Properties

Label 432.9.q.c.305.1
Level $432$
Weight $9$
Character 432.305
Analytic conductor $175.988$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [432,9,Mod(17,432)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(432, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 5]))
 
N = Newforms(chi, 9, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("432.17");
 
S:= CuspForms(chi, 9);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 432 = 2^{4} \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 9 \)
Character orbit: \([\chi]\) \(=\) 432.q (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(175.987559546\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 4 x^{15} - 150208 x^{14} - 1927740 x^{13} + 8702363206 x^{12} + 239206241152 x^{11} + \cdots + 81\!\cdots\!61 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{32}\cdot 3^{40} \)
Twist minimal: no (minimal twist has level 18)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 305.1
Root \(220.333 - 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 432.305
Dual form 432.9.q.c.17.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-935.250 + 539.967i) q^{5} +(2056.09 - 3561.25i) q^{7} +(8419.53 + 4861.02i) q^{11} +(-4116.02 - 7129.16i) q^{13} +87809.9i q^{17} -123643. q^{19} +(92029.4 - 53133.2i) q^{23} +(387816. - 671717. i) q^{25} +(-430885. - 248772. i) q^{29} +(577977. + 1.00109e6i) q^{31} +4.44088e6i q^{35} +1.20145e6 q^{37} +(-1.53952e6 + 888843. i) q^{41} +(528726. - 915780. i) q^{43} +(-3.80689e6 - 2.19791e6i) q^{47} +(-5.57261e6 - 9.65205e6i) q^{49} -1.04810e6i q^{53} -1.04991e7 q^{55} +(-8.70048e6 + 5.02323e6i) q^{59} +(-4.15770e6 + 7.20135e6i) q^{61} +(7.69902e6 + 4.44503e6i) q^{65} +(-6.19183e6 - 1.07246e7i) q^{67} -1.69579e7i q^{71} -2.42736e7 q^{73} +(3.46226e7 - 1.99894e7i) q^{77} +(-6.39004e6 + 1.10679e7i) q^{79} +(-2.79188e7 - 1.61189e7i) q^{83} +(-4.74144e7 - 8.21242e7i) q^{85} -2.10088e7i q^{89} -3.38516e7 q^{91} +(1.15637e8 - 6.67629e7i) q^{95} +(-4.46651e7 + 7.73622e7i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 882 q^{5} + 1846 q^{7} + 45756 q^{11} - 3370 q^{13} - 362180 q^{19} + 1311138 q^{23} + 963394 q^{25} + 2851290 q^{29} - 542438 q^{31} + 3343328 q^{37} - 9218592 q^{41} - 339512 q^{43} - 34980606 q^{47}+ \cdots - 89415484 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/432\mathbb{Z}\right)^\times\).

\(n\) \(271\) \(325\) \(353\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −935.250 + 539.967i −1.49640 + 0.863947i −0.999991 0.00414227i \(-0.998681\pi\)
−0.496408 + 0.868089i \(0.665348\pi\)
\(6\) 0 0
\(7\) 2056.09 3561.25i 0.856347 1.48324i −0.0190419 0.999819i \(-0.506062\pi\)
0.875389 0.483419i \(-0.160605\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 8419.53 + 4861.02i 0.575065 + 0.332014i 0.759170 0.650893i \(-0.225605\pi\)
−0.184105 + 0.982907i \(0.558939\pi\)
\(12\) 0 0
\(13\) −4116.02 7129.16i −0.144113 0.249612i 0.784928 0.619586i \(-0.212700\pi\)
−0.929042 + 0.369975i \(0.879366\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 87809.9i 1.05135i 0.850685 + 0.525676i \(0.176187\pi\)
−0.850685 + 0.525676i \(0.823813\pi\)
\(18\) 0 0
\(19\) −123643. −0.948754 −0.474377 0.880322i \(-0.657327\pi\)
−0.474377 + 0.880322i \(0.657327\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 92029.4 53133.2i 0.328863 0.189869i −0.326473 0.945206i \(-0.605860\pi\)
0.655336 + 0.755337i \(0.272527\pi\)
\(24\) 0 0
\(25\) 387816. 671717.i 0.992808 1.71959i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −430885. 248772.i −0.609213 0.351729i 0.163444 0.986553i \(-0.447740\pi\)
−0.772657 + 0.634823i \(0.781073\pi\)
\(30\) 0 0
\(31\) 577977. + 1.00109e6i 0.625841 + 1.08399i 0.988378 + 0.152019i \(0.0485775\pi\)
−0.362536 + 0.931970i \(0.618089\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 4.44088e6i 2.95935i
\(36\) 0 0
\(37\) 1.20145e6 0.641061 0.320531 0.947238i \(-0.396139\pi\)
0.320531 + 0.947238i \(0.396139\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −1.53952e6 + 888843.i −0.544816 + 0.314550i −0.747029 0.664792i \(-0.768520\pi\)
0.202212 + 0.979342i \(0.435187\pi\)
\(42\) 0 0
\(43\) 528726. 915780.i 0.154652 0.267866i −0.778280 0.627917i \(-0.783908\pi\)
0.932932 + 0.360052i \(0.117241\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −3.80689e6 2.19791e6i −0.780151 0.450420i 0.0563327 0.998412i \(-0.482059\pi\)
−0.836484 + 0.547992i \(0.815393\pi\)
\(48\) 0 0
\(49\) −5.57261e6 9.65205e6i −0.966662 1.67431i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 1.04810e6i 0.132831i −0.997792 0.0664157i \(-0.978844\pi\)
0.997792 0.0664157i \(-0.0211563\pi\)
\(54\) 0 0
\(55\) −1.04991e7 −1.14737
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −8.70048e6 + 5.02323e6i −0.718018 + 0.414548i −0.814023 0.580833i \(-0.802727\pi\)
0.0960047 + 0.995381i \(0.469394\pi\)
\(60\) 0 0
\(61\) −4.15770e6 + 7.20135e6i −0.300285 + 0.520109i −0.976200 0.216870i \(-0.930415\pi\)
