 6.72104e9i 0.975749 + 1.69005i
\(554\) −1.41950e9 2.45865e9i −0.354693 0.614346i
\(555\) 0 0
\(556\) 2.56060e8 4.43509e8i 0.0631800 0.109431i
\(557\) −4.50060e9 −1.10351 −0.551756 0.834006i \(-0.686042\pi\)
−0.551756 + 0.834006i \(0.686042\pi\)
\(558\) 0 0
\(559\) 3.39941e9 0.823119
\(560\) −8.13592e8 + 1.40918e9i −0.195771 + 0.339086i
\(561\) 0 0
\(562\) 1.12196e9 + 1.94330e9i 0.266625 + 0.461809i
\(563\) 3.06529e9 + 5.30923e9i 0.723922 + 1.25387i 0.959416 + 0.281994i \(0.0909957\pi\)
−0.235494 + 0.971876i \(0.575671\pi\)
\(564\) 0 0
\(565\) 4.02690e9 6.97479e9i 0.939292 1.62690i
\(566\) 1.27239e9 0.294960
\(567\) 0 0
\(568\) 5.07347e8 0.116168
\(569\) −1.71059e9 + 2.96282e9i −0.389271 + 0.674238i −0.992352 0.123443i \(-0.960606\pi\)
0.603080 + 0.797680i \(0.293940\pi\)
\(570\) 0 0
\(571\) −1.14292e9 1.97960e9i −0.256916 0.444991i 0.708498 0.705712i \(-0.249373\pi\)
−0.965414 + 0.260721i \(0.916040\pi\)
\(572\) −6.80706e8 1.17902e9i −0.152080 0.263411i
\(573\) 0 0
\(574\) 2.19129e9 3.79542e9i 0.483624 0.837661i
\(575\) −4.46615e9 −0.979706
\(576\) 0 0
\(577\) −7.03121e9 −1.52375 −0.761877 0.647722i \(-0.775722\pi\)
−0.761877 + 0.647722i \(0.775722\pi\)
\(578\) −5.01636e8 + 8.68859e8i −0.108054 + 0.187155i
\(579\) 0 0
\(580\) −9.33295e8 1.61651e9i −0.198619 0.344018i
\(581\) −2.05846e9 3.56536e9i −0.435438 0.754200i
\(582\) 0 0
\(583\) −1.05663e9 + 1.83013e9i −0.220842 + 0.382510i
\(584\) 5.34470e8 0.111040
\(585\) 0 0
\(586\) 2.75504e9 0.565570
\(587\) −4.47158e8 + 7.74500e8i −0.0912488 + 0.158048i −0.908037 0.418890i \(-0.862419\pi\)
0.816788 + 0.576938i \(0.195753\pi\)
\(588\) 0 0
\(589\) −2.22607e9 3.85567e9i −0.448886 0.777493i
\(590\) 4.02880e9 + 6.97808e9i 0.807594 + 1.39879i
\(591\) 0 0
\(592\) 1.08270e9 1.87530e9i 0.214478 0.371488i
\(593\) 8.80907e9 1.73476 0.867379 0.497649i \(-0.165803\pi\)
0.867379 + 0.497649i \(0.165803\pi\)
\(594\) 0 0
\(595\) −6.70572e9 −1.30508
\(596\) −8.69302e8 + 1.50568e9i −0.168193 + 0.291320i
\(597\) 0 0
\(598\) 3.55210e9 + 6.15242e9i 0.679252 + 1.17650i
\(599\) 4.91595e8 + 8.51468e8i 0.0934574 + 0.161873i 0.908964 0.416875i \(-0.136875\pi\)
−0.815506 + 0.578748i \(0.803541\pi\)
\(600\) 0 0
\(601\) −1.02236e9 + 1.77078e9i −0.192107 + 0.332739i −0.945948 0.324317i \(-0.894865\pi\)
0.753841 + 0.657056i \(0.228199\pi\)
\(602\) 2.29875e9 0.429441
\(603\) 0 0
\(604\) 2.68712e9 0.496202
\(605\) 3.11682e9 5.39848e9i 0.572226 0.991124i
\(606\) 0 0
\(607\) −1.78806e9 3.09701e9i −0.324505 0.562059i 0.656907 0.753971i \(-0.271864\pi\)
−0.981412 + 0.191913i \(0.938531\pi\)
