Properties

Label 1440.5.g.a.271.5
Level $1440$
Weight $5$
Character 1440.271
Analytic conductor $148.853$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1440,5,Mod(271,1440)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1440, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 0, 0]))
 
N = Newforms(chi, 5, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1440.271");
 
S:= CuspForms(chi, 5);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1440 = 2^{5} \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 1440.g (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(148.852746841\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 6 x^{15} + 14 x^{14} - 84 x^{13} + 628 x^{12} - 1392 x^{11} + 2016 x^{10} - 18048 x^{9} + \cdots + 4294967296 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{56}\cdot 5^{5} \)
Twist minimal: no (minimal twist has level 40)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 271.5
Root \(-3.73120 - 1.44159i\) of defining polynomial
Character \(\chi\) \(=\) 1440.271
Dual form 1440.5.g.a.271.12

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-11.1803i q^{5} -2.59084i q^{7} -7.95663 q^{11} +54.6467i q^{13} +28.7782 q^{17} +316.702 q^{19} +846.949i q^{23} -125.000 q^{25} +766.738i q^{29} -1194.00i q^{31} -28.9665 q^{35} -2436.16i q^{37} -2433.43 q^{41} -2338.16 q^{43} -2192.51i q^{47} +2394.29 q^{49} +3041.70i q^{53} +88.9578i q^{55} +455.150 q^{59} +3920.95i q^{61} +610.969 q^{65} +4822.82 q^{67} +874.716i q^{71} -7682.80 q^{73} +20.6144i q^{77} -1475.37i q^{79} +6849.50 q^{83} -321.750i q^{85} -13113.1 q^{89} +141.581 q^{91} -3540.84i q^{95} -8603.40 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 192 q^{11} + 704 q^{19} - 2000 q^{25} + 2208 q^{41} - 5568 q^{43} - 2480 q^{49} + 14016 q^{59} + 18880 q^{67} - 7360 q^{73} + 10560 q^{83} - 6816 q^{89} - 24576 q^{91} + 448 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1440\mathbb{Z}\right)^\times\).

\(n\) \(577\) \(641\) \(901\) \(991\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) − 11.1803i − 0.447214i
\(6\) 0 0
\(7\) − 2.59084i − 0.0528743i −0.999650 0.0264372i \(-0.991584\pi\)
0.999650 0.0264372i \(-0.00841619\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −7.95663 −0.0657573 −0.0328786 0.999459i \(-0.510467\pi\)
−0.0328786 + 0.999459i \(0.510467\pi\)
\(12\) 0 0
\(13\) 54.6467i 0.323353i 0.986844 + 0.161677i \(0.0516901\pi\)
−0.986844 + 0.161677i \(0.948310\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 28.7782 0.0995785 0.0497892 0.998760i \(-0.484145\pi\)
0.0497892 + 0.998760i \(0.484145\pi\)
\(18\) 0 0
\(19\) 316.702 0.877291 0.438646 0.898660i \(-0.355458\pi\)
0.438646 + 0.898660i \(0.355458\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 846.949i 1.60104i 0.599308 + 0.800519i \(0.295443\pi\)
−0.599308 + 0.800519i \(0.704557\pi\)
\(24\) 0 0
\(25\) −125.000 −0.200000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 766.738i 0.911698i 0.890057 + 0.455849i \(0.150664\pi\)
−0.890057 + 0.455849i \(0.849336\pi\)
\(30\) 0 0
\(31\) − 1194.00i − 1.24245i −0.783631 0.621227i \(-0.786634\pi\)
0.783631 0.621227i \(-0.213366\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −28.9665 −0.0236461
\(36\) 0 0
\(37\) − 2436.16i − 1.77952i −0.456432 0.889758i \(-0.650873\pi\)
