Properties

Label 162.8.a.f.1.1
Level $162$
Weight $8$
Character 162.1
Self dual yes
Analytic conductor $50.606$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [162,8,Mod(1,162)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(162, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("162.1");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 162 = 2 \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 162.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(50.6063741284\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.69765.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - 72x - 179 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2\cdot 3^{4} \)
Twist minimal: no (minimal twist has level 18)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(9.52819\) of defining polynomial
Character \(\chi\) \(=\) 162.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+8.00000 q^{2} +64.0000 q^{4} -375.578 q^{5} +1057.73 q^{7} +512.000 q^{8} -3004.63 q^{10} +1699.93 q^{11} -12513.5 q^{13} +8461.86 q^{14} +4096.00 q^{16} +16879.9 q^{17} -35281.9 q^{19} -24037.0 q^{20} +13599.4 q^{22} +70965.4 q^{23} +62934.2 q^{25} -100108. q^{26} +67694.9 q^{28} -77654.8 q^{29} -126188. q^{31} +32768.0 q^{32} +135039. q^{34} -397262. q^{35} -528664. q^{37} -282255. q^{38} -192296. q^{40} -517921. q^{41} -271660. q^{43} +108795. q^{44} +567723. q^{46} -423629. q^{47} +295256. q^{49} +503474. q^{50} -800863. q^{52} +1.24314e6 q^{53} -638457. q^{55} +541559. q^{56} -621238. q^{58} -2.68173e6 q^{59} -754080. q^{61} -1.00950e6 q^{62} +262144. q^{64} +4.69980e6 q^{65} -262570. q^{67} +1.08031e6 q^{68} -3.17809e6 q^{70} +990913. q^{71} -1.04389e6 q^{73} -4.22931e6 q^{74} -2.25804e6 q^{76} +1.79807e6 q^{77} -7.33719e6 q^{79} -1.53837e6 q^{80} -4.14337e6 q^{82} -3.89221e6 q^{83} -6.33971e6 q^{85} -2.17328e6 q^{86} +870364. q^{88} +675681. q^{89} -1.32359e7 q^{91} +4.54179e6 q^{92} -3.38903e6 q^{94} +1.32511e7 q^{95} +1.62557e7 q^{97} +2.36205e6 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 24 q^{2} + 192 q^{4} - 54 q^{5} - 210 q^{7} + 1536 q^{8} - 432 q^{10} - 6579 q^{11} - 10092 q^{13} - 1680 q^{14} + 12288 q^{16} - 14895 q^{17} - 68745 q^{19} - 3456 q^{20} - 52632 q^{22} + 39654 q^{23}+ \cdots - 3857400 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 8.00000 0.707107
\(3\) 0 0
\(4\) 64.0000 0.500000
\(5\) −375.578 −1.34371 −0.671855 0.740682i \(-0.734502\pi\)
−0.671855 + 0.740682i \(0.734502\pi\)
\(6\) 0 0
\(7\) 1057.73 1.16556 0.582778 0.812632i \(-0.301966\pi\)
0.582778 + 0.812632i \(0.301966\pi\)
\(8\) 512.000 0.353553
\(9\) 0 0
\(10\) −3004.63 −0.950147
\(11\) 1699.93 0.385085 0.192542 0.981289i \(-0.438327\pi\)
0.192542 + 0.981289i \(0.438327\pi\)
\(12\) 0 0
\(13\) −12513.5 −1.57971 −0.789854 0.613295i \(-0.789844\pi\)
−0.789854 + 0.613295i \(0.789844\pi\)
\(14\) 8461.86 0.824172
\(15\) 0 0
\(16\) 4096.00 0.250000
\(17\) 16879.9 0.833293 0.416646 0.909069i \(-0.363205\pi\)
0.416646 + 0.909069i \(0.363205\pi\)
\(18\) 0 0
\(19\) −35281.9 −1.18009 −0.590044 0.807371i \(-0.700890\pi\)
−0.590044 + 0.807371i \(0.700890\pi\)
\(20\) −24037.0 −0.671855
\(21\) 0 0
\(22\) 13599.4 0.272296
\(23\) 70965.4 1.21618 0.608092 0.793867i \(-0.291935\pi\)
0.608092 + 0.793867i \(0.291935\pi\)
\(24\) 0 0
\(25\) 62934.2 0.805558
\(26\) −100108. −1.11702
\(27\) 0 0
\(28\) 67694.9 0.582778
\(29\) −77654.8 −0.591255 −0.295628 0.955303i \(-0.595529\pi\)
−0.295628 + 0.955303i \(0.595529\pi\)
\(30\) 0 0
\(31\) −126188. −0.760766 −0.380383 0.924829i \(-0.624208\pi\)
−0.380383 + 0.924829i \(0.624208\pi\)
\(32\) 32768.0 0.176777
\(33\) 0 0
\(34\) 135039. 0.589227
\(35\) −397262. −1.56617
\(36\) 0 0
\(37\) −528664. −1.71583 −0.857914 0.513794i \(-0.828240\pi\)
−0.857914 + 0.513794i \(0.828240\pi\)
\(38\) −282255. −0.834449
\(39\) 0 0
\(40\) −192296. −0.475073
\(41\) −517921. −1.17360 −0.586800 0.809732i \(-0.699612\pi\)
−0.586800 + 0.809732i \(0.699612\pi\)
\(42\) 0 0
\(43\) −271660. −0.521057 −0.260529 0.965466i \(-0.583897\pi\)
−0.260529 + 0.965466i \(0.583897\pi\)
\(44\) 108795. 0.192542
\(45\) 0 0
\(46\) 567723. 0.859972
\(47\) −423629. −0.595173 −0.297586 0.954695i \(-0.596182\pi\)
−0.297586 + 0.954695i \(0.596182\pi\)
\(48\) 0 0
\(49\) 295256. 0.358519
\(50\) 503474. 0.569615
\(51\) 0 0
\(52\) −800863. −0.789854
\(53\) 1.24314e6 1.14698 0.573490 0.819213i \(-0.305589\pi\)
0.573490 + 0.819213i \(0.305589\pi\)
\(54\) 0 0
\(55\) −638457. −0.517443
\(56\) 541559. 0.412086
\(57\) 0 0
\(58\) −621238. −0.418081
\(59\) −2.68173e6 −1.69994 −0.849968 0.526834i \(-0.823379\pi\)
−0.849968 + 0.526834i \(0.823379\pi\)
\(60\) 0 0
\(61\) −754080. −0.425366 −0.212683 0.977121i \(-0.568220\pi\)
−0.212683 + 0.977121i \(0.568220\pi\)
\(62\) −1.00950e6 −0.537943
