Properties

Label 144.9.q.b.65.5
Level $144$
Weight $9$
Character 144.65
Analytic conductor $58.663$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [144,9,Mod(65,144)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(144, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 1]))
 
N = Newforms(chi, 9, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("144.65");
 
S:= CuspForms(chi, 9);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 144 = 2^{4} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 9 \)
Character orbit: \([\chi]\) \(=\) 144.q (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(58.6625198488\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 4 x^{15} - 150208 x^{14} - 1927740 x^{13} + 8702363206 x^{12} + 239206241152 x^{11} + \cdots + 81\!\cdots\!61 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{32}\cdot 3^{25} \)
Twist minimal: no (minimal twist has level 18)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 65.5
Root \(220.333 - 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 144.65
Dual form 144.9.q.b.113.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-7.38176 - 80.6629i) q^{3} +(935.250 - 539.967i) q^{5} +(2056.09 - 3561.25i) q^{7} +(-6452.02 + 1190.87i) q^{9} +(-8419.53 - 4861.02i) q^{11} +(-4116.02 - 7129.16i) q^{13} +(-50459.1 - 71454.1i) q^{15} -87809.9i q^{17} -123643. q^{19} +(-302439. - 139562. i) q^{21} +(-92029.4 + 53133.2i) q^{23} +(387816. - 671717. i) q^{25} +(143686. + 511648. i) q^{27} +(430885. + 248772. i) q^{29} +(577977. + 1.00109e6i) q^{31} +(-329953. + 715027. i) q^{33} -4.44088e6i q^{35} +1.20145e6 q^{37} +(-544675. + 384636. i) q^{39} +(1.53952e6 - 888843. i) q^{41} +(528726. - 915780. i) q^{43} +(-5.39122e6 + 4.59764e6i) q^{45} +(3.80689e6 + 2.19791e6i) q^{47} +(-5.57261e6 - 9.65205e6i) q^{49} +(-7.08301e6 + 648192. i) q^{51} +1.04810e6i q^{53} -1.04991e7 q^{55} +(912700. + 9.97337e6i) q^{57} +(8.70048e6 - 5.02323e6i) q^{59} +(-4.15770e6 + 7.20135e6i) q^{61} +(-9.02495e6 + 2.54258e7i) q^{63} +(-7.69902e6 - 4.44503e6i) q^{65} +(-6.19183e6 - 1.07246e7i) q^{67} +(4.96522e6 + 7.03114e6i) q^{69} +1.69579e7i q^{71} -2.42736e7 q^{73} +(-5.70454e7 - 2.63239e7i) q^{75} +(-3.46226e7 + 1.99894e7i) q^{77} +(-6.39004e6 + 1.10679e7i) q^{79} +(4.02104e7 - 1.53670e7i) q^{81} +(2.79188e7 + 1.61189e7i) q^{83} +(-4.74144e7 - 8.21242e7i) q^{85} +(1.68860e7 - 3.65928e7i) q^{87} +2.10088e7i q^{89} -3.38516e7 q^{91} +(7.64841e7 - 5.40111e7i) q^{93} +(-1.15637e8 + 6.67629e7i) q^{95} +(-4.46651e7 + 7.73622e7i) q^{97} +(6.01118e7 + 2.13368e7i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 126 q^{3} - 882 q^{5} + 1846 q^{7} - 28662 q^{9} - 45756 q^{11} - 3370 q^{13} - 128754 q^{15} - 362180 q^{19} - 299166 q^{21} - 1311138 q^{23} + 963394 q^{25} + 208656 q^{27} - 2851290 q^{29} - 542438 q^{31}+ \cdots - 366888330 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/144\mathbb{Z}\right)^\times\).

\(n\) \(37\) \(65\) \(127\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{6}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −7.38176 80.6629i −0.0911329 0.995839i
\(4\) 0 0
\(5\) 935.250 539.967i 1.49640 0.863947i 0.496408 0.868089i \(-0.334652\pi\)
0.999991 + 0.00414227i \(0.00131853\pi\)
\(6\) 0 0
\(7\) 2056.09 3561.25i 0.856347 1.48324i −0.0190419 0.999819i \(-0.506062\pi\)
0.875389 0.483419i \(-0.160605\pi\)
\(8\) 0 0
\(9\) −6452.02 + 1190.87i −0.983390 + 0.181507i
\(10\) 0 0
\(11\) −8419.53 4861.02i −0.575065 0.332014i 0.184105 0.982907i \(-0.441061\pi\)
−0.759170 + 0.650893i \(0.774395\pi\)
\(12\) 0 0
\(13\) −4116.02 7129.16i −0.144113 0.249612i 0.784928 0.619586i \(-0.212700\pi\)
−0.929042 + 0.369975i \(0.879366\pi\)
\(14\) 0 0
\(15\) −50459.1 71454.1i −0.996723 1.41144i
\(16\) 0 0
\(17\) 87809.9i 1.05135i −0.850685 0.525676i \(-0.823813\pi\)
0.850685 0.525676i \(-0.176187\pi\)
\(18\) 0 0
\(19\) −123643. −0.948754 −0.474377 0.880322i \(-0.657327\pi\)
−0.474377 + 0.880322i \(0.657327\pi\)
\(20\) 0 0
\(21\) −302439. 139562.i −1.55511 0.717612i
\(22\) 0 0
\(23\) −92029.4 + 53133.2i −0.328863 + 0.189869i −0.655336 0.755337i \(-0.727473\pi\)
0.326473 + 0.945206i \(0.394140\pi\)
\(24\) 0 0
\(25\) 387816. 671717.i 0.992808 1.71959i
\(26\) 0 0
\(27\) 143686. + 511648.i 0.270371 + 0.962756i
\(28\) 0 0
\(29\) 430885. + 248772.i 0.609213 + 0.351729i 0.772657 0.634823i \(-0.218927\pi\)
−0.163444 + 0.986553i \(0.552260\pi\)
\(30\) 0 0
\(31\) 577977. + 1.00109e6i 0.625841 + 1.08399i 0.988378 + 0.152019i \(0.0485775\pi\)
−0.362536 + 0.931970i \(0.618089\pi\)
\(32\) 0 0
\(33\) −329953. + 715027.i −0.278225 + 0.602929i
\(34\) 0 0
\(35\) 4.44088e6i 2.95935i
\(36\) 0 0
\(37\) 1.20145e6 0.641061 0.320531 0.947238i \(-0.396139\pi\)
0.320531 + 0.947238i \(0.396139\pi\)
\(38\) 0 0
\(39\) −544675. + 384636.i −0.235439 + 0.166261i
\(40\) 0 0
\(41\) 1.53952e6 888843.i 0.544816 0.314550i −0.202212 0.979342i \(-0.564813\pi\)
0.747029 + 0.664792i \(0.231480\pi\)
\(42\) 0 0
\(43\) 528726. 915780.i 0.154652 0.267866i −0.778280 0.627917i \(-0.783908\pi\)
0.932932 + 0.360052i \(0.117241\pi\)
\(44\) 0 0
\(45\) −5.39122e6 + 4.59764e6i −1.31473 + 1.12120i
\(46\) 0 0
\(47\) 3.80689e6 + 2.19791e6i 0.780151 + 0.450420i 0.836484 0.547992i \(-0.184607\pi\)
−0.0563327 + 0.998412i \(0.517941\pi\)
\(48\) 0 0
\(49\) −5.57261e6 9.65205e6i −0.966662 1.67431i
\(50\) 0 0
\(51\) −7.08301e6 + 648192.i −1.04698 + 0.0958127i
\(52\) 0 0
\(53\) 1.04810e6i 0.132831i 0.997792 + 0.0664157i \(0.0211563\pi\)
−0.997792 + 0.0664157i \(0.978844\pi\)
\(54\) 0 0
\(55\) −1.04991e7 −1.14737
\(56\) 0 0
\(57\) 912700. + 9.97337e6i 0.0864627 + 0.944806i
\(58\) 0 0
\(59\) 8.70048e6 5.02323e6i 0.718018 0.414548i −0.0960047 0.995381i \(-0.530606\pi\)