0.675915 + 0.736979i \(0.263749\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 7.69902e6 + 4.44503e6i 0.431302 + 0.249013i
\(66\) 0 0
\(67\) −6.19183e6 1.07246e7i −0.307270 0.532207i 0.670494 0.741915i \(-0.266082\pi\)
−0.977764 + 0.209708i \(0.932749\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 1.69579e7i 0.667328i −0.942692 0.333664i \(-0.891715\pi\)
0.942692 0.333664i \(-0.108285\pi\)
\(72\) 0 0
\(73\) −2.42736e7 −0.854757 −0.427378 0.904073i \(-0.640563\pi\)
−0.427378 + 0.904073i \(0.640563\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 3.46226e7 1.99894e7i 0.984911 0.568639i
\(78\) 0 0
\(79\) −6.39004e6 + 1.10679e7i −0.164057 + 0.284155i −0.936320 0.351148i \(-0.885791\pi\)
0.772263 + 0.635303i \(0.219125\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −2.79188e7 1.61189e7i −0.588281 0.339644i 0.176136 0.984366i \(-0.443640\pi\)
−0.764418 + 0.644722i \(0.776973\pi\)
\(84\) 0 0
\(85\) −4.74144e7 8.21242e7i −0.908312 1.57324i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 2.10088e7i 0.334843i −0.985885 0.167422i \(-0.946456\pi\)
0.985885 0.167422i \(-0.0535441\pi\)
\(90\) 0 0
\(91\) −3.38516e7 −0.493644
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 1.15637e8 6.67629e7i 1.41972 0.819673i
\(96\) 0 0
\(97\) −4.46651e7 + 7.73622e7i −0.504523 + 0.873860i 0.495463 + 0.868629i \(0.334998\pi\)
−0.999986 + 0.00523116i \(0.998335\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 3.08430e7 + 1.78072e7i 0.296395 + 0.171124i 0.640822 0.767689i \(-0.278594\pi\)
−0.344427 + 0.938813i \(0.611927\pi\)
\(102\) 0 0
\(103\) 4.35300e6 + 7.53962e6i 0.0386759 + 0.0669886i 0.884715 0.466132i \(-0.154353\pi\)
−0.846040 + 0.533120i \(0.821019\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 2.34341e8i 1.78778i 0.448290 + 0.893888i \(0.352033\pi\)
−0.448290 + 0.893888i \(0.647967\pi\)
\(108\) 0 0
\(109\) 2.66492e8 1.88789 0.943947 0.330098i \(-0.107082\pi\)
0.943947 + 0.330098i \(0.107082\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 2.47560e8 1.42929e8i 1.51833 0.876610i 0.518565 0.855038i \(-0.326466\pi\)
0.999767 0.0215714i \(-0.00686693\pi\)
\(114\) 0 0
\(115\) −5.73803e7 + 9.93856e7i −0.328074 + 0.568241i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 3.12713e8 + 1.80545e8i 1.55940 + 0.900322i
\(120\) 0 0
\(121\) −5.99205e7 1.03785e8i −0.279534 0.484166i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 4.15781e8i 1.70304i
\(126\) 0 0
\(127\) 8.18752e7 0.314730 0.157365 0.987541i \(-0.449700\pi\)
0.157365 + 0.987541i \(0.449700\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 3.27800e8 1.89256e8i 1.11308 0.642634i 0.173451 0.984843i \(-0.444508\pi\)
0.939624 + 0.342208i \(0.111175\pi\)
\(132\) 0 0
\(133\) −2.54220e8 + 4.40322e8i −0.812463 + 1.40723i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −8.36881e7 4.83174e7i −0.237565 0.137158i 0.376492 0.926420i \(-0.377130\pi\)
−0.614057 + 0.789262i \(0.710463\pi\)
\(138\) 0 0
\(139\) 2.13230e8 + 3.69325e8i 0.571200 + 0.989348i 0.996443 + 0.0842686i \(0.0268554\pi\)
−0.425243 + 0.905079i \(0.639811\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 8.00322e7i 0.191391i
\(144\) 0 0
\(145\) 5.37313e8 1.21550
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −3.73436e8 + 2.15603e8i −0.757653 + 0.437431i −0.828453 0.560059i \(-0.810778\pi\)
0.0707992 + 0.997491i \(0.477445\pi\)
\(150\) 0 0
\(151\) 4.20280e8 7.27947e8i 0.808409 1.40021i −0.105556 0.994413i \(-0.533662\pi\)
0.913965 0.405793i \(-0.133004\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −1.08111e9 6.24177e8i −1.87302 1.08139i
\(156\) 0 0
\(157\) 2.10919e8 + 3.65323e8i 0.347150 + 0.601282i 0.985742 0.168264i \(-0.0538160\pi\)
−0.638592 + 0.769546i \(0.720483\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 4.36987e8i 0.650376i
\(162\) 0 0
\(163\) 5.50818e8 0.780293 0.390146 0.920753i \(-0.372424\pi\)
0.390146 + 0.920753i \(0.372424\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 5.25550e8 3.03427e8i 0.675691 0.390111i −0.122538 0.992464i \(-0.539103\pi\)
0.798230 + 0.602353i \(0.205770\pi\)
\(168\) 0 0
\(169\) 3.73982e8 6.47756e8i 0.458463 0.794081i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 8.26617e8 + 4.77248e8i 0.922826 + 0.532794i 0.884536 0.466473i \(-0.154475\pi\)
0.0382907 + 0.999267i \(0.487809\pi\)
\(174\) 0 0
\(175\) −1.59477e9 2.76222e9i −1.70038 2.94514i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 9.44019e8i 0.919536i 0.888039 + 0.459768i \(0.152067\pi\)
−0.888039 + 0.459768i \(0.847933\pi\)
\(180\) 0 0
\(181\) −8.68230e8 −0.808948 −0.404474 0.914550i \(-0.632545\pi\)
−0.404474 + 0.914550i \(0.632545\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −1.12366e9 + 6.48744e8i −0.959284 + 0.553843i
\(186\) 0 0
\(187\) −4.26845e8 + 7.39318e8i −0.349063 + 0.604595i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −6.09956e7 3.52159e7i −0.0458316 0.0264609i 0.476909 0.878953i \(-0.341757\pi\)