\(63\) 0 0
\(64\) 262144. 0.125000
\(65\) 4.69980e6 2.12267
\(66\) 0 0
\(67\) −262570. −0.106656 −0.0533278 0.998577i \(-0.516983\pi\)
−0.0533278 + 0.998577i \(0.516983\pi\)
\(68\) 1.08031e6 0.416646
\(69\) 0 0
\(70\) −3.17809e6 −1.10745
\(71\) 990913. 0.328573 0.164286 0.986413i \(-0.447468\pi\)
0.164286 + 0.986413i \(0.447468\pi\)
\(72\) 0 0
\(73\) −1.04389e6 −0.314068 −0.157034 0.987593i \(-0.550193\pi\)
−0.157034 + 0.987593i \(0.550193\pi\)
\(74\) −4.22931e6 −1.21327
\(75\) 0 0
\(76\) −2.25804e6 −0.590044
\(77\) 1.79807e6 0.448838
\(78\) 0 0
\(79\) −7.33719e6 −1.67431 −0.837153 0.546968i \(-0.815782\pi\)
−0.837153 + 0.546968i \(0.815782\pi\)
\(80\) −1.53837e6 −0.335928
\(81\) 0 0
\(82\) −4.14337e6 −0.829860
\(83\) −3.89221e6 −0.747177 −0.373588 0.927595i \(-0.621873\pi\)
−0.373588 + 0.927595i \(0.621873\pi\)
\(84\) 0 0
\(85\) −6.33971e6 −1.11970
\(86\) −2.17328e6 −0.368443
\(87\) 0 0
\(88\) 870364. 0.136148
\(89\) 675681. 0.101596 0.0507980 0.998709i \(-0.483824\pi\)
0.0507980 + 0.998709i \(0.483824\pi\)
\(90\) 0 0
\(91\) −1.32359e7 −1.84124
\(92\) 4.54179e6 0.608092
\(93\) 0 0
\(94\) −3.38903e6 −0.420851
\(95\) 1.32511e7 1.58570
\(96\) 0 0
\(97\) 1.62557e7 1.80844 0.904221 0.427065i \(-0.140452\pi\)
0.904221 + 0.427065i \(0.140452\pi\)
\(98\) 2.36205e6 0.253512
\(99\) 0 0
\(100\) 4.02779e6 0.402779
\(101\) −424540. −0.0410009 −0.0205005 0.999790i \(-0.506526\pi\)
−0.0205005 + 0.999790i \(0.506526\pi\)
\(102\) 0 0
\(103\) −4.86334e6 −0.438535 −0.219268 0.975665i \(-0.570367\pi\)
−0.219268 + 0.975665i \(0.570367\pi\)
\(104\) −6.40691e6 −0.558511
\(105\) 0 0
\(106\) 9.94515e6 0.811037
\(107\) 2.83648e6 0.223839 0.111920 0.993717i \(-0.464300\pi\)
0.111920 + 0.993717i \(0.464300\pi\)
\(108\) 0 0
\(109\) 6.31389e6 0.466987 0.233493 0.972358i \(-0.424984\pi\)
0.233493 + 0.972358i \(0.424984\pi\)
\(110\) −5.10766e6 −0.365887
\(111\) 0 0
\(112\) 4.33247e6 0.291389
\(113\) 2.14437e7 1.39806 0.699029 0.715094i \(-0.253616\pi\)
0.699029 + 0.715094i \(0.253616\pi\)
\(114\) 0 0
\(115\) −2.66531e7 −1.63420
\(116\) −4.96990e6 −0.295628
\(117\) 0 0
\(118\) −2.14538e7 −1.20204
\(119\) 1.78544e7 0.971249
\(120\) 0 0
\(121\) −1.65974e7 −0.851710
\(122\) −6.03264e6 −0.300779
\(123\) 0 0
\(124\) −8.07601e6 −0.380383
\(125\) 5.70534e6 0.261274
\(126\) 0 0
\(127\) 1.35681e7 0.587768 0.293884 0.955841i \(-0.405052\pi\)
0.293884 + 0.955841i \(0.405052\pi\)
\(128\) 2.09715e6 0.0883883
\(129\) 0 0
\(130\) 3.75984e7 1.50095
\(131\) −2.35314e7 −0.914529 −0.457265 0.889331i \(-0.651171\pi\)
−0.457265 + 0.889331i \(0.651171\pi\)
\(132\) 0 0
\(133\) −3.73189e7 −1.37546
\(134\) −2.10056e6 −0.0754169
\(135\) 0 0
\(136\) 8.64249e6 0.294614
\(137\) −2.79905e7 −0.930012 −0.465006 0.885307i \(-0.653948\pi\)
−0.465006 + 0.885307i \(0.653948\pi\)
\(138\) 0 0
\(139\) −8.00187e6 −0.252720 −0.126360 0.991984i \(-0.540329\pi\)
−0.126360 + 0.991984i \(0.540329\pi\)
\(140\) −2.54248e7 −0.783084
\(141\) 0 0
\(142\) 7.92730e6 0.232336
\(143\) −2.12721e7 −0.608322
\(144\) 0 0
\(145\) 2.91655e7 0.794476
\(146\) −8.35110e6 −0.222080
\(147\) 0 0
\(148\) −3.38345e7 −0.857914
\(149\) −2.71657e7 −0.672774 −0.336387 0.941724i \(-0.609205\pi\)
−0.336387 + 0.941724i \(0.609205\pi\)
\(150\) 0 0
\(151\) 4.19863e7 0.992404 0.496202 0.868207i \(-0.334728\pi\)
0.496202 + 0.868207i \(0.334728\pi\)
\(152\) −1.80643e7 −0.417224
\(153\) 0 0
\(154\) 1.43846e7 0.317376
\(155\) 4.73934e7 1.02225
\(156\) 0 0
\(157\) 8.20479e7 1.69207 0.846036 0.533126i \(-0.178983\pi\)
0.846036 + 0.533126i \(0.178983\pi\)
\(158\) −5.86975e7 −1.18391
\(159\) 0 0
\(160\) −1.23070e7 −0.237537
\(161\) 7.50625e7 1.41753
\(162\) 0 0
\(163\) −2.89286e7 −0.523203 −0.261602 0.965176i \(-0.584251\pi\)
−0.261602 + 0.965176i \(0.584251\pi\)
\(164\) −3.31469e7 −0.586800
\(165\) 0 0
\(166\) −3.11377e7 −0.528334
\(167\) 2.67170e7 0.443894 0.221947 0.975059i \(-0.428759\pi\)
0.221947 + 0.975059i \(0.428759\pi\)
\(168\) 0 0
\(169\) 9.38390e7 1.49548
\(170\) −5.07177e7 −0.791751
\(171\) 0 0
\(172\) −1.73862e7 −0.260529
\(173\) −2.63122e7 −0.386364 −0.193182 0.981163i \(-0.561881\pi\)
−0.193182 + 0.981163i \(0.561881\pi\)
\(174\) 0 0
\(175\) 6.65676e7 0.938922
\(176\) 6.96291e6 0.0962712
\(177\) 0 0
\(178\) 5.40545e6 0.0718392
\(179\) −2.19724e7 −0.286347 −0.143174 0.989698i \(-0.545731\pi\)
−0.143174 + 0.989698i \(0.545731\pi\)
\(180\) 0 0
\(181\) 1.26202e8 1.58195 0.790975 0.611849i \(-0.209574\pi\)
0.790975 + 0.611849i \(0.209574\pi\)
\(182\) −1.05887e8 −1.30195
\(183\) 0 0
\(184\) 3.63343e7 0.429986
\(185\) 1.98555e8 2.30558
\(186\) 0 0
\(187\) 2.86946e7 0.320889
\(188\) −2.71122e7 −0.297586
\(189\) 0 0
\(190\) 1.06009e8 1.12126
\(191\) 1.79451e8 1.86350 0.931752 0.363096i \(-0.118280\pi\)
0.931752 + 0.363096i \(0.118280\pi\)