\(608\) −5.78059e8 1.00123e9i −0.104306 0.180663i
\(609\) 0 0
\(610\) −1.13286e9 + 1.96218e9i −0.202080 + 0.350013i
\(611\) −5.30108e9 −0.940199
\(612\) 0 0
\(613\) 1.22567e9 0.214913 0.107457 0.994210i \(-0.465729\pi\)
0.107457 + 0.994210i \(0.465729\pi\)
\(614\) 2.11497e9 3.66324e9i 0.368736 0.638670i
\(615\) 0 0
\(616\) −4.60306e8 7.97274e8i −0.0793441 0.137428i
\(617\) 3.80166e9 + 6.58468e9i 0.651592 + 1.12859i 0.982737 + 0.185010i \(0.0592319\pi\)
−0.331145 + 0.943580i \(0.607435\pi\)
\(618\) 0 0
\(619\) −2.87850e9 + 4.98571e9i −0.487808 + 0.844908i −0.999902 0.0140213i \(-0.995537\pi\)
0.512094 + 0.858930i \(0.328870\pi\)
\(620\) −3.03318e9 −0.511125
\(621\) 0 0
\(622\) −2.29411e9 −0.382250
\(623\) 3.57345e8 6.18940e8i 0.0592079 0.102551i
\(624\) 0 0
\(625\) 3.52977e9 + 6.11374e9i 0.578317 + 1.00167i
\(626\) 1.00099e8 + 1.73377e8i 0.0163088 + 0.0282476i
\(627\) 0 0
\(628\) −2.62553e9 + 4.54756e9i −0.423018 + 0.732688i
\(629\) 8.92377e9 1.42979
\(630\) 0 0
\(631\) −2.41912e9 −0.383313 −0.191657 0.981462i \(-0.561386\pi\)
−0.191657 + 0.981462i \(0.561386\pi\)
\(632\) −1.87832e9 + 3.25335e9i −0.295978 + 0.512650i
\(633\) 0 0
\(634\) 2.08109e9 + 3.60456e9i 0.324324 + 0.561746i
\(635\) −2.54794e9 4.41316e9i −0.394895 0.683978i
\(636\) 0 0
\(637\) 1.84734e9 3.19969e9i 0.283178 0.490479i
\(638\) 1.05606e9 0.160997
\(639\) 0 0
\(640\) −7.87645e8 −0.118768
\(641\) −3.95891e9 + 6.85703e9i −0.593707 + 1.02833i 0.400021 + 0.916506i \(0.369003\pi\)
−0.993728 + 0.111825i \(0.964330\pi\)
\(642\) 0 0
\(643\) 5.35854e9 + 9.28126e9i 0.794891 + 1.37679i 0.922908 + 0.385020i \(0.125805\pi\)
−0.128017 + 0.991772i \(0.540861\pi\)
\(644\) 2.40200e9 + 4.16038e9i 0.354382 + 0.613808i
\(645\) 0 0
\(646\) 2.38222e9 4.12612e9i 0.347670 0.602182i
\(647\) −8.06643e9 −1.17089 −0.585446 0.810712i \(-0.699080\pi\)
−0.585446 + 0.810712i \(0.699080\pi\)
\(648\) 0 0
\(649\) −4.55875e9 −0.654620
\(650\) −3.15011e9 + 5.45614e9i −0.449913 + 0.779272i
\(651\) 0 0
\(652\) 9.25715e8 + 1.60338e9i 0.130801 + 0.226554i
\(653\) 5.00680e9 + 8.67202e9i 0.703661 + 1.21878i 0.967172 + 0.254121i \(0.0817861\pi\)
−0.263511 + 0.964656i \(0.584881\pi\)
\(654\) 0 0
\(655\) −4.41894e9 + 7.65382e9i −0.614431 + 1.06423i
\(656\) 2.12140e9 0.293400
\(657\) 0 0
\(658\) −3.58469e9 −0.490525
\(659\) 7.05570e9 1.22208e10i 0.960376 1.66342i 0.238821 0.971064i \(-0.423239\pi\)
0.721555 0.692357i \(-0.243428\pi\)
\(660\) 0 0
\(661\) −4.81075e9 8.33246e9i −0.647899 1.12219i −0.983624 0.180234i \(-0.942315\pi\)
0.335725 0.941960i \(-0.391019\pi\)
\(662\) −2.02016e9 3.49902e9i −0.270634 0.468752i
