Properties

Label 54.9.d.a.17.1
Level $54$
Weight $9$
Character 54.17
Analytic conductor $21.998$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [54,9,Mod(17,54)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(54, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([5]))
 
N = Newforms(chi, 9, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("54.17");
 
S:= CuspForms(chi, 9);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 54 = 2 \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 9 \)
Character orbit: \([\chi]\) \(=\) 54.d (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(21.9984449433\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 4 x^{15} - 150208 x^{14} - 1927740 x^{13} + 8702363206 x^{12} + 239206241152 x^{11} + \cdots + 81\!\cdots\!61 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{28}\cdot 3^{36} \)
Twist minimal: no (minimal twist has level 18)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 17.1
Root \(220.333 + 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 54.17
Dual form 54.9.d.a.35.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-9.79796 + 5.65685i) q^{2} +(64.0000 - 110.851i) q^{4} +(-935.250 - 539.967i) q^{5} +(-2056.09 - 3561.25i) q^{7} +1448.15i q^{8} +12218.1 q^{10} +(-8419.53 + 4861.02i) q^{11} +(-4116.02 + 7129.16i) q^{13} +(40291.0 + 23262.0i) q^{14} +(-8192.00 - 14189.0i) q^{16} -87809.9i q^{17} +123643. q^{19} +(-119712. + 69115.7i) q^{20} +(54996.1 - 95256.1i) q^{22} +(-92029.4 - 53133.2i) q^{23} +(387816. + 671717. i) q^{25} -93134.9i q^{26} -526359. q^{28} +(-430885. + 248772. i) q^{29} +(-577977. + 1.00109e6i) q^{31} +(160530. + 92681.9i) q^{32} +(496728. + 860358. i) q^{34} +4.44088e6i q^{35} +1.20145e6 q^{37} +(-1.21145e6 + 699428. i) q^{38} +(781955. - 1.35439e6i) q^{40} +(-1.53952e6 - 888843. i) q^{41} +(-528726. - 915780. i) q^{43} +1.24442e6i q^{44} +1.20227e6 q^{46} +(3.80689e6 - 2.19791e6i) q^{47} +(-5.57261e6 + 9.65205e6i) q^{49} +(-7.59961e6 - 4.38763e6i) q^{50} +(526851. + 912532. i) q^{52} +1.04810e6i q^{53} +1.04991e7 q^{55} +(5.15724e6 - 2.97754e6i) q^{56} +(2.81453e6 - 4.87491e6i) q^{58} +(8.70048e6 + 5.02323e6i) q^{59} +(-4.15770e6 - 7.20135e6i) q^{61} -1.30781e7i q^{62} -2.09715e6 q^{64} +(7.69902e6 - 4.44503e6i) q^{65} +(6.19183e6 - 1.07246e7i) q^{67} +(-9.73384e6 - 5.61983e6i) q^{68} +(-2.51214e7 - 4.35116e7i) q^{70} -1.69579e7i q^{71} -2.42736e7 q^{73} +(-1.17718e7 + 6.79644e6i) q^{74} +(7.91313e6 - 1.37059e7i) q^{76} +(3.46226e7 + 1.99894e7i) q^{77} +(6.39004e6 + 1.10679e7i) q^{79} +1.76936e7i q^{80} +2.01122e7 q^{82} +(2.79188e7 - 1.61189e7i) q^{83} +(-4.74144e7 + 8.21242e7i) q^{85} +(1.03609e7 + 5.98185e6i) q^{86} +(-7.03950e6 - 1.21928e7i) q^{88} +2.10088e7i q^{89} +3.38516e7 q^{91} +(-1.17798e7 + 6.80105e6i) q^{92} +(-2.48665e7 + 4.30700e7i) q^{94} +(-1.15637e8 - 6.67629e7i) q^{95} +(-4.46651e7 - 7.73622e7i) q^{97} -1.26094e8i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 1024 q^{4} + 882 q^{5} - 1846 q^{7} - 45756 q^{11} - 3370 q^{13} + 94464 q^{14} - 131072 q^{16} + 362180 q^{19} + 112896 q^{20} - 61824 q^{22} - 1311138 q^{23} + 963394 q^{25} - 472576 q^{28} + 2851290 q^{29}+ \cdots - 89415484 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/54\mathbb{Z}\right)^\times\).

\(n\) \(29\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −9.79796 + 5.65685i −0.612372 + 0.353553i
\(3\) 0 0
\(4\) 64.0000 110.851i 0.250000 0.433013i
\(5\) −935.250 539.967i −1.49640 0.863947i −0.496408 0.868089i \(-0.665348\pi\)
−0.999991 + 0.00414227i \(0.998681\pi\)
\(6\) 0 0
\(7\) −2056.09 3561.25i −0.856347 1.48324i −0.875389 0.483419i \(-0.839395\pi\)
0.0190419 0.999819i \(-0.493938\pi\)
\(8\) 1448.15i 0.353553i
\(9\) 0 0
\(10\) 12218.1 1.22181
\(11\) −8419.53 + 4861.02i −0.575065 + 0.332014i −0.759170 0.650893i \(-0.774395\pi\)
0.184105 + 0.982907i \(0.441061\pi\)
\(12\) 0 0
\(13\) −4116.02 + 7129.16i −0.144113 + 0.249612i −0.929042 0.369975i \(-0.879366\pi\)
0.784928 + 0.619586i \(0.212700\pi\)
\(14\) 40291.0 + 23262.0i 1.04881 + 0.605529i
\(15\) 0 0
\(16\) −8192.00 14189.0i −0.125000 0.216506i
\(17\) 87809.9i 1.05135i −0.850685 0.525676i \(-0.823813\pi\)
0.850685 0.525676i \(-0.176187\pi\)
\(18\) 0 0
\(19\) 123643. 0.948754 0.474377 0.880322i \(-0.342673\pi\)
0.474377 + 0.880322i \(0.342673\pi\)
\(20\) −119712. + 69115.7i −0.748200 + 0.431973i
\(21\) 0 0
\(22\) 54996.1 95256.1i 0.234769 0.406632i
\(23\) −92029.4 53133.2i −0.328863 0.189869i 0.326473 0.945206i \(-0.394140\pi\)
−0.655336 + 0.755337i \(0.727473\pi\)
\(24\) 0 0
\(25\) 387816. + 671717.i 0.992808 + 1.71959i
\(26\) 93134.9i 0.203807i
\(27\) 0 0
\(28\) −526359. −0.856347
\(29\) −430885. + 248772.i −0.609213 + 0.351729i −0.772657 0.634823i \(-0.781073\pi\)
0.163444 + 0.986553i \(0.447740\pi\)
\(30\) 0 0
\(31\) −577977. + 1.00109e6i −0.625841 + 1.08399i 0.362536 + 0.931970i \(0.381911\pi\)
−0.988378 + 0.152019i \(0.951422\pi\)
\(32\) 160530. + 92681.9i 0.153093 + 0.0883883i
\(33\) 0 0
\(34\) 496728. + 860358.i 0.371709 + 0.643819i
\(35\) 4.44088e6i 2.95935i
\(36\) 0 0
\(37\) 1.20145e6 0.641061 0.320531 0.947238i \(-0.396139\pi\)
0.320531 + 0.947238i \(0.396139\pi\)
\(38\) −1.21145e6 + 699428.i −0.580991 + 0.335435i
\(39\) 0 0
\(40\) 781955. 1.35439e6i 0.305451 0.529057i
\(41\) −1.53952e6 888843.i −0.544816 0.314550i 0.202212 0.979342i \(-0.435187\pi\)
−0.747029 + 0.664792i \(0.768520\pi\)
\(42\) 0 0
\(43\) −528726. 915780.i −0.154652 0.267866i 0.778280 0.627917i \(-0.216092\pi\)
−0.932932 + 0.360052i \(0.882759\pi\)
\(44\) 1.24442e6i 0.332014i
\(45\) 0 0
\(46\) 1.20227e6 0.268516
\(47\) 3.80689e6 2.19791e6i 0.780151 0.450420i −0.0563327 0.998412i \(-0.517941\pi\)
0.836484 + 0.547992i \(0.184607\pi\)
\(48\) 0 0
\(49\) −5.57261e6 + 9.65205e6i −0.966662 + 1.67431i
\(50\) −7.59961e6 4.38763e6i −1.21594 0.702021i
\(51\) 0 0
\(52\) 526851. + 912532.i 0.0720567 + 0.124806i
\(53\) 1.04810e6i 0.132831i 0.997792 + 0.0664157i \(0.0211563\pi\)
−0.997792 + 0.0664157i \(0.978844\pi\)
\(54\) 0 0
\(55\) 1.04991e7 1.14737
\(56\) 5.15724e6 2.97754e6i 0.524404 0.302765i
\(57\) 0 0
\(58\) 2.81453e6 4.87491e6i 0.248710 0.430779i
\(59\) 8.70048e6 + 5.02323e6i 0.718018 + 0.414548i 0.814023 0.580833i \(-0.197273\pi\)
−0.0960047 + 0.995381i \(0.530606\pi\)
