Properties

Label 162.8.a.f.1.1
Level 162162
Weight 88
Character 162.1
Self dual yes
Analytic conductor 50.60650.606
Analytic rank 11
Dimension 33
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [162,8,Mod(1,162)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(162, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("162.1");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: N N == 162=234 162 = 2 \cdot 3^{4}
Weight: k k == 8 8
Character orbit: [χ][\chi] == 162.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 50.606374128450.6063741284
Analytic rank: 11
Dimension: 33
Coefficient field: 3.3.69765.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x372x179 x^{3} - 72x - 179 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 234 2\cdot 3^{4}
Twist minimal: no (minimal twist has level 18)
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

Embedding invariants

Embedding label 1.1
Root 9.528199.52819 of defining polynomial
Character χ\chi == 162.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+8.00000q2+64.0000q4375.578q5+1057.73q7+512.000q83004.63q10+1699.93q1112513.5q13+8461.86q14+4096.00q16+16879.9q1735281.9q1924037.0q20+13599.4q22+70965.4q23+62934.2q25100108.q26+67694.9q2877654.8q29126188.q31+32768.0q32+135039.q34397262.q35528664.q37282255.q38192296.q40517921.q41271660.q43+108795.q44+567723.q46423629.q47+295256.q49+503474.q50800863.q52+1.24314e6q53638457.q55+541559.q56621238.q582.68173e6q59754080.q611.00950e6q62+262144.q64+4.69980e6q65262570.q67+1.08031e6q683.17809e6q70+990913.q711.04389e6q734.22931e6q742.25804e6q76+1.79807e6q777.33719e6q791.53837e6q804.14337e6q823.89221e6q836.33971e6q852.17328e6q86+870364.q88+675681.q891.32359e7q91+4.54179e6q923.38903e6q94+1.32511e7q95+1.62557e7q97+2.36205e6q98+O(q100)q+8.00000 q^{2} +64.0000 q^{4} -375.578 q^{5} +1057.73 q^{7} +512.000 q^{8} -3004.63 q^{10} +1699.93 q^{11} -12513.5 q^{13} +8461.86 q^{14} +4096.00 q^{16} +16879.9 q^{17} -35281.9 q^{19} -24037.0 q^{20} +13599.4 q^{22} +70965.4 q^{23} +62934.2 q^{25} -100108. q^{26} +67694.9 q^{28} -77654.8 q^{29} -126188. q^{31} +32768.0 q^{32} +135039. q^{34} -397262. q^{35} -528664. q^{37} -282255. q^{38} -192296. q^{40} -517921. q^{41} -271660. q^{43} +108795. q^{44} +567723. q^{46} -423629. q^{47} +295256. q^{49} +503474. q^{50} -800863. q^{52} +1.24314e6 q^{53} -638457. q^{55} +541559. q^{56} -621238. q^{58} -2.68173e6 q^{59} -754080. q^{61} -1.00950e6 q^{62} +262144. q^{64} +4.69980e6 q^{65} -262570. q^{67} +1.08031e6 q^{68} -3.17809e6 q^{70} +990913. q^{71} -1.04389e6 q^{73} -4.22931e6 q^{74} -2.25804e6 q^{76} +1.79807e6 q^{77} -7.33719e6 q^{79} -1.53837e6 q^{80} -4.14337e6 q^{82} -3.89221e6 q^{83} -6.33971e6 q^{85} -2.17328e6 q^{86} +870364. q^{88} +675681. q^{89} -1.32359e7 q^{91} +4.54179e6 q^{92} -3.38903e6 q^{94} +1.32511e7 q^{95} +1.62557e7 q^{97} +2.36205e6 q^{98} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 3q+24q2+192q454q5210q7+1536q8432q106579q1110092q131680q14+12288q1614895q1768745q193456q2052632q22+39654q23+3857400q98+O(q100) 3 q + 24 q^{2} + 192 q^{4} - 54 q^{5} - 210 q^{7} + 1536 q^{8} - 432 q^{10} - 6579 q^{11} - 10092 q^{13} - 1680 q^{14} + 12288 q^{16} - 14895 q^{17} - 68745 q^{19} - 3456 q^{20} - 52632 q^{22} + 39654 q^{23}+ \cdots - 3857400 q^{98}+O(q^{100}) Copy content Toggle raw display

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 8.00000 0.707107
33 0 0
44 64.0000 0.500000
55 −375.578 −1.34371 −0.671855 0.740682i 0.734502π-0.734502\pi
−0.671855 + 0.740682i 0.734502π0.734502\pi
66 0 0
77 1057.73 1.16556 0.582778 0.812632i 0.301966π-0.301966\pi
0.582778 + 0.812632i 0.301966π0.301966\pi
88 512.000 0.353553
99 0 0
1010 −3004.63 −0.950147
1111 1699.93 0.385085 0.192542 0.981289i 0.438327π-0.438327\pi
0.192542 + 0.981289i 0.438327π0.438327\pi
1212 0 0
1313 −12513.5 −1.57971 −0.789854 0.613295i 0.789844π-0.789844\pi
−0.789854 + 0.613295i 0.789844π0.789844\pi
1414 8461.86 0.824172
1515 0 0
1616 4096.00 0.250000
1717 16879.9 0.833293 0.416646 0.909069i 0.363205π-0.363205\pi
0.416646 + 0.909069i 0.363205π0.363205\pi
1818 0 0
1919 −35281.9 −1.18009 −0.590044 0.807371i 0.700890π-0.700890\pi
−0.590044 + 0.807371i 0.700890π0.700890\pi
2020 −24037.0 −0.671855
2121 0 0
2222 13599.4 0.272296
2323 70965.4 1.21618 0.608092 0.793867i 0.291935π-0.291935\pi
0.608092 + 0.793867i 0.291935π0.291935\pi
2424 0 0
2525 62934.2 0.805558
2626 −100108. −1.11702
2727 0 0
2828 67694.9 0.582778
2929 −77654.8 −0.591255 −0.295628 0.955303i 0.595529π-0.595529\pi
−0.295628 + 0.955303i 0.595529π0.595529\pi
3030 0 0
3131 −126188. −0.760766 −0.380383 0.924829i 0.624208π-0.624208\pi
−0.380383 + 0.924829i 0.624208π0.624208\pi
3232 32768.0 0.176777
3333 0 0
3434 135039. 0.589227
3535 −397262. −1.56617
3636 0 0
3737 −528664. −1.71583 −0.857914 0.513794i 0.828240π-0.828240\pi
−0.857914 + 0.513794i 0.828240π0.828240\pi
3838 −282255. −0.834449
3939 0 0
4040 −192296. −0.475073
4141 −517921. −1.17360 −0.586800 0.809732i 0.699612π-0.699612\pi