0.814023 + 0.580833i \(0.197273\pi\)
\(60\) 0 0
\(61\) −4.15770e6 + 7.20135e6i −0.300285 + 0.520109i −0.976200 0.216870i \(-0.930415\pi\)
0.675915 + 0.736979i \(0.263749\pi\)
\(62\) 0 0
\(63\) −9.02495e6 + 2.54258e7i −0.572905 + 1.61403i
\(64\) 0 0
\(65\) −7.69902e6 4.44503e6i −0.431302 0.249013i
\(66\) 0 0
\(67\) −6.19183e6 1.07246e7i −0.307270 0.532207i 0.670494 0.741915i \(-0.266082\pi\)
−0.977764 + 0.209708i \(0.932749\pi\)
\(68\) 0 0
\(69\) 4.96522e6 + 7.03114e6i 0.219049 + 0.310191i
\(70\) 0 0
\(71\) 1.69579e7i 0.667328i 0.942692 + 0.333664i \(0.108285\pi\)
−0.942692 + 0.333664i \(0.891715\pi\)
\(72\) 0 0
\(73\) −2.42736e7 −0.854757 −0.427378 0.904073i \(-0.640563\pi\)
−0.427378 + 0.904073i \(0.640563\pi\)
\(74\) 0 0
\(75\) −5.70454e7 2.63239e7i −1.80292 0.831965i
\(76\) 0 0
\(77\) −3.46226e7 + 1.99894e7i −0.984911 + 0.568639i
\(78\) 0 0
\(79\) −6.39004e6 + 1.10679e7i −0.164057 + 0.284155i −0.936320 0.351148i \(-0.885791\pi\)
0.772263 + 0.635303i \(0.219125\pi\)
\(80\) 0 0
\(81\) 4.02104e7 1.53670e7i 0.934110 0.356985i
\(82\) 0 0
\(83\) 2.79188e7 + 1.61189e7i 0.588281 + 0.339644i 0.764418 0.644722i \(-0.223027\pi\)
−0.176136 + 0.984366i \(0.556360\pi\)
\(84\) 0 0
\(85\) −4.74144e7 8.21242e7i −0.908312 1.57324i
\(86\) 0 0
\(87\) 1.68860e7 3.65928e7i 0.294746 0.638732i
\(88\) 0 0
\(89\) 2.10088e7i 0.334843i 0.985885 + 0.167422i \(0.0535441\pi\)
−0.985885 + 0.167422i \(0.946456\pi\)
\(90\) 0 0
\(91\) −3.38516e7 −0.493644
\(92\) 0 0
\(93\) 7.64841e7 5.40111e7i 1.02244 0.722024i
\(94\) 0 0
\(95\) −1.15637e8 + 6.67629e7i −1.41972 + 0.819673i
\(96\) 0 0
\(97\) −4.46651e7 + 7.73622e7i −0.504523 + 0.873860i 0.495463 + 0.868629i \(0.334998\pi\)
−0.999986 + 0.00523116i \(0.998335\pi\)
\(98\) 0 0
\(99\) 6.01118e7 + 2.13368e7i 0.625776 + 0.222121i
\(100\) 0 0
\(101\) −3.08430e7 1.78072e7i −0.296395 0.171124i 0.344427 0.938813i \(-0.388073\pi\)
−0.640822 + 0.767689i \(0.721406\pi\)
\(102\) 0 0
\(103\) 4.35300e6 + 7.53962e6i 0.0386759 + 0.0669886i 0.884715 0.466132i \(-0.154353\pi\)
−0.846040 + 0.533120i \(0.821019\pi\)
\(104\) 0 0
\(105\) −3.58215e8 + 3.27815e7i −2.94704 + 0.269694i
\(106\) 0 0
\(107\) 2.34341e8i 1.78778i −0.448290 0.893888i \(-0.647967\pi\)
0.448290 0.893888i \(-0.352033\pi\)
\(108\) 0 0
\(109\) 2.66492e8 1.88789 0.943947 0.330098i \(-0.107082\pi\)
0.943947 + 0.330098i \(0.107082\pi\)
\(110\) 0 0
\(111\) −8.86883e6 9.69126e7i −0.0584217 0.638393i
\(112\) 0 0
\(113\) −2.47560e8 + 1.42929e8i −1.51833 + 0.876610i −0.518565 + 0.855038i \(0.673534\pi\)
−0.999767 + 0.0215714i \(0.993133\pi\)
\(114\) 0 0
\(115\) −5.73803e7 + 9.93856e7i −0.328074 + 0.568241i
\(116\) 0 0
\(117\) 3.50465e7 + 4.10958e7i 0.187026 + 0.219308i
\(118\) 0 0
\(119\) −3.12713e8 1.80545e8i −1.55940 0.900322i
\(120\) 0 0
\(121\) −5.99205e7 1.03785e8i −0.279534 0.484166i
\(122\) 0 0
\(123\) −8.30610e7 1.17621e8i −0.362892 0.513883i
\(124\) 0 0
\(125\) 4.15781e8i 1.70304i
\(126\) 0 0
\(127\) 8.18752e7 0.314730 0.157365 0.987541i \(-0.449700\pi\)
0.157365 + 0.987541i \(0.449700\pi\)
\(128\) 0 0
\(129\) −7.77724e7 3.58885e7i −0.280845 0.129597i
\(130\) 0 0
\(131\) −3.27800e8 + 1.89256e8i −1.11308 + 0.642634i −0.939624 0.342208i \(-0.888825\pi\)
−0.173451 + 0.984843i \(0.555492\pi\)
\(132\) 0 0
\(133\) −2.54220e8 + 4.40322e8i −0.812463 + 1.40723i
\(134\) 0 0
\(135\) 4.10656e8 + 4.00933e8i 1.23635 + 1.20708i
\(136\) 0 0
\(137\) 8.36881e7 + 4.83174e7i 0.237565 + 0.137158i 0.614057 0.789262i \(-0.289537\pi\)
−0.376492 + 0.926420i \(0.622870\pi\)
\(138\) 0 0
\(139\) 2.13230e8 + 3.69325e8i 0.571200 + 0.989348i 0.996443 + 0.0842686i \(0.0268554\pi\)
−0.425243 + 0.905079i \(0.639811\pi\)
\(140\) 0 0
\(141\) 1.49188e8 3.23299e8i 0.377449 0.817953i
\(142\) 0 0
\(143\) 8.00322e7i 0.191391i
\(144\) 0 0
\(145\) 5.37313e8 1.21550
\(146\) 0 0
\(147\) −7.37427e8 + 5.20752e8i −1.57925 + 1.11522i
\(148\) 0 0
\(149\) 3.73436e8 2.15603e8i 0.757653 0.437431i −0.0707992 0.997491i \(-0.522555\pi\)
0.828453 + 0.560059i \(0.189222\pi\)
\(150\) 0 0
\(151\) 4.20280e8 7.27947e8i 0.808409 1.40021i −0.105556 0.994413i \(-0.533662\pi\)
0.913965 0.405793i \(-0.133004\pi\)
\(152\) 0 0
\(153\) 1.04570e8 + 5.66551e8i 0.190828 + 1.03389i
\(154\) 0 0
\(155\) 1.08111e9 + 6.24177e8i 1.87302 + 1.08139i
\(156\) 0 0
\(157\) 2.10919e8 + 3.65323e8i 0.347150 + 0.601282i 0.985742 0.168264i \(-0.0538160\pi\)
−0.638592 + 0.769546i \(0.720483\pi\)
\(158\) 0 0
\(159\) 8.45431e7 7.73685e6i 0.132279 0.0121053i
\(160\) 0 0
\(161\) 4.36987e8i 0.650376i
\(162\) 0 0
\(163\) 5.50818e8 0.780293 0.390146 0.920753i \(-0.372424\pi\)
0.390146 + 0.920753i \(0.372424\pi\)
\(164\) 0 0
\(165\) 7.75022e7 + 8.46892e8i 0.104563 + 1.14259i
\(166\) 0 0
\(167\) −5.25550e8 + 3.03427e8i −0.675691 + 0.390111i −0.798230 0.602353i \(-0.794230\pi\)
0.122538 + 0.992464i \(0.460897\pi\)
\(168\) 0 0
\(169\) 3.73982e8 6.47756e8i 0.458463 0.794081i
\(170\) 0 0
\(171\) 7.97744e8 1.47242e8i 0.932995 0.172206i
\(172\) 0 0
\(173\) −8.26617e8 4.77248e8i −0.922826 0.532794i −0.0382907 0.999267i \(-0.512191\pi\)
−0.884536 + 0.466473i \(0.845525\pi\)
\(174\) 0 0
\(175\) −1.59477e9 2.76222e9i −1.70038 2.94514i
\(176\) 0 0
\(177\) −4.69413e8 6.64726e8i −0.478258 0.677251i
\(178\) 0 0
\(179\) 9.44019e8i 0.919536i −0.888039 0.459768i \(-0.847933\pi\)
0.888039 0.459768i \(-0.152067\pi\)
\(180\) 0 0
\(181\) −8.68230e8 −0.808948 −0.404474 0.914550i \(-0.632545\pi\)
−0.404474 + 0.914550i \(0.632545\pi\)
\(182\) 0 0
\(183\) 6.11573e8 + 2.82214e8i 0.545311 + 0.251637i
\(184\) 0 0
\(185\) 1.12366e9 6.48744e8i 0.959284 0.553843i
\(186\) 0 0
\(187\) −4.26845e8 + 7.39318e8i −0.349063 + 0.604595i
\(188\) 0 0
\(189\) 2.11754e9 + 5.40291e8i 1.65953 + 0.423429i
\(190\) 0 0