\(192\) 0 0
\(193\) −2.98314e7 −0.298692 −0.149346 0.988785i \(-0.547717\pi\)
−0.149346 + 0.988785i \(0.547717\pi\)
\(194\) 1.30046e8 1.27876
\(195\) 0 0
\(196\) 1.88964e7 0.179260
\(197\) 6.70863e7 0.625176 0.312588 0.949889i \(-0.398804\pi\)
0.312588 + 0.949889i \(0.398804\pi\)
\(198\) 0 0
\(199\) −1.18177e8 −1.06304 −0.531519 0.847046i \(-0.678379\pi\)
−0.531519 + 0.847046i \(0.678379\pi\)
\(200\) 3.22223e7 0.284808
\(201\) 0 0
\(202\) −3.39632e6 −0.0289920
\(203\) −8.21380e7 −0.689141
\(204\) 0 0
\(205\) 1.94520e8 1.57698
\(206\) −3.89067e7 −0.310091
\(207\) 0 0
\(208\) −5.12553e7 −0.394927
\(209\) −5.99768e7 −0.454434
\(210\) 0 0
\(211\) 1.03985e8 0.762050 0.381025 0.924565i \(-0.375571\pi\)
0.381025 + 0.924565i \(0.375571\pi\)
\(212\) 7.95612e7 0.573490
\(213\) 0 0
\(214\) 2.26919e7 0.158278
\(215\) 1.02030e8 0.700150
\(216\) 0 0
\(217\) −1.33473e8 −0.886715
\(218\) 5.05111e7 0.330209
\(219\) 0 0
\(220\) −4.08612e7 −0.258721
\(221\) −2.11226e8 −1.31636
\(222\) 0 0
\(223\) −1.61530e8 −0.975405 −0.487703 0.873010i \(-0.662165\pi\)
−0.487703 + 0.873010i \(0.662165\pi\)
\(224\) 3.46598e7 0.206043
\(225\) 0 0
\(226\) 1.71550e8 0.988576
\(227\) 3.80535e7 0.215925 0.107963 0.994155i \(-0.465567\pi\)
0.107963 + 0.994155i \(0.465567\pi\)
\(228\) 0 0
\(229\) −2.89716e8 −1.59422 −0.797110 0.603834i \(-0.793639\pi\)
−0.797110 + 0.603834i \(0.793639\pi\)
\(230\) −2.13225e8 −1.15555
\(231\) 0 0
\(232\) −3.97592e7 −0.209040
\(233\) −7.45094e7 −0.385892 −0.192946 0.981209i \(-0.561804\pi\)
−0.192946 + 0.981209i \(0.561804\pi\)
\(234\) 0 0
\(235\) 1.59106e8 0.799740
\(236\) −1.71631e8 −0.849968
\(237\) 0 0
\(238\) 1.42835e8 0.686777
\(239\) 1.79666e8 0.851280 0.425640 0.904893i \(-0.360049\pi\)
0.425640 + 0.904893i \(0.360049\pi\)
\(240\) 0 0
\(241\) −6.08682e7 −0.280111 −0.140056 0.990144i \(-0.544728\pi\)
−0.140056 + 0.990144i \(0.544728\pi\)
\(242\) −1.32779e8 −0.602250
\(243\) 0 0
\(244\) −4.82611e7 −0.212683
\(245\) −1.10892e8 −0.481746
\(246\) 0 0
\(247\) 4.41500e8 1.86420
\(248\) −6.46081e7 −0.268971
\(249\) 0 0
\(250\) 4.56427e7 0.184749
\(251\) 2.14309e8 0.855426 0.427713 0.903915i \(-0.359319\pi\)
0.427713 + 0.903915i \(0.359319\pi\)
\(252\) 0 0
\(253\) 1.20636e8 0.468334
\(254\) 1.08545e8 0.415614
\(255\) 0 0
\(256\) 1.67772e7 0.0625000
\(257\) −5.27076e7 −0.193690 −0.0968450 0.995299i \(-0.530875\pi\)
−0.0968450 + 0.995299i \(0.530875\pi\)
\(258\) 0 0
\(259\) −5.59185e8 −1.99989
\(260\) 3.00787e8 1.06133
\(261\) 0 0
\(262\) −1.88251e8 −0.646670
\(263\) 4.88578e8 1.65611 0.828055 0.560647i \(-0.189448\pi\)
0.828055 + 0.560647i \(0.189448\pi\)
\(264\) 0 0
\(265\) −4.66898e8 −1.54121
\(266\) −2.98551e8 −0.972596
\(267\) 0 0
\(268\) −1.68045e7 −0.0533278
\(269\) −1.69083e8 −0.529622 −0.264811 0.964300i \(-0.585310\pi\)
−0.264811 + 0.964300i \(0.585310\pi\)
\(270\) 0 0
\(271\) −1.99531e8 −0.609001 −0.304501 0.952512i \(-0.598490\pi\)
−0.304501 + 0.952512i \(0.598490\pi\)
\(272\) 6.91399e7 0.208323
\(273\) 0 0
\(274\) −2.23924e8 −0.657618
\(275\) 1.06984e8 0.310208
\(276\) 0 0
\(277\) −3.54876e8 −1.00322 −0.501611 0.865093i \(-0.667259\pi\)
−0.501611 + 0.865093i \(0.667259\pi\)
\(278\) −6.40150e7 −0.178700
\(279\) 0 0
\(280\) −2.03398e8 −0.553724
\(281\) −2.80491e8 −0.754130 −0.377065 0.926187i \(-0.623067\pi\)
−0.377065 + 0.926187i \(0.623067\pi\)
\(282\) 0 0
\(283\) −1.59049e8 −0.417136 −0.208568 0.978008i \(-0.566880\pi\)
−0.208568 + 0.978008i \(0.566880\pi\)
\(284\) 6.34184e7 0.164286
\(285\) 0 0
\(286\) −1.70176e8 −0.430148
\(287\) −5.47822e8 −1.36790
\(288\) 0 0
\(289\) −1.25409e8 −0.305623
\(290\) 2.33324e8 0.561779
\(291\) 0 0
\(292\) −6.68088e7 −0.157034
\(293\) 3.44380e8 0.799837 0.399918 0.916551i \(-0.369038\pi\)
0.399918 + 0.916551i \(0.369038\pi\)
\(294\) 0 0
\(295\) 1.00720e9 2.28422
\(296\) −2.70676e8 −0.606637
\(297\) 0 0
\(298\) −2.17326e8 −0.475723
\(299\) −8.88025e8 −1.92122
\(300\) 0 0
\(301\) −2.87343e8 −0.607321
\(302\) 3.35890e8 0.701735
\(303\) 0 0
\(304\) −1.44515e8 −0.295022
\(305\) 2.83216e8 0.571569
\(306\) 0 0
\(307\) 5.28744e8 1.04294 0.521472 0.853269i \(-0.325383\pi\)
0.521472 + 0.853269i \(0.325383\pi\)
\(308\) 1.15077e8 0.224419
\(309\) 0 0
\(310\) 3.79147e8 0.722839
\(311\) −2.86764e8 −0.540584 −0.270292 0.962778i \(-0.587120\pi\)
−0.270292 + 0.962778i \(0.587120\pi\)
\(312\) 0 0
\(313\) 2.50249e7 0.0461282 0.0230641 0.999734i \(-0.492658\pi\)
0.0230641 + 0.999734i \(0.492658\pi\)
\(314\) 6.56383e8 1.19648
\(315\) 0 0
\(316\) −4.69580e8 −0.837153
\(317\) −5.20273e8 −0.917327 −0.458663 0.888610i \(-0.651672\pi\)
−0.458663 + 0.888610i \(0.651672\pi\)
\(318\) 0 0
\(319\) −1.32008e8 −0.227684
\(320\) −9.84556e7 −0.167964
\(321\) 0 0
\(322\) 6.00500e8 1.00234
\(323\) −5.95554e8 −0.983359
\(324\) 0 0