\(60\) 0 0
\(61\) −4.15770e6 7.20135e6i −0.300285 0.520109i 0.675915 0.736979i \(-0.263749\pi\)
−0.976200 + 0.216870i \(0.930415\pi\)
\(62\) 1.30781e7i 0.885073i
\(63\) 0 0
\(64\) −2.09715e6 −0.125000
\(65\) 7.69902e6 4.44503e6i 0.431302 0.249013i
\(66\) 0 0
\(67\) 6.19183e6 1.07246e7i 0.307270 0.532207i −0.670494 0.741915i \(-0.733918\pi\)
0.977764 + 0.209708i \(0.0672513\pi\)
\(68\) −9.73384e6 5.61983e6i −0.455248 0.262838i
\(69\) 0 0
\(70\) −2.51214e7 4.35116e7i −1.04629 1.81223i
\(71\) 1.69579e7i 0.667328i −0.942692 0.333664i \(-0.891715\pi\)
0.942692 0.333664i \(-0.108285\pi\)
\(72\) 0 0
\(73\) −2.42736e7 −0.854757 −0.427378 0.904073i \(-0.640563\pi\)
−0.427378 + 0.904073i \(0.640563\pi\)
\(74\) −1.17718e7 + 6.79644e6i −0.392568 + 0.226649i
\(75\) 0 0
\(76\) 7.91313e6 1.37059e7i 0.237189 0.410823i
\(77\) 3.46226e7 + 1.99894e7i 0.984911 + 0.568639i
\(78\) 0 0
\(79\) 6.39004e6 + 1.10679e7i 0.164057 + 0.284155i 0.936320 0.351148i \(-0.114209\pi\)
−0.772263 + 0.635303i \(0.780875\pi\)
\(80\) 1.76936e7i 0.431973i
\(81\) 0 0
\(82\) 2.01122e7 0.444841
\(83\) 2.79188e7 1.61189e7i 0.588281 0.339644i −0.176136 0.984366i \(-0.556360\pi\)
0.764418 + 0.644722i \(0.223027\pi\)
\(84\) 0 0
\(85\) −4.74144e7 + 8.21242e7i −0.908312 + 1.57324i
\(86\) 1.03609e7 + 5.98185e6i 0.189410 + 0.109356i
\(87\) 0 0
\(88\) −7.03950e6 1.21928e7i −0.117385 0.203316i
\(89\) 2.10088e7i 0.334843i 0.985885 + 0.167422i \(0.0535441\pi\)
−0.985885 + 0.167422i \(0.946456\pi\)
\(90\) 0 0
\(91\) 3.38516e7 0.493644
\(92\) −1.17798e7 + 6.80105e6i −0.164432 + 0.0949346i
\(93\) 0 0
\(94\) −2.48665e7 + 4.30700e7i −0.318495 + 0.551650i
\(95\) −1.15637e8 6.67629e7i −1.41972 0.819673i
\(96\) 0 0
\(97\) −4.46651e7 7.73622e7i −0.504523 0.873860i −0.999986 0.00523116i \(-0.998335\pi\)
0.495463 0.868629i \(-0.334998\pi\)
\(98\) 1.26094e8i 1.36707i
\(99\) 0 0
\(100\) 9.92808e7 0.992808
\(101\) 3.08430e7 1.78072e7i 0.296395 0.171124i −0.344427 0.938813i \(-0.611927\pi\)
0.640822 + 0.767689i \(0.278594\pi\)
\(102\) 0 0
\(103\) −4.35300e6 + 7.53962e6i −0.0386759 + 0.0669886i −0.884715 0.466132i \(-0.845647\pi\)
0.846040 + 0.533120i \(0.178981\pi\)
\(104\) −1.03241e7 5.96064e6i −0.0882510 0.0509518i
\(105\) 0 0
\(106\) −5.92897e6 1.02693e7i −0.0469630 0.0813422i
\(107\) 2.34341e8i 1.78778i 0.448290 + 0.893888i \(0.352033\pi\)
−0.448290 + 0.893888i \(0.647967\pi\)
\(108\) 0 0
\(109\) 2.66492e8 1.88789 0.943947 0.330098i \(-0.107082\pi\)
0.943947 + 0.330098i \(0.107082\pi\)
\(110\) −1.02870e8 + 5.93921e7i −0.702617 + 0.405656i
\(111\) 0 0
\(112\) −3.36870e7 + 5.83476e7i −0.214087 + 0.370809i
\(113\) 2.47560e8 + 1.42929e8i 1.51833 + 0.876610i 0.999767 + 0.0215714i \(0.00686693\pi\)
0.518565 + 0.855038i \(0.326466\pi\)
\(114\) 0 0
\(115\) 5.73803e7 + 9.93856e7i 0.328074 + 0.568241i
\(116\) 6.36855e7i 0.351729i
\(117\) 0 0
\(118\) −1.13663e8 −0.586259
\(119\) −3.12713e8 + 1.80545e8i −1.55940 + 0.900322i
\(120\) 0 0
\(121\) −5.99205e7 + 1.03785e8i −0.279534 + 0.484166i
\(122\) 8.14740e7 + 4.70390e7i 0.367773 + 0.212334i
\(123\) 0 0
\(124\) 7.39811e7 + 1.28139e8i 0.312921 + 0.541994i
\(125\) 4.15781e8i 1.70304i
\(126\) 0 0
\(127\) −8.18752e7 −0.314730 −0.157365 0.987541i \(-0.550300\pi\)
−0.157365 + 0.987541i \(0.550300\pi\)
\(128\) 2.05478e7 1.18633e7i 0.0765466 0.0441942i
\(129\) 0 0
\(130\) −5.02898e7 + 8.71044e7i −0.176078 + 0.304977i
\(131\) −3.27800e8 1.89256e8i −1.11308 0.642634i −0.173451 0.984843i \(-0.555492\pi\)
−0.939624 + 0.342208i \(0.888825\pi\)
\(132\) 0 0
\(133\) −2.54220e8 4.40322e8i −0.812463 1.40723i
\(134\) 1.40105e8i 0.434545i
\(135\) 0 0
\(136\) 1.27162e8 0.371709
\(137\) −8.36881e7 + 4.83174e7i −0.237565 + 0.137158i −0.614057 0.789262i \(-0.710463\pi\)
0.376492 + 0.926420i \(0.377130\pi\)
\(138\) 0 0
\(139\) −2.13230e8 + 3.69325e8i −0.571200 + 0.989348i 0.425243 + 0.905079i \(0.360189\pi\)
−0.996443 + 0.0842686i \(0.973145\pi\)
\(140\) 4.92277e8 + 2.84216e8i 1.28144 + 0.739839i
\(141\) 0 0
\(142\) 9.59286e7 + 1.66153e8i 0.235936 + 0.408653i
\(143\) 8.00322e7i 0.191391i
\(144\) 0 0
\(145\) 5.37313e8 1.21550
\(146\) 2.37832e8 1.37312e8i 0.523429 0.302202i
\(147\) 0 0
\(148\) 7.68929e7 1.33182e8i 0.160265 0.277588i
\(149\) −3.73436e8 2.15603e8i −0.757653 0.437431i 0.0707992 0.997491i \(-0.477445\pi\)
−0.828453 + 0.560059i \(0.810778\pi\)
\(150\) 0 0
\(151\) −4.20280e8 7.27947e8i −0.808409 1.40021i −0.913965 0.405793i \(-0.866996\pi\)
0.105556 0.994413i \(-0.466338\pi\)
\(152\) 1.79054e8i 0.335435i
\(153\) 0 0
\(154\) −4.52308e8 −0.804176
\(155\) 1.08111e9 6.24177e8i 1.87302 1.08139i
\(156\) 0 0
\(157\) 2.10919e8 3.65323e8i 0.347150 0.601282i −0.638592 0.769546i \(-0.720483\pi\)
0.985742 + 0.168264i \(0.0538160\pi\)
\(158\) −1.25219e8 7.22951e7i −0.200928 0.116006i
\(159\) 0 0
\(160\) −1.00090e8 1.73361e8i −0.152726 0.264529i
\(161\) 4.36987e8i 0.650376i
\(162\) 0 0
\(163\) −5.50818e8 −0.780293 −0.390146 0.920753i \(-0.627576\pi\)
−0.390146 + 0.920753i \(0.627576\pi\)
\(164\) −1.97059e8 + 1.13772e8i −0.272408 + 0.157275i
\(165\) 0 0
\(166\) −1.82365e8 + 3.15866e8i −0.240165 + 0.415978i
\(167\) −5.25550e8 3.03427e8i −0.675691 0.390111i 0.122538 0.992464i \(-0.460897\pi\)
−0.798230 + 0.602353i \(0.794230\pi\)
\(168\) 0 0
\(169\) 3.73982e8 + 6.47756e8i 0.458463 + 0.794081i
\(170\) 1.07287e9i 1.28455i
\(171\) 0 0
\(172\) −1.35354e8 −0.154652
\(173\) 8.26617e8 4.77248e8i 0.922826 0.532794i 0.0382907 0.999267i \(-0.487809\pi\)
0.884536 + 0.466473i \(0.154475\pi\)
\(174\) 0 0
\(175\) 1.59477e9 2.76222e9i 1.70038 2.94514i
\(176\) 1.37946e8 + 7.96429e7i 0.143766 + 0.0830035i
\(177\) 0 0
\(178\) −1.18844e8 2.05844e8i −0.118385 0.205049i
\(179\) 9.44019e8i 0.919536i 0.888039 + 0.459768i \(0.152067\pi\)
−0.888039 + 0.459768i \(0.847933\pi\)
\(180\) 0 0
\(181\) −8.68230e8 −0.808948 −0.404474 0.914550i \(-0.632545\pi\)
−0.404474 + 0.914550i \(0.632545\pi\)
\(182\) −3.31677e8 + 1.91494e8i −0.302294 + 0.174530i
\(183\) 0 0
\(184\) 7.69451e7 1.33273e8i 0.0671289 0.116271i
\(185\) −1.12366e9 6.48744e8i −0.959284 0.553843i
\(186\) 0 0
\(187\) 4.26845e8 + 7.39318e8i 0.349063 + 0.604595i
\(188\) 5.62665e8i 0.450420i
\(189\) 0 0
\(190\) 1.51067e9 1.15919
\(191\) 6.09956e7 3.52159e7i 0.0458316 0.0264609i −0.476909 0.878953i \(-0.658243\pi\)
0.522741 + 0.852492i \(0.324910\pi\)