−0.586800 + 0.809732i 0.699612π0.699612\pi
4242 0 0
4343 −271660. −0.521057 −0.260529 0.965466i 0.583897π-0.583897\pi
−0.260529 + 0.965466i 0.583897π0.583897\pi
4444 108795. 0.192542
4545 0 0
4646 567723. 0.859972
4747 −423629. −0.595173 −0.297586 0.954695i 0.596182π-0.596182\pi
−0.297586 + 0.954695i 0.596182π0.596182\pi
4848 0 0
4949 295256. 0.358519
5050 503474. 0.569615
5151 0 0
5252 −800863. −0.789854
5353 1.24314e6 1.14698 0.573490 0.819213i 0.305589π-0.305589\pi
0.573490 + 0.819213i 0.305589π0.305589\pi
5454 0 0
5555 −638457. −0.517443
5656 541559. 0.412086
5757 0 0
5858 −621238. −0.418081
5959 −2.68173e6 −1.69994 −0.849968 0.526834i 0.823379π-0.823379\pi
−0.849968 + 0.526834i 0.823379π0.823379\pi
6060 0 0
6161 −754080. −0.425366 −0.212683 0.977121i 0.568220π-0.568220\pi
−0.212683 + 0.977121i 0.568220π0.568220\pi
6262 −1.00950e6 −0.537943
6363 0 0
6464 262144. 0.125000
6565 4.69980e6 2.12267
6666 0 0
6767 −262570. −0.106656 −0.0533278 0.998577i 0.516983π-0.516983\pi
−0.0533278 + 0.998577i 0.516983π0.516983\pi
6868 1.08031e6 0.416646
6969 0 0
7070 −3.17809e6 −1.10745
7171 990913. 0.328573 0.164286 0.986413i 0.447468π-0.447468\pi
0.164286 + 0.986413i 0.447468π0.447468\pi
7272 0 0
7373 −1.04389e6 −0.314068 −0.157034 0.987593i 0.550193π-0.550193\pi
−0.157034 + 0.987593i 0.550193π0.550193\pi
7474 −4.22931e6 −1.21327
7575 0 0
7676 −2.25804e6 −0.590044
7777 1.79807e6 0.448838
7878 0 0
7979 −7.33719e6 −1.67431 −0.837153 0.546968i 0.815782π-0.815782\pi
−0.837153 + 0.546968i 0.815782π0.815782\pi
8080 −1.53837e6 −0.335928
8181 0 0
8282 −4.14337e6 −0.829860
8383 −3.89221e6 −0.747177 −0.373588 0.927595i 0.621873π-0.621873\pi
−0.373588 + 0.927595i 0.621873π0.621873\pi
8484 0 0
8585 −6.33971e6 −1.11970
8686 −2.17328e6 −0.368443
8787 0 0
8888 870364. 0.136148
8989 675681. 0.101596 0.0507980 0.998709i 0.483824π-0.483824\pi
0.0507980 + 0.998709i 0.483824π0.483824\pi
9090 0 0
9191 −1.32359e7 −1.84124
9292 4.54179e6 0.608092
9393 0 0
9494 −3.38903e6 −0.420851
9595 1.32511e7 1.58570
9696 0 0
9797 1.62557e7 1.80844 0.904221 0.427065i 0.140452π-0.140452\pi
0.904221 + 0.427065i 0.140452π0.140452\pi
9898 2.36205e6 0.253512
9999 0 0
100100 4.02779e6 0.402779
101101 −424540. −0.0410009 −0.0205005 0.999790i 0.506526π-0.506526\pi
−0.0205005 + 0.999790i 0.506526π0.506526\pi
102102 0 0
103103 −4.86334e6 −0.438535 −0.219268 0.975665i 0.570367π-0.570367\pi
−0.219268 + 0.975665i 0.570367π0.570367\pi
104104 −6.40691e6 −0.558511
105105 0 0
106106 9.94515e6 0.811037
107107 2.83648e6 0.223839 0.111920 0.993717i 0.464300π-0.464300\pi
0.111920 + 0.993717i 0.464300π0.464300\pi
108108 0 0
109109 6.31389e6 0.466987 0.233493 0.972358i 0.424984π-0.424984\pi
0.233493 + 0.972358i 0.424984π0.424984\pi
110110 −5.10766e6 −0.365887
111111 0 0
112112 4.33247e6 0.291389
113113 2.14437e7 1.39806 0.699029 0.715094i 0.253616π-0.253616\pi
0.699029 + 0.715094i 0.253616π0.253616\pi
114114 0 0
115115 −2.66531e7 −1.63420
116116 −4.96990e6 −0.295628
117117 0 0
118118 −2.14538e7 −1.20204
119119 1.78544e7 0.971249
120120 0 0
121121 −1.65974e7 −0.851710
122122 −6.03264e6 −0.300779
123123 0 0
124124 −8.07601e6 −0.380383
125125 5.70534e6 0.261274
126126 0 0
127127 1.35681e7 0.587768 0.293884 0.955841i 0.405052π-0.405052\pi
0.293884 + 0.955841i 0.405052π0.405052\pi
128128 2.09715e6 0.0883883
129129 0 0
130130 3.75984e7 1.50095
131131 −2.35314e7 −0.914529 −0.457265 0.889331i 0.651171π-0.651171\pi
−0.457265 + 0.889331i 0.651171π0.651171\pi
132132 0 0
133133 −3.73189e7 −1.37546
134134 −2.10056e6 −0.0754169
135135 0 0
136136 8.64249e6 0.294614
137137 −2.79905e7 −0.930012 −0.465006 0.885307i 0.653948π-0.653948\pi
−0.465006 + 0.885307i 0.653948π0.653948\pi
138138 0 0
139139 −8.00187e6 −0.252720 −0.126360 0.991984i 0.540329π-0.540329\pi
−0.126360 + 0.991984i 0.540329π0.540329\pi
140140 −2.54248e7 −0.783084
141141 0 0
142142 7.92730e6 0.232336
143143 −2.12721e7 −0.608322
144144 0 0
145145 2.91655e7 0.794476
146146 −8.35110e6 −0.222080
147147 0 0
148148 −3.38345e7 −0.857914
149149 −2.71657e7 −0.672774 −0.336387 0.941724i 0.609205π-0.609205\pi
−0.336387 + 0.941724i 0.609205π0.609205\pi
150150 0 0
151151 4.19863e7 0.992404 0.496202 0.868207i 0.334728π-0.334728\pi
0.496202 + 0.868207i 0.334728π0.334728\pi
152152 −1.80643e7 −0.417224
153153 0 0
154154 1.43846e7 0.317376
155155 4.73934e7 1.02225
156156 0 0
157157 8.20479e7 1.69207 0.846036 0.533126i 0.178983π-0.178983\pi
0.846036 + 0.533126i 0.178983π0.178983\pi
158158 −5.86975e7 −1.18391
159159 0 0
160160 −1.23070e7 −0.237537
161161 7.50625e7 1.41753
162162 0 0
163163 −2.89286e7 −0.523203 −0.261602 0.965176i 0.584251π-0.584251\pi
−0.261602 + 0.965176i 0.584251π0.584251\pi
164164 −3.31469e7 −0.586800
165165 0 0
166166 −3.11377e7 −0.528334
167167 2.67170e7 0.443894 0.221947 0.975059i 0.428759π-0.428759\pi
0.221947 + 0.975059i 0.428759π0.428759\pi
168168 0 0
169169 9.38390e7 1.49548
170170 −5.07177e7 −0.791751
171171 0 0