\(325\) −7.87527e8 −1.27255
\(326\) −2.31429e8 −0.369961
\(327\) 0 0
\(328\) −2.65176e8 −0.414930
\(329\) −4.48086e8 −0.693707
\(330\) 0 0
\(331\) −5.05039e8 −0.765468 −0.382734 0.923859i \(-0.625017\pi\)
−0.382734 + 0.923859i \(0.625017\pi\)
\(332\) −2.49102e8 −0.373588
\(333\) 0 0
\(334\) 2.13736e8 0.313881
\(335\) 9.86157e7 0.143314
\(336\) 0 0
\(337\) −1.83750e8 −0.261531 −0.130765 0.991413i \(-0.541743\pi\)
−0.130765 + 0.991413i \(0.541743\pi\)
\(338\) 7.50712e8 1.05746
\(339\) 0 0
\(340\) −4.05742e8 −0.559852
\(341\) −2.14510e8 −0.292960
\(342\) 0 0
\(343\) −5.58786e8 −0.747681
\(344\) −1.39090e8 −0.184222
\(345\) 0 0
\(346\) −2.10498e8 −0.273200
\(347\) −2.86132e8 −0.367632 −0.183816 0.982961i \(-0.558845\pi\)
−0.183816 + 0.982961i \(0.558845\pi\)
\(348\) 0 0
\(349\) −3.66365e7 −0.0461344 −0.0230672 0.999734i \(-0.507343\pi\)
−0.0230672 + 0.999734i \(0.507343\pi\)
\(350\) 5.32541e8 0.663918
\(351\) 0 0
\(352\) 5.57033e7 0.0680740
\(353\) 4.76938e8 0.577099 0.288549 0.957465i \(-0.406827\pi\)
0.288549 + 0.957465i \(0.406827\pi\)
\(354\) 0 0
\(355\) −3.72166e8 −0.441506
\(356\) 4.32436e7 0.0507980
\(357\) 0 0
\(358\) −1.75780e8 −0.202478
\(359\) −3.73983e8 −0.426600 −0.213300 0.976987i \(-0.568421\pi\)
−0.213300 + 0.976987i \(0.568421\pi\)
\(360\) 0 0
\(361\) 3.50942e8 0.392609
\(362\) 1.00962e9 1.11861
\(363\) 0 0
\(364\) −8.47100e8 −0.920619
\(365\) 3.92062e8 0.422016
\(366\) 0 0
\(367\) −5.83248e8 −0.615917 −0.307958 0.951400i \(-0.599646\pi\)
−0.307958 + 0.951400i \(0.599646\pi\)
\(368\) 2.90674e8 0.304046
\(369\) 0 0
\(370\) 1.58844e9 1.63029
\(371\) 1.31491e9 1.33687
\(372\) 0 0
\(373\) 1.47721e9 1.47388 0.736939 0.675959i \(-0.236270\pi\)
0.736939 + 0.675959i \(0.236270\pi\)
\(374\) 2.29557e8 0.226902
\(375\) 0 0
\(376\) −2.16898e8 −0.210425
\(377\) 9.71732e8 0.934011
\(378\) 0 0
\(379\) −6.08958e8 −0.574580 −0.287290 0.957844i \(-0.592754\pi\)
−0.287290 + 0.957844i \(0.592754\pi\)
\(380\) 8.48072e8 0.792849
\(381\) 0 0
\(382\) 1.43561e9 1.31770
\(383\) −8.48714e8 −0.771908 −0.385954 0.922518i \(-0.626128\pi\)
−0.385954 + 0.922518i \(0.626128\pi\)
\(384\) 0 0
\(385\) −6.75317e8 −0.603108
\(386\) −2.38651e8 −0.211207
\(387\) 0 0
\(388\) 1.04036e9 0.904221
\(389\) −2.53303e8 −0.218181 −0.109090 0.994032i \(-0.534794\pi\)
−0.109090 + 0.994032i \(0.534794\pi\)
\(390\) 0 0
\(391\) 1.19789e9 1.01344
\(392\) 1.51171e8 0.126756
\(393\) 0 0
\(394\) 5.36691e8 0.442066
\(395\) 2.75569e9 2.24978
\(396\) 0 0
\(397\) 9.92215e8 0.795865 0.397932 0.917415i \(-0.369728\pi\)
0.397932 + 0.917415i \(0.369728\pi\)
\(398\) −9.45420e8 −0.751682
\(399\) 0 0
\(400\) 2.57778e8 0.201389
\(401\) −9.48753e8 −0.734764 −0.367382 0.930070i \(-0.619746\pi\)
−0.367382 + 0.930070i \(0.619746\pi\)
\(402\) 0 0
\(403\) 1.57905e9 1.20179
\(404\) −2.71706e7 −0.0205005
\(405\) 0 0
\(406\) −6.57104e8 −0.487296
\(407\) −8.98691e8 −0.660739
\(408\) 0 0
\(409\) 7.76766e8 0.561382 0.280691 0.959798i \(-0.409436\pi\)
0.280691 + 0.959798i \(0.409436\pi\)
\(410\) 1.55616e9 1.11509
\(411\) 0 0
\(412\) −3.11254e8 −0.219268
\(413\) −2.83655e9 −1.98137
\(414\) 0 0
\(415\) 1.46183e9 1.00399
\(416\) −4.10042e8 −0.279256
\(417\) 0 0
\(418\) −4.79814e8 −0.321334
\(419\) −6.29887e8 −0.418325 −0.209162 0.977881i \(-0.567074\pi\)
−0.209162 + 0.977881i \(0.567074\pi\)
\(420\) 0 0
\(421\) 1.10485e9 0.721633 0.360816 0.932637i \(-0.382498\pi\)
0.360816 + 0.932637i \(0.382498\pi\)
\(422\) 8.31883e8 0.538851
\(423\) 0 0
\(424\) 6.36490e8 0.405519
\(425\) 1.06232e9 0.671266
\(426\) 0 0
\(427\) −7.97615e8 −0.495788
\(428\) 1.81535e8 0.111920
\(429\) 0 0
\(430\) 8.16236e8 0.495081
\(431\) −2.85661e8 −0.171863 −0.0859313 0.996301i \(-0.527387\pi\)
−0.0859313 + 0.996301i \(0.527387\pi\)
\(432\) 0 0
\(433\) 4.76788e8 0.282239 0.141120 0.989993i \(-0.454930\pi\)
0.141120 + 0.989993i \(0.454930\pi\)
\(434\) −1.06778e9 −0.627002
\(435\) 0 0
\(436\) 4.04089e8 0.233493
\(437\) −2.50380e9 −1.43520
\(438\) 0 0
\(439\) 2.51758e9 1.42022 0.710112 0.704089i \(-0.248644\pi\)
0.710112 + 0.704089i \(0.248644\pi\)
\(440\) −3.26890e8 −0.182944
\(441\) 0 0
\(442\) −1.68981e9 −0.930807
\(443\) −4.58648e8 −0.250649 −0.125325 0.992116i \(-0.539997\pi\)
−0.125325 + 0.992116i \(0.539997\pi\)
\(444\) 0 0
\(445\) −2.53771e8 −0.136516
\(446\) −1.29224e9 −0.689716
\(447\) 0 0
\(448\) 2.77278e8 0.145694
\(449\) −1.46433e9 −0.763444 −0.381722 0.924277i \(-0.624669\pi\)
−0.381722 + 0.924277i \(0.624669\pi\)
\(450\) 0 0
\(451\) −8.80429e8 −0.451936
\(452\) 1.37240e9 0.699029
\(453\) 0 0
\(454\) 3.04428e8 0.152682
\(455\) 4.97113e9 2.47409
\(456\) 0 0
\(457\) 1.39660e9 0.684486 0.342243 0.939611i \(-0.388813\pi\)
0.342243 + 0.939611i \(0.388813\pi\)
\(458\) −2.31773e9 −1.12728
\(459\) 0 0
\(460\) −1.70580e9 −0.817100