\(192\) 0 0
\(193\) −1.36871e9 + 2.37068e9i −0.986467 + 1.70861i −0.351242 + 0.936285i \(0.614241\pi\)
−0.635225 + 0.772327i \(0.719093\pi\)
\(194\) 8.75254e8 + 5.05328e8i 0.617913 + 0.356752i
\(195\) 0 0
\(196\) 7.13294e8 + 1.23546e9i 0.483331 + 0.837154i
\(197\) 5.47276e8i 0.363364i 0.983357 + 0.181682i \(0.0581541\pi\)
−0.983357 + 0.181682i \(0.941846\pi\)
\(198\) 0 0
\(199\) −2.66467e9 −1.69915 −0.849574 0.527469i \(-0.823141\pi\)
−0.849574 + 0.527469i \(0.823141\pi\)
\(200\) −9.72749e8 + 5.61617e8i −0.607968 + 0.351011i
\(201\) 0 0
\(202\) −2.01465e8 + 3.48948e8i −0.121003 + 0.209583i
\(203\) 1.77188e9 + 1.02299e9i 1.04340 + 0.602405i
\(204\) 0 0
\(205\) 9.59891e8 + 1.66258e9i 0.543509 + 0.941385i
\(206\) 9.84972e7i 0.0546959i
\(207\) 0 0
\(208\) 1.34874e8 0.0720567
\(209\) −1.04101e9 + 6.01029e8i −0.545595 + 0.315000i
\(210\) 0 0
\(211\) −9.39137e8 + 1.62663e9i −0.473804 + 0.820653i −0.999550 0.0299884i \(-0.990453\pi\)
0.525746 + 0.850642i \(0.323786\pi\)
\(212\) 1.16184e8 + 6.70786e7i 0.0575176 + 0.0332078i
\(213\) 0 0
\(214\) −1.32563e9 2.29606e9i −0.632074 1.09478i
\(215\) 1.14198e9i 0.534446i
\(216\) 0 0
\(217\) 4.75349e9 2.14375
\(218\) −2.61107e9 + 1.50750e9i −1.15609 + 0.667471i
\(219\) 0 0
\(220\) 6.71945e8 1.16384e9i 0.286842 0.496826i
\(221\) 6.26011e8 + 3.61427e8i 0.262430 + 0.151514i
\(222\) 0 0
\(223\) 1.45052e9 + 2.51237e9i 0.586548 + 1.01593i 0.994680 + 0.103009i \(0.0328470\pi\)
−0.408132 + 0.912923i \(0.633820\pi\)
\(224\) 7.62249e8i 0.302765i
\(225\) 0 0
\(226\) −3.23411e9 −1.23971
\(227\) −3.60966e9 + 2.08404e9i −1.35945 + 0.784877i −0.989549 0.144195i \(-0.953941\pi\)
−0.369898 + 0.929072i \(0.620607\pi\)
\(228\) 0 0
\(229\) 1.80018e9 3.11801e9i 0.654599 1.13380i −0.327396 0.944887i \(-0.606171\pi\)
0.981994 0.188911i \(-0.0604957\pi\)
\(230\) −1.12442e9 6.49184e8i −0.401807 0.231983i
\(231\) 0 0
\(232\) −3.60260e8 6.23988e8i −0.124355 0.215389i
\(233\) 2.86365e9i 0.971618i 0.874065 + 0.485809i \(0.161475\pi\)
−0.874065 + 0.485809i \(0.838525\pi\)
\(234\) 0 0
\(235\) −4.74719e9 −1.55656
\(236\) 1.11366e9 6.42973e8i 0.359009 0.207274i
\(237\) 0 0
\(238\) 2.04263e9 3.53795e9i 0.636624 1.10266i
\(239\) −1.21500e9 7.01479e8i −0.372378 0.214992i 0.302119 0.953270i \(-0.402306\pi\)
−0.674497 + 0.738278i \(0.735639\pi\)
\(240\) 0 0
\(241\) 2.21808e9 + 3.84182e9i 0.657519 + 1.13886i 0.981256 + 0.192709i \(0.0617273\pi\)
−0.323737 + 0.946147i \(0.604939\pi\)
\(242\) 1.35585e9i 0.395320i
\(243\) 0 0
\(244\) −1.06437e9 −0.300285
\(245\) 1.04236e10 6.01805e9i 2.89303 1.67029i
\(246\) 0 0
\(247\) −5.08916e8 + 8.81468e8i −0.136728 + 0.236820i
\(248\) −1.44973e9 8.37001e8i −0.383248 0.221268i
\(249\) 0 0
\(250\) 2.35201e9 + 4.07381e9i 0.602116 + 1.04290i
\(251\) 2.42084e9i 0.609916i −0.952366 0.304958i \(-0.901357\pi\)
0.952366 0.304958i \(-0.0986425\pi\)
\(252\) 0 0
\(253\) 1.03313e9 0.252157
\(254\) 8.02210e8 4.63156e8i 0.192732 0.111274i
\(255\) 0 0
\(256\) −1.34218e8 + 2.32472e8i −0.0312500 + 0.0541266i
\(257\) 2.08915e9 + 1.20617e9i 0.478891 + 0.276488i 0.719954 0.694022i \(-0.244163\pi\)
−0.241063 + 0.970509i \(0.577496\pi\)
\(258\) 0 0
\(259\) −2.47029e9 4.27867e9i −0.548971 0.950846i
\(260\) 1.13793e9i 0.249013i
\(261\) 0 0
\(262\) 4.28237e9 0.908822
\(263\) −5.65030e9 + 3.26220e9i −1.18100 + 0.681849i −0.956245 0.292567i \(-0.905490\pi\)
−0.224752 + 0.974416i \(0.572157\pi\)
\(264\) 0 0
\(265\) 5.65941e8 9.80238e8i 0.114759 0.198769i
\(266\) 4.98168e9 + 2.87617e9i 0.995060 + 0.574498i
\(267\) 0 0
\(268\) −7.92554e8 1.37274e9i −0.153635 0.266103i
\(269\) 6.64127e9i 1.26836i −0.773186 0.634180i \(-0.781338\pi\)
0.773186 0.634180i \(-0.218662\pi\)
\(270\) 0 0
\(271\) −2.72229e9 −0.504728 −0.252364 0.967632i \(-0.581208\pi\)
−0.252364 + 0.967632i \(0.581208\pi\)
\(272\) −1.24593e9 + 7.19339e8i −0.227624 + 0.131419i
\(273\) 0 0
\(274\) 5.46649e8 9.46823e8i 0.0969853 0.167983i
\(275\) −6.53045e9 3.77036e9i −1.14186 0.659252i
\(276\) 0 0
\(277\) −5.00946e9 8.67663e9i −0.850886 1.47378i −0.880410 0.474214i \(-0.842732\pi\)
0.0295233 0.999564i \(-0.490601\pi\)
\(278\) 4.82484e9i 0.807799i
\(279\) 0 0
\(280\) −6.43108e9 −1.04629
\(281\) 6.83019e9 3.94341e9i 1.09549 0.632480i 0.160456 0.987043i \(-0.448704\pi\)
0.935032 + 0.354563i \(0.115370\pi\)
\(282\) 0 0
\(283\) 4.86855e8 8.43258e8i 0.0759021 0.131466i −0.825576 0.564291i \(-0.809150\pi\)
0.901478 + 0.432824i \(0.142483\pi\)
\(284\) −1.87981e9 1.08531e9i −0.288962 0.166832i
\(285\) 0 0
\(286\) 4.52730e8 + 7.84152e8i 0.0676668 + 0.117202i
\(287\) 7.31016e9i 1.07746i
\(288\) 0 0
\(289\) −7.34822e8 −0.105339
\(290\) −5.26458e9 + 3.03950e9i −0.744340 + 0.429745i
\(291\) 0 0
\(292\) −1.55351e9 + 2.69076e9i −0.213689 + 0.370121i
\(293\) 4.59420e9 + 2.65246e9i 0.623361 + 0.359898i 0.778176 0.628046i \(-0.216145\pi\)
−0.154815 + 0.987943i \(0.549478\pi\)
\(294\) 0 0
\(295\) −5.42475e9 9.39595e9i −0.716295 1.24066i
\(296\) 1.73989e9i 0.226649i
\(297\) 0 0
\(298\) 4.87854e9 0.618621
\(299\) 7.57590e8 4.37395e8i 0.0947871 0.0547254i
\(300\) 0 0
\(301\) −2.17422e9 + 3.76585e9i −0.264872 + 0.458772i
\(302\) 8.23578e9 + 4.75493e9i 0.990095 + 0.571632i
\(303\) 0 0
\(304\) −1.01288e9 1.75436e9i −0.118594 0.205411i
\(305\) 8.98008e9i 1.03772i
\(306\) 0 0
\(307\) 1.34241e10 1.51124 0.755618 0.655013i \(-0.227337\pi\)
0.755618 + 0.655013i \(0.227337\pi\)
\(308\) 4.43169e9 2.55864e9i 0.492455 0.284319i
\(309\) 0 0
\(310\) −7.06176e9 + 1.22313e10i −0.764656 + 1.32442i
\(311\) −1.98291e9 1.14483e9i −0.211964 0.122377i 0.390260 0.920705i \(-0.372385\pi\)
−0.602224 + 0.798327i \(0.705718\pi\)
\(312\) 0 0
\(313\) 8.94161e9 + 1.54873e10i 0.931619 + 1.61361i 0.780555 + 0.625088i \(0.214937\pi\)
0.151065 + 0.988524i \(0.451730\pi\)
\(314\) 4.77256e9i 0.490945i
\(315\) 0 0
\(316\) 1.63585e9 0.164057
\(317\) −5.77404e9 + 3.33364e9i −0.571798 + 0.330128i −0.757867 0.652409i \(-0.773758\pi\)
0.186069 + 0.982537i \(0.440425\pi\)
\(318\) 0 0
\(319\) 2.41856e9 4.18908e9i 0.233558 0.404535i
\(320\) 1.96136e9 + 1.13239e9i 0.187050 + 0.107993i
\(321\) 0 0
\(322\) −2.47197e9 4.28158e9i −0.229943 0.398272i
\(323\) 1.08570e10i 0.997474i
\(324\) 0 0
\(325\) −6.38503e9 −0.572308
\(326\) 5.39689e9 3.11590e9i 0.477830 0.275875i
\(327\) 0 0