172172 −1.73862e7 −0.260529
173173 −2.63122e7 −0.386364 −0.193182 0.981163i 0.561881π-0.561881\pi
−0.193182 + 0.981163i 0.561881π0.561881\pi
174174 0 0
175175 6.65676e7 0.938922
176176 6.96291e6 0.0962712
177177 0 0
178178 5.40545e6 0.0718392
179179 −2.19724e7 −0.286347 −0.143174 0.989698i 0.545731π-0.545731\pi
−0.143174 + 0.989698i 0.545731π0.545731\pi
180180 0 0
181181 1.26202e8 1.58195 0.790975 0.611849i 0.209574π-0.209574\pi
0.790975 + 0.611849i 0.209574π0.209574\pi
182182 −1.05887e8 −1.30195
183183 0 0
184184 3.63343e7 0.429986
185185 1.98555e8 2.30558
186186 0 0
187187 2.86946e7 0.320889
188188 −2.71122e7 −0.297586
189189 0 0
190190 1.06009e8 1.12126
191191 1.79451e8 1.86350 0.931752 0.363096i 0.118280π-0.118280\pi
0.931752 + 0.363096i 0.118280π0.118280\pi
192192 0 0
193193 −2.98314e7 −0.298692 −0.149346 0.988785i 0.547717π-0.547717\pi
−0.149346 + 0.988785i 0.547717π0.547717\pi
194194 1.30046e8 1.27876
195195 0 0
196196 1.88964e7 0.179260
197197 6.70863e7 0.625176 0.312588 0.949889i 0.398804π-0.398804\pi
0.312588 + 0.949889i 0.398804π0.398804\pi
198198 0 0
199199 −1.18177e8 −1.06304 −0.531519 0.847046i 0.678379π-0.678379\pi
−0.531519 + 0.847046i 0.678379π0.678379\pi
200200 3.22223e7 0.284808
201201 0 0
202202 −3.39632e6 −0.0289920
203203 −8.21380e7 −0.689141
204204 0 0
205205 1.94520e8 1.57698
206206 −3.89067e7 −0.310091
207207 0 0
208208 −5.12553e7 −0.394927
209209 −5.99768e7 −0.454434
210210 0 0
211211 1.03985e8 0.762050 0.381025 0.924565i 0.375571π-0.375571\pi
0.381025 + 0.924565i 0.375571π0.375571\pi
212212 7.95612e7 0.573490
213213 0 0
214214 2.26919e7 0.158278
215215 1.02030e8 0.700150
216216 0 0
217217 −1.33473e8 −0.886715
218218 5.05111e7 0.330209
219219 0 0
220220 −4.08612e7 −0.258721
221221 −2.11226e8 −1.31636
222222 0 0
223223 −1.61530e8 −0.975405 −0.487703 0.873010i 0.662165π-0.662165\pi
−0.487703 + 0.873010i 0.662165π0.662165\pi
224224 3.46598e7 0.206043
225225 0 0
226226 1.71550e8 0.988576
227227 3.80535e7 0.215925 0.107963 0.994155i 0.465567π-0.465567\pi
0.107963 + 0.994155i 0.465567π0.465567\pi
228228 0 0
229229 −2.89716e8 −1.59422 −0.797110 0.603834i 0.793639π-0.793639\pi
−0.797110 + 0.603834i 0.793639π0.793639\pi
230230 −2.13225e8 −1.15555
231231 0 0
232232 −3.97592e7 −0.209040
233233 −7.45094e7 −0.385892 −0.192946 0.981209i 0.561804π-0.561804\pi
−0.192946 + 0.981209i 0.561804π0.561804\pi
234234 0 0
235235 1.59106e8 0.799740
236236 −1.71631e8 −0.849968
237237 0 0
238238 1.42835e8 0.686777
239239 1.79666e8 0.851280 0.425640 0.904893i 0.360049π-0.360049\pi
0.425640 + 0.904893i 0.360049π0.360049\pi
240240 0 0
241241 −6.08682e7 −0.280111 −0.140056 0.990144i 0.544728π-0.544728\pi
−0.140056 + 0.990144i 0.544728π0.544728\pi
242242 −1.32779e8 −0.602250
243243 0 0
244244 −4.82611e7 −0.212683
245245 −1.10892e8 −0.481746
246246 0 0
247247 4.41500e8 1.86420
248248 −6.46081e7 −0.268971
249249 0 0
250250 4.56427e7 0.184749
251251 2.14309e8 0.855426 0.427713 0.903915i 0.359319π-0.359319\pi
0.427713 + 0.903915i 0.359319π0.359319\pi
252252 0 0
253253 1.20636e8 0.468334
254254 1.08545e8 0.415614
255255 0 0
256256 1.67772e7 0.0625000
257257 −5.27076e7 −0.193690 −0.0968450 0.995299i 0.530875π-0.530875\pi
−0.0968450 + 0.995299i 0.530875π0.530875\pi
258258 0 0
259259 −5.59185e8 −1.99989
260260 3.00787e8 1.06133
261261 0 0
262262 −1.88251e8 −0.646670
263263 4.88578e8 1.65611 0.828055 0.560647i 0.189448π-0.189448\pi
0.828055 + 0.560647i 0.189448π0.189448\pi
264264 0 0
265265 −4.66898e8 −1.54121
266266 −2.98551e8 −0.972596
267267 0 0
268268 −1.68045e7 −0.0533278
269269 −1.69083e8 −0.529622 −0.264811 0.964300i 0.585310π-0.585310\pi
−0.264811 + 0.964300i 0.585310π0.585310\pi
270270 0 0
271271 −1.99531e8 −0.609001 −0.304501 0.952512i 0.598490π-0.598490\pi
−0.304501 + 0.952512i 0.598490π0.598490\pi
272272 6.91399e7 0.208323
273273 0 0
274274 −2.23924e8 −0.657618
275275 1.06984e8 0.310208
276276 0 0
277277 −3.54876e8 −1.00322 −0.501611 0.865093i 0.667259π-0.667259\pi
−0.501611 + 0.865093i 0.667259π0.667259\pi
278278 −6.40150e7 −0.178700
279279 0 0
280280 −2.03398e8 −0.553724
281281 −2.80491e8 −0.754130 −0.377065 0.926187i 0.623067π-0.623067\pi
−0.377065 + 0.926187i 0.623067π0.623067\pi
282282 0 0
283283 −1.59049e8 −0.417136 −0.208568 0.978008i 0.566880π-0.566880\pi
−0.208568 + 0.978008i 0.566880π0.566880\pi
284284 6.34184e7 0.164286
285285 0 0
286286 −1.70176e8 −0.430148
287287 −5.47822e8 −1.36790
288288 0 0
289289 −1.25409e8 −0.305623
290290 2.33324e8 0.561779
291291 0 0
292292 −6.68088e7 −0.157034
293293 3.44380e8 0.799837 0.399918 0.916551i 0.369038π-0.369038\pi
0.399918 + 0.916551i 0.369038π0.369038\pi
294294 0 0
295295 1.00720e9 2.28422
296296 −2.70676e8 −0.606637
297297 0 0
298298 −2.17326e8 −0.475723
299299 −8.88025e8 −1.92122
300300 0 0
301301 −2.87343e8 −0.607321
302302 3.35890e8 0.701735
303303 0 0
304304 −1.44515e8 −0.295022
305305 2.83216e8 0.571569
306306 0 0
307307 5.28744e8 1.04294 0.521472 0.853269i 0.325383π-0.325383\pi