\(461\) −3.96221e9 −1.88358 −0.941789 0.336204i \(-0.890857\pi\)
−0.941789 + 0.336204i \(0.890857\pi\)
\(462\) 0 0
\(463\) −1.88163e9 −0.881048 −0.440524 0.897741i \(-0.645207\pi\)
−0.440524 + 0.897741i \(0.645207\pi\)
\(464\) −3.18074e8 −0.147814
\(465\) 0 0
\(466\) −5.96076e8 −0.272867
\(467\) 9.69518e8 0.440501 0.220250 0.975443i \(-0.429313\pi\)
0.220250 + 0.975443i \(0.429313\pi\)
\(468\) 0 0
\(469\) −2.77729e8 −0.124313
\(470\) 1.27285e9 0.565501
\(471\) 0 0
\(472\) −1.37304e9 −0.601018
\(473\) −4.61802e8 −0.200651
\(474\) 0 0
\(475\) −2.22044e9 −0.950629
\(476\) 1.14268e9 0.485624
\(477\) 0 0
\(478\) 1.43733e9 0.601946
\(479\) −2.00870e9 −0.835104 −0.417552 0.908653i \(-0.637112\pi\)
−0.417552 + 0.908653i \(0.637112\pi\)
\(480\) 0 0
\(481\) 6.61543e9 2.71051
\(482\) −4.86945e8 −0.198069
\(483\) 0 0
\(484\) −1.06223e9 −0.425855
\(485\) −6.10529e9 −2.43002
\(486\) 0 0
\(487\) 3.02884e9 1.18830 0.594148 0.804356i \(-0.297490\pi\)
0.594148 + 0.804356i \(0.297490\pi\)
\(488\) −3.86089e8 −0.150390
\(489\) 0 0
\(490\) −8.87135e8 −0.340646
\(491\) 4.51723e9 1.72221 0.861107 0.508424i \(-0.169772\pi\)
0.861107 + 0.508424i \(0.169772\pi\)
\(492\) 0 0
\(493\) −1.31080e9 −0.492689
\(494\) 3.53200e9 1.31819
\(495\) 0 0
\(496\) −5.16865e8 −0.190191
\(497\) 1.04812e9 0.382970
\(498\) 0 0
\(499\) −4.65664e9 −1.67772 −0.838862 0.544343i \(-0.816779\pi\)
−0.838862 + 0.544343i \(0.816779\pi\)
\(500\) 3.65142e8 0.130637
\(501\) 0 0
\(502\) 1.71447e9 0.604878
\(503\) 2.88413e9 1.01048 0.505239 0.862980i \(-0.331404\pi\)
0.505239 + 0.862980i \(0.331404\pi\)
\(504\) 0 0
\(505\) 1.59448e8 0.0550934
\(506\) 9.65089e8 0.331162
\(507\) 0 0
\(508\) 8.68358e8 0.293884
\(509\) −1.32072e9 −0.443915 −0.221957 0.975056i \(-0.571245\pi\)
−0.221957 + 0.975056i \(0.571245\pi\)
\(510\) 0 0
\(511\) −1.10415e9 −0.366064
\(512\) 1.34218e8 0.0441942
\(513\) 0 0
\(514\) −4.21661e8 −0.136960
\(515\) 1.82657e9 0.589264
\(516\) 0 0
\(517\) −7.20139e8 −0.229192
\(518\) −4.47348e9 −1.41414
\(519\) 0 0
\(520\) 2.40630e9 0.750477
\(521\) 5.14654e9 1.59435 0.797175 0.603749i \(-0.206327\pi\)
0.797175 + 0.603749i \(0.206327\pi\)
\(522\) 0 0
\(523\) −2.17050e9 −0.663444 −0.331722 0.943377i \(-0.607630\pi\)
−0.331722 + 0.943377i \(0.607630\pi\)
\(524\) −1.50601e9 −0.457265
\(525\) 0 0
\(526\) 3.90863e9 1.17105
\(527\) −2.13003e9 −0.633941
\(528\) 0 0
\(529\) 1.63126e9 0.479103
\(530\) −3.73518e9 −1.08980
\(531\) 0 0
\(532\) −2.38841e9 −0.687729
\(533\) 6.48100e9 1.85394
\(534\) 0 0
\(535\) −1.06532e9 −0.300775
\(536\) −1.34436e8 −0.0377084
\(537\) 0 0
\(538\) −1.35266e9 −0.374499
\(539\) 5.01915e8 0.138060
\(540\) 0 0
\(541\) −9.27955e7 −0.0251963 −0.0125981 0.999921i \(-0.504010\pi\)
−0.0125981 + 0.999921i \(0.504010\pi\)
\(542\) −1.59625e9 −0.430629
\(543\) 0 0
\(544\) 5.53119e8 0.147307
\(545\) −2.37136e9 −0.627495
\(546\) 0 0
\(547\) −5.47036e9 −1.42909 −0.714547 0.699588i \(-0.753367\pi\)
−0.714547 + 0.699588i \(0.753367\pi\)
\(548\) −1.79139e9 −0.465006
\(549\) 0 0
\(550\) 8.55870e8 0.219350
\(551\) 2.73981e9 0.697734
\(552\) 0 0
\(553\) −7.76079e9 −1.95150
\(554\) −2.83901e9 −0.709385
\(555\) 0 0
\(556\) −5.12120e8 −0.126360
\(557\) 4.50060e9 1.10351 0.551756 0.834006i \(-0.313958\pi\)
0.551756 + 0.834006i \(0.313958\pi\)
\(558\) 0 0
\(559\) 3.39941e9 0.823119
\(560\) −1.62718e9 −0.391542
\(561\) 0 0
\(562\) −2.24393e9 −0.533251
\(563\) 6.13057e9 1.44784 0.723922 0.689882i \(-0.242338\pi\)
0.723922 + 0.689882i \(0.242338\pi\)
\(564\) 0 0
\(565\) −8.05379e9 −1.87858
\(566\) −1.27239e9 −0.294960
\(567\) 0 0
\(568\) 5.07347e8 0.116168
\(569\) −3.42118e9 −0.778543 −0.389271 0.921123i \(-0.627273\pi\)
−0.389271 + 0.921123i \(0.627273\pi\)
\(570\) 0 0
\(571\) 2.28585e9 0.513831 0.256916 0.966434i \(-0.417294\pi\)
0.256916 + 0.966434i \(0.417294\pi\)
\(572\) −1.36141e9 −0.304161
\(573\) 0 0
\(574\) −4.38258e9 −0.967248
\(575\) 4.46615e9 0.979706
\(576\) 0 0
\(577\) −7.03121e9 −1.52375 −0.761877 0.647722i \(-0.775722\pi\)
−0.761877 + 0.647722i \(0.775722\pi\)
\(578\) −1.00327e9 −0.216108
\(579\) 0 0
\(580\) 1.86659e9 0.397238
\(581\) −4.11692e9 −0.870876
\(582\) 0 0
\(583\) 2.11326e9 0.441685
\(584\) −5.34470e8 −0.111040
\(585\) 0 0
\(586\) 2.75504e9 0.565570
\(587\) −8.94315e8 −0.182498 −0.0912488 0.995828i \(-0.529086\pi\)
−0.0912488 + 0.995828i \(0.529086\pi\)
\(588\) 0 0
\(589\) 4.45214e9 0.897771
\(590\) 8.05759e9 1.61519
\(591\) 0 0
\(592\) −2.16541e9 −0.428957
\(593\) −8.80907e9 −1.73476 −0.867379 0.497649i \(-0.834197\pi\)
−0.867379 + 0.497649i \(0.834197\pi\)
\(594\) 0 0
\(595\) −6.70572e9 −1.30508
\(596\) −1.73860e9 −0.336387
\(597\) 0 0
\(598\) −7.10420e9 −1.35850
\(599\) 9.83190e8 0.186915 0.0934574 0.995623i \(-0.470208\pi\)
0.0934574 + 0.995623i \(0.470208\pi\)