−0.522741 + 0.852492i \(0.675090\pi\)
\(192\) 0 0
\(193\) −1.36871e9 2.37068e9i −0.986467 1.70861i −0.635225 0.772327i \(-0.719093\pi\)
−0.351242 0.936285i \(-0.614241\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 5.47276e8i 0.363364i −0.983357 0.181682i \(-0.941846\pi\)
0.983357 0.181682i \(-0.0581541\pi\)
\(198\) 0 0
\(199\) 2.66467e9 1.69915 0.849574 0.527469i \(-0.176859\pi\)
0.849574 + 0.527469i \(0.176859\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −1.77188e9 + 1.02299e9i −1.04340 + 0.602405i
\(204\) 0 0
\(205\) 9.59891e8 1.66258e9i 0.543509 0.941385i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −1.04101e9 6.01029e8i −0.545595 0.315000i
\(210\) 0 0
\(211\) 9.39137e8 + 1.62663e9i 0.473804 + 0.820653i 0.999550 0.0299884i \(-0.00954702\pi\)
−0.525746 + 0.850642i \(0.676214\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 1.14198e9i 0.534446i
\(216\) 0 0
\(217\) 4.75349e9 2.14375
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 6.26011e8 3.61427e8i 0.262430 0.151514i
\(222\) 0 0
\(223\) −1.45052e9 + 2.51237e9i −0.586548 + 1.01593i 0.408132 + 0.912923i \(0.366180\pi\)
−0.994680 + 0.103009i \(0.967153\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 3.60966e9 + 2.08404e9i 1.35945 + 0.784877i 0.989549 0.144195i \(-0.0460594\pi\)
0.369898 + 0.929072i \(0.379393\pi\)
\(228\) 0 0
\(229\) 1.80018e9 + 3.11801e9i 0.654599 + 1.13380i 0.981994 + 0.188911i \(0.0604957\pi\)
−0.327396 + 0.944887i \(0.606171\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 2.86365e9i 0.971618i −0.874065 0.485809i \(-0.838525\pi\)
0.874065 0.485809i \(-0.161475\pi\)
\(234\) 0 0
\(235\) 4.74719e9 1.55656
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 1.21500e9 7.01479e8i 0.372378 0.214992i −0.302119 0.953270i \(-0.597694\pi\)
0.674497 + 0.738278i \(0.264361\pi\)
\(240\) 0 0
\(241\) 2.21808e9 3.84182e9i 0.657519 1.13886i −0.323737 0.946147i \(-0.604939\pi\)
0.981256 0.192709i \(-0.0617273\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 1.04236e10 + 6.01805e9i 2.89303 + 1.67029i
\(246\) 0 0
\(247\) 5.08916e8 + 8.81468e8i 0.136728 + 0.236820i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 2.42084e9i 0.609916i −0.952366 0.304958i \(-0.901357\pi\)
0.952366 0.304958i \(-0.0986425\pi\)
\(252\) 0 0
\(253\) 1.03313e9 0.252157
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 2.08915e9 1.20617e9i 0.478891 0.276488i −0.241063 0.970509i \(-0.577496\pi\)
0.719954 + 0.694022i \(0.244163\pi\)
\(258\) 0 0
\(259\) 2.47029e9 4.27867e9i 0.548971 0.950846i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 5.65030e9 + 3.26220e9i 1.18100 + 0.681849i 0.956245 0.292567i \(-0.0945096\pi\)
0.224752 + 0.974416i \(0.427843\pi\)
\(264\) 0 0
\(265\) 5.65941e8 + 9.80238e8i 0.114759 + 0.198769i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 6.64127e9i 1.26836i 0.773186 + 0.634180i \(0.218662\pi\)
−0.773186 + 0.634180i \(0.781338\pi\)
\(270\) 0 0
\(271\) 2.72229e9 0.504728 0.252364 0.967632i \(-0.418792\pi\)
0.252364 + 0.967632i \(0.418792\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 6.53045e9 3.77036e9i 1.14186 0.659252i
\(276\) 0 0
\(277\) −5.00946e9 + 8.67663e9i −0.850886 + 1.47378i 0.0295233 + 0.999564i \(0.490601\pi\)
−0.880410 + 0.474214i \(0.842732\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 6.83019e9 + 3.94341e9i 1.09549 + 0.632480i 0.935032 0.354563i \(-0.115370\pi\)
0.160456 + 0.987043i \(0.448704\pi\)
\(282\) 0 0
\(283\) −4.86855e8 8.43258e8i −0.0759021 0.131466i 0.825576 0.564291i \(-0.190850\pi\)
−0.901478 + 0.432824i \(0.857517\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 7.31016e9i 1.07746i
\(288\) 0 0
\(289\) −7.34822e8 −0.105339
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 4.59420e9 2.65246e9i 0.623361 0.359898i −0.154815 0.987943i \(-0.549478\pi\)
0.778176 + 0.628046i \(0.216145\pi\)
\(294\) 0 0
\(295\) 5.42475e9 9.39595e9i 0.716295 1.24066i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −7.57590e8 4.37395e8i −0.0947871 0.0547254i
\(300\) 0 0
\(301\) −2.17422e9 3.76585e9i −0.264872 0.458772i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 8.98008e9i 1.03772i
\(306\) 0 0
\(307\) −1.34241e10 −1.51124 −0.755618 0.655013i \(-0.772663\pi\)
−0.755618 + 0.655013i \(0.772663\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 1.98291e9 1.14483e9i 0.211964 0.122377i −0.390260 0.920705i \(-0.627615\pi\)
0.602224 + 0.798327i \(0.294282\pi\)
\(312\) 0 0
\(313\) 8.94161e9 1.54873e10i 0.931619 1.61361i 0.151065 0.988524i \(-0.451730\pi\)
0.780555 0.625088i \(-0.214937\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −5.77404e9 3.33364e9i −0.571798 0.330128i 0.186069 0.982537i \(-0.440425\pi\)
−0.757867 + 0.652409i \(0.773758\pi\)
\(318\) 0 0
\(319\) −2.41856e9 4.18908e9i −0.233558 0.404535i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 1.08570e10i 0.997474i
\(324\) 0 0
\(325\) −6.38503e9 −0.572308