0.521472 + 0.853269i 0.325383π0.325383\pi
308308 1.15077e8 0.224419
309309 0 0
310310 3.79147e8 0.722839
311311 −2.86764e8 −0.540584 −0.270292 0.962778i 0.587120π-0.587120\pi
−0.270292 + 0.962778i 0.587120π0.587120\pi
312312 0 0
313313 2.50249e7 0.0461282 0.0230641 0.999734i 0.492658π-0.492658\pi
0.0230641 + 0.999734i 0.492658π0.492658\pi
314314 6.56383e8 1.19648
315315 0 0
316316 −4.69580e8 −0.837153
317317 −5.20273e8 −0.917327 −0.458663 0.888610i 0.651672π-0.651672\pi
−0.458663 + 0.888610i 0.651672π0.651672\pi
318318 0 0
319319 −1.32008e8 −0.227684
320320 −9.84556e7 −0.167964
321321 0 0
322322 6.00500e8 1.00234
323323 −5.95554e8 −0.983359
324324 0 0
325325 −7.87527e8 −1.27255
326326 −2.31429e8 −0.369961
327327 0 0
328328 −2.65176e8 −0.414930
329329 −4.48086e8 −0.693707
330330 0 0
331331 −5.05039e8 −0.765468 −0.382734 0.923859i 0.625017π-0.625017\pi
−0.382734 + 0.923859i 0.625017π0.625017\pi
332332 −2.49102e8 −0.373588
333333 0 0
334334 2.13736e8 0.313881
335335 9.86157e7 0.143314
336336 0 0
337337 −1.83750e8 −0.261531 −0.130765 0.991413i 0.541743π-0.541743\pi
−0.130765 + 0.991413i 0.541743π0.541743\pi
338338 7.50712e8 1.05746
339339 0 0
340340 −4.05742e8 −0.559852
341341 −2.14510e8 −0.292960
342342 0 0
343343 −5.58786e8 −0.747681
344344 −1.39090e8 −0.184222
345345 0 0
346346 −2.10498e8 −0.273200
347347 −2.86132e8 −0.367632 −0.183816 0.982961i 0.558845π-0.558845\pi
−0.183816 + 0.982961i 0.558845π0.558845\pi
348348 0 0
349349 −3.66365e7 −0.0461344 −0.0230672 0.999734i 0.507343π-0.507343\pi
−0.0230672 + 0.999734i 0.507343π0.507343\pi
350350 5.32541e8 0.663918
351351 0 0
352352 5.57033e7 0.0680740
353353 4.76938e8 0.577099 0.288549 0.957465i 0.406827π-0.406827\pi
0.288549 + 0.957465i 0.406827π0.406827\pi
354354 0 0
355355 −3.72166e8 −0.441506
356356 4.32436e7 0.0507980
357357 0 0
358358 −1.75780e8 −0.202478
359359 −3.73983e8 −0.426600 −0.213300 0.976987i 0.568421π-0.568421\pi
−0.213300 + 0.976987i 0.568421π0.568421\pi
360360 0 0
361361 3.50942e8 0.392609
362362 1.00962e9 1.11861
363363 0 0
364364 −8.47100e8 −0.920619
365365 3.92062e8 0.422016
366366 0 0
367367 −5.83248e8 −0.615917 −0.307958 0.951400i 0.599646π-0.599646\pi
−0.307958 + 0.951400i 0.599646π0.599646\pi
368368 2.90674e8 0.304046
369369 0 0
370370 1.58844e9 1.63029
371371 1.31491e9 1.33687
372372 0 0
373373 1.47721e9 1.47388 0.736939 0.675959i 0.236270π-0.236270\pi
0.736939 + 0.675959i 0.236270π0.236270\pi
374374 2.29557e8 0.226902
375375 0 0
376376 −2.16898e8 −0.210425
377377 9.71732e8 0.934011
378378 0 0
379379 −6.08958e8 −0.574580 −0.287290 0.957844i 0.592754π-0.592754\pi
−0.287290 + 0.957844i 0.592754π0.592754\pi
380380 8.48072e8 0.792849
381381 0 0
382382 1.43561e9 1.31770
383383 −8.48714e8 −0.771908 −0.385954 0.922518i 0.626128π-0.626128\pi
−0.385954 + 0.922518i 0.626128π0.626128\pi
384384 0 0
385385 −6.75317e8 −0.603108
386386 −2.38651e8 −0.211207
387387 0 0
388388 1.04036e9 0.904221
389389 −2.53303e8 −0.218181 −0.109090 0.994032i 0.534794π-0.534794\pi
−0.109090 + 0.994032i 0.534794π0.534794\pi
390390 0 0
391391 1.19789e9 1.01344
392392 1.51171e8 0.126756
393393 0 0
394394 5.36691e8 0.442066
395395 2.75569e9 2.24978
396396 0 0
397397 9.92215e8 0.795865 0.397932 0.917415i 0.369728π-0.369728\pi
0.397932 + 0.917415i 0.369728π0.369728\pi
398398 −9.45420e8 −0.751682
399399 0 0
400400 2.57778e8 0.201389
401401 −9.48753e8 −0.734764 −0.367382 0.930070i 0.619746π-0.619746\pi
−0.367382 + 0.930070i 0.619746π0.619746\pi
402402 0 0
403403 1.57905e9 1.20179
404404 −2.71706e7 −0.0205005
405405 0 0
406406 −6.57104e8 −0.487296
407407 −8.98691e8 −0.660739
408408 0 0
409409 7.76766e8 0.561382 0.280691 0.959798i 0.409436π-0.409436\pi
0.280691 + 0.959798i 0.409436π0.409436\pi
410410 1.55616e9 1.11509
411411 0 0
412412 −3.11254e8 −0.219268
413413 −2.83655e9 −1.98137
414414 0 0
415415 1.46183e9 1.00399
416416 −4.10042e8 −0.279256
417417 0 0
418418 −4.79814e8 −0.321334
419419 −6.29887e8 −0.418325 −0.209162 0.977881i 0.567074π-0.567074\pi
−0.209162 + 0.977881i 0.567074π0.567074\pi
420420 0 0
421421 1.10485e9 0.721633 0.360816 0.932637i 0.382498π-0.382498\pi
0.360816 + 0.932637i 0.382498π0.382498\pi
422422 8.31883e8 0.538851
423423 0 0
424424 6.36490e8 0.405519
425425 1.06232e9 0.671266
426426 0 0
427427 −7.97615e8 −0.495788
428428 1.81535e8 0.111920
429429 0 0
430430 8.16236e8 0.495081
431431 −2.85661e8 −0.171863 −0.0859313 0.996301i 0.527387π-0.527387\pi
−0.0859313 + 0.996301i 0.527387π0.527387\pi
432432 0 0
433433 4.76788e8 0.282239 0.141120 0.989993i 0.454930π-0.454930\pi
0.141120 + 0.989993i 0.454930π0.454930\pi
434434 −1.06778e9 −0.627002
435435 0 0
436436 4.04089e8 0.233493
437437 −2.50380e9 −1.43520
438438 0 0
439439 2.51758e9 1.42022 0.710112 0.704089i 0.248644π-0.248644\pi
0.710112 + 0.704089i 0.248644π0.248644\pi
440440 −3.26890e8 −0.182944
441441 0 0
442442 −1.68981e9 −0.930807
443443 −4.58648e8 −0.250649 −0.125325 0.992116i 0.539997π-0.539997\pi
−0.125325 + 0.992116i 0.539997π0.539997\pi