\(191\) 6.09956e7 + 3.52159e7i 0.0458316 + 0.0264609i 0.522741 0.852492i \(-0.324910\pi\)
−0.476909 + 0.878953i \(0.658243\pi\)
\(192\) 0 0
\(193\) −1.36871e9 2.37068e9i −0.986467 1.70861i −0.635225 0.772327i \(-0.719093\pi\)
−0.351242 0.936285i \(-0.614241\pi\)
\(194\) 0 0
\(195\) −3.01717e8 + 6.53838e8i −0.208671 + 0.452201i
\(196\) 0 0
\(197\) 5.47276e8i 0.363364i 0.983357 + 0.181682i \(0.0581541\pi\)
−0.983357 + 0.181682i \(0.941846\pi\)
\(198\) 0 0
\(199\) 2.66467e9 1.69915 0.849574 0.527469i \(-0.176859\pi\)
0.849574 + 0.527469i \(0.176859\pi\)
\(200\) 0 0
\(201\) −8.19368e8 + 5.78617e8i −0.501990 + 0.354493i
\(202\) 0 0
\(203\) 1.77188e9 1.02299e9i 1.04340 0.602405i
\(204\) 0 0
\(205\) 9.59891e8 1.66258e9i 0.543509 0.941385i
\(206\) 0 0
\(207\) 5.30501e8 4.52411e8i 0.288938 0.246406i
\(208\) 0 0
\(209\) 1.04101e9 + 6.01029e8i 0.545595 + 0.315000i
\(210\) 0 0
\(211\) 9.39137e8 + 1.62663e9i 0.473804 + 0.820653i 0.999550 0.0299884i \(-0.00954702\pi\)
−0.525746 + 0.850642i \(0.676214\pi\)
\(212\) 0 0
\(213\) 1.36788e9 1.25179e8i 0.664551 0.0608155i
\(214\) 0 0
\(215\) 1.14198e9i 0.534446i
\(216\) 0 0
\(217\) 4.75349e9 2.14375
\(218\) 0 0
\(219\) 1.79182e8 + 1.95798e9i 0.0778964 + 0.851200i
\(220\) 0 0
\(221\) −6.26011e8 + 3.61427e8i −0.262430 + 0.151514i
\(222\) 0 0
\(223\) −1.45052e9 + 2.51237e9i −0.586548 + 1.01593i 0.408132 + 0.912923i \(0.366180\pi\)
−0.994680 + 0.103009i \(0.967153\pi\)
\(224\) 0 0
\(225\) −1.70227e9 + 4.79577e9i −0.664198 + 1.87123i
\(226\) 0 0
\(227\) −3.60966e9 2.08404e9i −1.35945 0.784877i −0.369898 0.929072i \(-0.620607\pi\)
−0.989549 + 0.144195i \(0.953941\pi\)
\(228\) 0 0
\(229\) 1.80018e9 + 3.11801e9i 0.654599 + 1.13380i 0.981994 + 0.188911i \(0.0604957\pi\)
−0.327396 + 0.944887i \(0.606171\pi\)
\(230\) 0 0
\(231\) 1.86798e9 + 2.64520e9i 0.656030 + 0.928991i
\(232\) 0 0
\(233\) 2.86365e9i 0.971618i 0.874065 + 0.485809i \(0.161475\pi\)
−0.874065 + 0.485809i \(0.838525\pi\)
\(234\) 0 0
\(235\) 4.74719e9 1.55656
\(236\) 0 0
\(237\) 9.39937e8 + 4.33739e8i 0.297924 + 0.137479i
\(238\) 0 0
\(239\) −1.21500e9 + 7.01479e8i −0.372378 + 0.214992i −0.674497 0.738278i \(-0.735639\pi\)
0.302119 + 0.953270i \(0.402306\pi\)
\(240\) 0 0
\(241\) 2.21808e9 3.84182e9i 0.657519 1.13886i −0.323737 0.946147i \(-0.604939\pi\)
0.981256 0.192709i \(-0.0617273\pi\)
\(242\) 0 0
\(243\) −1.53637e9 3.13005e9i −0.440627 0.897690i
\(244\) 0 0
\(245\) −1.04236e10 6.01805e9i −2.89303 1.67029i
\(246\) 0 0
\(247\) 5.08916e8 + 8.81468e8i 0.136728 + 0.236820i
\(248\) 0 0
\(249\) 1.09411e9 2.37100e9i 0.284619 0.616786i
\(250\) 0 0
\(251\) 2.42084e9i 0.609916i 0.952366 + 0.304958i \(0.0986425\pi\)
−0.952366 + 0.304958i \(0.901357\pi\)
\(252\) 0 0
\(253\) 1.03313e9 0.252157
\(254\) 0 0
\(255\) −6.27438e9 + 4.43081e9i −1.48392 + 1.04791i
\(256\) 0 0
\(257\) −2.08915e9 + 1.20617e9i −0.478891 + 0.276488i −0.719954 0.694022i \(-0.755837\pi\)
0.241063 + 0.970509i \(0.422504\pi\)
\(258\) 0 0
\(259\) 2.47029e9 4.27867e9i 0.548971 0.950846i
\(260\) 0 0
\(261\) −3.07633e9 1.09195e9i −0.662935 0.235310i
\(262\) 0 0
\(263\) −5.65030e9 3.26220e9i −1.18100 0.681849i −0.224752 0.974416i \(-0.572157\pi\)
−0.956245 + 0.292567i \(0.905490\pi\)
\(264\) 0 0
\(265\) 5.65941e8 + 9.80238e8i 0.114759 + 0.198769i
\(266\) 0 0
\(267\) 1.69463e9 1.55082e8i 0.333450 0.0305152i
\(268\) 0 0
\(269\) 6.64127e9i 1.26836i −0.773186 0.634180i \(-0.781338\pi\)
0.773186 0.634180i \(-0.218662\pi\)
\(270\) 0 0
\(271\) 2.72229e9 0.504728 0.252364 0.967632i \(-0.418792\pi\)
0.252364 + 0.967632i \(0.418792\pi\)
\(272\) 0 0
\(273\) 2.49885e8 + 2.73057e9i 0.0449872 + 0.491590i
\(274\) 0 0
\(275\) −6.53045e9 + 3.77036e9i −1.14186 + 0.659252i
\(276\) 0 0
\(277\) −5.00946e9 + 8.67663e9i −0.850886 + 1.47378i 0.0295233 + 0.999564i \(0.490601\pi\)
−0.880410 + 0.474214i \(0.842732\pi\)
\(278\) 0 0
\(279\) −4.92128e9 5.77073e9i −0.812198 0.952388i
\(280\) 0 0
\(281\) −6.83019e9 3.94341e9i −1.09549 0.632480i −0.160456 0.987043i \(-0.551296\pi\)
−0.935032 + 0.354563i \(0.884630\pi\)
\(282\) 0 0
\(283\) −4.86855e8 8.43258e8i −0.0759021 0.131466i 0.825576 0.564291i \(-0.190850\pi\)
−0.901478 + 0.432824i \(0.857517\pi\)
\(284\) 0 0
\(285\) 6.23889e9 + 8.83477e9i 0.945645 + 1.33911i
\(286\) 0 0
\(287\) 7.31016e9i 1.07746i
\(288\) 0 0
\(289\) −7.34822e8 −0.105339
\(290\) 0 0
\(291\) 6.56997e9 + 3.03175e9i 0.916203 + 0.422787i
\(292\) 0 0
\(293\) −4.59420e9 + 2.65246e9i −0.623361 + 0.359898i −0.778176 0.628046i \(-0.783855\pi\)
0.154815 + 0.987943i \(0.450522\pi\)
\(294\) 0 0
\(295\) 5.42475e9 9.39595e9i 0.716295 1.24066i
\(296\) 0 0
\(297\) 1.27736e9 5.00630e9i 0.164167 0.643414i
\(298\) 0 0
\(299\) 7.57590e8 + 4.37395e8i 0.0947871 + 0.0547254i
\(300\) 0 0
\(301\) −2.17422e9 3.76585e9i −0.264872 0.458772i
\(302\) 0 0
\(303\) −1.20871e9 + 2.61933e9i −0.143400 + 0.310756i
\(304\) 0 0
\(305\) 8.98008e9i 1.03772i
\(306\) 0 0
\(307\) −1.34241e10 −1.51124 −0.755618 0.655013i \(-0.772663\pi\)
−0.755618 + 0.655013i \(0.772663\pi\)
\(308\) 0 0
\(309\) 5.76035e8 4.06782e8i 0.0631852 0.0446198i
\(310\) 0 0
\(311\) −1.98291e9 + 1.14483e9i −0.211964 + 0.122377i −0.602224 0.798327i \(-0.705718\pi\)
0.390260 + 0.920705i \(0.372385\pi\)
\(312\) 0 0
\(313\) 8.94161e9 1.54873e10i 0.931619 1.61361i 0.151065 0.988524i \(-0.451730\pi\)
0.780555 0.625088i \(-0.214937\pi\)
\(314\) 0 0
\(315\) 5.28851e9 + 2.86527e10i 0.537144 + 2.91020i
\(316\) 0 0
\(317\) 5.77404e9 + 3.33364e9i 0.571798 + 0.330128i 0.757867 0.652409i \(-0.226242\pi\)
−0.186069 + 0.982537i \(0.559575\pi\)
\(318\) 0 0
\(319\) −2.41856e9 4.18908e9i −0.233558 0.404535i
\(320\) 0 0
\(321\) −1.89026e10 + 1.72985e9i −1.78034 + 0.162925i
\(322\) 0 0
\(323\) 1.08570e10i 0.997474i