\(328\) 1.28718e9 2.22946e9i 0.111210 0.192622i
\(329\) −1.56546e10 9.03820e9i −1.33616 0.771433i
\(330\) 0 0
\(331\) −7.84292e9 1.35843e10i −0.653380 1.13169i −0.982297 0.187328i \(-0.940017\pi\)
0.328918 0.944359i \(-0.393316\pi\)
\(332\) 4.12645e9i 0.339644i
\(333\) 0 0
\(334\) 6.86576e9 0.551700
\(335\) −1.15818e10 + 6.68676e9i −0.919597 + 0.530929i
\(336\) 0 0
\(337\) −1.29188e9 + 2.23761e9i −0.100162 + 0.173486i −0.911751 0.410743i \(-0.865270\pi\)
0.811589 + 0.584229i \(0.198603\pi\)
\(338\) −7.32852e9 4.23112e9i −0.561500 0.324182i
\(339\) 0 0
\(340\) 6.06905e9 + 1.05119e10i 0.454156 + 0.786621i
\(341\) 1.12382e10i 0.831152i
\(342\) 0 0
\(343\) 2.21253e10 1.59850
\(344\) 1.32619e9 7.65677e8i 0.0947049 0.0546779i
\(345\) 0 0
\(346\) −5.39944e9 + 9.35211e9i −0.376742 + 0.652537i
\(347\) −1.45626e10 8.40775e9i −1.00444 0.579912i −0.0948784 0.995489i \(-0.530246\pi\)
−0.909558 + 0.415577i \(0.863580\pi\)
\(348\) 0 0
\(349\) 1.22366e10 + 2.11945e10i 0.824822 + 1.42863i 0.902055 + 0.431620i \(0.142058\pi\)
−0.0772336 + 0.997013i \(0.524609\pi\)
\(350\) 3.60855e10i 2.40470i
\(351\) 0 0
\(352\) −1.80211e9 −0.117385
\(353\) 9.05088e9 5.22553e9i 0.582897 0.336536i −0.179387 0.983779i \(-0.557411\pi\)
0.762284 + 0.647243i \(0.224078\pi\)
\(354\) 0 0
\(355\) −9.15672e9 + 1.58599e10i −0.576536 + 0.998590i
\(356\) 2.32885e9 + 1.34456e9i 0.144991 + 0.0837108i
\(357\) 0 0
\(358\) −5.34018e9 9.24946e9i −0.325105 0.563098i
\(359\) 2.37497e10i 1.42982i 0.699219 + 0.714908i \(0.253531\pi\)
−0.699219 + 0.714908i \(0.746469\pi\)
\(360\) 0 0
\(361\) −1.69607e9 −0.0998656
\(362\) 8.50688e9 4.91145e9i 0.495377 0.286006i
\(363\) 0 0
\(364\) 2.16651e9 3.75250e9i 0.123411 0.213754i
\(365\) 2.27019e10 + 1.31069e10i 1.27906 + 0.738464i
\(366\) 0 0
\(367\) −5.17433e9 8.96220e9i −0.285226 0.494027i 0.687438 0.726243i \(-0.258735\pi\)
−0.972664 + 0.232217i \(0.925402\pi\)
\(368\) 1.74107e9i 0.0949346i
\(369\) 0 0
\(370\) 1.46794e10 0.783252
\(371\) 3.73256e9 2.15499e9i 0.197020 0.113750i
\(372\) 0 0
\(373\) 4.02672e9 6.97448e9i 0.208025 0.360310i −0.743067 0.669217i \(-0.766630\pi\)
0.951092 + 0.308907i \(0.0999631\pi\)
\(374\) −8.36443e9 4.82920e9i −0.427513 0.246825i
\(375\) 0 0
\(376\) 3.18291e9 + 5.51296e9i 0.159248 + 0.275825i
\(377\) 4.09580e9i 0.202756i
\(378\) 0 0
\(379\) −2.63218e10 −1.27573 −0.637864 0.770149i \(-0.720182\pi\)
−0.637864 + 0.770149i \(0.720182\pi\)
\(380\) −1.48015e10 + 8.54565e9i −0.709858 + 0.409837i
\(381\) 0 0
\(382\) −3.98422e8 + 6.90087e8i −0.0187107 + 0.0324079i
\(383\) 2.64941e10 + 1.52964e10i 1.23127 + 0.710876i 0.967295 0.253653i \(-0.0816321\pi\)
0.263978 + 0.964529i \(0.414965\pi\)
\(384\) 0 0
\(385\) −2.15872e10 3.73901e10i −0.982547 1.70182i
\(386\) 3.09704e10i 1.39508i
\(387\) 0 0
\(388\) −1.14343e10 −0.504523
\(389\) −3.76791e10 + 2.17540e10i −1.64552 + 0.950039i −0.666691 + 0.745334i \(0.732290\pi\)
−0.978824 + 0.204704i \(0.934377\pi\)
\(390\) 0 0
\(391\) −4.66562e9 + 8.08109e9i −0.199619 + 0.345751i
\(392\) −1.39777e10 8.07001e9i −0.591957 0.341767i
\(393\) 0 0
\(394\) −3.09586e9 5.36219e9i −0.128468 0.222514i
\(395\) 1.38016e10i 0.566947i
\(396\) 0 0
\(397\) 4.31419e10 1.73675 0.868375 0.495908i \(-0.165165\pi\)
0.868375 + 0.495908i \(0.165165\pi\)
\(398\) 2.61083e10 1.50737e10i 1.04051 0.600740i
\(399\) 0 0
\(400\) 6.35397e9 1.10054e10i 0.248202 0.429899i
\(401\) 1.57455e10 + 9.09069e9i 0.608948 + 0.351576i 0.772554 0.634950i \(-0.218979\pi\)
−0.163606 + 0.986526i \(0.552312\pi\)
\(402\) 0 0
\(403\) −4.75794e9 8.24099e9i −0.180384 0.312434i
\(404\) 4.55864e9i 0.171124i
\(405\) 0 0
\(406\) −2.31477e10 −0.851930
\(407\) −1.01157e10 + 5.84028e9i −0.368652 + 0.212841i
\(408\) 0 0
\(409\) 3.23724e9 5.60707e9i 0.115686 0.200374i −0.802368 0.596830i \(-0.796427\pi\)
0.918054 + 0.396456i \(0.129760\pi\)
\(410\) −1.88099e10 1.08599e10i −0.665659 0.384319i
\(411\) 0 0
\(412\) 5.57184e8 + 9.65071e8i 0.0193379 + 0.0334943i
\(413\) 4.13128e10i 1.41999i
\(414\) 0 0
\(415\) −3.48148e10 −1.17374
\(416\) −1.32149e9 + 7.62961e8i −0.0441255 + 0.0254759i
\(417\) 0 0
\(418\) 6.79986e9 1.17777e10i 0.222738 0.385794i
\(419\) 3.28096e10 + 1.89427e10i 1.06450 + 0.614589i 0.926673 0.375868i \(-0.122655\pi\)
0.137826 + 0.990456i \(0.455989\pi\)
\(420\) 0 0
\(421\) 2.38781e10 + 4.13581e10i 0.760102 + 1.31654i 0.942798 + 0.333366i \(0.108184\pi\)
−0.182696 + 0.983170i \(0.558482\pi\)
\(422\) 2.12502e10i 0.670061i
\(423\) 0 0
\(424\) −1.51782e9 −0.0469630
\(425\) 5.89834e10 3.40541e10i 1.80790 1.04379i
\(426\) 0 0
\(427\) −1.70972e10 + 2.96133e10i −0.514297 + 0.890789i
\(428\) 2.59770e10 + 1.49978e10i 0.774130 + 0.446944i
\(429\) 0 0
\(430\) −6.46000e9 1.11890e10i −0.188955 0.327280i
\(431\) 2.73395e10i 0.792285i −0.918189 0.396143i \(-0.870349\pi\)
0.918189 0.396143i \(-0.129651\pi\)
\(432\) 0 0
\(433\) −6.96958e9 −0.198269 −0.0991345 0.995074i \(-0.531607\pi\)
−0.0991345 + 0.995074i \(0.531607\pi\)
\(434\) −4.65745e10 + 2.68898e10i −1.31277 + 0.757930i
\(435\) 0 0
\(436\) 1.70555e10 2.95409e10i 0.471973 0.817482i
\(437\) −1.13788e10 6.56953e9i −0.312010 0.180139i
\(438\) 0 0
\(439\) 4.26214e9 + 7.38223e9i 0.114754 + 0.198760i 0.917682 0.397317i \(-0.130059\pi\)
−0.802927 + 0.596077i \(0.796725\pi\)
\(440\) 1.52044e10i 0.405656i
\(441\) 0 0
\(442\) −8.17817e9 −0.214273
\(443\) 1.77214e10 1.02315e10i 0.460134 0.265658i −0.251967 0.967736i \(-0.581077\pi\)
0.712101 + 0.702077i \(0.247744\pi\)
\(444\) 0 0
\(445\) 1.13441e10 1.96485e10i 0.289287 0.501060i
\(446\) −2.84242e10 1.64107e10i −0.718372 0.414752i
\(447\) 0 0
\(448\) 4.31193e9 + 7.46849e9i 0.107043 + 0.185405i
\(449\) 1.52992e10i 0.376430i 0.982128 + 0.188215i \(0.0602702\pi\)
−0.982128 + 0.188215i \(0.939730\pi\)
\(450\) 0 0
\(451\) 1.72827e10 0.417740
\(452\) 3.16877e10 1.82949e10i 0.759166 0.438305i
\(453\) 0 0
\(454\) 2.35782e10 4.08386e10i 0.554992 0.961274i
\(455\) −3.16597e10 1.82788e10i −0.738689 0.426483i
\(456\) 0 0
\(457\) −1.20106e10 2.08029e10i −0.275359 0.476935i 0.694867 0.719138i \(-0.255463\pi\)
−0.970226 + 0.242203i \(0.922130\pi\)
\(458\) 4.07335e10i 0.925742i
\(459\) 0 0
\(460\) 1.46894e10 0.328074
\(461\) −4.96796e10 + 2.86825e10i −1.09995 + 0.635058i −0.936209 0.351445i \(-0.885690\pi\)
−0.163744 + 0.986503i \(0.552357\pi\)
\(462\) 0 0