\(663\) 0 0
\(664\) 9.96406e8 1.72583e9i 0.132083 0.228775i
\(665\) −1.40162e10 −1.84822
\(666\) 0 0
\(667\) −5.51080e9 −0.719075
\(668\) 8.54943e8 1.48080e9i 0.110974 0.192212i
\(669\) 0 0
\(670\) −3.94463e8 6.83230e8i −0.0506692 0.0877617i
\(671\) −6.40941e8 1.11014e9i −0.0819011 0.141857i
\(672\) 0 0
\(673\) −5.84290e9 + 1.01202e10i −0.738884 + 1.27978i 0.214115 + 0.976808i \(0.431313\pi\)
−0.952998 + 0.302975i \(0.902020\pi\)
\(674\) 1.47000e9 0.184930
\(675\) 0 0
\(676\) 6.00569e9 0.747738
\(677\) −5.55719e9 + 9.62534e9i −0.688327 + 1.19222i 0.284051 + 0.958809i \(0.408321\pi\)
−0.972379 + 0.233409i \(0.925012\pi\)
\(678\) 0 0
\(679\) −8.59710e9 1.48906e10i −1.05392 1.82544i
\(680\) −1.62297e9 2.81106e9i −0.197938 0.342838i
\(681\) 0 0
\(682\) 8.58041e8 1.48617e9i 0.103577 0.179400i
\(683\) 1.61450e10 1.93894 0.969472 0.245201i \(-0.0788539\pi\)
0.969472 + 0.245201i \(0.0788539\pi\)
\(684\) 0 0
\(685\) 1.05126e10 1.24967
\(686\) −2.23515e9 + 3.87139e9i −0.264345 + 0.457859i
\(687\) 0 0
\(688\) 5.56359e8 + 9.63642e8i 0.0651322 + 0.112812i
\(689\) −7.77803e9 1.34719e10i −0.905946 1.56915i
\(690\) 0 0
\(691\) 6.98902e8 1.21053e9i 0.0805829 0.139574i −0.822918 0.568161i \(-0.807655\pi\)
0.903500 + 0.428587i \(0.140988\pi\)
\(692\) 1.68398e9 0.193182
\(693\) 0 0
\(694\) −2.28905e9 −0.259955
\(695\) 1.50267e9 2.60269e9i 0.169791 0.294087i
\(696\) 0 0
\(697\) 4.37122e9 + 7.57117e9i 0.488976 + 0.846931i
\(698\) −1.46546e8 2.53825e8i −0.0163110 0.0282514i
\(699\) 0 0
\(700\) −2.13016e9 + 3.68955e9i −0.234731 + 0.406565i
\(701\) 1.34244e9 0.147191 0.0735956 0.997288i \(-0.476553\pi\)
0.0735956 + 0.997288i \(0.476553\pi\)
\(702\) 0 0
\(703\) 1.86523e10 2.02483
\(704\) 2.22813e8 3.85924e8i 0.0240678 0.0416867i
\(705\) 0 0
\(706\) −1.90775e9 3.30432e9i −0.204035 0.353399i
\(707\) −2.24525e8 3.88889e8i −0.0238944 0.0413864i
\(708\) 0 0
\(709\) 7.93153e9 1.37378e10i 0.835786 1.44762i −0.0576025 0.998340i \(-0.518346\pi\)
0.893389 0.449285i \(-0.148321\pi\)
\(710\) 2.97732e9 0.312192
\(711\) 0 0
\(712\) 3.45949e8 0.0359196
\(713\) −4.47748e9 + 7.75522e9i −0.462616 + 0.801274i
\(714\) 0 0
\(715\) −3.99466e9 6.91896e9i −0.408704 0.707896i
\(716\) −7.03118e8 1.21784e9i −0.0715868 0.123992i
\(717\) 0 0
\(718\) 1.49593e9 2.59103e9i 0.150826 0.261238i
\(719\) −2.14766e9 −0.215483 −0.107742 0.994179i \(-0.534362\pi\)
−0.107742 + 0.994179i \(0.534362\pi\)
\(720\) 0 0
\(721\) −5.14412e9 −0.511137
\(722\) 1.40377e9 2.43140e9i 0.138808 0.240423i
\(723\) 0 0
\(724\) −4.03848e9 6.99485e9i −0.395487 0.685004i