444444 0 0
445445 −2.53771e8 −0.136516
446446 −1.29224e9 −0.689716
447447 0 0
448448 2.77278e8 0.145694
449449 −1.46433e9 −0.763444 −0.381722 0.924277i 0.624669π-0.624669\pi
−0.381722 + 0.924277i 0.624669π0.624669\pi
450450 0 0
451451 −8.80429e8 −0.451936
452452 1.37240e9 0.699029
453453 0 0
454454 3.04428e8 0.152682
455455 4.97113e9 2.47409
456456 0 0
457457 1.39660e9 0.684486 0.342243 0.939611i 0.388813π-0.388813\pi
0.342243 + 0.939611i 0.388813π0.388813\pi
458458 −2.31773e9 −1.12728
459459 0 0
460460 −1.70580e9 −0.817100
461461 −3.96221e9 −1.88358 −0.941789 0.336204i 0.890857π-0.890857\pi
−0.941789 + 0.336204i 0.890857π0.890857\pi
462462 0 0
463463 −1.88163e9 −0.881048 −0.440524 0.897741i 0.645207π-0.645207\pi
−0.440524 + 0.897741i 0.645207π0.645207\pi
464464 −3.18074e8 −0.147814
465465 0 0
466466 −5.96076e8 −0.272867
467467 9.69518e8 0.440501 0.220250 0.975443i 0.429313π-0.429313\pi
0.220250 + 0.975443i 0.429313π0.429313\pi
468468 0 0
469469 −2.77729e8 −0.124313
470470 1.27285e9 0.565501
471471 0 0
472472 −1.37304e9 −0.601018
473473 −4.61802e8 −0.200651
474474 0 0
475475 −2.22044e9 −0.950629
476476 1.14268e9 0.485624
477477 0 0
478478 1.43733e9 0.601946
479479 −2.00870e9 −0.835104 −0.417552 0.908653i 0.637112π-0.637112\pi
−0.417552 + 0.908653i 0.637112π0.637112\pi
480480 0 0
481481 6.61543e9 2.71051
482482 −4.86945e8 −0.198069
483483 0 0
484484 −1.06223e9 −0.425855
485485 −6.10529e9 −2.43002
486486 0 0
487487 3.02884e9 1.18830 0.594148 0.804356i 0.297490π-0.297490\pi
0.594148 + 0.804356i 0.297490π0.297490\pi
488488 −3.86089e8 −0.150390
489489 0 0
490490 −8.87135e8 −0.340646
491491 4.51723e9 1.72221 0.861107 0.508424i 0.169772π-0.169772\pi
0.861107 + 0.508424i 0.169772π0.169772\pi
492492 0 0
493493 −1.31080e9 −0.492689
494494 3.53200e9 1.31819
495495 0 0
496496 −5.16865e8 −0.190191
497497 1.04812e9 0.382970
498498 0 0
499499 −4.65664e9 −1.67772 −0.838862 0.544343i 0.816779π-0.816779\pi
−0.838862 + 0.544343i 0.816779π0.816779\pi
500500 3.65142e8 0.130637
501501 0 0
502502 1.71447e9 0.604878
503503 2.88413e9 1.01048 0.505239 0.862980i 0.331404π-0.331404\pi
0.505239 + 0.862980i 0.331404π0.331404\pi
504504 0 0
505505 1.59448e8 0.0550934
506506 9.65089e8 0.331162
507507 0 0
508508 8.68358e8 0.293884
509509 −1.32072e9 −0.443915 −0.221957 0.975056i 0.571245π-0.571245\pi
−0.221957 + 0.975056i 0.571245π0.571245\pi
510510 0 0
511511 −1.10415e9 −0.366064
512512 1.34218e8 0.0441942
513513 0 0
514514 −4.21661e8 −0.136960
515515 1.82657e9 0.589264
516516 0 0
517517 −7.20139e8 −0.229192
518518 −4.47348e9 −1.41414
519519 0 0
520520 2.40630e9 0.750477
521521 5.14654e9 1.59435 0.797175 0.603749i 0.206327π-0.206327\pi
0.797175 + 0.603749i 0.206327π0.206327\pi
522522 0 0
523523 −2.17050e9 −0.663444 −0.331722 0.943377i 0.607630π-0.607630\pi
−0.331722 + 0.943377i 0.607630π0.607630\pi
524524 −1.50601e9 −0.457265
525525 0 0
526526 3.90863e9 1.17105
527527 −2.13003e9 −0.633941
528528 0 0
529529 1.63126e9 0.479103
530530 −3.73518e9 −1.08980
531531 0 0
532532 −2.38841e9 −0.687729
533533 6.48100e9 1.85394
534534 0 0
535535 −1.06532e9 −0.300775
536536 −1.34436e8 −0.0377084
537537 0 0
538538 −1.35266e9 −0.374499
539539 5.01915e8 0.138060
540540 0 0
541541 −9.27955e7 −0.0251963 −0.0125981 0.999921i 0.504010π-0.504010\pi
−0.0125981 + 0.999921i 0.504010π0.504010\pi
542542 −1.59625e9 −0.430629
543543 0 0
544544 5.53119e8 0.147307
545545 −2.37136e9 −0.627495
546546 0 0
547547 −5.47036e9 −1.42909 −0.714547 0.699588i 0.753367π-0.753367\pi
−0.714547 + 0.699588i 0.753367π0.753367\pi
548548 −1.79139e9 −0.465006
549549 0 0
550550 8.55870e8 0.219350
551551 2.73981e9 0.697734
552552 0 0
553553 −7.76079e9 −1.95150
554554 −2.83901e9 −0.709385
555555 0 0
556556 −5.12120e8 −0.126360
557557 4.50060e9 1.10351 0.551756 0.834006i 0.313958π-0.313958\pi
0.551756 + 0.834006i 0.313958π0.313958\pi
558558 0 0
559559 3.39941e9 0.823119
560560 −1.62718e9 −0.391542
561561 0 0
562562 −2.24393e9 −0.533251
563563 6.13057e9 1.44784 0.723922 0.689882i 0.242338π-0.242338\pi
0.723922 + 0.689882i 0.242338π0.242338\pi
564564 0 0
565565 −8.05379e9 −1.87858
566566 −1.27239e9 −0.294960
567567 0 0
568568 5.07347e8 0.116168
569569 −3.42118e9 −0.778543 −0.389271 0.921123i 0.627273π-0.627273\pi
−0.389271 + 0.921123i 0.627273π0.627273\pi
570570 0 0
571571 2.28585e9 0.513831 0.256916 0.966434i 0.417294π-0.417294\pi
0.256916 + 0.966434i 0.417294π0.417294\pi
572572 −1.36141e9 −0.304161
573573 0 0
574574 −4.38258e9 −0.967248
575575 4.46615e9 0.979706
576576 0 0
577577 −7.03121e9 −1.52375 −0.761877 0.647722i 0.775722π-0.775722\pi
−0.761877 + 0.647722i 0.775722π0.775722\pi
578578 −1.00327e9 −0.216108
579579 0 0
580580 1.86659e9 0.397238
581581 −4.11692e9 −0.870876
582582 0 0
583583 2.11326e9 0.441685
584584 −5.34470e8 −0.111040
585585 0 0
586586 2.75504e9 0.565570
587587 −8.94315e8 −0.182498 −0.0912488 0.995828i 0.529086π-0.529086\pi
−0.0912488 + 0.995828i 0.529086π0.529086\pi
588588 0 0