\(463\) 3.03202e10 5.25162e10i 0.659795 1.14280i −0.320874 0.947122i \(-0.603977\pi\)
0.980669 0.195676i \(-0.0626900\pi\)
\(464\) 7.05962e9 + 4.07587e9i 0.152303 + 0.0879324i
\(465\) 0 0
\(466\) −1.61992e10 2.80579e10i −0.343519 0.594992i
\(467\) 1.01091e10i 0.212543i 0.994337 + 0.106271i \(0.0338912\pi\)
−0.994337 + 0.106271i \(0.966109\pi\)
\(468\) 0 0
\(469\) −5.09238e10 −1.05252
\(470\) 4.65128e10 2.68542e10i 0.953193 0.550326i
\(471\) 0 0
\(472\) −7.27441e9 + 1.25996e10i −0.146565 + 0.253858i
\(473\) 8.90324e9 + 5.14029e9i 0.177870 + 0.102693i
\(474\) 0 0
\(475\) 4.79505e10 + 8.30528e10i 0.941931 + 1.63147i
\(476\) 4.62195e10i 0.900322i
\(477\) 0 0
\(478\) 1.58727e10 0.304045
\(479\) −1.87971e10 + 1.08525e10i −0.357067 + 0.206153i −0.667793 0.744347i \(-0.732761\pi\)
0.310727 + 0.950499i \(0.399428\pi\)
\(480\) 0 0
\(481\) −4.94520e9 + 8.56534e9i −0.0923855 + 0.160016i
\(482\) −4.34652e10 2.50947e10i −0.805293 0.464936i
\(483\) 0 0
\(484\) 7.66982e9 + 1.32845e10i 0.139767 + 0.242083i
\(485\) 9.64707e10i 1.74353i
\(486\) 0 0
\(487\) −5.82792e9 −0.103609 −0.0518045 0.998657i \(-0.516497\pi\)
−0.0518045 + 0.998657i \(0.516497\pi\)
\(488\) 1.04287e10 6.02100e9i 0.183886 0.106167i
\(489\) 0 0
\(490\) −6.80865e10 + 1.17929e11i −1.18107 + 2.04568i
\(491\) 2.15718e10 + 1.24545e10i 0.371159 + 0.214288i 0.673964 0.738764i \(-0.264590\pi\)
−0.302806 + 0.953052i \(0.597923\pi\)
\(492\) 0 0
\(493\) 2.18446e10 + 3.78360e10i 0.369791 + 0.640497i
\(494\) 1.15154e10i 0.193363i
\(495\) 0 0
\(496\) 1.89392e10 0.312921
\(497\) −6.03915e10 + 3.48670e10i −0.989806 + 0.571465i
\(498\) 0 0
\(499\) −8.19755e9 + 1.41986e10i −0.132215 + 0.229004i −0.924530 0.381109i \(-0.875542\pi\)
0.792315 + 0.610112i \(0.208876\pi\)
\(500\) −4.60899e10 2.66100e10i −0.737438 0.425760i
\(501\) 0 0
\(502\) 1.36943e10 + 2.37192e10i 0.215638 + 0.373496i
\(503\) 4.61285e10i 0.720606i −0.932835 0.360303i \(-0.882673\pi\)
0.932835 0.360303i \(-0.117327\pi\)
\(504\) 0 0
\(505\) −3.84612e10 −0.591367
\(506\) −1.01225e10 + 5.84424e9i −0.154414 + 0.0891509i
\(507\) 0 0
\(508\) −5.24001e9 + 9.07597e9i −0.0786824 + 0.136282i
\(509\) 6.69443e9 + 3.86503e9i 0.0997339 + 0.0575814i 0.549037 0.835798i \(-0.314994\pi\)
−0.449303 + 0.893379i \(0.648328\pi\)
\(510\) 0 0
\(511\) 4.99087e10 + 8.64444e10i 0.731969 + 1.26781i
\(512\) 3.03700e9i 0.0441942i
\(513\) 0 0
\(514\) −2.72925e10 −0.391013
\(515\) 8.14229e9 4.70095e9i 0.115749 0.0668278i
\(516\) 0 0
\(517\) −2.13681e10 + 3.70107e10i −0.299092 + 0.518042i
\(518\) 4.84077e10 + 2.79482e10i 0.672349 + 0.388181i
\(519\) 0 0
\(520\) 6.43709e9 + 1.11494e10i 0.0880392 + 0.152488i
\(521\) 3.97902e10i 0.540039i 0.962855 + 0.270019i \(0.0870301\pi\)
−0.962855 + 0.270019i \(0.912970\pi\)
\(522\) 0 0
\(523\) −3.49978e10 −0.467772 −0.233886 0.972264i \(-0.575144\pi\)
−0.233886 + 0.972264i \(0.575144\pi\)
\(524\) −4.19585e10 + 2.42247e10i −0.556538 + 0.321317i
\(525\) 0 0
\(526\) 3.69076e10 6.39259e10i 0.482140 0.835091i
\(527\) 8.79053e10 + 5.07521e10i 1.13965 + 0.657979i
\(528\) 0 0
\(529\) −3.35092e10 5.80397e10i −0.427899 0.741143i
\(530\) 1.28058e10i 0.162294i
\(531\) 0 0
\(532\) −6.50804e10 −0.812463
\(533\) 1.26734e10 7.31699e9i 0.157031 0.0906617i
\(534\) 0 0
\(535\) 1.26536e11 2.19167e11i 1.54454 2.67523i
\(536\) 1.55308e10 + 8.96673e9i 0.188163 + 0.108636i
\(537\) 0 0
\(538\) 3.75687e10 + 6.50709e10i 0.448433 + 0.776708i
\(539\) 1.08354e11i 1.28378i
\(540\) 0 0
\(541\) 2.34001e10 0.273168 0.136584 0.990629i \(-0.456388\pi\)
0.136584 + 0.990629i \(0.456388\pi\)
\(542\) 2.66729e10 1.53996e10i 0.309081 0.178448i
\(543\) 0 0
\(544\) 8.13839e9 1.40961e10i 0.0929272 0.160955i
\(545\) −2.49236e11 1.43897e11i −2.82504 1.63104i
\(546\) 0 0
\(547\) −1.16091e10 2.01075e10i −0.129673 0.224600i 0.793877 0.608078i \(-0.208059\pi\)
−0.923550 + 0.383478i \(0.874726\pi\)
\(548\) 1.23692e10i 0.137158i
\(549\) 0 0
\(550\) 8.53134e10 0.932324
\(551\) −5.32757e10 + 3.07588e10i −0.577994 + 0.333705i
\(552\) 0 0
\(553\) 2.62770e10 4.55131e10i 0.280980 0.486671i
\(554\) 9.81649e10 + 5.66755e10i 1.04212 + 0.601667i
\(555\) 0 0
\(556\) 2.72934e10 + 4.72735e10i 0.285600 + 0.494674i
\(557\) 3.65617e10i 0.379844i −0.981799 0.189922i \(-0.939176\pi\)
0.981799 0.189922i \(-0.0608236\pi\)
\(558\) 0 0
\(559\) 8.70499e9 0.0891499
\(560\) 6.30115e10 3.63797e10i 0.640719 0.369919i
\(561\) 0 0
\(562\) −4.46146e10 + 7.72748e10i −0.447231 + 0.774627i
\(563\) 1.15433e11 + 6.66450e10i 1.14893 + 0.663337i 0.948627 0.316397i \(-0.102473\pi\)
0.200306 + 0.979733i \(0.435806\pi\)
\(564\) 0 0
\(565\) −1.54354e11 2.67348e11i −1.51469 2.62352i
\(566\) 1.10163e10i 0.107342i
\(567\) 0 0
\(568\) 2.45577e10 0.235936
\(569\) 1.42643e11 8.23549e10i 1.36082 0.785670i 0.371087 0.928598i \(-0.378985\pi\)
0.989733 + 0.142928i \(0.0456517\pi\)
\(570\) 0 0
\(571\) −6.84597e10 + 1.18576e11i −0.644007 + 1.11545i 0.340523 + 0.940236i \(0.389396\pi\)
−0.984530 + 0.175216i \(0.943937\pi\)
\(572\) −8.87167e9 5.12206e9i −0.0828745 0.0478476i
\(573\) 0 0
\(574\) −4.13525e10 7.16247e10i −0.380938 0.659804i
\(575\) 8.24235e10i 0.754015i
\(576\) 0 0
\(577\) −1.01555e11 −0.916218 −0.458109 0.888896i \(-0.651473\pi\)
−0.458109 + 0.888896i \(0.651473\pi\)
\(578\) 7.19976e9 4.15678e9i 0.0645070 0.0372431i
\(579\) 0 0
\(580\) 3.43881e10 5.95619e10i 0.303876 0.526328i
\(581\) −1.14807e11 6.62840e10i −1.00755 0.581707i
\(582\) 0 0
\(583\) −5.09485e9 8.82453e9i −0.0441018 0.0763866i
\(584\) 3.51519e10i 0.302202i
\(585\) 0 0
\(586\) −6.00184e10 −0.508972
\(587\) 3.25669e10 1.88025e10i 0.274299 0.158367i −0.356541 0.934280i \(-0.616044\pi\)
0.630840 + 0.775913i \(0.282711\pi\)
\(588\) 0 0
\(589\) −7.14626e10 + 1.23777e11i −0.593769 + 1.02844i
\(590\) 1.06303e11 + 6.13741e10i 0.877278 + 0.506497i
\(591\) 0 0
\(592\) −9.84229e9 1.70474e10i −0.0801326 0.138794i
\(593\) 1.30215e11i 1.05304i 0.850163 + 0.526519i \(0.176503\pi\)
−0.850163 + 0.526519i \(0.823497\pi\)
\(594\) 0 0
\(595\) 3.89953e11 3.11132
\(596\) −4.77998e10 + 2.75972e10i −0.378827 + 0.218716i
\(597\) 0 0
\(598\) −4.94856e9 + 8.57115e9i −0.0386967 + 0.0670246i
\(599\) −1.13848e11 6.57304e10i −0.884341 0.510575i −0.0122537 0.999925i \(-0.503901\pi\)
−0.872087 + 0.489350i \(0.837234\pi\)
\(600\) 0 0