\(725\) −2.44357e9 4.23239e9i −0.238145 0.412480i
\(726\) 0 0
\(727\) 5.14336e9 8.90856e9i 0.496451 0.859879i −0.503540 0.863972i \(-0.667969\pi\)
0.999992 + 0.00409288i \(0.00130281\pi\)
\(728\) 6.77680e9 0.650976
\(729\) 0 0
\(730\) 3.13649e9 0.298411
\(731\) −2.29279e9 + 3.97123e9i −0.217097 + 0.376023i
\(732\) 0 0
\(733\) 1.60210e9 + 2.77493e9i 0.150254 + 0.260248i 0.931321 0.364200i \(-0.118657\pi\)
−0.781067 + 0.624448i \(0.785324\pi\)
\(734\) −2.33299e9 4.04086e9i −0.217759 0.377170i
\(735\) 0 0
\(736\) −1.16270e9 + 2.01385e9i −0.107496 + 0.186189i
\(737\) 4.46351e8 0.0410715
\(738\) 0 0
\(739\) 1.29766e10 1.18279 0.591394 0.806383i \(-0.298578\pi\)
0.591394 + 0.806383i \(0.298578\pi\)
\(740\) 6.35375e9 1.10050e10i 0.576394 0.998343i
\(741\) 0 0
\(742\) −5.25966e9 9.10999e9i −0.472654 0.818661i
\(743\) 3.62353e9 + 6.27614e9i 0.324094 + 0.561348i 0.981329 0.192339i \(-0.0616072\pi\)
−0.657234 + 0.753686i \(0.728274\pi\)
\(744\) 0 0
\(745\) −5.10143e9 + 8.83593e9i −0.452007 + 0.782898i
\(746\) −1.18177e10 −1.04219
\(747\) 0 0
\(748\) 1.83645e9 0.160444
\(749\) 1.50012e9 2.59828e9i 0.130449 0.225944i
\(750\) 0 0
\(751\) 4.47123e9 + 7.74440e9i 0.385201 + 0.667188i 0.991797 0.127822i \(-0.0407988\pi\)
−0.606596 + 0.795010i \(0.707465\pi\)
\(752\) −8.67592e8 1.50271e9i −0.0743966 0.128859i
\(753\) 0 0
\(754\) −3.88693e9 + 6.73236e9i −0.330223 + 0.571962i
\(755\) 1.57692e10 1.33350
\(756\) 0 0
\(757\) 1.36108e10 1.14037 0.570187 0.821515i \(-0.306871\pi\)
0.570187 + 0.821515i \(0.306871\pi\)
\(758\) −2.43583e9 + 4.21899e9i −0.203145 + 0.351857i
\(759\) 0 0
\(760\) −3.39229e9 5.87562e9i −0.280314 0.485519i
\(761\) −1.10122e10 1.90738e10i −0.905794 1.56888i −0.819848 0.572582i \(-0.805942\pi\)
−0.0859464 0.996300i \(-0.527391\pi\)
\(762\) 0 0
\(763\) −3.33921e9 + 5.78368e9i −0.272149 + 0.471377i
\(764\) −1.14849e10 −0.931752
\(765\) 0 0
\(766\) −6.78971e9 −0.545821
\(767\) 1.67789e10 2.90619e10i 1.34270 2.32563i
\(768\) 0 0
\(769\) −5.17112e9 8.95663e9i −0.410055 0.710236i 0.584840 0.811148i \(-0.301157\pi\)
−0.994895 + 0.100912i \(0.967824\pi\)
\(770\) −2.70127e9 4.67873e9i −0.213231 0.369327i
\(771\) 0 0
\(772\) 9.54605e8 1.65342e9i 0.0746729 0.129337i
\(773\) −3.65169e9 −0.284358 −0.142179 0.989841i \(-0.545411\pi\)
−0.142179 + 0.989841i \(0.545411\pi\)
\(774\) 0 0
\(775\) −7.94152e9 −0.612841
\(776\) 4.16146e9 7.20786e9i 0.319690 0.553720i
\(777\) 0 0
\(778\) 1.01321e9 + 1.75493e9i 0.0771385 + 0.133608i
\(779\) 9.13662e9 + 1.58251e10i 0.692476 + 1.19940i
\(780\) 0 0
\(781\) −8.42241e8 + 1.45880e9i −0.0632642 + 0.109577i