\(324\) 0 0
\(325\) −6.38503e9 −0.572308
\(326\) 0 0
\(327\) −1.96718e9 2.14960e10i −0.172049 1.88004i
\(328\) 0 0
\(329\) 1.56546e10 9.03820e9i 1.33616 0.771433i
\(330\) 0 0
\(331\) 7.84292e9 1.35843e10i 0.653380 1.13169i −0.328918 0.944359i \(-0.606684\pi\)
0.982297 0.187328i \(-0.0599828\pi\)
\(332\) 0 0
\(333\) −7.75179e9 + 1.43077e9i −0.630413 + 0.116357i
\(334\) 0 0
\(335\) −1.15818e10 6.68676e9i −0.919597 0.530929i
\(336\) 0 0
\(337\) −1.29188e9 2.23761e9i −0.100162 0.173486i 0.811589 0.584229i \(-0.198603\pi\)
−0.911751 + 0.410743i \(0.865270\pi\)
\(338\) 0 0
\(339\) 1.33565e10 + 1.89139e10i 1.01133 + 1.43213i
\(340\) 0 0
\(341\) 1.12382e10i 0.831152i
\(342\) 0 0
\(343\) −2.21253e10 −1.59850
\(344\) 0 0
\(345\) 8.44030e9 + 3.89482e9i 0.595774 + 0.274923i
\(346\) 0 0
\(347\) −1.45626e10 + 8.40775e9i −1.00444 + 0.579912i −0.909558 0.415577i \(-0.863580\pi\)
−0.0948784 + 0.995489i \(0.530246\pi\)
\(348\) 0 0
\(349\) 1.22366e10 2.11945e10i 0.824822 1.42863i −0.0772336 0.997013i \(-0.524609\pi\)
0.902055 0.431620i \(-0.142058\pi\)
\(350\) 0 0
\(351\) 3.05620e9 3.13032e9i 0.201351 0.206234i
\(352\) 0 0
\(353\) −9.05088e9 5.22553e9i −0.582897 0.336536i 0.179387 0.983779i \(-0.442589\pi\)
−0.762284 + 0.647243i \(0.775922\pi\)
\(354\) 0 0
\(355\) 9.15672e9 + 1.58599e10i 0.576536 + 0.998590i
\(356\) 0 0
\(357\) −1.22549e10 + 2.65571e10i −0.754463 + 1.63496i
\(358\) 0 0
\(359\) 2.37497e10i 1.42982i −0.699219 0.714908i \(-0.746469\pi\)
0.699219 0.714908i \(-0.253531\pi\)
\(360\) 0 0
\(361\) −1.69607e9 −0.0998656
\(362\) 0 0
\(363\) −7.92931e9 + 5.59948e9i −0.456677 + 0.322494i
\(364\) 0 0
\(365\) −2.27019e10 + 1.31069e10i −1.27906 + 0.738464i
\(366\) 0 0
\(367\) 5.17433e9 8.96220e9i 0.285226 0.494027i −0.687438 0.726243i \(-0.741265\pi\)
0.972664 + 0.232217i \(0.0745979\pi\)
\(368\) 0 0
\(369\) −8.87452e9 + 7.56820e9i −0.478674 + 0.408213i
\(370\) 0 0
\(371\) 3.73256e9 + 2.15499e9i 0.197020 + 0.113750i
\(372\) 0 0
\(373\) 4.02672e9 + 6.97448e9i 0.208025 + 0.360310i 0.951092 0.308907i \(-0.0999631\pi\)
−0.743067 + 0.669217i \(0.766630\pi\)
\(374\) 0 0
\(375\) −3.35382e10 + 3.06920e9i −1.69595 + 0.155203i
\(376\) 0 0
\(377\) 4.09580e9i 0.202756i
\(378\) 0 0
\(379\) 2.63218e10 1.27573 0.637864 0.770149i \(-0.279818\pi\)
0.637864 + 0.770149i \(0.279818\pi\)
\(380\) 0 0
\(381\) −6.04383e8 6.60429e9i −0.0286822 0.313420i
\(382\) 0 0
\(383\) 2.64941e10 1.52964e10i 1.23127 0.710876i 0.263978 0.964529i \(-0.414965\pi\)
0.967295 + 0.253653i \(0.0816321\pi\)
\(384\) 0 0
\(385\) −2.15872e10 + 3.73901e10i −0.982547 + 1.70182i
\(386\) 0 0
\(387\) −2.32077e9 + 6.53827e9i −0.103464 + 0.291487i
\(388\) 0 0
\(389\) 3.76791e10 + 2.17540e10i 1.64552 + 0.950039i 0.978824 + 0.204704i \(0.0656233\pi\)
0.666691 + 0.745334i \(0.267710\pi\)
\(390\) 0 0
\(391\) 4.66562e9 + 8.08109e9i 0.199619 + 0.345751i
\(392\) 0 0
\(393\) 1.76857e10 + 2.50443e10i 0.741398 + 1.04988i
\(394\) 0 0
\(395\) 1.38016e10i 0.566947i
\(396\) 0 0
\(397\) 4.31419e10 1.73675 0.868375 0.495908i \(-0.165165\pi\)
0.868375 + 0.495908i \(0.165165\pi\)
\(398\) 0 0
\(399\) 3.73943e10 + 1.72558e10i 1.47541 + 0.680838i
\(400\) 0 0
\(401\) −1.57455e10 + 9.09069e9i −0.608948 + 0.351576i −0.772554 0.634950i \(-0.781021\pi\)
0.163606 + 0.986526i \(0.447688\pi\)
\(402\) 0 0
\(403\) 4.75794e9 8.24099e9i 0.180384 0.312434i
\(404\) 0 0
\(405\) 2.93091e10 3.60843e10i 1.08939 1.34121i
\(406\) 0 0
\(407\) −1.01157e10 5.84028e9i −0.368652 0.212841i
\(408\) 0 0
\(409\) 3.23724e9 + 5.60707e9i 0.115686 + 0.200374i 0.918054 0.396456i \(-0.129760\pi\)
−0.802368 + 0.596830i \(0.796427\pi\)
\(410\) 0 0
\(411\) 3.27965e9 7.10720e9i 0.114937 0.249076i
\(412\) 0 0
\(413\) 4.13128e10i 1.41999i
\(414\) 0 0
\(415\) 3.48148e10 1.17374
\(416\) 0 0
\(417\) 2.82168e10 1.99260e10i 0.933176 0.658985i
\(418\) 0 0
\(419\) 3.28096e10 1.89427e10i 1.06450 0.614589i 0.137826 0.990456i \(-0.455989\pi\)
0.926673 + 0.375868i \(0.122655\pi\)
\(420\) 0 0
\(421\) 2.38781e10 4.13581e10i 0.760102 1.31654i −0.182696 0.983170i \(-0.558482\pi\)
0.942798 0.333366i \(-0.108184\pi\)
\(422\) 0 0
\(423\) −2.71795e10 9.64744e9i −0.848947 0.301336i
\(424\) 0 0
\(425\) −5.89834e10 3.40541e10i −1.80790 1.04379i
\(426\) 0 0
\(427\) 1.70972e10 + 2.96133e10i 0.514297 + 0.890789i
\(428\) 0 0
\(429\) 6.45563e9 5.90779e8i 0.190594 0.0174420i
\(430\) 0 0
\(431\) 2.73395e10i 0.792285i 0.918189 + 0.396143i \(0.129651\pi\)
−0.918189 + 0.396143i \(0.870349\pi\)
\(432\) 0 0
\(433\) −6.96958e9 −0.198269 −0.0991345 0.995074i \(-0.531607\pi\)
−0.0991345 + 0.995074i \(0.531607\pi\)
\(434\) 0 0
\(435\) −3.96632e9 4.33413e10i −0.110772 1.21044i
\(436\) 0 0
\(437\) 1.13788e10 6.56953e9i 0.312010 0.180139i
\(438\) 0 0
\(439\) −4.26214e9 + 7.38223e9i −0.114754 + 0.198760i −0.917682 0.397317i \(-0.869941\pi\)
0.802927 + 0.596077i \(0.203275\pi\)
\(440\) 0 0
\(441\) 4.74489e10 + 5.56389e10i 1.25450 + 1.47104i
\(442\) 0 0
\(443\) 1.77214e10 + 1.02315e10i 0.460134 + 0.265658i 0.712101 0.702077i \(-0.247744\pi\)
−0.251967 + 0.967736i \(0.581077\pi\)
\(444\) 0 0
\(445\) 1.13441e10 + 1.96485e10i 0.289287 + 0.501060i
\(446\) 0 0
\(447\) −2.01478e10 2.85309e10i −0.504658 0.714636i
\(448\) 0 0
\(449\) 1.52992e10i 0.376430i 0.982128 + 0.188215i \(0.0602702\pi\)
−0.982128 + 0.188215i \(0.939730\pi\)
\(450\) 0 0
\(451\) −1.72827e10 −0.417740
\(452\) 0 0
\(453\) −6.18207e10 2.85275e10i −1.46805 0.677440i
\(454\) 0 0
\(455\) −3.16597e10 + 1.82788e10i −0.738689 + 0.426483i
\(456\) 0 0
\(457\) −1.20106e10 + 2.08029e10i −0.275359 + 0.476935i −0.970226 0.242203i \(-0.922130\pi\)
0.694867 + 0.719138i \(0.255463\pi\)
\(458\) 0 0
\(459\) 4.49278e10 1.26171e10i 1.01219 0.284255i
\(460\) 0 0