\(601\) 2.15092e10 + 3.72550e10i 0.164864 + 0.285553i 0.936607 0.350382i \(-0.113948\pi\)
−0.771743 + 0.635935i \(0.780615\pi\)
\(602\) 4.91969e10i 0.374586i
\(603\) 0 0
\(604\) −1.07592e11 −0.808409
\(605\) 1.12081e11 6.47102e10i 0.836588 0.483004i
\(606\) 0 0
\(607\) −1.29606e10 + 2.24485e10i −0.0954710 + 0.165361i −0.909805 0.415036i \(-0.863769\pi\)
0.814334 + 0.580396i \(0.197102\pi\)
\(608\) 1.98483e10 + 1.14594e10i 0.145248 + 0.0838588i
\(609\) 0 0
\(610\) −5.07990e10 8.79865e10i −0.366890 0.635472i
\(611\) 3.61866e10i 0.259646i
\(612\) 0 0
\(613\) 1.28485e11 0.909933 0.454967 0.890508i \(-0.349651\pi\)
0.454967 + 0.890508i \(0.349651\pi\)
\(614\) −1.31529e11 + 7.59383e10i −0.925439 + 0.534303i
\(615\) 0 0
\(616\) −2.89477e10 + 5.01389e10i −0.201044 + 0.348219i
\(617\) 1.02289e11 + 5.90563e10i 0.705808 + 0.407498i 0.809507 0.587110i \(-0.199735\pi\)
−0.103699 + 0.994609i \(0.533068\pi\)
\(618\) 0 0
\(619\) −6.40218e10 1.10889e11i −0.436079 0.755312i 0.561304 0.827610i \(-0.310300\pi\)
−0.997383 + 0.0722982i \(0.976967\pi\)
\(620\) 1.59789e11i 1.08139i
\(621\) 0 0
\(622\) 2.59046e10 0.173068
\(623\) 7.48177e10 4.31960e10i 0.496652 0.286742i
\(624\) 0 0
\(625\) −7.30176e10 + 1.26470e11i −0.478528 + 0.828835i
\(626\) −1.75219e11 1.01163e11i −1.14100 0.658754i
\(627\) 0 0
\(628\) −2.69977e10 4.67613e10i −0.173575 0.300641i
\(629\) 1.05499e11i 0.673980i
\(630\) 0 0
\(631\) −2.40613e11 −1.51775 −0.758877 0.651233i \(-0.774252\pi\)
−0.758877 + 0.651233i \(0.774252\pi\)
\(632\) −1.60280e10 + 9.25377e9i −0.100464 + 0.0580030i
\(633\) 0 0
\(634\) 3.77159e10 6.53258e10i 0.233436 0.404322i
\(635\) 7.65738e10 + 4.42099e10i 0.470961 + 0.271910i
\(636\) 0 0
\(637\) −4.58740e10 7.94561e10i −0.278618 0.482580i
\(638\) 5.47259e10i 0.330301i
\(639\) 0 0
\(640\) −2.56231e10 −0.152726
\(641\) −1.87111e11 + 1.08029e11i −1.10833 + 0.639893i −0.938396 0.345563i \(-0.887688\pi\)
−0.169932 + 0.985456i \(0.554355\pi\)
\(642\) 0 0
\(643\) −1.85669e10 + 3.21588e10i −0.108616 + 0.188129i −0.915210 0.402977i \(-0.867975\pi\)
0.806594 + 0.591106i \(0.201309\pi\)
\(644\) 4.84405e10 + 2.79671e10i 0.281621 + 0.162594i
\(645\) 0 0
\(646\) 6.14167e10 + 1.06377e11i 0.352660 + 0.610825i
\(647\) 5.88598e10i 0.335894i 0.985796 + 0.167947i \(0.0537137\pi\)
−0.985796 + 0.167947i \(0.946286\pi\)
\(648\) 0 0
\(649\) −9.76719e10 −0.550543
\(650\) 6.25603e10 3.61192e10i 0.350465 0.202341i
\(651\) 0 0
\(652\) −3.52523e10 + 6.10588e10i −0.195073 + 0.337877i
\(653\) 1.48938e11 + 8.59893e10i 0.819129 + 0.472925i 0.850116 0.526595i \(-0.176532\pi\)
−0.0309867 + 0.999520i \(0.509865\pi\)
\(654\) 0 0
\(655\) 2.04384e11 + 3.54003e11i 1.11040 + 1.92328i
\(656\) 2.91256e10i 0.157275i
\(657\) 0 0
\(658\) 2.04511e11 1.09097
\(659\) −2.34850e11 + 1.35591e11i −1.24523 + 0.718934i −0.970154 0.242489i \(-0.922036\pi\)
−0.275075 + 0.961423i \(0.588703\pi\)
\(660\) 0 0
\(661\) 1.21597e11 2.10613e11i 0.636968 1.10326i −0.349126 0.937076i \(-0.613522\pi\)
0.986095 0.166185i \(-0.0531451\pi\)
\(662\) 1.53689e11 + 8.87325e10i 0.800223 + 0.462009i
\(663\) 0 0
\(664\) 2.33427e10 + 4.04308e10i 0.120082 + 0.207989i
\(665\) 5.49082e11i 2.80770i
\(666\) 0 0
\(667\) 5.28721e10 0.267130
\(668\) −6.72704e10 + 3.88386e10i −0.337846 + 0.195055i
\(669\) 0 0
\(670\) 7.56521e10 1.31033e11i 0.375424 0.650253i
\(671\) 7.00118e10 + 4.04213e10i 0.345367 + 0.199398i
\(672\) 0 0
\(673\) 1.44609e10 + 2.50471e10i 0.0704914 + 0.122095i 0.899117 0.437709i \(-0.144210\pi\)
−0.828625 + 0.559804i \(0.810877\pi\)
\(674\) 2.92320e10i 0.141651i
\(675\) 0 0
\(676\) 9.57394e10 0.458463
\(677\) −1.58076e11 + 9.12654e10i −0.752509 + 0.434462i −0.826600 0.562790i \(-0.809728\pi\)
0.0740905 + 0.997252i \(0.476395\pi\)
\(678\) 0 0
\(679\) −1.83671e11 + 3.18127e11i −0.864095 + 1.49666i
\(680\) −1.18929e11 6.86634e10i −0.556225 0.321137i
\(681\) 0 0
\(682\) 6.35730e10 + 1.10112e11i 0.293857 + 0.508974i
\(683\) 3.71514e11i 1.70723i −0.520903 0.853616i \(-0.674405\pi\)
0.520903 0.853616i \(-0.325595\pi\)
\(684\) 0 0
\(685\) 1.04359e11 0.473989
\(686\) −2.16783e11 + 1.25159e11i −0.978876 + 0.565155i
\(687\) 0 0
\(688\) −8.66264e9 + 1.50041e10i −0.0386631 + 0.0669665i
\(689\) −7.47209e9 4.31401e9i −0.0331562 0.0191428i
\(690\) 0 0
\(691\) −9.88238e10 1.71168e11i −0.433460 0.750775i 0.563708 0.825974i \(-0.309374\pi\)
−0.997169 + 0.0751987i \(0.976041\pi\)
\(692\) 1.22175e11i 0.532794i
\(693\) 0 0
\(694\) 1.90246e11 0.820119
\(695\) 3.98846e11 2.30274e11i 1.70949 0.986973i
\(696\) 0 0
\(697\) −7.80492e10 + 1.35185e11i −0.330702 + 0.572793i
\(698\) −2.39788e11 1.38442e11i −1.01020 0.583237i
\(699\) 0 0
\(700\) −2.04130e11 3.53564e11i −0.850189 1.47257i
\(701\) 6.70096e10i 0.277501i −0.990327 0.138751i \(-0.955691\pi\)
0.990327 0.138751i \(-0.0443087\pi\)
\(702\) 0 0
\(703\) 1.48551e11 0.608209
\(704\) 1.76570e10 1.01943e10i 0.0718831 0.0415017i
\(705\) 0 0
\(706\) −5.91201e10 + 1.02399e11i −0.237967 + 0.412170i
\(707\) −1.26832e11 7.32264e10i −0.507634 0.293083i
\(708\) 0 0
\(709\) 5.70291e10 + 9.87774e10i 0.225690 + 0.390906i 0.956526 0.291647i \(-0.0942031\pi\)
−0.730836 + 0.682553i \(0.760870\pi\)
\(710\) 2.07193e11i 0.815345i
\(711\) 0 0
\(712\) −3.04240e10 −0.118385
\(713\) 1.06382e11 6.14196e10i 0.411632 0.237656i
\(714\) 0 0
\(715\) −4.32147e10 + 7.48501e10i −0.165351 + 0.286397i
\(716\) 1.04646e11 + 6.04172e10i 0.398171 + 0.229884i
\(717\) 0 0
\(718\) −1.34348e11 2.32698e11i −0.505516 0.875580i
\(719\) 2.31072e11i 0.864633i 0.901722 + 0.432317i \(0.142304\pi\)
−0.901722 + 0.432317i \(0.857696\pi\)
\(720\) 0 0
\(721\) 3.58007e10 0.132480
\(722\) 1.66181e10 9.59444e9i 0.0611549 0.0353078i
\(723\) 0 0
\(724\) −5.55667e10 + 9.62444e10i −0.202237 + 0.350285i
\(725\) −3.34208e11 1.92955e11i −1.20966 0.698400i
\(726\) 0 0
\(727\) 1.70637e11 + 2.95551e11i 0.610850 + 1.05802i 0.991097 + 0.133138i \(0.0425055\pi\)
−0.380248 + 0.924885i \(0.624161\pi\)
\(728\) 4.90224e10i 0.174530i
\(729\) 0 0
\(730\) −2.96576e11 −1.04435
\(731\) −8.04145e10 + 4.64274e10i −0.281621 + 0.162594i
\(732\) 0 0
\(733\) 2.07203e11 3.58887e11i 0.717763 1.24320i −0.244122 0.969745i \(-0.578500\pi\)
0.961884 0.273457i \(-0.0881670\pi\)
\(734\) 1.01396e11 + 5.85408e10i 0.349330 + 0.201685i
\(735\) 0 0
\(736\) −9.84897e9 1.70589e10i −0.0335645 0.0581353i