\(600\) 0 0
\(601\) 2.04472e9 0.384214 0.192107 0.981374i \(-0.438468\pi\)
0.192107 + 0.981374i \(0.438468\pi\)
\(602\) −2.29875e9 −0.429441
\(603\) 0 0
\(604\) 2.68712e9 0.496202
\(605\) 6.23363e9 1.14445
\(606\) 0 0
\(607\) 3.57611e9 0.649009 0.324505 0.945884i \(-0.394802\pi\)
0.324505 + 0.945884i \(0.394802\pi\)
\(608\) −1.15612e9 −0.208612
\(609\) 0 0
\(610\) 2.26573e9 0.404160
\(611\) 5.30108e9 0.940199
\(612\) 0 0
\(613\) 1.22567e9 0.214913 0.107457 0.994210i \(-0.465729\pi\)
0.107457 + 0.994210i \(0.465729\pi\)
\(614\) 4.22995e9 0.737472
\(615\) 0 0
\(616\) 9.20613e8 0.158688
\(617\) 7.60333e9 1.30318 0.651592 0.758570i \(-0.274101\pi\)
0.651592 + 0.758570i \(0.274101\pi\)
\(618\) 0 0
\(619\) 5.75700e9 0.975616 0.487808 0.872951i \(-0.337797\pi\)
0.487808 + 0.872951i \(0.337797\pi\)
\(620\) 3.03318e9 0.511125
\(621\) 0 0
\(622\) −2.29411e9 −0.382250
\(623\) 7.14690e8 0.118416
\(624\) 0 0
\(625\) −7.05954e9 −1.15663
\(626\) 2.00199e8 0.0326176
\(627\) 0 0
\(628\) 5.25107e9 0.846036
\(629\) −8.92377e9 −1.42979
\(630\) 0 0
\(631\) −2.41912e9 −0.383313 −0.191657 0.981462i \(-0.561386\pi\)
−0.191657 + 0.981462i \(0.561386\pi\)
\(632\) −3.75664e9 −0.591957
\(633\) 0 0
\(634\) −4.16219e9 −0.648648
\(635\) −5.09588e9 −0.789789
\(636\) 0 0
\(637\) −3.69469e9 −0.566356
\(638\) −1.05606e9 −0.160997
\(639\) 0 0
\(640\) −7.87645e8 −0.118768
\(641\) −7.91782e9 −1.18741 −0.593707 0.804681i \(-0.702336\pi\)
−0.593707 + 0.804681i \(0.702336\pi\)
\(642\) 0 0
\(643\) −1.07171e10 −1.58978 −0.794891 0.606752i \(-0.792472\pi\)
−0.794891 + 0.606752i \(0.792472\pi\)
\(644\) 4.80400e9 0.708765
\(645\) 0 0
\(646\) −4.76443e9 −0.695340
\(647\) 8.06643e9 1.17089 0.585446 0.810712i \(-0.300920\pi\)
0.585446 + 0.810712i \(0.300920\pi\)
\(648\) 0 0
\(649\) −4.55875e9 −0.654620
\(650\) −6.30021e9 −0.899826
\(651\) 0 0
\(652\) −1.85143e9 −0.261602
\(653\) 1.00136e10 1.40732 0.703661 0.710535i \(-0.251547\pi\)
0.703661 + 0.710535i \(0.251547\pi\)
\(654\) 0 0
\(655\) 8.83787e9 1.22886
\(656\) −2.12140e9 −0.293400
\(657\) 0 0
\(658\) −3.58469e9 −0.490525
\(659\) 1.41114e10 1.92075 0.960376 0.278707i \(-0.0899057\pi\)
0.960376 + 0.278707i \(0.0899057\pi\)
\(660\) 0 0
\(661\) 9.62149e9 1.29580 0.647899 0.761726i \(-0.275648\pi\)
0.647899 + 0.761726i \(0.275648\pi\)
\(662\) −4.04031e9 −0.541268
\(663\) 0 0
\(664\) −1.99281e9 −0.264167
\(665\) 1.40162e10 1.84822
\(666\) 0 0
\(667\) −5.51080e9 −0.719075
\(668\) 1.70989e9 0.221947
\(669\) 0 0
\(670\) 7.88926e8 0.101338
\(671\) −1.28188e9 −0.163802
\(672\) 0 0
\(673\) 1.16858e10 1.47777 0.738884 0.673833i \(-0.235353\pi\)
0.738884 + 0.673833i \(0.235353\pi\)
\(674\) −1.47000e9 −0.184930
\(675\) 0 0
\(676\) 6.00569e9 0.747738
\(677\) −1.11144e10 −1.37665 −0.688327 0.725400i \(-0.741655\pi\)
−0.688327 + 0.725400i \(0.741655\pi\)
\(678\) 0 0
\(679\) 1.71942e10 2.10784
\(680\) −3.24593e9 −0.395875
\(681\) 0 0
\(682\) −1.71608e9 −0.207154
\(683\) −1.61450e10 −1.93894 −0.969472 0.245201i \(-0.921146\pi\)
−0.969472 + 0.245201i \(0.921146\pi\)
\(684\) 0 0
\(685\) 1.05126e10 1.24967
\(686\) −4.47029e9 −0.528690
\(687\) 0 0
\(688\) −1.11272e9 −0.130264
\(689\) −1.55561e10 −1.81189
\(690\) 0 0
\(691\) −1.39780e9 −0.161166 −0.0805829 0.996748i \(-0.525678\pi\)
−0.0805829 + 0.996748i \(0.525678\pi\)
\(692\) −1.68398e9 −0.193182
\(693\) 0 0
\(694\) −2.28905e9 −0.259955
\(695\) 3.00533e9 0.339583
\(696\) 0 0
\(697\) −8.74243e9 −0.977952
\(698\) −2.93092e8 −0.0326219
\(699\) 0 0
\(700\) 4.26033e9 0.469461
\(701\) −1.34244e9 −0.147191 −0.0735956 0.997288i \(-0.523447\pi\)
−0.0735956 + 0.997288i \(0.523447\pi\)
\(702\) 0 0
\(703\) 1.86523e10 2.02483
\(704\) 4.45626e8 0.0481356
\(705\) 0 0
\(706\) 3.81550e9 0.408071
\(707\) −4.49050e8 −0.0477889
\(708\) 0 0
\(709\) −1.58631e10 −1.67157 −0.835786 0.549055i \(-0.814988\pi\)
−0.835786 + 0.549055i \(0.814988\pi\)
\(710\) −2.97732e9 −0.312192
\(711\) 0 0
\(712\) 3.45949e8 0.0359196
\(713\) −8.95496e9 −0.925231
\(714\) 0 0
\(715\) 7.98933e9 0.817408
\(716\) −1.40624e9 −0.143174
\(717\) 0 0
\(718\) −2.99186e9 −0.301652
\(719\) 2.14766e9 0.215483 0.107742 0.994179i \(-0.465638\pi\)
0.107742 + 0.994179i \(0.465638\pi\)
\(720\) 0 0
\(721\) −5.14412e9 −0.511137
\(722\) 2.80754e9 0.277616
\(723\) 0 0
\(724\) 8.07695e9 0.790975
\(725\) −4.88714e9 −0.476290
\(726\) 0 0
\(727\) −1.02867e10 −0.992903 −0.496451 0.868065i \(-0.665364\pi\)
−0.496451 + 0.868065i \(0.665364\pi\)
\(728\) −6.77680e9 −0.650976
\(729\) 0 0
\(730\) 3.13649e9 0.298411
\(731\) −4.58558e9 −0.434193
\(732\) 0 0
\(733\) −3.20421e9 −0.300509 −0.150254 0.988647i \(-0.548009\pi\)
−0.150254 + 0.988647i \(0.548009\pi\)
\(734\) −4.66598e9 −0.435519
\(735\) 0 0
\(736\) 2.32539e9 0.214993
\(737\) −4.46351e8 −0.0410715
\(738\) 0 0