\(461\) 4.96796e10 + 2.86825e10i 1.09995 + 0.635058i 0.936209 0.351445i \(-0.114310\pi\)
0.163744 + 0.986503i \(0.447643\pi\)
\(462\) 0 0
\(463\) −3.03202e10 5.25162e10i −0.659795 1.14280i −0.980669 0.195676i \(-0.937310\pi\)
0.320874 0.947122i \(-0.396023\pi\)
\(464\) 0 0
\(465\) 4.23675e10 9.18128e10i 0.906194 1.96377i
\(466\) 0 0
\(467\) 1.01091e10i 0.212543i −0.994337 0.106271i \(-0.966109\pi\)
0.994337 0.106271i \(-0.0338912\pi\)
\(468\) 0 0
\(469\) −5.09238e10 −1.05252
\(470\) 0 0
\(471\) 2.79111e10 1.97101e10i 0.567143 0.400502i
\(472\) 0 0
\(473\) −8.90324e9 + 5.14029e9i −0.177870 + 0.102693i
\(474\) 0 0
\(475\) −4.79505e10 + 8.30528e10i −0.941931 + 1.63147i
\(476\) 0 0
\(477\) −1.24815e9 6.76238e9i −0.0241099 0.130625i
\(478\) 0 0
\(479\) −1.87971e10 1.08525e10i −0.357067 0.206153i 0.310727 0.950499i \(-0.399428\pi\)
−0.667793 + 0.744347i \(0.732761\pi\)
\(480\) 0 0
\(481\) −4.94520e9 8.56534e9i −0.0923855 0.160016i
\(482\) 0 0
\(483\) 3.52486e10 3.22573e9i 0.647670 0.0592706i
\(484\) 0 0
\(485\) 9.64707e10i 1.74353i
\(486\) 0 0
\(487\) 5.82792e9 0.103609 0.0518045 0.998657i \(-0.483503\pi\)
0.0518045 + 0.998657i \(0.483503\pi\)
\(488\) 0 0
\(489\) −4.06601e9 4.44306e10i −0.0711103 0.777046i
\(490\) 0 0
\(491\) 2.15718e10 1.24545e10i 0.371159 0.214288i −0.302806 0.953052i \(-0.597923\pi\)
0.673964 + 0.738764i \(0.264590\pi\)
\(492\) 0 0
\(493\) 2.18446e10 3.78360e10i 0.369791 0.640497i
\(494\) 0 0
\(495\) 6.77407e10 1.25031e10i 1.12831 0.208256i
\(496\) 0 0
\(497\) 6.03915e10 + 3.48670e10i 0.989806 + 0.571465i
\(498\) 0 0
\(499\) 8.19755e9 + 1.41986e10i 0.132215 + 0.229004i 0.924530 0.381109i \(-0.124458\pi\)
−0.792315 + 0.610112i \(0.791124\pi\)
\(500\) 0 0
\(501\) 2.83548e10 + 4.01526e10i 0.450065 + 0.637328i
\(502\) 0 0
\(503\) 4.61285e10i 0.720606i 0.932835 + 0.360303i \(0.117327\pi\)
−0.932835 + 0.360303i \(0.882673\pi\)
\(504\) 0 0
\(505\) −3.84612e10 −0.591367
\(506\) 0 0
\(507\) −5.50105e10 2.53849e10i −0.832557 0.384188i
\(508\) 0 0
\(509\) −6.69443e9 + 3.86503e9i −0.0997339 + 0.0575814i −0.549037 0.835798i \(-0.685006\pi\)
0.449303 + 0.893379i \(0.351672\pi\)
\(510\) 0 0
\(511\) −4.99087e10 + 8.64444e10i −0.731969 + 1.26781i
\(512\) 0 0
\(513\) −1.77657e10 6.32615e10i −0.256516 0.913419i
\(514\) 0 0
\(515\) 8.14229e9 + 4.70095e9i 0.115749 + 0.0668278i
\(516\) 0 0
\(517\) −2.13681e10 3.70107e10i −0.299092 0.518042i
\(518\) 0 0
\(519\) −3.23943e10 + 7.02003e10i −0.446477 + 0.967541i
\(520\) 0 0
\(521\) 3.97902e10i 0.540039i 0.962855 + 0.270019i \(0.0870301\pi\)
−0.962855 + 0.270019i \(0.912970\pi\)
\(522\) 0 0
\(523\) 3.49978e10 0.467772 0.233886 0.972264i \(-0.424856\pi\)
0.233886 + 0.972264i \(0.424856\pi\)
\(524\) 0 0
\(525\) −2.11037e11 + 1.49029e11i −2.77792 + 1.96170i
\(526\) 0 0
\(527\) 8.79053e10 5.07521e10i 1.13965 0.657979i
\(528\) 0 0
\(529\) −3.35092e10 + 5.80397e10i −0.427899 + 0.741143i
\(530\) 0 0
\(531\) −5.01537e10 + 4.27711e10i −0.630848 + 0.537988i
\(532\) 0 0
\(533\) −1.26734e10 7.31699e9i −0.157031 0.0906617i
\(534\) 0 0
\(535\) −1.26536e11 2.19167e11i −1.54454 2.67523i
\(536\) 0 0
\(537\) −7.61474e10 + 6.96853e9i −0.915709 + 0.0838000i
\(538\) 0 0
\(539\) 1.08354e11i 1.28378i
\(540\) 0 0
\(541\) 2.34001e10 0.273168 0.136584 0.990629i \(-0.456388\pi\)
0.136584 + 0.990629i \(0.456388\pi\)
\(542\) 0 0
\(543\) 6.40907e9 + 7.00340e10i 0.0737218 + 0.805582i
\(544\) 0 0
\(545\) 2.49236e11 1.43897e11i 2.82504 1.63104i
\(546\) 0 0
\(547\) 1.16091e10 2.01075e10i 0.129673 0.224600i −0.793877 0.608078i \(-0.791941\pi\)
0.923550 + 0.383478i \(0.125274\pi\)
\(548\) 0 0
\(549\) 1.82497e10 5.14145e10i 0.200894 0.565974i
\(550\) 0 0
\(551\) −5.32757e10 3.07588e10i −0.577994 0.333705i
\(552\) 0 0
\(553\) 2.62770e10 + 4.55131e10i 0.280980 + 0.486671i
\(554\) 0 0
\(555\) −6.06242e10 8.58486e10i −0.638960 0.904819i
\(556\) 0 0
\(557\) 3.65617e10i 0.379844i −0.981799 0.189922i \(-0.939176\pi\)
0.981799 0.189922i \(-0.0608236\pi\)
\(558\) 0 0
\(559\) −8.70499e9 −0.0891499
\(560\) 0 0
\(561\) 6.27864e10 + 2.89731e10i 0.633891 + 0.292512i
\(562\) 0 0
\(563\) 1.15433e11 6.66450e10i 1.14893 0.663337i 0.200306 0.979733i \(-0.435806\pi\)
0.948627 + 0.316397i \(0.102473\pi\)
\(564\) 0 0
\(565\) −1.54354e11 + 2.67348e11i −1.51469 + 2.62352i
\(566\) 0 0
\(567\) 2.79503e10 1.74795e11i 0.270430 1.69121i
\(568\) 0 0
\(569\) −1.42643e11 8.23549e10i −1.36082 0.785670i −0.371087 0.928598i \(-0.621015\pi\)
−0.989733 + 0.142928i \(0.954348\pi\)
\(570\) 0 0
\(571\) 6.84597e10 + 1.18576e11i 0.644007 + 1.11545i 0.984530 + 0.175216i \(0.0560625\pi\)
−0.340523 + 0.940236i \(0.610604\pi\)
\(572\) 0 0
\(573\) 2.39036e9 5.18004e9i 0.0221740 0.0480524i
\(574\) 0 0
\(575\) 8.24235e10i 0.754015i
\(576\) 0 0
\(577\) −1.01555e11 −0.916218 −0.458109 0.888896i \(-0.651473\pi\)
−0.458109 + 0.888896i \(0.651473\pi\)
\(578\) 0 0
\(579\) −1.81122e11 + 1.27904e11i −1.61160 + 1.13807i
\(580\) 0 0
\(581\) 1.14807e11 6.62840e10i 1.00755 0.581707i
\(582\) 0 0
\(583\) 5.09485e9 8.82453e9i 0.0441018 0.0763866i
\(584\) 0 0
\(585\) 5.49677e10 + 1.95109e10i 0.469336 + 0.166592i
\(586\) 0 0
\(587\) 3.25669e10 + 1.88025e10i 0.274299 + 0.158367i 0.630840 0.775913i \(-0.282711\pi\)
−0.356541 + 0.934280i \(0.616044\pi\)
\(588\) 0 0
\(589\) −7.14626e10 1.23777e11i −0.593769 1.02844i
\(590\) 0 0
\(591\) 4.41449e10 4.03986e9i 0.361852 0.0331144i
\(592\) 0 0
\(593\) 1.30215e11i 1.05304i 0.850163 + 0.526519i \(0.176503\pi\)
−0.850163 + 0.526519i \(0.823497\pi\)
\(594\) 0 0
\(595\) −3.89953e11 −3.11132
\(596\) 0 0
\(597\) −1.96700e10 2.14940e11i −0.154848 1.69208i
\(598\) 0 0
\(599\) −1.13848e11 + 6.57304e10i −0.884341 + 0.510575i −0.872087 0.489350i \(-0.837234\pi\)
−0.0122537 + 0.999925i \(0.503901\pi\)