\(737\) 1.20394e11i 0.408071i
\(738\) 0 0
\(739\) 2.71838e11 0.911449 0.455725 0.890121i \(-0.349380\pi\)
0.455725 + 0.890121i \(0.349380\pi\)
\(740\) −1.43828e11 + 8.30392e10i −0.479642 + 0.276921i
\(741\) 0 0
\(742\) −2.43810e10 + 4.22291e10i −0.0804332 + 0.139314i
\(743\) 2.96676e11 + 1.71286e11i 0.973479 + 0.562039i 0.900295 0.435280i \(-0.143351\pi\)
0.0731842 + 0.997318i \(0.476684\pi\)
\(744\) 0 0
\(745\) 2.32837e11 + 4.03286e11i 0.755835 + 1.30914i
\(746\) 9.11142e10i 0.294192i
\(747\) 0 0
\(748\) 1.09272e11 0.349063
\(749\) 8.34547e11 4.81826e11i 2.65170 1.53096i
\(750\) 0 0
\(751\) −5.25839e10 + 9.10780e10i −0.165308 + 0.286321i −0.936765 0.349960i \(-0.886195\pi\)
0.771457 + 0.636282i \(0.219528\pi\)
\(752\) −6.23721e10 3.60105e10i −0.195038 0.112605i
\(753\) 0 0
\(754\) 2.31693e10 + 4.01304e10i 0.0716849 + 0.124162i
\(755\) 9.07750e11i 2.79369i
\(756\) 0 0
\(757\) −4.23531e11 −1.28974 −0.644869 0.764293i \(-0.723088\pi\)
−0.644869 + 0.764293i \(0.723088\pi\)
\(758\) 2.57900e11 1.48898e11i 0.781221 0.451038i
\(759\) 0 0
\(760\) 9.66830e10 1.67460e11i 0.289798 0.501945i
\(761\) −4.62418e11 2.66977e11i −1.37878 0.796041i −0.386770 0.922176i \(-0.626409\pi\)
−0.992013 + 0.126135i \(0.959743\pi\)
\(762\) 0 0
\(763\) −5.47931e11 9.49044e11i −1.61669 2.80019i
\(764\) 9.01526e9i 0.0264609i
\(765\) 0 0
\(766\) −3.46118e11 −1.00533
\(767\) −7.16228e10 + 4.13514e10i −0.206952 + 0.119484i
\(768\) 0 0
\(769\) −5.66789e10 + 9.81707e10i −0.162075 + 0.280722i −0.935613 0.353028i \(-0.885152\pi\)
0.773538 + 0.633750i \(0.218485\pi\)
\(770\) 4.23021e11 + 2.44231e11i 1.20337 + 0.694766i
\(771\) 0 0
\(772\) 1.75195e11 + 3.03447e11i 0.493234 + 0.854306i
\(773\) 2.83942e11i 0.795265i −0.917545 0.397632i \(-0.869832\pi\)
0.917545 0.397632i \(-0.130168\pi\)
\(774\) 0 0
\(775\) −8.96595e11 −2.48536
\(776\) 1.12032e11 6.46820e10i 0.308956 0.178376i
\(777\) 0 0
\(778\) 2.46119e11 4.26290e11i 0.671779 1.16355i
\(779\) −1.90350e11 1.09899e11i −0.516897 0.298430i
\(780\) 0 0
\(781\) 8.24328e10 + 1.42778e11i 0.221562 + 0.383757i
\(782\) 1.05571e11i 0.282304i
\(783\) 0 0
\(784\) 1.82603e11 0.483331
\(785\) −3.94524e11 + 2.27779e11i −1.03895 + 0.599839i
\(786\) 0 0
\(787\) 3.25568e11 5.63900e11i 0.848678 1.46995i −0.0337110 0.999432i \(-0.510733\pi\)
0.882389 0.470521i \(-0.155934\pi\)
\(788\) 6.06662e10 + 3.50257e10i 0.157341 + 0.0908409i
\(789\) 0 0
\(790\) 7.80739e10 + 1.35228e11i 0.200446 + 0.347183i
\(791\) 1.17550e12i 3.00273i
\(792\) 0 0
\(793\) 6.84528e10 0.173100
\(794\) −4.22703e11 + 2.44047e11i −1.06354 + 0.614034i
\(795\) 0 0
\(796\) −1.70539e11 + 2.95382e11i −0.424787 + 0.735753i
\(797\) −4.16469e11 2.40448e11i −1.03216 0.595921i −0.114561 0.993416i \(-0.536546\pi\)
−0.917604 + 0.397496i \(0.869879\pi\)
\(798\) 0 0
\(799\) −1.92998e11 3.34283e11i −0.473550 0.820213i
\(800\) 1.43774e11i 0.351011i
\(801\) 0 0
\(802\) −2.05699e11 −0.497204
\(803\) 2.04372e11 1.17994e11i 0.491541 0.283791i
\(804\) 0 0
\(805\) 2.35958e11 4.08692e11i 0.561890 0.973223i
\(806\) 9.32361e10 + 5.38299e10i 0.220925 + 0.127551i
\(807\) 0 0
\(808\) 2.57876e10 + 4.46654e10i 0.0605013 + 0.104791i
\(809\) 1.97505e11i 0.461089i 0.973062 + 0.230545i \(0.0740508\pi\)
−0.973062 + 0.230545i \(0.925949\pi\)
\(810\) 0 0
\(811\) −1.30697e11 −0.302121 −0.151061 0.988524i \(-0.548269\pi\)
−0.151061 + 0.988524i \(0.548269\pi\)
\(812\) 2.26800e11 1.30943e11i 0.521698 0.301203i
\(813\) 0 0
\(814\) 6.60752e10 1.14446e11i 0.150501 0.260676i
\(815\) 5.15152e11 + 2.97423e11i 1.16763 + 0.674131i
\(816\) 0 0
\(817\) −6.53730e10 1.13229e11i −0.146727 0.254139i
\(818\) 7.32504e10i 0.163605i
\(819\) 0 0
\(820\) 2.45732e11 0.543509
\(821\) −2.25465e10 + 1.30172e10i −0.0496256 + 0.0286514i −0.524608 0.851344i \(-0.675788\pi\)
0.474982 + 0.879996i \(0.342455\pi\)
\(822\) 0 0
\(823\) 1.02310e11 1.77206e11i 0.223007 0.386260i −0.732712 0.680539i \(-0.761746\pi\)
0.955720 + 0.294278i \(0.0950792\pi\)
\(824\) −1.09185e10 6.30382e9i −0.0236840 0.0136740i
\(825\) 0 0
\(826\) 2.33701e11 + 4.04781e11i 0.502042 + 0.869562i
\(827\) 2.31574e11i 0.495072i −0.968879 0.247536i \(-0.920379\pi\)
0.968879 0.247536i \(-0.0796208\pi\)
\(828\) 0 0
\(829\) 7.98205e11 1.69004 0.845019 0.534736i \(-0.179589\pi\)
0.845019 + 0.534736i \(0.179589\pi\)
\(830\) 3.41114e11 1.96942e11i 0.718765 0.414979i
\(831\) 0 0
\(832\) 8.63192e9 1.49509e10i 0.0180142 0.0312015i
\(833\) 8.47545e11 + 4.89331e11i 1.76029 + 1.01630i
\(834\) 0 0
\(835\) 3.27681e11 + 5.67559e11i 0.674070 + 1.16752i
\(836\) 1.53863e11i 0.315000i
\(837\) 0 0
\(838\) −4.28623e11 −0.869160
\(839\) −5.56790e11 + 3.21463e11i −1.12368 + 0.648758i −0.942338 0.334662i \(-0.891378\pi\)
−0.181343 + 0.983420i \(0.558045\pi\)
\(840\) 0 0
\(841\) −1.26349e11 + 2.18842e11i −0.252573 + 0.437469i
\(842\) −4.67914e11 2.70150e11i −0.930931 0.537473i
\(843\) 0 0
\(844\) 1.20210e11 + 2.08209e11i 0.236902 + 0.410327i
\(845\) 8.07752e11i 1.58435i
\(846\) 0 0
\(847\) 4.92808e11 0.957511
\(848\) 1.48715e10 8.58606e9i 0.0287588 0.0166039i
\(849\) 0 0
\(850\) −3.85278e11 + 6.67321e11i −0.738071 + 1.27838i
\(851\) −1.10569e11 6.38370e10i −0.210821 0.121718i
\(852\) 0 0
\(853\) 9.75384e10 + 1.68942e11i 0.184238 + 0.319110i 0.943320 0.331886i \(-0.107685\pi\)
−0.759081 + 0.650996i \(0.774352\pi\)
\(854\) 3.86866e11i 0.727326i
\(855\) 0 0
\(856\) −3.39362e11 −0.632074
\(857\) 3.84904e10 2.22224e10i 0.0713557 0.0411972i −0.463898 0.885889i \(-0.653549\pi\)
0.535253 + 0.844692i \(0.320216\pi\)
\(858\) 0 0
\(859\) −1.25294e11 + 2.17015e11i −0.230122 + 0.398582i −0.957844 0.287290i \(-0.907246\pi\)
0.727722 + 0.685872i \(0.240579\pi\)
\(860\) 1.26590e11 + 7.30866e10i 0.231422 + 0.133611i
\(861\) 0 0
\(862\) 1.54656e11 + 2.67871e11i 0.280115 + 0.485174i
\(863\) 3.91558e11i 0.705915i 0.935639 + 0.352958i \(0.114824\pi\)
−0.935639 + 0.352958i \(0.885176\pi\)
\(864\) 0 0
\(865\) −1.03079e12 −1.84122
\(866\) 6.82876e10 3.94259e10i 0.121415 0.0700987i
\(867\) 0 0
\(868\) 3.04224e11 5.26931e11i 0.535937 0.928271i
\(869\) −1.07602e11 6.21242e10i −0.188687 0.108939i
\(870\) 0 0
\(871\) 5.09714e10 + 8.82851e10i 0.0885633 + 0.153396i
\(872\) 3.85921e11i 0.667471i
\(873\) 0 0
\(874\) 1.48651e11 0.254755
\(875\) −1.48070e12 + 8.54884e11i −2.52601 + 1.45839i
\(876\) 0 0