\(739\) 1.29766e10 1.18279 0.591394 0.806383i \(-0.298578\pi\)
0.591394 + 0.806383i \(0.298578\pi\)
\(740\) 1.27075e10 1.15279
\(741\) 0 0
\(742\) 1.05193e10 0.945309
\(743\) 7.24706e9 0.648188 0.324094 0.946025i \(-0.394941\pi\)
0.324094 + 0.946025i \(0.394941\pi\)
\(744\) 0 0
\(745\) 1.02029e10 0.904013
\(746\) 1.18177e10 1.04219
\(747\) 0 0
\(748\) 1.83645e9 0.160444
\(749\) 3.00024e9 0.260897
\(750\) 0 0
\(751\) −8.94246e9 −0.770402 −0.385201 0.922833i \(-0.625868\pi\)
−0.385201 + 0.922833i \(0.625868\pi\)
\(752\) −1.73518e9 −0.148793
\(753\) 0 0
\(754\) 7.77386e9 0.660445
\(755\) −1.57692e10 −1.33350
\(756\) 0 0
\(757\) 1.36108e10 1.14037 0.570187 0.821515i \(-0.306871\pi\)
0.570187 + 0.821515i \(0.306871\pi\)
\(758\) −4.87167e9 −0.406289
\(759\) 0 0
\(760\) 6.78458e9 0.560629
\(761\) −2.20245e10 −1.81159 −0.905794 0.423718i \(-0.860725\pi\)
−0.905794 + 0.423718i \(0.860725\pi\)
\(762\) 0 0
\(763\) 6.67841e9 0.544299
\(764\) 1.14849e10 0.931752
\(765\) 0 0
\(766\) −6.78971e9 −0.545821
\(767\) 3.35578e10 2.68540
\(768\) 0 0
\(769\) 1.03422e10 0.820110 0.410055 0.912061i \(-0.365510\pi\)
0.410055 + 0.912061i \(0.365510\pi\)
\(770\) −5.40254e9 −0.426462
\(771\) 0 0
\(772\) −1.90921e9 −0.149346
\(773\) 3.65169e9 0.284358 0.142179 0.989841i \(-0.454589\pi\)
0.142179 + 0.989841i \(0.454589\pi\)
\(774\) 0 0
\(775\) −7.94152e9 −0.612841
\(776\) 8.32292e9 0.639381
\(777\) 0 0
\(778\) −2.02642e9 −0.154277
\(779\) 1.82732e10 1.38495
\(780\) 0 0
\(781\) 1.68448e9 0.126528
\(782\) 9.58309e9 0.716608
\(783\) 0 0
\(784\) 1.20937e9 0.0896299
\(785\) −3.08154e10 −2.27365
\(786\) 0 0
\(787\) 2.39073e10 1.74832 0.874158 0.485642i \(-0.161414\pi\)
0.874158 + 0.485642i \(0.161414\pi\)
\(788\) 4.29353e9 0.312588
\(789\) 0 0
\(790\) 2.20455e10 1.59084
\(791\) 2.26817e10 1.62951
\(792\) 0 0
\(793\) 9.43617e9 0.671954
\(794\) 7.93772e9 0.562761
\(795\) 0 0
\(796\) −7.56336e9 −0.531519
\(797\) 2.72163e10 1.90426 0.952128 0.305699i \(-0.0988901\pi\)
0.952128 + 0.305699i \(0.0988901\pi\)
\(798\) 0 0
\(799\) −7.15080e9 −0.495953
\(800\) 2.06223e9 0.142404
\(801\) 0 0
\(802\) −7.59002e9 −0.519556
\(803\) −1.77453e9 −0.120943
\(804\) 0 0
\(805\) −2.81918e10 −1.90475
\(806\) 1.26324e10 0.849792
\(807\) 0 0
\(808\) −2.17365e8 −0.0144960
\(809\) −2.09999e10 −1.39443 −0.697216 0.716861i \(-0.745578\pi\)
−0.697216 + 0.716861i \(0.745578\pi\)
\(810\) 0 0
\(811\) −1.21414e10 −0.799276 −0.399638 0.916673i \(-0.630864\pi\)
−0.399638 + 0.916673i \(0.630864\pi\)
\(812\) −5.25683e9 −0.344570
\(813\) 0 0
\(814\) −7.18953e9 −0.467213
\(815\) 1.08650e10 0.703034
\(816\) 0 0
\(817\) 9.58468e9 0.614894
\(818\) 6.21413e9 0.396957
\(819\) 0 0
\(820\) 1.24493e10 0.788489
\(821\) −1.13220e10 −0.714041 −0.357020 0.934097i \(-0.616207\pi\)
−0.357020 + 0.934097i \(0.616207\pi\)
\(822\) 0 0
\(823\) −5.82799e9 −0.364434 −0.182217 0.983258i \(-0.558327\pi\)
−0.182217 + 0.983258i \(0.558327\pi\)
\(824\) −2.49003e9 −0.155046
\(825\) 0 0
\(826\) −2.26924e10 −1.40104
\(827\) 2.11794e10 1.30210 0.651050 0.759034i \(-0.274329\pi\)
0.651050 + 0.759034i \(0.274329\pi\)
\(828\) 0 0
\(829\) −1.77492e10 −1.08203 −0.541013 0.841014i \(-0.681959\pi\)
−0.541013 + 0.841014i \(0.681959\pi\)
\(830\) 1.16947e10 0.709927
\(831\) 0 0
\(832\) −3.28034e9 −0.197463
\(833\) 4.98388e9 0.298752
\(834\) 0 0
\(835\) −1.00343e10 −0.596465
\(836\) −3.83851e9 −0.227217
\(837\) 0 0
\(838\) −5.03909e9 −0.295800
\(839\) −2.63821e10 −1.54221 −0.771104 0.636710i \(-0.780295\pi\)
−0.771104 + 0.636710i \(0.780295\pi\)
\(840\) 0 0
\(841\) −1.12196e10 −0.650417
\(842\) 8.83881e9 0.510271
\(843\) 0 0
\(844\) 6.65506e9 0.381025
\(845\) −3.52439e10 −2.00949
\(846\) 0 0
\(847\) −1.75556e10 −0.992715
\(848\) 5.09192e9 0.286745
\(849\) 0 0
\(850\) 8.49856e9 0.474656
\(851\) −3.75168e10 −2.08676
\(852\) 0 0
\(853\) 2.67806e10 1.47740 0.738701 0.674033i \(-0.235440\pi\)
0.738701 + 0.674033i \(0.235440\pi\)
\(854\) −6.38092e9 −0.350575
\(855\) 0 0
\(856\) 1.45228e9 0.0791392
\(857\) 1.28880e10 0.699442 0.349721 0.936854i \(-0.386276\pi\)
0.349721 + 0.936854i \(0.386276\pi\)
\(858\) 0 0
\(859\) 4.27588e9 0.230170 0.115085 0.993356i \(-0.463286\pi\)
0.115085 + 0.993356i \(0.463286\pi\)
\(860\) 6.52989e9 0.350075
\(861\) 0 0
\(862\) −2.28529e9 −0.121525
\(863\) −2.63998e10 −1.39818 −0.699089 0.715035i \(-0.746411\pi\)
−0.699089 + 0.715035i \(0.746411\pi\)
\(864\) 0 0
\(865\) 9.88231e9 0.519161
\(866\) 3.81430e9 0.199573
\(867\) 0 0
\(868\) −8.54227e9 −0.443357
\(869\) −1.24727e10 −0.644750
\(870\) 0 0
\(871\) 3.28567e9 0.168485
\(872\) 3.23271e9 0.165105
\(873\) 0 0
\(874\) −2.00304e10 −1.01484
\(875\) 6.03472e9 0.304529
\(876\) 0 0
\(877\) 1.43925e10 0.720505 0.360252 0.932855i \(-0.382691\pi\)
0.360252 + 0.932855i \(0.382691\pi\)