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −1.56546e10 + 9.03820e9i −1.33616 + 0.771433i
\(330\) 0 0
\(331\) 7.84292e9 1.35843e10i 0.653380 1.13169i −0.328918 0.944359i \(-0.606684\pi\)
0.982297 0.187328i \(-0.0599828\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 1.15818e10 + 6.68676e9i 0.919597 + 0.530929i
\(336\) 0 0
\(337\) −1.29188e9 2.23761e9i −0.100162 0.173486i 0.811589 0.584229i \(-0.198603\pi\)
−0.911751 + 0.410743i \(0.865270\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 1.12382e10i 0.831152i
\(342\) 0 0
\(343\) −2.21253e10 −1.59850
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 1.45626e10 8.40775e9i 1.00444 0.579912i 0.0948784 0.995489i \(-0.469754\pi\)
0.909558 + 0.415577i \(0.136420\pi\)
\(348\) 0 0
\(349\) 1.22366e10 2.11945e10i 0.824822 1.42863i −0.0772336 0.997013i \(-0.524609\pi\)
0.902055 0.431620i \(-0.142058\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 9.05088e9 + 5.22553e9i 0.582897 + 0.336536i 0.762284 0.647243i \(-0.224078\pi\)
−0.179387 + 0.983779i \(0.557411\pi\)
\(354\) 0 0
\(355\) 9.15672e9 + 1.58599e10i 0.576536 + 0.998590i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 2.37497e10i 1.42982i 0.699219 + 0.714908i \(0.253531\pi\)
−0.699219 + 0.714908i \(0.746469\pi\)
\(360\) 0 0
\(361\) −1.69607e9 −0.0998656
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 2.27019e10 1.31069e10i 1.27906 0.738464i
\(366\) 0 0
\(367\) 5.17433e9 8.96220e9i 0.285226 0.494027i −0.687438 0.726243i \(-0.741265\pi\)
0.972664 + 0.232217i \(0.0745979\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −3.73256e9 2.15499e9i −0.197020 0.113750i
\(372\) 0 0
\(373\) 4.02672e9 + 6.97448e9i 0.208025 + 0.360310i 0.951092 0.308907i \(-0.0999631\pi\)
−0.743067 + 0.669217i \(0.766630\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 4.09580e9i 0.202756i
\(378\) 0 0
\(379\) 2.63218e10 1.27573 0.637864 0.770149i \(-0.279818\pi\)
0.637864 + 0.770149i \(0.279818\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −2.64941e10 + 1.52964e10i −1.23127 + 0.710876i −0.967295 0.253653i \(-0.918368\pi\)
−0.263978 + 0.964529i \(0.585035\pi\)
\(384\) 0 0
\(385\) −2.15872e10 + 3.73901e10i −0.982547 + 1.70182i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −3.76791e10 2.17540e10i −1.64552 0.950039i −0.978824 0.204704i \(-0.934377\pi\)
−0.666691 0.745334i \(-0.732290\pi\)
\(390\) 0 0
\(391\) 4.66562e9 + 8.08109e9i 0.199619 + 0.345751i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 1.38016e10i 0.566947i
\(396\) 0 0
\(397\) 4.31419e10 1.73675 0.868375 0.495908i \(-0.165165\pi\)
0.868375 + 0.495908i \(0.165165\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 1.57455e10 9.09069e9i 0.608948 0.351576i −0.163606 0.986526i \(-0.552312\pi\)
0.772554 + 0.634950i \(0.218979\pi\)
\(402\) 0 0
\(403\) 4.75794e9 8.24099e9i 0.180384 0.312434i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 1.01157e10 + 5.84028e9i 0.368652 + 0.212841i
\(408\) 0 0
\(409\) 3.23724e9 + 5.60707e9i 0.115686 + 0.200374i 0.918054 0.396456i \(-0.129760\pi\)
−0.802368 + 0.596830i \(0.796427\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 4.13128e10i 1.41999i
\(414\) 0 0
\(415\) 3.48148e10 1.17374
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −3.28096e10 + 1.89427e10i −1.06450 + 0.614589i −0.926673 0.375868i \(-0.877345\pi\)
−0.137826 + 0.990456i \(0.544011\pi\)
\(420\) 0 0
\(421\) 2.38781e10 4.13581e10i 0.760102 1.31654i −0.182696 0.983170i \(-0.558482\pi\)
0.942798 0.333366i \(-0.108184\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 5.89834e10 + 3.40541e10i 1.80790 + 1.04379i
\(426\) 0 0
\(427\) 1.70972e10 + 2.96133e10i 0.514297 + 0.890789i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 2.73395e10i 0.792285i −0.918189 0.396143i \(-0.870349\pi\)
0.918189 0.396143i \(-0.129651\pi\)
\(432\) 0 0
\(433\) −6.96958e9 −0.198269 −0.0991345 0.995074i \(-0.531607\pi\)
−0.0991345 + 0.995074i \(0.531607\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −1.13788e10 + 6.56953e9i −0.312010 + 0.180139i
\(438\) 0 0
\(439\) −4.26214e9 + 7.38223e9i −0.114754 + 0.198760i −0.917682 0.397317i \(-0.869941\pi\)
0.802927 + 0.596077i \(0.203275\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −1.77214e10 1.02315e10i −0.460134 0.265658i 0.251967 0.967736i \(-0.418923\pi\)
−0.712101 + 0.702077i \(0.752256\pi\)
\(444\) 0 0
\(445\) 1.13441e10 + 1.96485e10i 0.289287 + 0.501060i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 1.52992e10i 0.376430i −0.982128 0.188215i \(-0.939730\pi\)
0.982128 0.188215i \(-0.0602702\pi\)
\(450\) 0 0
\(451\) −1.72827e10 −0.417740
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 3.16597e10 1.82788e10i 0.738689 0.426483i
\(456\) 0 0
\(457\) −1.20106e10 + 2.08029e10i −0.275359 + 0.476935i −0.970226 0.242203i \(-0.922130\pi\)
0.694867 + 0.719138i \(0.255463\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −4.96796e10 2.86825e10i −1.09995 0.635058i −0.163744 0.986503i \(-0.552357\pi\)