0.456432 0.889758i \(-0.349127\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −2433.43 −1.44761 −0.723806 0.690004i \(-0.757609\pi\)
−0.723806 + 0.690004i \(0.757609\pi\)
\(42\) 0 0
\(43\) −2338.16 −1.26455 −0.632277 0.774742i \(-0.717880\pi\)
−0.632277 + 0.774742i \(0.717880\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) − 2192.51i − 0.992537i −0.868169 0.496269i \(-0.834703\pi\)
0.868169 0.496269i \(-0.165297\pi\)
\(48\) 0 0
\(49\) 2394.29 0.997204
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 3041.70i 1.08284i 0.840752 + 0.541420i \(0.182113\pi\)
−0.840752 + 0.541420i \(0.817887\pi\)
\(54\) 0 0
\(55\) 88.9578i 0.0294075i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 455.150 0.130753 0.0653764 0.997861i \(-0.479175\pi\)
0.0653764 + 0.997861i \(0.479175\pi\)
\(60\) 0 0
\(61\) 3920.95i 1.05374i 0.849947 + 0.526868i \(0.176634\pi\)
−0.849947 + 0.526868i \(0.823366\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 610.969 0.144608
\(66\) 0 0
\(67\) 4822.82 1.07436 0.537182 0.843466i \(-0.319489\pi\)
0.537182 + 0.843466i \(0.319489\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 874.716i 0.173520i 0.996229 + 0.0867602i \(0.0276514\pi\)
−0.996229 + 0.0867602i \(0.972349\pi\)
\(72\) 0 0
\(73\) −7682.80 −1.44170 −0.720848 0.693093i \(-0.756248\pi\)
−0.720848 + 0.693093i \(0.756248\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 20.6144i 0.00347687i
\(78\) 0 0
\(79\) − 1475.37i − 0.236400i −0.992990 0.118200i \(-0.962288\pi\)
0.992990 0.118200i \(-0.0377123\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 6849.50 0.994266 0.497133 0.867674i \(-0.334386\pi\)
0.497133 + 0.867674i \(0.334386\pi\)
\(84\) 0 0
\(85\) − 321.750i − 0.0445328i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −13113.1 −1.65548 −0.827740 0.561111i \(-0.810374\pi\)
−0.827740 + 0.561111i \(0.810374\pi\)
\(90\) 0 0
\(91\) 141.581 0.0170971
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) − 3540.84i − 0.392337i
\(96\) 0 0
\(97\) −8603.40 −0.914380 −0.457190 0.889369i \(-0.651144\pi\)
−0.457190 + 0.889369i \(0.651144\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 7164.77i 0.702360i 0.936308 + 0.351180i \(0.114219\pi\)
−0.936308 + 0.351180i \(0.885781\pi\)
\(102\) 0 0
\(103\) − 8010.36i − 0.755053i −0.925999 0.377527i \(-0.876775\pi\)
0.925999 0.377527i \(-0.123225\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −2003.50 −0.174994 −0.0874969 0.996165i \(-0.527887\pi\)
−0.0874969 + 0.996165i \(0.527887\pi\)
\(108\) 0 0
\(109\) 20282.4i 1.70713i 0.520985 + 0.853566i \(0.325565\pi\)
−0.520985 + 0.853566i \(0.674435\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 570.501 0.0446786 0.0223393 0.999750i \(-0.492889\pi\)
0.0223393 + 0.999750i \(0.492889\pi\)
\(114\) 0 0
\(115\) 9469.18 0.716006
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) − 74.5597i − 0.00526514i
\(120\) 0 0
\(121\) −14577.7 −0.995676
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 1397.54i 0.0894427i
\(126\) 0 0
\(127\) 6367.53i 0.394788i 0.980324 + 0.197394i \(0.0632478\pi\)
−0.980324 + 0.197394i \(0.936752\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 17348.8 1.01094 0.505472 0.862843i \(-0.331319\pi\)
0.505472 + 0.862843i \(0.331319\pi\)
\(132\) 0 0
\(133\) − 820.525i − 0.0463862i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 425.657 0.0226787 0.0113394 0.999936i \(-0.496390\pi\)