589589 4.45214e9 0.897771
590590 8.05759e9 1.61519
591591 0 0
592592 −2.16541e9 −0.428957
593593 −8.80907e9 −1.73476 −0.867379 0.497649i 0.834197π-0.834197\pi
−0.867379 + 0.497649i 0.834197π0.834197\pi
594594 0 0
595595 −6.70572e9 −1.30508
596596 −1.73860e9 −0.336387
597597 0 0
598598 −7.10420e9 −1.35850
599599 9.83190e8 0.186915 0.0934574 0.995623i 0.470208π-0.470208\pi
0.0934574 + 0.995623i 0.470208π0.470208\pi
600600 0 0
601601 2.04472e9 0.384214 0.192107 0.981374i 0.438468π-0.438468\pi
0.192107 + 0.981374i 0.438468π0.438468\pi
602602 −2.29875e9 −0.429441
603603 0 0
604604 2.68712e9 0.496202
605605 6.23363e9 1.14445
606606 0 0
607607 3.57611e9 0.649009 0.324505 0.945884i 0.394802π-0.394802\pi
0.324505 + 0.945884i 0.394802π0.394802\pi
608608 −1.15612e9 −0.208612
609609 0 0
610610 2.26573e9 0.404160
611611 5.30108e9 0.940199
612612 0 0
613613 1.22567e9 0.214913 0.107457 0.994210i 0.465729π-0.465729\pi
0.107457 + 0.994210i 0.465729π0.465729\pi
614614 4.22995e9 0.737472
615615 0 0
616616 9.20613e8 0.158688
617617 7.60333e9 1.30318 0.651592 0.758570i 0.274101π-0.274101\pi
0.651592 + 0.758570i 0.274101π0.274101\pi
618618 0 0
619619 5.75700e9 0.975616 0.487808 0.872951i 0.337797π-0.337797\pi
0.487808 + 0.872951i 0.337797π0.337797\pi
620620 3.03318e9 0.511125
621621 0 0
622622 −2.29411e9 −0.382250
623623 7.14690e8 0.118416
624624 0 0
625625 −7.05954e9 −1.15663
626626 2.00199e8 0.0326176
627627 0 0
628628 5.25107e9 0.846036
629629 −8.92377e9 −1.42979
630630 0 0
631631 −2.41912e9 −0.383313 −0.191657 0.981462i 0.561386π-0.561386\pi
−0.191657 + 0.981462i 0.561386π0.561386\pi
632632 −3.75664e9 −0.591957
633633 0 0
634634 −4.16219e9 −0.648648
635635 −5.09588e9 −0.789789
636636 0 0
637637 −3.69469e9 −0.566356
638638 −1.05606e9 −0.160997
639639 0 0
640640 −7.87645e8 −0.118768
641641 −7.91782e9 −1.18741 −0.593707 0.804681i 0.702336π-0.702336\pi
−0.593707 + 0.804681i 0.702336π0.702336\pi
642642 0 0
643643 −1.07171e10 −1.58978 −0.794891 0.606752i 0.792472π-0.792472\pi
−0.794891 + 0.606752i 0.792472π0.792472\pi
644644 4.80400e9 0.708765
645645 0 0
646646 −4.76443e9 −0.695340
647647 8.06643e9 1.17089 0.585446 0.810712i 0.300920π-0.300920\pi
0.585446 + 0.810712i 0.300920π0.300920\pi
648648 0 0
649649 −4.55875e9 −0.654620
650650 −6.30021e9 −0.899826
651651 0 0
652652 −1.85143e9 −0.261602
653653 1.00136e10 1.40732 0.703661 0.710535i 0.251547π-0.251547\pi
0.703661 + 0.710535i 0.251547π0.251547\pi
654654 0 0
655655 8.83787e9 1.22886
656656 −2.12140e9 −0.293400
657657 0 0
658658 −3.58469e9 −0.490525
659659 1.41114e10 1.92075 0.960376 0.278707i 0.0899057π-0.0899057\pi
0.960376 + 0.278707i 0.0899057π0.0899057\pi
660660 0 0
661661 9.62149e9 1.29580 0.647899 0.761726i 0.275648π-0.275648\pi
0.647899 + 0.761726i 0.275648π0.275648\pi
662662 −4.04031e9 −0.541268
663663 0 0
664664 −1.99281e9 −0.264167
665665 1.40162e10 1.84822
666666 0 0
667667 −5.51080e9 −0.719075
668668 1.70989e9 0.221947
669669 0 0
670670 7.88926e8 0.101338
671671 −1.28188e9 −0.163802
672672 0 0
673673 1.16858e10 1.47777 0.738884 0.673833i 0.235353π-0.235353\pi
0.738884 + 0.673833i 0.235353π0.235353\pi
674674 −1.47000e9 −0.184930
675675 0 0
676676 6.00569e9 0.747738
677677 −1.11144e10 −1.37665 −0.688327 0.725400i 0.741655π-0.741655\pi
−0.688327 + 0.725400i 0.741655π0.741655\pi
678678 0 0
679679 1.71942e10 2.10784
680680 −3.24593e9 −0.395875
681681 0 0
682682 −1.71608e9 −0.207154
683683 −1.61450e10 −1.93894 −0.969472 0.245201i 0.921146π-0.921146\pi
−0.969472 + 0.245201i 0.921146π0.921146\pi
684684 0 0
685685 1.05126e10 1.24967
686686 −4.47029e9 −0.528690
687687 0 0
688688 −1.11272e9 −0.130264
689689 −1.55561e10 −1.81189
690690 0 0
691691 −1.39780e9 −0.161166 −0.0805829 0.996748i 0.525678π-0.525678\pi
−0.0805829 + 0.996748i 0.525678π0.525678\pi
692692 −1.68398e9 −0.193182
693693 0 0
694694 −2.28905e9 −0.259955
695695 3.00533e9 0.339583
696696 0 0
697697 −8.74243e9 −0.977952
698698 −2.93092e8 −0.0326219
699699 0 0
700700 4.26033e9 0.469461
701701 −1.34244e9 −0.147191 −0.0735956 0.997288i 0.523447π-0.523447\pi
−0.0735956 + 0.997288i 0.523447π0.523447\pi
702702 0 0
703703 1.86523e10 2.02483
704704 4.45626e8 0.0481356
705705 0 0
706706 3.81550e9 0.408071
707707 −4.49050e8 −0.0477889
708708 0 0
709709 −1.58631e10 −1.67157 −0.835786 0.549055i 0.814988π-0.814988\pi
−0.835786 + 0.549055i 0.814988π0.814988\pi
710710 −2.97732e9 −0.312192
711711 0 0
712712 3.45949e8 0.0359196
713713 −8.95496e9 −0.925231
714714 0 0
715715 7.98933e9 0.817408
716716 −1.40624e9 −0.143174
717717 0 0
718718 −2.99186e9 −0.301652
719719 2.14766e9 0.215483 0.107742 0.994179i 0.465638π-0.465638\pi
0.107742 + 0.994179i 0.465638π0.465638\pi
720720 0 0
721721 −5.14412e9 −0.511137
722722 2.80754e9 0.277616
723723 0 0
724724 8.07695e9 0.790975
725725 −4.88714e9 −0.476290
726726 0 0
727727 −1.02867e10 −0.992903 −0.496451 0.868065i 0.665364π-0.665364\pi
−0.496451 + 0.868065i 0.665364π0.665364\pi
728728 −6.77680e9 −0.650976
729729 0 0
730730 3.13649e9 0.298411