−0.936209 + 0.351445i \(0.885690\pi\)
\(462\) 0 0
\(463\) −3.03202e10 5.25162e10i −0.659795 1.14280i −0.980669 0.195676i \(-0.937310\pi\)
0.320874 0.947122i \(-0.396023\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 1.01091e10i 0.212543i 0.994337 + 0.106271i \(0.0338912\pi\)
−0.994337 + 0.106271i \(0.966109\pi\)
\(468\) 0 0
\(469\) −5.09238e10 −1.05252
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 8.90324e9 5.14029e9i 0.177870 0.102693i
\(474\) 0 0
\(475\) −4.79505e10 + 8.30528e10i −0.941931 + 1.63147i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 1.87971e10 + 1.08525e10i 0.357067 + 0.206153i 0.667793 0.744347i \(-0.267239\pi\)
−0.310727 + 0.950499i \(0.600572\pi\)
\(480\) 0 0
\(481\) −4.94520e9 8.56534e9i −0.0923855 0.160016i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 9.64707e10i 1.74353i
\(486\) 0 0
\(487\) 5.82792e9 0.103609 0.0518045 0.998657i \(-0.483503\pi\)
0.0518045 + 0.998657i \(0.483503\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −2.15718e10 + 1.24545e10i −0.371159 + 0.214288i −0.673964 0.738764i \(-0.735410\pi\)
0.302806 + 0.953052i \(0.402077\pi\)
\(492\) 0 0
\(493\) 2.18446e10 3.78360e10i 0.369791 0.640497i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −6.03915e10 3.48670e10i −0.989806 0.571465i
\(498\) 0 0
\(499\) 8.19755e9 + 1.41986e10i 0.132215 + 0.229004i 0.924530 0.381109i \(-0.124458\pi\)
−0.792315 + 0.610112i \(0.791124\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 4.61285e10i 0.720606i −0.932835 0.360303i \(-0.882673\pi\)
0.932835 0.360303i \(-0.117327\pi\)
\(504\) 0 0
\(505\) −3.84612e10 −0.591367
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 6.69443e9 3.86503e9i 0.0997339 0.0575814i −0.449303 0.893379i \(-0.648328\pi\)
0.549037 + 0.835798i \(0.314994\pi\)
\(510\) 0 0
\(511\) −4.99087e10 + 8.64444e10i −0.731969 + 1.26781i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −8.14229e9 4.70095e9i −0.115749 0.0668278i
\(516\) 0 0
\(517\) −2.13681e10 3.70107e10i −0.299092 0.518042i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 3.97902e10i 0.540039i −0.962855 0.270019i \(-0.912970\pi\)
0.962855 0.270019i \(-0.0870301\pi\)
\(522\) 0 0
\(523\) 3.49978e10 0.467772 0.233886 0.972264i \(-0.424856\pi\)
0.233886 + 0.972264i \(0.424856\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −8.79053e10 + 5.07521e10i −1.13965 + 0.657979i
\(528\) 0 0
\(529\) −3.35092e10 + 5.80397e10i −0.427899 + 0.741143i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 1.26734e10 + 7.31699e9i 0.157031 + 0.0906617i
\(534\) 0 0
\(535\) −1.26536e11 2.19167e11i −1.54454 2.67523i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 1.08354e11i 1.28378i
\(540\) 0 0
\(541\) 2.34001e10 0.273168 0.136584 0.990629i \(-0.456388\pi\)
0.136584 + 0.990629i \(0.456388\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −2.49236e11 + 1.43897e11i −2.82504 + 1.63104i
\(546\) 0 0
\(547\) 1.16091e10 2.01075e10i 0.129673 0.224600i −0.793877 0.608078i \(-0.791941\pi\)
0.923550 + 0.383478i \(0.125274\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 5.32757e10 + 3.07588e10i 0.577994 + 0.333705i
\(552\) 0 0
\(553\) 2.62770e10 + 4.55131e10i 0.280980 + 0.486671i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 3.65617e10i 0.379844i 0.981799 + 0.189922i \(0.0608236\pi\)
−0.981799 + 0.189922i \(0.939176\pi\)
\(558\) 0 0
\(559\) −8.70499e9 −0.0891499
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −1.15433e11 + 6.66450e10i −1.14893 + 0.663337i −0.948627 0.316397i \(-0.897527\pi\)
−0.200306 + 0.979733i \(0.564194\pi\)
\(564\) 0 0
\(565\) −1.54354e11 + 2.67348e11i −1.51469 + 2.62352i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 1.42643e11 + 8.23549e10i 1.36082 + 0.785670i 0.989733 0.142928i \(-0.0456517\pi\)
0.371087 + 0.928598i \(0.378985\pi\)
\(570\) 0 0
\(571\) 6.84597e10 + 1.18576e11i 0.644007 + 1.11545i 0.984530 + 0.175216i \(0.0560625\pi\)
−0.340523 + 0.940236i \(0.610604\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 8.24235e10i 0.754015i
\(576\) 0 0
\(577\) −1.01555e11 −0.916218 −0.458109 0.888896i \(-0.651473\pi\)
−0.458109 + 0.888896i \(0.651473\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −1.14807e11 + 6.62840e10i −1.00755 + 0.581707i
\(582\) 0 0
\(583\) 5.09485e9 8.82453e9i 0.0441018 0.0763866i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −3.25669e10 1.88025e10i −0.274299 0.158367i 0.356541 0.934280i \(-0.383956\pi\)
−0.630840 + 0.775913i \(0.717289\pi\)
\(588\) 0 0
\(589\) −7.14626e10 1.23777e11i −0.593769 1.02844i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 1.30215e11i 1.05304i −0.850163 0.526519i \(-0.823497\pi\)
0.850163 0.526519i \(-0.176503\pi\)
\(594\) 0 0
\(595\) −3.89953e11 −3.11132
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 1.13848e11 6.57304e10i 0.884341 0.510575i 0.0122537 0.999925i \(-0.496099\pi\)
0.872087 + 0.489350i \(0.162766\pi\)
\(600\) 0 0