\(782\) −9.58309e9 −0.716608
\(783\) 0 0
\(784\) 1.20937e9 0.0896299
\(785\) −1.54077e10 + 2.66869e10i −1.13683 + 1.96904i
\(786\) 0 0
\(787\) −1.19537e10 2.07044e10i −0.874158 1.51409i −0.857657 0.514222i \(-0.828081\pi\)
−0.0165008 0.999864i \(-0.505253\pi\)
\(788\) 2.14676e9 + 3.71830e9i 0.156294 + 0.270709i
\(789\) 0 0
\(790\) −1.10228e10 + 1.90920e10i −0.795419 + 1.37771i
\(791\) −2.26817e10 −1.62951
\(792\) 0 0
\(793\) 9.43617e9 0.671954
\(794\) 3.96886e9 6.87427e9i 0.281381 0.487366i
\(795\) 0 0
\(796\) 3.78168e9 + 6.55006e9i 0.265760 + 0.460309i
\(797\) 1.36082e10 + 2.35700e10i 0.952128 + 1.64913i 0.740807 + 0.671718i \(0.234443\pi\)
0.211321 + 0.977417i \(0.432223\pi\)
\(798\) 0 0
\(799\) 3.57540e9 6.19277e9i 0.247977 0.429508i
\(800\) −2.06223e9 −0.142404
\(801\) 0 0
\(802\) −7.59002e9 −0.519556
\(803\) −8.87267e8 + 1.53679e9i −0.0604714 + 0.104740i
\(804\) 0 0
\(805\) 1.40959e10 + 2.44149e10i 0.952375 + 1.64956i
\(806\) 6.31619e9 + 1.09400e10i 0.424896 + 0.735942i
\(807\) 0 0
\(808\) 1.08682e8 1.88243e8i 0.00724801 0.0125539i
\(809\) 2.09999e10 1.39443 0.697216 0.716861i \(-0.254422\pi\)
0.697216 + 0.716861i \(0.254422\pi\)
\(810\) 0 0
\(811\) −1.21414e10 −0.799276 −0.399638 0.916673i \(-0.630864\pi\)
−0.399638 + 0.916673i \(0.630864\pi\)
\(812\) −2.62842e9 + 4.55255e9i −0.172285 + 0.298407i
\(813\) 0 0
\(814\) 3.59477e9 + 6.22632e9i 0.233607 + 0.404619i
\(815\) 5.43248e9 + 9.40933e9i 0.351517 + 0.608845i
\(816\) 0 0
\(817\) −4.79234e9 + 8.30057e9i −0.307447 + 0.532514i
\(818\) −6.21413e9 −0.396957
\(819\) 0 0
\(820\) 1.24493e10 0.788489
\(821\) −5.66101e9 + 9.80516e9i −0.357020 + 0.618377i −0.987462 0.157860i \(-0.949541\pi\)
0.630441 + 0.776237i \(0.282874\pi\)
\(822\) 0 0
\(823\) 2.91399e9 + 5.04718e9i 0.182217 + 0.315609i 0.942635 0.333825i \(-0.108339\pi\)
−0.760418 + 0.649434i \(0.775006\pi\)
\(824\) −1.24502e9 2.15643e9i −0.0775228 0.134273i
\(825\) 0 0
\(826\) 1.13462e10 1.96522e10i 0.700520 1.21334i
\(827\) −2.11794e10 −1.30210 −0.651050 0.759034i \(-0.725671\pi\)
−0.651050 + 0.759034i \(0.725671\pi\)
\(828\) 0 0
\(829\) −1.77492e10 −1.08203 −0.541013 0.841014i \(-0.681959\pi\)
−0.541013 + 0.841014i \(0.681959\pi\)
\(830\) 5.84733e9 1.01279e10i 0.354964 0.614815i
\(831\) 0 0
\(832\) 1.64017e9 + 2.84085e9i 0.0987317 + 0.171008i
\(833\) 2.49194e9 + 4.31617e9i 0.149376 + 0.258727i
\(834\) 0 0
\(835\) 5.01716e9 8.68997e9i 0.298233 0.516554i
\(836\) 3.83851e9 0.227217
\(837\) 0 0
\(838\) −5.03909e9 −0.295800
\(839\) −1.31911e10 + 2.28476e10i −0.771104 + 1.33559i 0.165855 + 0.986150i \(0.446962\pi\)