\(877\) 3.99055e10 6.91184e10i 0.0674582 0.116841i −0.830324 0.557282i \(-0.811844\pi\)
0.897782 + 0.440441i \(0.145178\pi\)
\(878\) −8.35204e10 4.82206e10i −0.140545 0.0811436i
\(879\) 0 0
\(880\) −8.60090e10 1.48972e11i −0.143421 0.248413i
\(881\) 5.84453e11i 0.970166i 0.874468 + 0.485083i \(0.161211\pi\)
−0.874468 + 0.485083i \(0.838789\pi\)
\(882\) 0 0
\(883\) 7.52384e10 0.123765 0.0618823 0.998083i \(-0.480290\pi\)
0.0618823 + 0.998083i \(0.480290\pi\)
\(884\) 8.01294e10 4.62627e10i 0.131215 0.0757569i
\(885\) 0 0
\(886\) −1.15756e11 + 2.00495e11i −0.187849 + 0.325364i
\(887\) −6.05896e11 3.49814e11i −0.978822 0.565123i −0.0769076 0.997038i \(-0.524505\pi\)
−0.901914 + 0.431915i \(0.857838\pi\)
\(888\) 0 0
\(889\) 1.68343e11 + 2.91578e11i 0.269518 + 0.466819i
\(890\) 2.56687e11i 0.409113i
\(891\) 0 0
\(892\) 3.71333e11 0.586548
\(893\) 4.70694e11 2.71755e11i 0.740172 0.427338i
\(894\) 0 0
\(895\) 5.09739e11 8.82894e11i 0.794430 1.37599i
\(896\) −8.44963e10 4.87840e10i −0.131101 0.0756911i
\(897\) 0 0
\(898\) −8.65455e10 1.49901e11i −0.133088 0.230515i
\(899\) 5.75137e11i 0.880507i
\(900\) 0 0
\(901\) 9.20338e10 0.139652
\(902\) −1.69335e11 + 9.77658e10i −0.255812 + 0.147693i
\(903\) 0 0
\(904\) −2.06983e11 + 3.58505e11i −0.309928 + 0.536812i
\(905\) 8.12012e11 + 4.68815e11i 1.21051 + 0.698888i
\(906\) 0 0
\(907\) −5.79947e10 1.00450e11i −0.0856958 0.148429i 0.819992 0.572375i \(-0.193978\pi\)
−0.905687 + 0.423946i \(0.860645\pi\)
\(908\) 5.33513e11i 0.784877i
\(909\) 0 0
\(910\) 4.13601e11 0.603137
\(911\) −9.81176e11 + 5.66482e11i −1.42454 + 0.822456i −0.996682 0.0813913i \(-0.974064\pi\)
−0.427854 + 0.903848i \(0.640730\pi\)
\(912\) 0 0
\(913\) −1.56709e11 + 2.71428e11i −0.225533 + 0.390635i
\(914\) 2.35358e11 + 1.35884e11i 0.337244 + 0.194708i
\(915\) 0 0
\(916\) −2.30424e11 3.99105e11i −0.327299 0.566899i
\(917\) 1.55651e12i 2.20127i
\(918\) 0 0
\(919\) −3.06256e11 −0.429361 −0.214680 0.976684i \(-0.568871\pi\)
−0.214680 + 0.976684i \(0.568871\pi\)
\(920\) −1.43926e11 + 8.30956e10i −0.200903 + 0.115992i
\(921\) 0 0
\(922\) 3.24506e11 5.62060e11i 0.449054 0.777784i
\(923\) 1.20896e11 + 6.97992e10i 0.166573 + 0.0961709i
\(924\) 0 0
\(925\) 4.65942e11 + 8.07035e11i 0.636451 + 1.10237i
\(926\) 6.86069e11i 0.933090i
\(927\) 0 0
\(928\) −9.22265e10 −0.124355
\(929\) 8.75115e11 5.05248e11i 1.17490 0.678331i 0.220074 0.975483i \(-0.429370\pi\)
0.954830 + 0.297152i \(0.0960369\pi\)
\(930\) 0 0
\(931\) −6.89012e11 + 1.19340e12i −0.917124 + 1.58851i
\(932\) 3.17439e11 + 1.83273e11i 0.420723 + 0.242905i
\(933\) 0 0
\(934\) −5.71858e10 9.90488e10i −0.0751452 0.130155i
\(935\) 9.21929e11i 1.20629i
\(936\) 0 0
\(937\) −3.80033e11 −0.493018 −0.246509 0.969141i \(-0.579283\pi\)
−0.246509 + 0.969141i \(0.579283\pi\)
\(938\) 4.98950e11 2.88069e11i 0.644533 0.372121i
\(939\) 0 0
\(940\) −3.03820e11 + 5.26232e11i −0.389139 + 0.674009i
\(941\) −4.20722e11 2.42904e11i −0.536583 0.309796i 0.207110 0.978318i \(-0.433594\pi\)
−0.743693 + 0.668521i \(0.766928\pi\)
\(942\) 0 0
\(943\) 9.44541e10 + 1.63599e11i 0.119447 + 0.206888i
\(944\) 1.64601e11i 0.207274i
\(945\) 0 0
\(946\) −1.16311e11 −0.145231
\(947\) −4.64773e9 + 2.68337e9i −0.00577885 + 0.00333642i −0.502887 0.864352i \(-0.667729\pi\)
0.497108 + 0.867689i \(0.334395\pi\)
\(948\) 0 0
\(949\) 9.99106e10 1.73050e11i 0.123182 0.213357i
\(950\) −9.39635e11 5.42498e11i −1.15363 0.666046i
\(951\) 0 0
\(952\) −2.61457e11 4.52857e11i −0.318312 0.551332i
\(953\) 2.87948e11i 0.349094i −0.984649 0.174547i \(-0.944154\pi\)
0.984649 0.174547i \(-0.0558462\pi\)
\(954\) 0 0
\(955\) −7.60616e10 −0.0914433
\(956\) −1.55520e11 + 8.97893e10i −0.186189 + 0.107496i
\(957\) 0 0
\(958\) 1.22782e11 2.12665e11i 0.145772 0.252484i
\(959\) 3.44141e11 + 1.98690e11i 0.406876 + 0.234910i
\(960\) 0 0
\(961\) −2.41670e11 4.18585e11i −0.283354 0.490784i
\(962\) 1.11897e11i 0.130653i
\(963\) 0 0
\(964\) 5.67827e11 0.657519
\(965\) 2.56017e12 1.47812e12i 2.95230 1.70451i
\(966\) 0 0
\(967\) −4.51417e11 + 7.81877e11i −0.516264 + 0.894195i 0.483558 + 0.875312i \(0.339344\pi\)
−0.999822 + 0.0188827i \(0.993989\pi\)
\(968\) −1.50297e11 8.67741e10i −0.171179 0.0988300i
\(969\) 0 0
\(970\) −5.45721e11 9.45216e11i −0.616429 1.06769i
\(971\) 8.08040e11i 0.908983i −0.890751 0.454492i \(-0.849821\pi\)
0.890751 0.454492i \(-0.150179\pi\)
\(972\) 0 0
\(973\) 1.75368e12 1.95658
\(974\) 5.71017e10 3.29677e10i 0.0634473 0.0366313i
\(975\) 0 0
\(976\) −6.81198e10 + 1.17987e11i −0.0750713 + 0.130027i
\(977\) −1.39658e12 8.06317e11i −1.53281 0.884968i −0.999231 0.0392176i \(-0.987513\pi\)
−0.533579 0.845750i \(-0.679153\pi\)
\(978\) 0 0
\(979\) −1.02124e11 1.76884e11i −0.111173 0.192557i
\(980\) 1.54062e12i 1.67029i
\(981\) 0 0
\(982\) −2.81812e11 −0.303050
\(983\) −1.24469e12 + 7.18625e11i −1.33306 + 0.769641i −0.985767 0.168117i \(-0.946231\pi\)
−0.347290 + 0.937758i \(0.612898\pi\)
\(984\) 0 0
\(985\) 2.95511e11 5.11840e11i 0.313927 0.543737i
\(986\) −4.28065e11 2.47143e11i −0.452900 0.261482i
\(987\) 0 0
\(988\) 6.51412e10 + 1.12828e11i 0.0683641 + 0.118410i
\(989\) 1.12372e11i 0.117455i
\(990\) 0 0
\(991\) −1.11953e12 −1.16075 −0.580377 0.814348i \(-0.697095\pi\)
−0.580377 + 0.814348i \(0.697095\pi\)
\(992\) −1.85565e11 + 1.07136e11i −0.191624 + 0.110634i
\(993\) 0 0
\(994\) 3.94476e11 6.83252e11i 0.404087 0.699899i
\(995\) 2.49213e12 + 1.43883e12i 2.54261 + 1.46797i
\(996\) 0 0
\(997\) −4.45668e11 7.71920e11i −0.451057 0.781253i 0.547395 0.836874i \(-0.315619\pi\)
−0.998452 + 0.0556212i \(0.982286\pi\)
\(998\) 1.85489e11i 0.186981i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 54.9.d.a.17.1 16
3.2 odd 2 18.9.d.a.5.6 16
4.3 odd 2 432.9.q.c.17.1 16
9.2 odd 6 inner 54.9.d.a.35.1 16
9.4 even 3 162.9.b.c.161.8 16
9.5 odd 6 162.9.b.c.161.9 16
9.7 even 3 18.9.d.a.11.6 yes 16
12.11 even 2 144.9.q.b.113.5 16
36.7 odd 6 144.9.q.b.65.5 16
36.11 even 6 432.9.q.c.305.1 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
18.9.d.a.5.6 16 3.2 odd 2
18.9.d.a.11.6 yes 16 9.7 even 3
54.9.d.a.17.1 16 1.1 even 1 trivial
54.9.d.a.35.1 16 9.2 odd 6 inner
144.9.q.b.65.5 16 36.7 odd 6
144.9.q.b.113.5 16 12.11 even 2
162.9.b.c.161.8 16 9.4 even 3
162.9.b.c.161.9 16 9.5 odd 6
432.9.q.c.17.1 16 4.3 odd 2
432.9.q.c.305.1 16 36.11 even 6