\(601\) 2.15092e10 3.72550e10i 0.164864 0.285553i −0.771743 0.635935i \(-0.780615\pi\)
0.936607 + 0.350382i \(0.113948\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 1.12081e11 + 6.47102e10i 0.836588 + 0.483004i
\(606\) 0 0
\(607\) 1.29606e10 + 2.24485e10i 0.0954710 + 0.165361i 0.909805 0.415036i \(-0.136231\pi\)
−0.814334 + 0.580396i \(0.802898\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 3.61866e10i 0.259646i
\(612\) 0 0
\(613\) 1.28485e11 0.909933 0.454967 0.890508i \(-0.349651\pi\)
0.454967 + 0.890508i \(0.349651\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 1.02289e11 5.90563e10i 0.705808 0.407498i −0.103699 0.994609i \(-0.533068\pi\)
0.809507 + 0.587110i \(0.199735\pi\)
\(618\) 0 0
\(619\) 6.40218e10 1.10889e11i 0.436079 0.755312i −0.561304 0.827610i \(-0.689700\pi\)
0.997383 + 0.0722982i \(0.0230333\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −7.48177e10 4.31960e10i −0.496652 0.286742i
\(624\) 0 0
\(625\) −7.30176e10 1.26470e11i −0.478528 0.828835i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 1.05499e11i 0.673980i
\(630\) 0 0
\(631\) 2.40613e11 1.51775 0.758877 0.651233i \(-0.225748\pi\)
0.758877 + 0.651233i \(0.225748\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −7.65738e10 + 4.42099e10i −0.470961 + 0.271910i
\(636\) 0 0
\(637\) −4.58740e10 + 7.94561e10i −0.278618 + 0.482580i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −1.87111e11 1.08029e11i −1.10833 0.639893i −0.169932 0.985456i \(-0.554355\pi\)
−0.938396 + 0.345563i \(0.887688\pi\)
\(642\) 0 0
\(643\) 1.85669e10 + 3.21588e10i 0.108616 + 0.188129i 0.915210 0.402977i \(-0.132025\pi\)
−0.806594 + 0.591106i \(0.798691\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 5.88598e10i 0.335894i 0.985796 + 0.167947i \(0.0537137\pi\)
−0.985796 + 0.167947i \(0.946286\pi\)
\(648\) 0 0
\(649\) −9.76719e10 −0.550543
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 1.48938e11 8.59893e10i 0.819129 0.472925i −0.0309867 0.999520i \(-0.509865\pi\)
0.850116 + 0.526595i \(0.176532\pi\)
\(654\) 0 0
\(655\) −2.04384e11 + 3.54003e11i −1.11040 + 1.92328i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 2.34850e11 + 1.35591e11i 1.24523 + 0.718934i 0.970154 0.242489i \(-0.0779639\pi\)
0.275075 + 0.961423i \(0.411297\pi\)
\(660\) 0 0
\(661\) 1.21597e11 + 2.10613e11i 0.636968 + 1.10326i 0.986095 + 0.166185i \(0.0531451\pi\)
−0.349126 + 0.937076i \(0.613522\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 5.49082e11i 2.80770i
\(666\) 0 0
\(667\) −5.28721e10 −0.267130
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −7.00118e10 + 4.04213e10i −0.345367 + 0.199398i
\(672\) 0 0
\(673\) 1.44609e10 2.50471e10i 0.0704914 0.122095i −0.828625 0.559804i \(-0.810877\pi\)
0.899117 + 0.437709i \(0.144210\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −1.58076e11 9.12654e10i −0.752509 0.434462i 0.0740905 0.997252i \(-0.476395\pi\)
−0.826600 + 0.562790i \(0.809728\pi\)
\(678\) 0 0
\(679\) 1.83671e11 + 3.18127e11i 0.864095 + 1.49666i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 3.71514e11i 1.70723i −0.520903 0.853616i \(-0.674405\pi\)
0.520903 0.853616i \(-0.325595\pi\)
\(684\) 0 0
\(685\) 1.04359e11 0.473989
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −7.47209e9 + 4.31401e9i −0.0331562 + 0.0191428i
\(690\) 0 0
\(691\) 9.88238e10 1.71168e11i 0.433460 0.750775i −0.563708 0.825974i \(-0.690626\pi\)
0.997169 + 0.0751987i \(0.0239591\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −3.98846e11 2.30274e11i −1.70949 0.986973i
\(696\) 0 0
\(697\) −7.80492e10 1.35185e11i −0.330702 0.572793i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 6.70096e10i 0.277501i 0.990327 + 0.138751i \(0.0443087\pi\)
−0.990327 + 0.138751i \(0.955691\pi\)
\(702\) 0 0
\(703\) −1.48551e11 −0.608209
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 1.26832e11 7.32264e10i 0.507634 0.293083i
\(708\) 0 0
\(709\) 5.70291e10 9.87774e10i 0.225690 0.390906i −0.730836 0.682553i \(-0.760870\pi\)
0.956526 + 0.291647i \(0.0942031\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 1.06382e11 + 6.14196e10i 0.411632 + 0.237656i
\(714\) 0 0
\(715\) 4.32147e10 + 7.48501e10i 0.165351 + 0.286397i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 2.31072e11i 0.864633i 0.901722 + 0.432317i \(0.142304\pi\)
−0.901722 + 0.432317i \(0.857696\pi\)
\(720\) 0 0
\(721\) 3.58007e10 0.132480
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −3.34208e11 + 1.92955e11i −1.20966 + 0.698400i
\(726\) 0 0
\(727\) −1.70637e11 + 2.95551e11i −0.610850 + 1.05802i 0.380248 + 0.924885i \(0.375839\pi\)
−0.991097 + 0.133138i \(0.957495\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 8.04145e10 + 4.64274e10i 0.281621 + 0.162594i
\(732\) 0 0
\(733\) 2.07203e11 + 3.58887e11i 0.717763 + 1.24320i 0.961884 + 0.273457i \(0.0881670\pi\)
−0.244122 + 0.969745i \(0.578500\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 1.20394e11i 0.408071i
\(738\) 0 0