\(600\) 0 0
\(601\) 2.15092e10 3.72550e10i 0.164864 0.285553i −0.771743 0.635935i \(-0.780615\pi\)
0.936607 + 0.350382i \(0.113948\pi\)
\(602\) 0 0
\(603\) 5.27213e10 + 6.18214e10i 0.398765 + 0.467595i
\(604\) 0 0
\(605\) −1.12081e11 6.47102e10i −0.836588 0.483004i
\(606\) 0 0
\(607\) 1.29606e10 + 2.24485e10i 0.0954710 + 0.165361i 0.909805 0.415036i \(-0.136231\pi\)
−0.814334 + 0.580396i \(0.802898\pi\)
\(608\) 0 0
\(609\) −9.55972e10 1.35373e11i −0.694986 0.984156i
\(610\) 0 0
\(611\) 3.61866e10i 0.259646i
\(612\) 0 0
\(613\) 1.28485e11 0.909933 0.454967 0.890508i \(-0.349651\pi\)
0.454967 + 0.890508i \(0.349651\pi\)
\(614\) 0 0
\(615\) −1.41194e11 6.51549e10i −0.986999 0.455456i
\(616\) 0 0
\(617\) −1.02289e11 + 5.90563e10i −0.705808 + 0.407498i −0.809507 0.587110i \(-0.800265\pi\)
0.103699 + 0.994609i \(0.466932\pi\)
\(618\) 0 0
\(619\) 6.40218e10 1.10889e11i 0.436079 0.755312i −0.561304 0.827610i \(-0.689700\pi\)
0.997383 + 0.0722982i \(0.0230333\pi\)
\(620\) 0 0
\(621\) −4.04089e10 3.94521e10i −0.271713 0.265280i
\(622\) 0 0
\(623\) 7.48177e10 + 4.31960e10i 0.496652 + 0.286742i
\(624\) 0 0
\(625\) −7.30176e10 1.26470e11i −0.478528 0.828835i
\(626\) 0 0
\(627\) 4.07962e10 8.84077e10i 0.263967 0.572032i
\(628\) 0 0
\(629\) 1.05499e11i 0.673980i
\(630\) 0 0
\(631\) 2.40613e11 1.51775 0.758877 0.651233i \(-0.225748\pi\)
0.758877 + 0.651233i \(0.225748\pi\)
\(632\) 0 0
\(633\) 1.24277e11 8.77610e10i 0.774059 0.546621i
\(634\) 0 0
\(635\) 7.65738e10 4.42099e10i 0.470961 0.271910i
\(636\) 0 0
\(637\) −4.58740e10 + 7.94561e10i −0.278618 + 0.482580i
\(638\) 0 0
\(639\) −2.01947e10 1.09413e11i −0.121125 0.656244i
\(640\) 0 0
\(641\) 1.87111e11 + 1.08029e11i 1.10833 + 0.639893i 0.938396 0.345563i \(-0.112312\pi\)
0.169932 + 0.985456i \(0.445645\pi\)
\(642\) 0 0
\(643\) 1.85669e10 + 3.21588e10i 0.108616 + 0.188129i 0.915210 0.402977i \(-0.132025\pi\)
−0.806594 + 0.591106i \(0.798691\pi\)
\(644\) 0 0
\(645\) −9.21153e10 + 8.42981e9i −0.532222 + 0.0487056i
\(646\) 0 0
\(647\) 5.88598e10i 0.335894i −0.985796 0.167947i \(-0.946286\pi\)
0.985796 0.167947i \(-0.0537137\pi\)
\(648\) 0 0
\(649\) −9.76719e10 −0.550543
\(650\) 0 0
\(651\) −3.50892e10 3.83431e11i −0.195366 2.13483i
\(652\) 0 0
\(653\) −1.48938e11 + 8.59893e10i −0.819129 + 0.472925i −0.850116 0.526595i \(-0.823468\pi\)
0.0309867 + 0.999520i \(0.490135\pi\)
\(654\) 0 0
\(655\) −2.04384e11 + 3.54003e11i −1.11040 + 1.92328i
\(656\) 0 0
\(657\) 1.56614e11 2.89067e10i 0.840559 0.155145i
\(658\) 0 0
\(659\) −2.34850e11 1.35591e11i −1.24523 0.718934i −0.275075 0.961423i \(-0.588703\pi\)
−0.970154 + 0.242489i \(0.922036\pi\)
\(660\) 0 0
\(661\) 1.21597e11 + 2.10613e11i 0.636968 + 1.10326i 0.986095 + 0.166185i \(0.0531451\pi\)
−0.349126 + 0.937076i \(0.613522\pi\)
\(662\) 0 0
\(663\) 3.37749e10 + 4.78279e10i 0.174799 + 0.247530i
\(664\) 0 0
\(665\) 5.49082e11i 2.80770i
\(666\) 0 0
\(667\) −5.28721e10 −0.267130
\(668\) 0 0
\(669\) 2.13363e11 + 9.84574e10i 1.06516 + 0.491523i
\(670\) 0 0
\(671\) 7.00118e10 4.04213e10i 0.345367 0.199398i
\(672\) 0 0
\(673\) 1.44609e10 2.50471e10i 0.0704914 0.122095i −0.828625 0.559804i \(-0.810877\pi\)
0.899117 + 0.437709i \(0.144210\pi\)
\(674\) 0 0
\(675\) 3.99406e11 + 1.01909e11i 1.92398 + 0.490904i
\(676\) 0 0
\(677\) 1.58076e11 + 9.12654e10i 0.752509 + 0.434462i 0.826600 0.562790i \(-0.190272\pi\)
−0.0740905 + 0.997252i \(0.523605\pi\)
\(678\) 0 0
\(679\) 1.83671e11 + 3.18127e11i 0.864095 + 1.49666i
\(680\) 0 0
\(681\) −1.41459e11 + 3.06549e11i −0.657721 + 1.42532i
\(682\) 0 0
\(683\) 3.71514e11i 1.70723i 0.520903 + 0.853616i \(0.325595\pi\)
−0.520903 + 0.853616i \(0.674405\pi\)
\(684\) 0 0
\(685\) 1.04359e11 0.473989
\(686\) 0 0
\(687\) 2.38219e11 1.68225e11i 1.06942 0.755201i
\(688\) 0 0
\(689\) 7.47209e9 4.31401e9i 0.0331562 0.0191428i
\(690\) 0 0
\(691\) 9.88238e10 1.71168e11i 0.433460 0.750775i −0.563708 0.825974i \(-0.690626\pi\)
0.997169 + 0.0751987i \(0.0239591\pi\)
\(692\) 0 0
\(693\) 1.99581e11 1.70203e11i 0.865339 0.737962i
\(694\) 0 0
\(695\) 3.98846e11 + 2.30274e11i 1.70949 + 0.986973i
\(696\) 0 0
\(697\) −7.80492e10 1.35185e11i −0.330702 0.572793i
\(698\) 0 0
\(699\) 2.30990e11 2.11388e10i 0.967575 0.0885464i
\(700\) 0 0
\(701\) 6.70096e10i 0.277501i −0.990327 0.138751i \(-0.955691\pi\)
0.990327 0.138751i \(-0.0443087\pi\)
\(702\) 0 0
\(703\) −1.48551e11 −0.608209
\(704\) 0 0
\(705\) −3.50426e10 3.82922e11i −0.141854 1.55008i
\(706\) 0 0
\(707\) −1.26832e11 + 7.32264e10i −0.507634 + 0.293083i
\(708\) 0 0
\(709\) 5.70291e10 9.87774e10i 0.225690 0.390906i −0.730836 0.682553i \(-0.760870\pi\)
0.956526 + 0.291647i \(0.0942031\pi\)
\(710\) 0 0
\(711\) 2.80483e10 7.90198e10i 0.109756 0.309213i
\(712\) 0 0
\(713\) −1.06382e11 6.14196e10i −0.411632 0.237656i
\(714\) 0 0
\(715\) 4.32147e10 + 7.48501e10i 0.165351 + 0.286397i
\(716\) 0 0
\(717\) 6.55522e10 + 9.28271e10i 0.248034 + 0.351235i
\(718\) 0 0
\(719\) 2.31072e11i 0.864633i −0.901722 0.432317i \(-0.857696\pi\)
0.901722 0.432317i \(-0.142304\pi\)
\(720\) 0 0
\(721\) 3.58007e10 0.132480
\(722\) 0 0
\(723\) −3.26266e11 1.50557e11i −1.19404 0.550995i
\(724\) 0 0
\(725\) 3.34208e11 1.92955e11i 1.20966 0.698400i
\(726\) 0 0
\(727\) −1.70637e11 + 2.95551e11i −0.610850 + 1.05802i 0.380248 + 0.924885i \(0.375839\pi\)
−0.991097 + 0.133138i \(0.957495\pi\)
\(728\) 0 0
\(729\) −2.41138e11 + 1.47034e11i −0.853799 + 0.520603i
\(730\) 0 0
\(731\) −8.04145e10 4.64274e10i −0.281621 0.162594i
\(732\) 0 0
\(733\) 2.07203e11 + 3.58887e11i 0.717763 + 1.24320i 0.961884 + 0.273457i \(0.0881670\pi\)
−0.244122 + 0.969745i \(0.578500\pi\)
\(734\) 0 0
\(735\) −4.08489e11 + 8.85220e11i −1.39969 + 3.03320i
\(736\) 0 0
\(737\) 1.20394e11i 0.408071i