−0.936959 + 0.349441i \(0.886372\pi\)
\(840\) 0 0
\(841\) 5.60981e9 + 9.71647e9i 0.325209 + 0.563278i
\(842\) 4.41940e9 + 7.65463e9i 0.255136 + 0.441908i
\(843\) 0 0
\(844\) −3.32753e9 + 5.76345e9i −0.190513 + 0.329977i
\(845\) 3.52439e10 2.00949
\(846\) 0 0
\(847\) −1.75556e10 −0.992715
\(848\) 2.54596e9 4.40973e9i 0.143372 0.248328i
\(849\) 0 0
\(850\) −4.24928e9 7.35997e9i −0.237328 0.411065i
\(851\) −1.87584e10 3.24905e10i −1.04338 1.80719i
\(852\) 0 0
\(853\) −1.33903e10 + 2.31927e10i −0.738701 + 1.27947i 0.214379 + 0.976750i \(0.431227\pi\)
−0.953080 + 0.302717i \(0.902106\pi\)
\(854\) 6.38092e9 0.350575
\(855\) 0 0
\(856\) 1.45228e9 0.0791392
\(857\) 6.44399e9 1.11613e10i 0.349721 0.605735i −0.636479 0.771294i \(-0.719610\pi\)
0.986200 + 0.165560i \(0.0529430\pi\)
\(858\) 0 0
\(859\) −2.13794e9 3.70302e9i −0.115085 0.199333i 0.802729 0.596344i \(-0.203381\pi\)
−0.917814 + 0.397011i \(0.870047\pi\)
\(860\) 3.26495e9 + 5.65505e9i 0.175038 + 0.303174i
\(861\) 0 0
\(862\) 1.14265e9 1.97912e9i 0.0607626 0.105244i
\(863\) 2.63998e10 1.39818 0.699089 0.715035i \(-0.253589\pi\)
0.699089 + 0.715035i \(0.253589\pi\)
\(864\) 0 0
\(865\) 9.88231e9 0.519161
\(866\) 1.90715e9 3.30328e9i 0.0997867 0.172836i
\(867\) 0 0
\(868\) 4.27113e9 + 7.39782e9i 0.221679 + 0.383959i
\(869\) −6.23635e9 1.08017e10i −0.322375 0.558370i
\(870\) 0 0
\(871\) −1.64283e9 + 2.84547e9i −0.0842423 + 0.145912i
\(872\) −3.23271e9 −0.165105
\(873\) 0 0
\(874\) −2.00304e10 −1.01484
\(875\) 3.01736e9 5.22622e9i 0.152265 0.263730i
\(876\) 0 0
\(877\) −7.19624e9 1.24642e10i −0.360252 0.623975i 0.627750 0.778415i \(-0.283976\pi\)
−0.988002 + 0.154440i \(0.950643\pi\)
\(878\) 1.00703e10 + 1.74423e10i 0.502125 + 0.869706i
\(879\) 0 0
\(880\) 1.30756e9 2.26476e9i 0.0646803 0.112030i
\(881\) −2.86878e10 −1.41345 −0.706727 0.707487i \(-0.749829\pi\)
−0.706727 + 0.707487i \(0.749829\pi\)
\(882\) 0 0
\(883\) 1.10176e10 0.538550 0.269275 0.963063i \(-0.413216\pi\)
0.269275 + 0.963063i \(0.413216\pi\)
\(884\) −6.75923e9 + 1.17073e10i −0.329090 + 0.570000i
\(885\) 0 0
\(886\) 1.83459e9 + 3.17761e9i 0.0886180 + 0.153491i
\(887\) 8.77534e9 + 1.51993e10i 0.422213 + 0.731294i 0.996156 0.0876014i \(-0.0279202\pi\)
−0.573943 + 0.818895i \(0.694587\pi\)
\(888\) 0 0
\(889\) −7.17571e9 + 1.24287e10i −0.342538 + 0.593293i
\(890\) 2.03017e9 0.0965311
\(891\) 0 0
\(892\) −1.03379e10 −0.487703
\(893\) 7.47322e9 1.29440e10i 0.351178 0.608259i
\(894\) 0 0
\(895\) −4.12619e9 7.14677e9i −0.192384 0.333218i
\(896\) 1.10911e9 + 1.92104e9i 0.0515108 + 0.0892193i