0.0113394 + 0.999936i \(0.496390\pi\)
\(138\) 0 0
\(139\) 21843.4 1.13055 0.565276 0.824902i \(-0.308770\pi\)
0.565276 + 0.824902i \(0.308770\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) − 434.804i − 0.0212628i
\(144\) 0 0
\(145\) 8572.39 0.407724
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 19745.1i 0.889381i 0.895684 + 0.444690i \(0.146686\pi\)
−0.895684 + 0.444690i \(0.853314\pi\)
\(150\) 0 0
\(151\) − 28379.1i − 1.24464i −0.782761 0.622322i \(-0.786189\pi\)
0.782761 0.622322i \(-0.213811\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −13349.3 −0.555642
\(156\) 0 0
\(157\) − 4457.00i − 0.180819i −0.995905 0.0904094i \(-0.971182\pi\)
0.995905 0.0904094i \(-0.0288176\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 2194.31 0.0846538
\(162\) 0 0
\(163\) 1910.59 0.0719107 0.0359553 0.999353i \(-0.488553\pi\)
0.0359553 + 0.999353i \(0.488553\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 50764.6i 1.82024i 0.414347 + 0.910119i \(0.364010\pi\)
−0.414347 + 0.910119i \(0.635990\pi\)
\(168\) 0 0
\(169\) 25574.7 0.895443
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 42367.9i 1.41561i 0.706407 + 0.707806i \(0.250315\pi\)
−0.706407 + 0.707806i \(0.749685\pi\)
\(174\) 0 0
\(175\) 323.855i 0.0105749i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −51902.2 −1.61987 −0.809934 0.586521i \(-0.800497\pi\)
−0.809934 + 0.586521i \(0.800497\pi\)
\(180\) 0 0
\(181\) 8176.63i 0.249584i 0.992183 + 0.124792i \(0.0398264\pi\)
−0.992183 + 0.124792i \(0.960174\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −27237.1 −0.795824
\(186\) 0 0
\(187\) −228.977 −0.00654801
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 38144.4i 1.04560i 0.852456 + 0.522799i \(0.175112\pi\)
−0.852456 + 0.522799i \(0.824888\pi\)
\(192\) 0 0
\(193\) −35295.2 −0.947547 −0.473774 0.880647i \(-0.657109\pi\)
−0.473774 + 0.880647i \(0.657109\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 6283.20i 0.161901i 0.996718 + 0.0809503i \(0.0257955\pi\)
−0.996718 + 0.0809503i \(0.974204\pi\)
\(198\) 0 0
\(199\) − 20814.6i − 0.525609i −0.964849 0.262805i \(-0.915353\pi\)
0.964849 0.262805i \(-0.0846474\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 1986.50 0.0482054
\(204\) 0 0
\(205\) 27206.6i 0.647391i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −2519.88 −0.0576883
\(210\) 0 0
\(211\) −21192.8 −0.476017 −0.238009 0.971263i \(-0.576495\pi\)
−0.238009 + 0.971263i \(0.576495\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 26141.4i 0.565526i
\(216\) 0 0
\(217\) −3093.46 −0.0656939
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 1572.63i 0.0321990i
\(222\) 0 0
\(223\) 46813.2i 0.941365i 0.882303 + 0.470683i \(0.155992\pi\)
−0.882303 + 0.470683i \(0.844008\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 1993.76 0.0386920 0.0193460 0.999813i \(-0.493842\pi\)
0.0193460 + 0.999813i \(0.493842\pi\)
\(228\) 0 0
\(229\) 45591.9i 0.869394i 0.900577 + 0.434697i \(0.143144\pi\)
−0.900577 + 0.434697i \(0.856856\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 82293.2 1.51584 0.757918 0.652350i \(-0.226217\pi\)
0.757918 + 0.652350i \(0.226217\pi\)
\(234\) 0 0
\(235\) −24513.1 −0.443876
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) − 104832.i − 1.83527i −0.397426 0.917634i \(-0.630097\pi\)