\(738\) 0 0
\(739\) −2.71838e11 −0.911449 −0.455725 0.890121i \(-0.650620\pi\)
−0.455725 + 0.890121i \(0.650620\pi\)
\(740\) 0 0
\(741\) 6.73451e10 4.75574e10i 0.223374 0.157741i
\(742\) 0 0
\(743\) 2.96676e11 1.71286e11i 0.973479 0.562039i 0.0731842 0.997318i \(-0.476684\pi\)
0.900295 + 0.435280i \(0.143351\pi\)
\(744\) 0 0
\(745\) 2.32837e11 4.03286e11i 0.755835 1.30914i
\(746\) 0 0
\(747\) −1.99328e11 7.07521e10i −0.640157 0.227225i
\(748\) 0 0
\(749\) −8.34547e11 4.81826e11i −2.65170 1.53096i
\(750\) 0 0
\(751\) 5.25839e10 + 9.10780e10i 0.165308 + 0.286321i 0.936765 0.349960i \(-0.113805\pi\)
−0.771457 + 0.636282i \(0.780472\pi\)
\(752\) 0 0
\(753\) 1.95272e11 1.78700e10i 0.607378 0.0555834i
\(754\) 0 0
\(755\) 9.07750e11i 2.79369i
\(756\) 0 0
\(757\) −4.23531e11 −1.28974 −0.644869 0.764293i \(-0.723088\pi\)
−0.644869 + 0.764293i \(0.723088\pi\)
\(758\) 0 0
\(759\) −7.62628e9 8.33349e10i −0.0229798 0.251108i
\(760\) 0 0
\(761\) 4.62418e11 2.66977e11i 1.37878 0.796041i 0.386770 0.922176i \(-0.373591\pi\)
0.992013 + 0.126135i \(0.0402574\pi\)
\(762\) 0 0
\(763\) 5.47931e11 9.49044e11i 1.61669 2.80019i
\(764\) 0 0
\(765\) 4.03718e11 + 4.73403e11i 1.17878 + 1.38224i
\(766\) 0 0
\(767\) −7.16228e10 4.13514e10i −0.206952 0.119484i
\(768\) 0 0
\(769\) −5.66789e10 9.81707e10i −0.162075 0.280722i 0.773538 0.633750i \(-0.218485\pi\)
−0.935613 + 0.353028i \(0.885152\pi\)
\(770\) 0 0
\(771\) 1.12715e11 + 1.59613e11i 0.318980 + 0.451701i
\(772\) 0 0
\(773\) 2.83942e11i 0.795265i −0.917545 0.397632i \(-0.869832\pi\)
0.917545 0.397632i \(-0.130168\pi\)
\(774\) 0 0
\(775\) 8.96595e11 2.48536
\(776\) 0 0
\(777\) −3.63365e11 1.67677e11i −0.996918 0.460033i
\(778\) 0 0
\(779\) −1.90350e11 + 1.09899e11i −0.516897 + 0.298430i
\(780\) 0 0
\(781\) 8.24328e10 1.42778e11i 0.221562 0.383757i
\(782\) 0 0
\(783\) −6.53712e10 + 2.56207e11i −0.173916 + 0.681621i
\(784\) 0 0
\(785\) 3.94524e11 + 2.27779e11i 1.03895 + 0.599839i
\(786\) 0 0
\(787\) −3.25568e11 5.63900e11i −0.848678 1.46995i −0.882389 0.470521i \(-0.844066\pi\)
0.0337110 0.999432i \(-0.489267\pi\)
\(788\) 0 0
\(789\) −2.21430e11 + 4.79851e11i −0.571384 + 1.23822i
\(790\) 0 0
\(791\) 1.17550e12i 3.00273i
\(792\) 0 0
\(793\) 6.84528e10 0.173100
\(794\) 0 0
\(795\) 7.48913e10 5.28863e10i 0.187483 0.132396i
\(796\) 0 0
\(797\) 4.16469e11 2.40448e11i 1.03216 0.595921i 0.114561 0.993416i \(-0.463454\pi\)
0.917604 + 0.397496i \(0.130121\pi\)
\(798\) 0 0
\(799\) 1.92998e11 3.34283e11i 0.473550 0.820213i
\(800\) 0 0
\(801\) −2.50188e10 1.35549e11i −0.0607765 0.329281i
\(802\) 0 0
\(803\) 2.04372e11 + 1.17994e11i 0.491541 + 0.283791i
\(804\) 0 0
\(805\) 2.35958e11 + 4.08692e11i 0.561890 + 0.973223i
\(806\) 0 0
\(807\) −5.35705e11 + 4.90243e10i −1.26308 + 0.115589i
\(808\) 0 0
\(809\) 1.97505e11i 0.461089i 0.973062 + 0.230545i \(0.0740508\pi\)
−0.973062 + 0.230545i \(0.925949\pi\)
\(810\) 0 0
\(811\) 1.30697e11 0.302121 0.151061 0.988524i \(-0.451731\pi\)
0.151061 + 0.988524i \(0.451731\pi\)
\(812\) 0 0
\(813\) −2.00953e10 2.19588e11i −0.0459973 0.502627i
\(814\) 0 0
\(815\) 5.15152e11 2.97423e11i 1.16763 0.674131i
\(816\) 0 0
\(817\) −6.53730e10 + 1.13229e11i −0.146727 + 0.254139i
\(818\) 0 0
\(819\) 2.18411e11 4.03129e10i 0.485445 0.0896001i
\(820\) 0 0
\(821\) 2.25465e10 + 1.30172e10i 0.0496256 + 0.0286514i 0.524608 0.851344i \(-0.324212\pi\)
−0.474982 + 0.879996i \(0.657545\pi\)
\(822\) 0 0
\(823\) −1.02310e11 1.77206e11i −0.223007 0.386260i 0.732712 0.680539i \(-0.238254\pi\)
−0.955720 + 0.294278i \(0.904921\pi\)
\(824\) 0 0
\(825\) 3.52334e11 + 4.98933e11i 0.760570 + 1.07703i
\(826\) 0 0
\(827\) 2.31574e11i 0.495072i 0.968879 + 0.247536i \(0.0796208\pi\)
−0.968879 + 0.247536i \(0.920379\pi\)
\(828\) 0 0
\(829\) 7.98205e11 1.69004 0.845019 0.534736i \(-0.179589\pi\)
0.845019 + 0.534736i \(0.179589\pi\)
\(830\) 0 0
\(831\) 7.36861e11 + 3.40029e11i 1.54519 + 0.713036i
\(832\) 0 0
\(833\) −8.47545e11 + 4.89331e11i −1.76029 + 1.01630i
\(834\) 0 0
\(835\) −3.27681e11 + 5.67559e11i −0.674070 + 1.16752i
\(836\) 0 0
\(837\) −4.29156e11 + 4.39563e11i −0.874407 + 0.895612i
\(838\) 0 0
\(839\) −5.56790e11 3.21463e11i −1.12368 0.648758i −0.181343 0.983420i \(-0.558045\pi\)
−0.942338 + 0.334662i \(0.891378\pi\)
\(840\) 0 0
\(841\) −1.26349e11 2.18842e11i −0.252573 0.437469i
\(842\) 0 0
\(843\) −2.67669e11 + 5.80053e11i −0.530014 + 1.14857i
\(844\) 0 0
\(845\) 8.07752e11i 1.58435i
\(846\) 0 0
\(847\) −4.92808e11 −0.957511
\(848\) 0 0
\(849\) −6.44258e10 + 4.54959e10i −0.124002 + 0.0875672i
\(850\) 0 0
\(851\) −1.10569e11 + 6.38370e10i −0.210821 + 0.121718i
\(852\) 0 0
\(853\) 9.75384e10 1.68942e11i 0.184238 0.319110i −0.759081 0.650996i \(-0.774352\pi\)
0.943320 + 0.331886i \(0.107685\pi\)
\(854\) 0 0
\(855\) 6.66584e11 5.68464e11i 1.24736 1.06375i
\(856\) 0 0
\(857\) −3.84904e10 2.22224e10i −0.0713557 0.0411972i 0.463898 0.885889i \(-0.346451\pi\)
−0.535253 + 0.844692i \(0.679784\pi\)
\(858\) 0 0
\(859\) 1.25294e11 + 2.17015e11i 0.230122 + 0.398582i 0.957844 0.287290i \(-0.0927543\pi\)
−0.727722 + 0.685872i \(0.759421\pi\)
\(860\) 0 0
\(861\) −5.89659e11 + 5.39619e10i −1.07297 + 0.0981916i
\(862\) 0 0
\(863\) 3.91558e11i 0.705915i −0.935639 0.352958i \(-0.885176\pi\)
0.935639 0.352958i \(-0.114824\pi\)
\(864\) 0 0
\(865\) −1.03079e12 −1.84122
\(866\) 0 0
\(867\) 5.42428e9 + 5.92729e10i 0.00959988 + 0.104901i
\(868\) 0 0
\(869\) 1.07602e11 6.21242e10i 0.188687 0.108939i
\(870\) 0 0
\(871\) −5.09714e10 + 8.82851e10i −0.0885633 + 0.153396i
\(872\) 0 0
\(873\) 1.96052e11 5.52333e11i 0.337531 0.950920i
\(874\) 0 0
\(875\) −1.48070e12 8.54884e11i −2.52601 1.45839i
\(876\) 0 0
\(877\) 3.99055e10 + 6.91184e10i 0.0674582 + 0.116841i 0.897782 0.440441i \(-0.145178\pi\)