\(897\) 0 0
\(898\) 5.85733e9 1.01452e10i 0.269918 0.467512i
\(899\) −9.79907e9 −0.449807
\(900\) 0 0
\(901\) 2.09841e10 0.955770
\(902\) −3.52172e9 + 6.09979e9i −0.159783 + 0.276753i
\(903\) 0 0
\(904\) −5.48959e9 9.50824e9i −0.247144 0.428066i
\(905\) −2.36994e10 4.10486e10i −1.06284 1.84089i
\(906\) 0 0
\(907\) 8.42225e9 1.45878e10i 0.374803 0.649177i −0.615495 0.788141i \(-0.711044\pi\)
0.990297 + 0.138964i \(0.0443771\pi\)
\(908\) −2.43542e9 −0.107963
\(909\) 0 0
\(910\) 3.97691e10 1.74945
\(911\) 7.36357e9 1.27541e10i 0.322682 0.558901i −0.658359 0.752704i \(-0.728749\pi\)
0.981040 + 0.193803i \(0.0620823\pi\)
\(912\) 0 0
\(913\) 3.30824e9 + 5.73005e9i 0.143863 + 0.249178i
\(914\) 5.58639e9 + 9.67592e9i 0.242003 + 0.419161i
\(915\) 0 0
\(916\) 9.27091e9 1.60577e10i 0.398555 0.690318i
\(917\) 2.48899e10 1.06593
\(918\) 0 0
\(919\) 7.11506e9 0.302395 0.151197 0.988504i \(-0.451687\pi\)
0.151197 + 0.988504i \(0.451687\pi\)
\(920\) −6.82319e9 + 1.18181e10i −0.288888 + 0.500369i
\(921\) 0 0
\(922\) 1.58488e10 + 2.74510e10i 0.665946 + 1.15345i
\(923\) −6.19989e9 1.07385e10i −0.259524 0.449509i
\(924\) 0 0
\(925\) 1.66355e10 2.88136e10i 0.691099 1.19702i
\(926\) 1.50530e10 0.622995
\(927\) 0 0
\(928\) −2.54459e9 −0.104520
\(929\) −1.69702e10 + 2.93933e10i −0.694437 + 1.20280i 0.275933 + 0.961177i \(0.411013\pi\)
−0.970370 + 0.241624i \(0.922320\pi\)
\(930\) 0 0
\(931\) 5.20860e9 + 9.02156e9i 0.211542 + 0.366402i
\(932\) −2.38430e9 4.12973e9i −0.0964730 0.167096i
\(933\) 0 0
\(934\) −3.87807e9 + 6.71702e9i −0.155741 + 0.269751i
\(935\) 1.07771e10 0.431181
\(936\) 0 0
\(937\) −3.78364e10 −1.50252 −0.751261 0.660005i \(-0.770554\pi\)
−0.751261 + 0.660005i \(0.770554\pi\)
\(938\) −1.11092e9 + 1.92416e9i −0.0439513 + 0.0761258i
\(939\) 0 0
\(940\) −5.09139e9 8.81854e9i −0.199935 0.346298i
\(941\) 8.44461e9 + 1.46265e10i 0.330382 + 0.572238i 0.982587 0.185805i \(-0.0594892\pi\)
−0.652205 + 0.758043i \(0.726156\pi\)
\(942\) 0 0
\(943\) 1.83772e10 3.18303e10i 0.713657 1.23609i
\(944\) 1.09844e10 0.424984
\(945\) 0 0
\(946\) −3.69442e9 −0.141882
\(947\) 5.84561e9 1.01249e10i 0.223668 0.387405i −0.732251 0.681035i \(-0.761530\pi\)
0.955919 + 0.293630i \(0.0948634\pi\)
\(948\) 0 0
\(949\) −6.53134e9 1.13126e10i −0.248068 0.429666i
\(950\) −8.88176e9 1.53837e10i −0.336098 0.582139i
\(951\) 0 0
\(952\) −4.57072e9 + 7.91672e9i −0.171694 + 0.297383i
\(953\) −5.10551e10 −1.91079 −0.955397 0.295323i \(-0.904573\pi\)
−0.955397 + 0.295323i \(0.904573\pi\)
\(954\) 0 0
\(955\) −6.73981e10 −2.50401