731731 −4.58558e9 −0.434193
732732 0 0
733733 −3.20421e9 −0.300509 −0.150254 0.988647i 0.548009π-0.548009\pi
−0.150254 + 0.988647i 0.548009π0.548009\pi
734734 −4.66598e9 −0.435519
735735 0 0
736736 2.32539e9 0.214993
737737 −4.46351e8 −0.0410715
738738 0 0
739739 1.29766e10 1.18279 0.591394 0.806383i 0.298578π-0.298578\pi
0.591394 + 0.806383i 0.298578π0.298578\pi
740740 1.27075e10 1.15279
741741 0 0
742742 1.05193e10 0.945309
743743 7.24706e9 0.648188 0.324094 0.946025i 0.394941π-0.394941\pi
0.324094 + 0.946025i 0.394941π0.394941\pi
744744 0 0
745745 1.02029e10 0.904013
746746 1.18177e10 1.04219
747747 0 0
748748 1.83645e9 0.160444
749749 3.00024e9 0.260897
750750 0 0
751751 −8.94246e9 −0.770402 −0.385201 0.922833i 0.625868π-0.625868\pi
−0.385201 + 0.922833i 0.625868π0.625868\pi
752752 −1.73518e9 −0.148793
753753 0 0
754754 7.77386e9 0.660445
755755 −1.57692e10 −1.33350
756756 0 0
757757 1.36108e10 1.14037 0.570187 0.821515i 0.306871π-0.306871\pi
0.570187 + 0.821515i 0.306871π0.306871\pi
758758 −4.87167e9 −0.406289
759759 0 0
760760 6.78458e9 0.560629
761761 −2.20245e10 −1.81159 −0.905794 0.423718i 0.860725π-0.860725\pi
−0.905794 + 0.423718i 0.860725π0.860725\pi
762762 0 0
763763 6.67841e9 0.544299
764764 1.14849e10 0.931752
765765 0 0
766766 −6.78971e9 −0.545821
767767 3.35578e10 2.68540
768768 0 0
769769 1.03422e10 0.820110 0.410055 0.912061i 0.365510π-0.365510\pi
0.410055 + 0.912061i 0.365510π0.365510\pi
770770 −5.40254e9 −0.426462
771771 0 0
772772 −1.90921e9 −0.149346
773773 3.65169e9 0.284358 0.142179 0.989841i 0.454589π-0.454589\pi
0.142179 + 0.989841i 0.454589π0.454589\pi
774774 0 0
775775 −7.94152e9 −0.612841
776776 8.32292e9 0.639381
777777 0 0
778778 −2.02642e9 −0.154277
779779 1.82732e10 1.38495
780780 0 0
781781 1.68448e9 0.126528
782782 9.58309e9 0.716608
783783 0 0
784784 1.20937e9 0.0896299
785785 −3.08154e10 −2.27365
786786 0 0
787787 2.39073e10 1.74832 0.874158 0.485642i 0.161414π-0.161414\pi
0.874158 + 0.485642i 0.161414π0.161414\pi
788788 4.29353e9 0.312588
789789 0 0
790790 2.20455e10 1.59084
791791 2.26817e10 1.62951
792792 0 0
793793 9.43617e9 0.671954
794794 7.93772e9 0.562761
795795 0 0
796796 −7.56336e9 −0.531519
797797 2.72163e10 1.90426 0.952128 0.305699i 0.0988901π-0.0988901\pi
0.952128 + 0.305699i 0.0988901π0.0988901\pi
798798 0 0
799799 −7.15080e9 −0.495953
800800 2.06223e9 0.142404
801801 0 0
802802 −7.59002e9 −0.519556
803803 −1.77453e9 −0.120943
804804 0 0
805805 −2.81918e10 −1.90475
806806 1.26324e10 0.849792
807807 0 0
808808 −2.17365e8 −0.0144960
809809 −2.09999e10 −1.39443 −0.697216 0.716861i 0.745578π-0.745578\pi
−0.697216 + 0.716861i 0.745578π0.745578\pi
810810 0 0
811811 −1.21414e10 −0.799276 −0.399638 0.916673i 0.630864π-0.630864\pi
−0.399638 + 0.916673i 0.630864π0.630864\pi
812812 −5.25683e9 −0.344570
813813 0 0
814814 −7.18953e9 −0.467213
815815 1.08650e10 0.703034
816816 0 0
817817 9.58468e9 0.614894
818818 6.21413e9 0.396957
819819 0 0
820820 1.24493e10 0.788489
821821 −1.13220e10 −0.714041 −0.357020 0.934097i 0.616207π-0.616207\pi
−0.357020 + 0.934097i 0.616207π0.616207\pi
822822 0 0
823823 −5.82799e9 −0.364434 −0.182217 0.983258i 0.558327π-0.558327\pi
−0.182217 + 0.983258i 0.558327π0.558327\pi
824824 −2.49003e9 −0.155046
825825 0 0
826826 −2.26924e10 −1.40104
827827 2.11794e10 1.30210 0.651050 0.759034i 0.274329π-0.274329\pi
0.651050 + 0.759034i 0.274329π0.274329\pi
828828 0 0
829829 −1.77492e10 −1.08203 −0.541013 0.841014i 0.681959π-0.681959\pi
−0.541013 + 0.841014i 0.681959π0.681959\pi
830830 1.16947e10 0.709927
831831 0 0
832832 −3.28034e9 −0.197463
833833 4.98388e9 0.298752
834834 0 0
835835 −1.00343e10 −0.596465
836836 −3.83851e9 −0.227217
837837 0 0
838838 −5.03909e9 −0.295800
839839 −2.63821e10 −1.54221 −0.771104 0.636710i 0.780295π-0.780295\pi
−0.771104 + 0.636710i 0.780295π0.780295\pi
840840 0 0
841841 −1.12196e10 −0.650417
842842 8.83881e9 0.510271
843843 0 0
844844 6.65506e9 0.381025
845845 −3.52439e10 −2.00949
846846 0 0
847847 −1.75556e10 −0.992715
848848 5.09192e9 0.286745
849849 0 0
850850 8.49856e9 0.474656
851851 −3.75168e10 −2.08676
852852 0 0
853853 2.67806e10 1.47740 0.738701 0.674033i 0.235440π-0.235440\pi
0.738701 + 0.674033i 0.235440π0.235440\pi
854854 −6.38092e9 −0.350575
855855 0 0
856856 1.45228e9 0.0791392
857857 1.28880e10 0.699442 0.349721 0.936854i 0.386276π-0.386276\pi
0.349721 + 0.936854i 0.386276π0.386276\pi
858858 0 0
859859 4.27588e9 0.230170 0.115085 0.993356i 0.463286π-0.463286\pi
0.115085 + 0.993356i 0.463286π0.463286\pi
860860 6.52989e9 0.350075
861861 0 0
862862 −2.28529e9 −0.121525
863863 −2.63998e10 −1.39818 −0.699089 0.715035i 0.746411π-0.746411\pi
−0.699089 + 0.715035i 0.746411π0.746411\pi
864864 0 0
865865 9.88231e9 0.519161
866866 3.81430e9 0.199573
867867 0 0
868868 −8.54227e9 −0.443357
869869 −1.24727e10 −0.644750
870870 0 0
871871 3.28567e9 0.168485
872872 3.23271e9 0.165105
873873 0 0
874874 −2.00304e10 −1.01484