\(739\) −2.71838e11 −0.911449 −0.455725 0.890121i \(-0.650620\pi\)
−0.455725 + 0.890121i \(0.650620\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −2.96676e11 + 1.71286e11i −0.973479 + 0.562039i −0.900295 0.435280i \(-0.856649\pi\)
−0.0731842 + 0.997318i \(0.523316\pi\)
\(744\) 0 0
\(745\) 2.32837e11 4.03286e11i 0.755835 1.30914i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 8.34547e11 + 4.81826e11i 2.65170 + 1.53096i
\(750\) 0 0
\(751\) 5.25839e10 + 9.10780e10i 0.165308 + 0.286321i 0.936765 0.349960i \(-0.113805\pi\)
−0.771457 + 0.636282i \(0.780472\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 9.07750e11i 2.79369i
\(756\) 0 0
\(757\) −4.23531e11 −1.28974 −0.644869 0.764293i \(-0.723088\pi\)
−0.644869 + 0.764293i \(0.723088\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −4.62418e11 + 2.66977e11i −1.37878 + 0.796041i −0.992013 0.126135i \(-0.959743\pi\)
−0.386770 + 0.922176i \(0.626409\pi\)
\(762\) 0 0
\(763\) 5.47931e11 9.49044e11i 1.61669 2.80019i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 7.16228e10 + 4.13514e10i 0.206952 + 0.119484i
\(768\) 0 0
\(769\) −5.66789e10 9.81707e10i −0.162075 0.280722i 0.773538 0.633750i \(-0.218485\pi\)
−0.935613 + 0.353028i \(0.885152\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 2.83942e11i 0.795265i 0.917545 + 0.397632i \(0.130168\pi\)
−0.917545 + 0.397632i \(0.869832\pi\)
\(774\) 0 0
\(775\) 8.96595e11 2.48536
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 1.90350e11 1.09899e11i 0.516897 0.298430i
\(780\) 0 0
\(781\) 8.24328e10 1.42778e11i 0.221562 0.383757i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −3.94524e11 2.27779e11i −1.03895 0.599839i
\(786\) 0 0
\(787\) −3.25568e11 5.63900e11i −0.848678 1.46995i −0.882389 0.470521i \(-0.844066\pi\)
0.0337110 0.999432i \(-0.489267\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 1.17550e12i 3.00273i
\(792\) 0 0
\(793\) 6.84528e10 0.173100
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −4.16469e11 + 2.40448e11i −1.03216 + 0.595921i −0.917604 0.397496i \(-0.869879\pi\)
−0.114561 + 0.993416i \(0.536546\pi\)
\(798\) 0 0
\(799\) 1.92998e11 3.34283e11i 0.473550 0.820213i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −2.04372e11 1.17994e11i −0.491541 0.283791i
\(804\) 0 0
\(805\) 2.35958e11 + 4.08692e11i 0.561890 + 0.973223i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 1.97505e11i 0.461089i −0.973062 0.230545i \(-0.925949\pi\)
0.973062 0.230545i \(-0.0740508\pi\)
\(810\) 0 0
\(811\) 1.30697e11 0.302121 0.151061 0.988524i \(-0.451731\pi\)
0.151061 + 0.988524i \(0.451731\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −5.15152e11 + 2.97423e11i −1.16763 + 0.674131i
\(816\) 0 0
\(817\) −6.53730e10 + 1.13229e11i −0.146727 + 0.254139i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −2.25465e10 1.30172e10i −0.0496256 0.0286514i 0.474982 0.879996i \(-0.342455\pi\)
−0.524608 + 0.851344i \(0.675788\pi\)
\(822\) 0 0
\(823\) −1.02310e11 1.77206e11i −0.223007 0.386260i 0.732712 0.680539i \(-0.238254\pi\)
−0.955720 + 0.294278i \(0.904921\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 2.31574e11i 0.495072i −0.968879 0.247536i \(-0.920379\pi\)
0.968879 0.247536i \(-0.0796208\pi\)
\(828\) 0 0
\(829\) 7.98205e11 1.69004 0.845019 0.534736i \(-0.179589\pi\)
0.845019 + 0.534736i \(0.179589\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 8.47545e11 4.89331e11i 1.76029 1.01630i
\(834\) 0 0
\(835\) −3.27681e11 + 5.67559e11i −0.674070 + 1.16752i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 5.56790e11 + 3.21463e11i 1.12368 + 0.648758i 0.942338 0.334662i \(-0.108622\pi\)
0.181343 + 0.983420i \(0.441955\pi\)
\(840\) 0 0
\(841\) −1.26349e11 2.18842e11i −0.252573 0.437469i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 8.07752e11i 1.58435i
\(846\) 0 0
\(847\) −4.92808e11 −0.957511
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 1.10569e11 6.38370e10i 0.210821 0.121718i
\(852\) 0 0
\(853\) 9.75384e10 1.68942e11i 0.184238 0.319110i −0.759081 0.650996i \(-0.774352\pi\)
0.943320 + 0.331886i \(0.107685\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 3.84904e10 + 2.22224e10i 0.0713557 + 0.0411972i 0.535253 0.844692i \(-0.320216\pi\)
−0.463898 + 0.885889i \(0.653549\pi\)
\(858\) 0 0
\(859\) 1.25294e11 + 2.17015e11i 0.230122 + 0.398582i 0.957844 0.287290i \(-0.0927543\pi\)
−0.727722 + 0.685872i \(0.759421\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 3.91558e11i 0.705915i 0.935639 + 0.352958i \(0.114824\pi\)
−0.935639 + 0.352958i \(0.885176\pi\)
\(864\) 0 0
\(865\) −1.03079e12 −1.84122
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −1.07602e11 + 6.21242e10i −0.188687 + 0.108939i
\(870\) 0 0
\(871\) −5.09714e10 + 8.82851e10i −0.0885633 + 0.153396i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 1.48070e12 + 8.54884e11i 2.52601 + 1.45839i
\(876\) 0 0
\(877\) 3.99055e10 + 6.91184e10i 0.0674582 + 0.116841i 0.897782 0.440441i \(-0.145178\pi\)