\(878\) 2.01406e10 1.00425
\(879\) 0 0
\(880\) −2.61512e9 −0.129361
\(881\) 2.86878e10 1.41345 0.706727 0.707487i \(-0.250171\pi\)
0.706727 + 0.707487i \(0.250171\pi\)
\(882\) 0 0
\(883\) 1.10176e10 0.538550 0.269275 0.963063i \(-0.413216\pi\)
0.269275 + 0.963063i \(0.413216\pi\)
\(884\) −1.35185e10 −0.658180
\(885\) 0 0
\(886\) −3.66919e9 −0.177236
\(887\) 1.75507e10 0.844426 0.422213 0.906497i \(-0.361254\pi\)
0.422213 + 0.906497i \(0.361254\pi\)
\(888\) 0 0
\(889\) 1.43514e10 0.685076
\(890\) −2.03017e9 −0.0965311
\(891\) 0 0
\(892\) −1.03379e10 −0.487703
\(893\) 1.49464e10 0.702357
\(894\) 0 0
\(895\) 8.25238e9 0.384768
\(896\) 2.21823e9 0.103022
\(897\) 0 0
\(898\) −1.17147e10 −0.539837
\(899\) 9.79907e9 0.449807
\(900\) 0 0
\(901\) 2.09841e10 0.955770
\(902\) −7.04343e9 −0.319567
\(903\) 0 0
\(904\) 1.09792e10 0.494288
\(905\) −4.73989e10 −2.12568
\(906\) 0 0
\(907\) −1.68445e10 −0.749605 −0.374803 0.927105i \(-0.622290\pi\)
−0.374803 + 0.927105i \(0.622290\pi\)
\(908\) 2.43542e9 0.107963
\(909\) 0 0
\(910\) 3.97691e10 1.74945
\(911\) 1.47271e10 0.645363 0.322682 0.946508i \(-0.395416\pi\)
0.322682 + 0.946508i \(0.395416\pi\)
\(912\) 0 0
\(913\) −6.61649e9 −0.287726
\(914\) 1.11728e10 0.484005
\(915\) 0 0
\(916\) −1.85418e10 −0.797110
\(917\) −2.48899e10 −1.06593
\(918\) 0 0
\(919\) 7.11506e9 0.302395 0.151197 0.988504i \(-0.451687\pi\)
0.151197 + 0.988504i \(0.451687\pi\)
\(920\) −1.36464e10 −0.577777
\(921\) 0 0
\(922\) −3.16976e10 −1.33189
\(923\) −1.23998e10 −0.519049
\(924\) 0 0
\(925\) −3.32710e10 −1.38220
\(926\) −1.50530e10 −0.622995
\(927\) 0 0
\(928\) −2.54459e9 −0.104520
\(929\) −3.39405e10 −1.38887 −0.694437 0.719553i \(-0.744347\pi\)
−0.694437 + 0.719553i \(0.744347\pi\)
\(930\) 0 0
\(931\) −1.04172e10 −0.423085
\(932\) −4.76860e9 −0.192946
\(933\) 0 0
\(934\) 7.75614e9 0.311481
\(935\) −1.07771e10 −0.431181
\(936\) 0 0
\(937\) −3.78364e10 −1.50252 −0.751261 0.660005i \(-0.770554\pi\)
−0.751261 + 0.660005i \(0.770554\pi\)
\(938\) −2.22183e9 −0.0879025
\(939\) 0 0
\(940\) 1.01828e10 0.399870
\(941\) 1.68892e10 0.660763 0.330382 0.943847i \(-0.392823\pi\)
0.330382 + 0.943847i \(0.392823\pi\)
\(942\) 0 0
\(943\) −3.67545e10 −1.42731
\(944\) −1.09844e10 −0.424984
\(945\) 0 0
\(946\) −3.69442e9 −0.141882
\(947\) 1.16912e10 0.447337 0.223668 0.974665i \(-0.428197\pi\)
0.223668 + 0.974665i \(0.428197\pi\)
\(948\) 0 0
\(949\) 1.30627e10 0.496136
\(950\) −1.77635e10 −0.672197
\(951\) 0 0
\(952\) 9.14145e9 0.343388
\(953\) 5.10551e10 1.91079 0.955397 0.295323i \(-0.0954274\pi\)
0.955397 + 0.295323i \(0.0954274\pi\)
\(954\) 0 0
\(955\) −6.73981e10 −2.50401
\(956\) 1.14986e10 0.425640
\(957\) 0 0
\(958\) −1.60696e10 −0.590508
\(959\) −2.96065e10 −1.08398
\(960\) 0 0
\(961\) −1.15893e10 −0.421235
\(962\) 5.29235e10 1.91662
\(963\) 0 0
\(964\) −3.89556e9 −0.140056
\(965\) 1.12040e10 0.401355
\(966\) 0 0
\(967\) −8.68730e9 −0.308953 −0.154476 0.987996i \(-0.549369\pi\)
−0.154476 + 0.987996i \(0.549369\pi\)
\(968\) −8.49787e9 −0.301125
\(969\) 0 0
\(970\) −4.88423e10 −1.71829
\(971\) 3.91347e10 1.37181 0.685906 0.727690i \(-0.259406\pi\)
0.685906 + 0.727690i \(0.259406\pi\)
\(972\) 0 0
\(973\) −8.46384e9 −0.294559
\(974\) 2.42307e10 0.840252
\(975\) 0 0
\(976\) −3.08871e9 −0.106342
\(977\) −2.72511e10 −0.934874 −0.467437 0.884026i \(-0.654822\pi\)
−0.467437 + 0.884026i \(0.654822\pi\)
\(978\) 0 0
\(979\) 1.14861e9 0.0391231
\(980\) −7.09708e9 −0.240873
\(981\) 0 0
\(982\) 3.61379e10 1.21779
\(983\) 7.13353e9 0.239534 0.119767 0.992802i \(-0.461785\pi\)
0.119767 + 0.992802i \(0.461785\pi\)
\(984\) 0 0
\(985\) −2.51962e10 −0.840055
\(986\) −1.04864e10 −0.348384
\(987\) 0 0
\(988\) 2.82560e10 0.932098
\(989\) −1.92784e10 −0.633702
\(990\) 0 0
\(991\) −1.99378e10 −0.650760 −0.325380 0.945583i \(-0.605492\pi\)
−0.325380 + 0.945583i \(0.605492\pi\)
\(992\) −4.13492e9 −0.134486
\(993\) 0 0
\(994\) 8.38497e9 0.270800
\(995\) 4.43849e10 1.42842
\(996\) 0 0
\(997\) −1.27404e10 −0.407146 −0.203573 0.979060i \(-0.565255\pi\)
−0.203573 + 0.979060i \(0.565255\pi\)
\(998\) −3.72531e10 −1.18633
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 162.8.a.f.1.1 3
3.2 odd 2 162.8.a.e.1.3 3
9.2 odd 6 54.8.c.a.37.1 6
9.4 even 3 18.8.c.a.7.2 6
9.5 odd 6 54.8.c.a.19.1 6
9.7 even 3 18.8.c.a.13.2 yes 6
36.7 odd 6 144.8.i.a.49.2 6
36.11 even 6 432.8.i.a.145.1 6
36.23 even 6 432.8.i.a.289.1 6
36.31 odd 6 144.8.i.a.97.2 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
18.8.c.a.7.2 6 9.4 even 3
18.8.c.a.13.2 yes 6 9.7 even 3
54.8.c.a.19.1 6 9.5 odd 6
54.8.c.a.37.1 6 9.2 odd 6
144.8.i.a.49.2 6 36.7 odd 6
144.8.i.a.97.2 6 36.31 odd 6
162.8.a.e.1.3 3 3.2 odd 2
162.8.a.f.1.1 3 1.1 even 1 trivial
432.8.i.a.145.1 6 36.11 even 6
432.8.i.a.289.1 6 36.23 even 6