−0.830324 + 0.557282i \(0.811844\pi\)
\(878\) 0 0
\(879\) 2.47869e11 + 3.51002e11i 0.415209 + 0.587968i
\(880\) 0 0
\(881\) 5.84453e11i 0.970166i 0.874468 + 0.485083i \(0.161211\pi\)
−0.874468 + 0.485083i \(0.838789\pi\)
\(882\) 0 0
\(883\) −7.52384e10 −0.123765 −0.0618823 0.998083i \(-0.519710\pi\)
−0.0618823 + 0.998083i \(0.519710\pi\)
\(884\) 0 0
\(885\) −7.97949e11 3.68218e11i −1.30077 0.600249i
\(886\) 0 0
\(887\) −6.05896e11 + 3.49814e11i −0.978822 + 0.565123i −0.901914 0.431915i \(-0.857838\pi\)
−0.0769076 + 0.997038i \(0.524505\pi\)
\(888\) 0 0
\(889\) 1.68343e11 2.91578e11i 0.269518 0.466819i
\(890\) 0 0
\(891\) −4.13252e11 6.60802e10i −0.655698 0.104848i
\(892\) 0 0
\(893\) −4.70694e11 2.71755e11i −0.740172 0.427338i
\(894\) 0 0
\(895\) −5.09739e11 8.82894e11i −0.794430 1.37599i
\(896\) 0 0
\(897\) 2.96892e10 6.43382e10i 0.0458594 0.0993800i
\(898\) 0 0
\(899\) 5.75137e11i 0.880507i
\(900\) 0 0
\(901\) 9.20338e10 0.139652
\(902\) 0 0
\(903\) −2.87715e11 + 2.03177e11i −0.432725 + 0.305579i
\(904\) 0 0
\(905\) −8.12012e11 + 4.68815e11i −1.21051 + 0.698888i
\(906\) 0 0
\(907\) 5.79947e10 1.00450e11i 0.0856958 0.148429i −0.819992 0.572375i \(-0.806022\pi\)
0.905687 + 0.423946i \(0.139355\pi\)
\(908\) 0 0
\(909\) 2.20205e11 + 7.81624e10i 0.322532 + 0.114483i
\(910\) 0 0
\(911\) −9.81176e11 5.66482e11i −1.42454 0.822456i −0.427854 0.903848i \(-0.640730\pi\)
−0.996682 + 0.0813913i \(0.974064\pi\)
\(912\) 0 0
\(913\) −1.56709e11 2.71428e11i −0.225533 0.390635i
\(914\) 0 0
\(915\) 7.24360e11 6.62889e10i 1.03340 0.0945706i
\(916\) 0 0
\(917\) 1.55651e12i 2.20127i
\(918\) 0 0
\(919\) 3.06256e11 0.429361 0.214680 0.976684i \(-0.431129\pi\)
0.214680 + 0.976684i \(0.431129\pi\)
\(920\) 0 0
\(921\) 9.90936e10 + 1.08283e12i 0.137723 + 1.50495i
\(922\) 0 0
\(923\) 1.20896e11 6.97992e10i 0.166573 0.0961709i
\(924\) 0 0
\(925\) 4.65942e11 8.07035e11i 0.636451 1.10237i
\(926\) 0 0
\(927\) −3.70644e10 4.34619e10i −0.0501923 0.0588559i
\(928\) 0 0
\(929\) −8.75115e11 5.05248e11i −1.17490 0.678331i −0.220074 0.975483i \(-0.570630\pi\)
−0.954830 + 0.297152i \(0.903963\pi\)
\(930\) 0 0
\(931\) 6.89012e11 + 1.19340e12i 0.917124 + 1.58851i
\(932\) 0 0
\(933\) 1.06983e11 + 1.51496e11i 0.141185 + 0.199929i
\(934\) 0 0
\(935\) 9.21929e11i 1.20629i
\(936\) 0 0
\(937\) −3.80033e11 −0.493018 −0.246509 0.969141i \(-0.579283\pi\)
−0.246509 + 0.969141i \(0.579283\pi\)
\(938\) 0 0
\(939\) −1.31526e12 6.06933e11i −1.69180 0.780689i
\(940\) 0 0
\(941\) 4.20722e11 2.42904e11i 0.536583 0.309796i −0.207110 0.978318i \(-0.566406\pi\)
0.743693 + 0.668521i \(0.233072\pi\)
\(942\) 0 0
\(943\) −9.44541e10 + 1.63599e11i −0.119447 + 0.206888i
\(944\) 0 0
\(945\) 2.27217e12 6.38094e11i 2.84914 0.800124i
\(946\) 0 0
\(947\) −4.64773e9 2.68337e9i −0.00577885 0.00333642i 0.497108 0.867689i \(-0.334395\pi\)
−0.502887 + 0.864352i \(0.667729\pi\)
\(948\) 0 0
\(949\) 9.99106e10 + 1.73050e11i 0.123182 + 0.213357i
\(950\) 0 0
\(951\) 2.26279e11 4.90359e11i 0.276644 0.599504i
\(952\) 0 0
\(953\) 2.87948e11i 0.349094i −0.984649 0.174547i \(-0.944154\pi\)
0.984649 0.174547i \(-0.0558462\pi\)
\(954\) 0 0
\(955\) 7.60616e10 0.0914433
\(956\) 0 0
\(957\) −3.20050e11 + 2.26011e11i −0.381566 + 0.269453i
\(958\) 0 0
\(959\) 3.44141e11 1.98690e11i 0.406876 0.234910i
\(960\) 0 0
\(961\) −2.41670e11 + 4.18585e11i −0.283354 + 0.490784i
\(962\) 0 0
\(963\) 2.79069e11 + 1.51197e12i 0.324494 + 1.75808i
\(964\) 0 0
\(965\) −2.56017e12 1.47812e12i −2.95230 1.70451i
\(966\) 0 0
\(967\) 4.51417e11 + 7.81877e11i 0.516264 + 0.894195i 0.999822 + 0.0188827i \(0.00601091\pi\)
−0.483558 + 0.875312i \(0.660656\pi\)
\(968\) 0 0
\(969\) 8.75761e11 8.01441e10i 0.993323 0.0909027i
\(970\) 0 0
\(971\) 8.08040e11i 0.908983i 0.890751 + 0.454492i \(0.150179\pi\)
−0.890751 + 0.454492i \(0.849821\pi\)
\(972\) 0 0
\(973\) 1.75368e12 1.95658
\(974\) 0 0
\(975\) 4.71328e10 + 5.15035e11i 0.0521561 + 0.569926i
\(976\) 0 0
\(977\) 1.39658e12 8.06317e11i 1.53281 0.884968i 0.533579 0.845750i \(-0.320847\pi\)
0.999231 0.0392176i \(-0.0124866\pi\)
\(978\) 0 0
\(979\) 1.02124e11 1.76884e11i 0.111173 0.192557i
\(980\) 0 0
\(981\) −1.71941e12 + 3.17357e11i −1.85653 + 0.342666i
\(982\) 0 0
\(983\) −1.24469e12 7.18625e11i −1.33306 0.769641i −0.347290 0.937758i \(-0.612898\pi\)
−0.985767 + 0.168117i \(0.946231\pi\)
\(984\) 0 0
\(985\) 2.95511e11 + 5.11840e11i 0.313927 + 0.543737i
\(986\) 0 0
\(987\) −8.44606e11 1.19603e12i −0.889991 1.26030i
\(988\) 0 0
\(989\) 1.12372e11i 0.117455i
\(990\) 0 0
\(991\) 1.11953e12 1.16075 0.580377 0.814348i \(-0.302905\pi\)
0.580377 + 0.814348i \(0.302905\pi\)
\(992\) 0 0
\(993\) −1.15365e12 5.32356e11i −1.18652 0.547527i
\(994\) 0 0
\(995\) 2.49213e12 1.43883e12i 2.54261 1.46797i
\(996\) 0 0
\(997\) −4.45668e11 + 7.71920e11i −0.451057 + 0.781253i −0.998452 0.0556212i \(-0.982286\pi\)
0.547395 + 0.836874i \(0.315619\pi\)
\(998\) 0 0
\(999\) 1.72632e11 + 6.14721e11i 0.173324 + 0.617186i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 144.9.q.b.65.5 16
3.2 odd 2 432.9.q.c.305.1 16
4.3 odd 2 18.9.d.a.11.6 yes 16
9.4 even 3 432.9.q.c.17.1 16
9.5 odd 6 inner 144.9.q.b.113.5 16
12.11 even 2 54.9.d.a.35.1 16
36.7 odd 6 162.9.b.c.161.8 16
36.11 even 6 162.9.b.c.161.9 16
36.23 even 6 18.9.d.a.5.6 16
36.31 odd 6 54.9.d.a.17.1 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
18.9.d.a.5.6 16 36.23 even 6
18.9.d.a.11.6 yes 16 4.3 odd 2
54.9.d.a.17.1 16 36.31 odd 6
54.9.d.a.35.1 16 12.11 even 2
144.9.q.b.65.5 16 1.1 even 1 trivial
144.9.q.b.113.5 16 9.5 odd 6 inner
162.9.b.c.161.8 16 36.7 odd 6
162.9.b.c.161.9 16 36.11 even 6
432.9.q.c.17.1 16 9.4 even 3
432.9.q.c.305.1 16 3.2 odd 2