\(956\) 5.74930e9 9.95808e9i 0.212820 0.368615i
\(957\) 0 0
\(958\) 8.03480e9 + 1.39167e10i 0.295254 + 0.511395i
\(959\) −1.48032e10 2.56400e10i −0.541990 0.938755i
\(960\) 0 0
\(961\) 5.79464e9 1.00366e10i 0.210618 0.364800i
\(962\) −5.29235e10 −1.91662
\(963\) 0 0
\(964\) −3.89556e9 −0.140056
\(965\) 5.60202e9 9.70298e9i 0.200678 0.347584i
\(966\) 0 0
\(967\) 4.34365e9 + 7.52343e9i 0.154476 + 0.267561i 0.932868 0.360218i \(-0.117298\pi\)
−0.778392 + 0.627779i \(0.783964\pi\)
\(968\) −4.24894e9 7.35937e9i −0.150562 0.260782i
\(969\) 0 0
\(970\) 2.44212e10 4.22987e10i 0.859143 1.48808i
\(971\) −3.91347e10 −1.37181 −0.685906 0.727690i \(-0.740594\pi\)
−0.685906 + 0.727690i \(0.740594\pi\)
\(972\) 0 0
\(973\) −8.46384e9 −0.294559
\(974\) 1.21153e10 2.09844e10i 0.420126 0.727679i
\(975\) 0 0
\(976\) 1.54436e9 + 2.67490e9i 0.0531708 + 0.0920945i
\(977\) −1.36255e10 2.36001e10i −0.467437 0.809624i 0.531871 0.846825i \(-0.321489\pi\)
−0.999308 + 0.0372010i \(0.988156\pi\)
\(978\) 0 0
\(979\) −5.74305e8 + 9.94725e8i −0.0195615 + 0.0338816i
\(980\) 7.09708e9 0.240873
\(981\) 0 0
\(982\) 3.61379e10 1.21779
\(983\) 3.56677e9 6.17782e9i 0.119767 0.207443i −0.799908 0.600122i \(-0.795119\pi\)
0.919675 + 0.392680i \(0.128452\pi\)
\(984\) 0 0
\(985\) 1.25981e10 + 2.18205e10i 0.420028 + 0.727509i
\(986\) −5.24321e9 9.08150e9i −0.174192 0.301709i
\(987\) 0 0
\(988\) −1.41280e10 + 2.44704e10i −0.466049 + 0.807220i
\(989\) 1.92784e10 0.633702
\(990\) 0 0
\(991\) −1.99378e10 −0.650760 −0.325380 0.945583i \(-0.605492\pi\)
−0.325380 + 0.945583i \(0.605492\pi\)
\(992\) −2.06746e9 + 3.58094e9i −0.0672428 + 0.116468i
\(993\) 0 0
\(994\) −4.19249e9 7.26160e9i −0.135400 0.234520i
\(995\) 2.21925e10 + 3.84385e10i 0.714208 + 1.23704i
\(996\) 0 0
\(997\) 6.37020e9 1.10335e10i 0.203573 0.352598i −0.746104 0.665829i \(-0.768078\pi\)
0.949677 + 0.313231i \(0.101411\pi\)
\(998\) 3.72531e10 1.18633
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 54.8.c.a.19.1 6
3.2 odd 2 18.8.c.a.7.2 6
4.3 odd 2 432.8.i.a.289.1 6
9.2 odd 6 162.8.a.f.1.1 3
9.4 even 3 inner 54.8.c.a.37.1 6
9.5 odd 6 18.8.c.a.13.2 yes 6
9.7 even 3 162.8.a.e.1.3 3
12.11 even 2 144.8.i.a.97.2 6
36.23 even 6 144.8.i.a.49.2 6
36.31 odd 6 432.8.i.a.145.1 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
18.8.c.a.7.2 6 3.2 odd 2
18.8.c.a.13.2 yes 6 9.5 odd 6
54.8.c.a.19.1 6 1.1 even 1 trivial
54.8.c.a.37.1 6 9.4 even 3 inner
144.8.i.a.49.2 6 36.23 even 6
144.8.i.a.97.2 6 12.11 even 2
162.8.a.e.1.3 3 9.7 even 3
162.8.a.f.1.1 3 9.2 odd 6
432.8.i.a.145.1 6 36.31 odd 6
432.8.i.a.289.1 6 4.3 odd 2