−0.830324 + 0.557282i \(0.811844\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 5.84453e11i 0.970166i −0.874468 0.485083i \(-0.838789\pi\)
0.874468 0.485083i \(-0.161211\pi\)
\(882\) 0 0
\(883\) −7.52384e10 −0.123765 −0.0618823 0.998083i \(-0.519710\pi\)
−0.0618823 + 0.998083i \(0.519710\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 6.05896e11 3.49814e11i 0.978822 0.565123i 0.0769076 0.997038i \(-0.475495\pi\)
0.901914 + 0.431915i \(0.142162\pi\)
\(888\) 0 0
\(889\) 1.68343e11 2.91578e11i 0.269518 0.466819i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 4.70694e11 + 2.71755e11i 0.740172 + 0.427338i
\(894\) 0 0
\(895\) −5.09739e11 8.82894e11i −0.794430 1.37599i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 5.75137e11i 0.880507i
\(900\) 0 0
\(901\) 9.20338e10 0.139652
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 8.12012e11 4.68815e11i 1.21051 0.698888i
\(906\) 0 0
\(907\) 5.79947e10 1.00450e11i 0.0856958 0.148429i −0.819992 0.572375i \(-0.806022\pi\)
0.905687 + 0.423946i \(0.139355\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 9.81176e11 + 5.66482e11i 1.42454 + 0.822456i 0.996682 0.0813913i \(-0.0259363\pi\)
0.427854 + 0.903848i \(0.359270\pi\)
\(912\) 0 0
\(913\) −1.56709e11 2.71428e11i −0.225533 0.390635i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 1.55651e12i 2.20127i
\(918\) 0 0
\(919\) 3.06256e11 0.429361 0.214680 0.976684i \(-0.431129\pi\)
0.214680 + 0.976684i \(0.431129\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −1.20896e11 + 6.97992e10i −0.166573 + 0.0961709i
\(924\) 0 0
\(925\) 4.65942e11 8.07035e11i 0.636451 1.10237i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 8.75115e11 + 5.05248e11i 1.17490 + 0.678331i 0.954830 0.297152i \(-0.0960369\pi\)
0.220074 + 0.975483i \(0.429370\pi\)
\(930\) 0 0
\(931\) 6.89012e11 + 1.19340e12i 0.917124 + 1.58851i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 9.21929e11i 1.20629i
\(936\) 0 0
\(937\) −3.80033e11 −0.493018 −0.246509 0.969141i \(-0.579283\pi\)
−0.246509 + 0.969141i \(0.579283\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −4.20722e11 + 2.42904e11i −0.536583 + 0.309796i −0.743693 0.668521i \(-0.766928\pi\)
0.207110 + 0.978318i \(0.433594\pi\)
\(942\) 0 0
\(943\) −9.44541e10 + 1.63599e11i −0.119447 + 0.206888i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 4.64773e9 + 2.68337e9i 0.00577885 + 0.00333642i 0.502887 0.864352i \(-0.332271\pi\)
−0.497108 + 0.867689i \(0.665605\pi\)
\(948\) 0 0
\(949\) 9.99106e10 + 1.73050e11i 0.123182 + 0.213357i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 2.87948e11i 0.349094i 0.984649 + 0.174547i \(0.0558462\pi\)
−0.984649 + 0.174547i \(0.944154\pi\)
\(954\) 0 0
\(955\) 7.60616e10 0.0914433
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −3.44141e11 + 1.98690e11i −0.406876 + 0.234910i
\(960\) 0 0
\(961\) −2.41670e11 + 4.18585e11i −0.283354 + 0.490784i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 2.56017e12 + 1.47812e12i 2.95230 + 1.70451i
\(966\) 0 0
\(967\) 4.51417e11 + 7.81877e11i 0.516264 + 0.894195i 0.999822 + 0.0188827i \(0.00601091\pi\)
−0.483558 + 0.875312i \(0.660656\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 8.08040e11i 0.908983i −0.890751 0.454492i \(-0.849821\pi\)
0.890751 0.454492i \(-0.150179\pi\)
\(972\) 0 0
\(973\) 1.75368e12 1.95658
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −1.39658e12 + 8.06317e11i −1.53281 + 0.884968i −0.533579 + 0.845750i \(0.679153\pi\)
−0.999231 + 0.0392176i \(0.987513\pi\)
\(978\) 0 0
\(979\) 1.02124e11 1.76884e11i 0.111173 0.192557i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 1.24469e12 + 7.18625e11i 1.33306 + 0.769641i 0.985767 0.168117i \(-0.0537687\pi\)
0.347290 + 0.937758i \(0.387102\pi\)
\(984\) 0 0
\(985\) 2.95511e11 + 5.11840e11i 0.313927 + 0.543737i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 1.12372e11i 0.117455i
\(990\) 0 0
\(991\) 1.11953e12 1.16075 0.580377 0.814348i \(-0.302905\pi\)
0.580377 + 0.814348i \(0.302905\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −2.49213e12 + 1.43883e12i −2.54261 + 1.46797i
\(996\) 0 0
\(997\) −4.45668e11 + 7.71920e11i −0.451057 + 0.781253i −0.998452 0.0556212i \(-0.982286\pi\)
0.547395 + 0.836874i \(0.315619\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 432.9.q.c.305.1 16
3.2 odd 2 144.9.q.b.65.5 16
4.3 odd 2 54.9.d.a.35.1 16
9.4 even 3 144.9.q.b.113.5 16
9.5 odd 6 inner 432.9.q.c.17.1 16
12.11 even 2 18.9.d.a.11.6 yes 16
36.7 odd 6 162.9.b.c.161.9 16
36.11 even 6 162.9.b.c.161.8 16
36.23 even 6 54.9.d.a.17.1 16
36.31 odd 6 18.9.d.a.5.6 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
18.9.d.a.5.6 16 36.31 odd 6
18.9.d.a.11.6 yes 16 12.11 even 2
54.9.d.a.17.1 16 36.23 even 6
54.9.d.a.35.1 16 4.3 odd 2
144.9.q.b.65.5 16 3.2 odd 2
144.9.q.b.113.5 16 9.4 even 3
162.9.b.c.161.8 16 36.11 even 6
162.9.b.c.161.9 16 36.7 odd 6
432.9.q.c.17.1 16 9.5 odd 6 inner
432.9.q.c.305.1 16 1.1 even 1 trivial