875875 6.03472e9 0.304529
876876 0 0
877877 1.43925e10 0.720505 0.360252 0.932855i 0.382691π-0.382691\pi
0.360252 + 0.932855i 0.382691π0.382691\pi
878878 2.01406e10 1.00425
879879 0 0
880880 −2.61512e9 −0.129361
881881 2.86878e10 1.41345 0.706727 0.707487i 0.250171π-0.250171\pi
0.706727 + 0.707487i 0.250171π0.250171\pi
882882 0 0
883883 1.10176e10 0.538550 0.269275 0.963063i 0.413216π-0.413216\pi
0.269275 + 0.963063i 0.413216π0.413216\pi
884884 −1.35185e10 −0.658180
885885 0 0
886886 −3.66919e9 −0.177236
887887 1.75507e10 0.844426 0.422213 0.906497i 0.361254π-0.361254\pi
0.422213 + 0.906497i 0.361254π0.361254\pi
888888 0 0
889889 1.43514e10 0.685076
890890 −2.03017e9 −0.0965311
891891 0 0
892892 −1.03379e10 −0.487703
893893 1.49464e10 0.702357
894894 0 0
895895 8.25238e9 0.384768
896896 2.21823e9 0.103022
897897 0 0
898898 −1.17147e10 −0.539837
899899 9.79907e9 0.449807
900900 0 0
901901 2.09841e10 0.955770
902902 −7.04343e9 −0.319567
903903 0 0
904904 1.09792e10 0.494288
905905 −4.73989e10 −2.12568
906906 0 0
907907 −1.68445e10 −0.749605 −0.374803 0.927105i 0.622290π-0.622290\pi
−0.374803 + 0.927105i 0.622290π0.622290\pi
908908 2.43542e9 0.107963
909909 0 0
910910 3.97691e10 1.74945
911911 1.47271e10 0.645363 0.322682 0.946508i 0.395416π-0.395416\pi
0.322682 + 0.946508i 0.395416π0.395416\pi
912912 0 0
913913 −6.61649e9 −0.287726
914914 1.11728e10 0.484005
915915 0 0
916916 −1.85418e10 −0.797110
917917 −2.48899e10 −1.06593
918918 0 0
919919 7.11506e9 0.302395 0.151197 0.988504i 0.451687π-0.451687\pi
0.151197 + 0.988504i 0.451687π0.451687\pi
920920 −1.36464e10 −0.577777
921921 0 0
922922 −3.16976e10 −1.33189
923923 −1.23998e10 −0.519049
924924 0 0
925925 −3.32710e10 −1.38220
926926 −1.50530e10 −0.622995
927927 0 0
928928 −2.54459e9 −0.104520
929929 −3.39405e10 −1.38887 −0.694437 0.719553i 0.744347π-0.744347\pi
−0.694437 + 0.719553i 0.744347π0.744347\pi
930930 0 0
931931 −1.04172e10 −0.423085
932932 −4.76860e9 −0.192946
933933 0 0
934934 7.75614e9 0.311481
935935 −1.07771e10 −0.431181
936936 0 0
937937 −3.78364e10 −1.50252 −0.751261 0.660005i 0.770554π-0.770554\pi
−0.751261 + 0.660005i 0.770554π0.770554\pi
938938 −2.22183e9 −0.0879025
939939 0 0
940940 1.01828e10 0.399870
941941 1.68892e10 0.660763 0.330382 0.943847i 0.392823π-0.392823\pi
0.330382 + 0.943847i 0.392823π0.392823\pi
942942 0 0
943943 −3.67545e10 −1.42731
944944 −1.09844e10 −0.424984
945945 0 0
946946 −3.69442e9 −0.141882
947947 1.16912e10 0.447337 0.223668 0.974665i 0.428197π-0.428197\pi
0.223668 + 0.974665i 0.428197π0.428197\pi
948948 0 0
949949 1.30627e10 0.496136
950950 −1.77635e10 −0.672197
951951 0 0
952952 9.14145e9 0.343388
953953 5.10551e10 1.91079 0.955397 0.295323i 0.0954274π-0.0954274\pi
0.955397 + 0.295323i 0.0954274π0.0954274\pi
954954 0 0
955955 −6.73981e10 −2.50401
956956 1.14986e10 0.425640
957957 0 0
958958 −1.60696e10 −0.590508
959959 −2.96065e10 −1.08398
960960 0 0
961961 −1.15893e10 −0.421235
962962 5.29235e10 1.91662
963963 0 0
964964 −3.89556e9 −0.140056
965965 1.12040e10 0.401355
966966 0 0
967967 −8.68730e9 −0.308953 −0.154476 0.987996i 0.549369π-0.549369\pi
−0.154476 + 0.987996i 0.549369π0.549369\pi
968968 −8.49787e9 −0.301125
969969 0 0
970970 −4.88423e10 −1.71829
971971 3.91347e10 1.37181 0.685906 0.727690i 0.259406π-0.259406\pi
0.685906 + 0.727690i 0.259406π0.259406\pi
972972 0 0
973973 −8.46384e9 −0.294559
974974 2.42307e10 0.840252
975975 0 0
976976 −3.08871e9 −0.106342
977977 −2.72511e10 −0.934874 −0.467437 0.884026i 0.654822π-0.654822\pi
−0.467437 + 0.884026i 0.654822π0.654822\pi
978978 0 0
979979 1.14861e9 0.0391231
980980 −7.09708e9 −0.240873
981981 0 0
982982 3.61379e10 1.21779
983983 7.13353e9 0.239534 0.119767 0.992802i 0.461785π-0.461785\pi
0.119767 + 0.992802i 0.461785π0.461785\pi
984984 0 0
985985 −2.51962e10 −0.840055
986986 −1.04864e10 −0.348384
987987 0 0
988988 2.82560e10 0.932098
989989 −1.92784e10 −0.633702
990990 0 0
991991 −1.99378e10 −0.650760 −0.325380 0.945583i 0.605492π-0.605492\pi
−0.325380 + 0.945583i 0.605492π0.605492\pi
992992 −4.13492e9 −0.134486
993993 0 0
994994 8.38497e9 0.270800
995995 4.43849e10 1.42842
996996 0 0
997997 −1.27404e10 −0.407146 −0.203573 0.979060i 0.565255π-0.565255\pi
−0.203573 + 0.979060i 0.565255π0.565255\pi
998998 −3.72531e10 −1.18633
999999 0 0
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 162.8.a.f.1.1 3
3.2 odd 2 162.8.a.e.1.3 3
9.2 odd 6 54.8.c.a.37.1 6
9.4 even 3 18.8.c.a.7.2 6
9.5 odd 6 54.8.c.a.19.1 6
9.7 even 3 18.8.c.a.13.2 yes 6
36.7 odd 6 144.8.i.a.49.2 6
36.11 even 6 432.8.i.a.145.1 6
36.23 even 6 432.8.i.a.289.1 6
36.31 odd 6 144.8.i.a.97.2 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
18.8.c.a.7.2 6 9.4 even 3
18.8.c.a.13.2 yes 6 9.7 even 3
54.8.c.a.19.1 6 9.5 odd 6
54.8.c.a.37.1 6 9.2 odd 6
144.8.i.a.49.2 6 36.7 odd 6
144.8.i.a.97.2 6 36.31 odd 6
162.8.a.e.1.3 3 3.2 odd 2
162.8.a.f.1.1 3 1.1 even 1 trivial
432.8.i.a.145.1 6 36.11 even 6
432.8.i.a.289.1 6 36.23 even 6