0.397426 0.917634i \(-0.369903\pi\)
\(240\) 0 0
\(241\) 10146.4 0.174693 0.0873467 0.996178i \(-0.472161\pi\)
0.0873467 + 0.996178i \(0.472161\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) − 26768.9i − 0.445963i
\(246\) 0 0
\(247\) 17306.7i 0.283675i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 14884.6 0.236260 0.118130 0.992998i \(-0.462310\pi\)
0.118130 + 0.992998i \(0.462310\pi\)
\(252\) 0 0
\(253\) − 6738.86i − 0.105280i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −63894.6 −0.967382 −0.483691 0.875239i \(-0.660704\pi\)
−0.483691 + 0.875239i \(0.660704\pi\)
\(258\) 0 0
\(259\) −6311.70 −0.0940907
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 46265.3i 0.668874i 0.942418 + 0.334437i \(0.108546\pi\)
−0.942418 + 0.334437i \(0.891454\pi\)
\(264\) 0 0
\(265\) 34007.2 0.484261
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 87276.9i 1.20613i 0.797691 + 0.603066i \(0.206054\pi\)
−0.797691 + 0.603066i \(0.793946\pi\)
\(270\) 0 0
\(271\) 142380.i 1.93869i 0.245696 + 0.969347i \(0.420984\pi\)
−0.245696 + 0.969347i \(0.579016\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 994.579 0.0131515
\(276\) 0 0
\(277\) 75663.5i 0.986114i 0.869997 + 0.493057i \(0.164121\pi\)
−0.869997 + 0.493057i \(0.835879\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −43571.0 −0.551804 −0.275902 0.961186i \(-0.588977\pi\)
−0.275902 + 0.961186i \(0.588977\pi\)
\(282\) 0 0
\(283\) −67132.6 −0.838225 −0.419112 0.907934i \(-0.637659\pi\)
−0.419112 + 0.907934i \(0.637659\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 6304.64i 0.0765415i
\(288\) 0 0
\(289\) −82692.8 −0.990084
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 42456.8i 0.494552i 0.968945 + 0.247276i \(0.0795355\pi\)
−0.968945 + 0.247276i \(0.920465\pi\)
\(294\) 0 0
\(295\) − 5088.73i − 0.0584744i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −46283.0 −0.517701
\(300\) 0 0
\(301\) 6057.80i 0.0668624i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 43837.5 0.471245
\(306\) 0 0
\(307\) 22580.4 0.239582 0.119791 0.992799i \(-0.461777\pi\)
0.119791 + 0.992799i \(0.461777\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 104096.i 1.07625i 0.842865 + 0.538125i \(0.180867\pi\)
−0.842865 + 0.538125i \(0.819133\pi\)
\(312\) 0 0
\(313\) −84004.7 −0.857462 −0.428731 0.903432i \(-0.641039\pi\)
−0.428731 + 0.903432i \(0.641039\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) − 52955.1i − 0.526974i −0.964663 0.263487i \(-0.915127\pi\)
0.964663 0.263487i \(-0.0848726\pi\)
\(318\) 0 0
\(319\) − 6100.65i − 0.0599508i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 9114.11 0.0873593
\(324\) 0 0
\(325\) − 6830.84i − 0.0646706i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −5680.46 −0.0524797
\(330\) 0 0
\(331\) 61731.5 0.563444 0.281722 0.959496i \(-0.409094\pi\)
0.281722 + 0.959496i \(0.409094\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) − 53920.8i − 0.480471i
\(336\) 0 0
\(337\) −15465.0 −0.136173 −0.0680865 0.997679i \(-0.521689\pi\)
−0.0680865 + 0.997679i \(0.521689\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 9500.20i 0.0817004i
\(342\) 0 0
\(343\) − 12423.8i − 0.105601i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −74344.2 −0.617431 −0.308715 0.951154i \(-0.599899\pi\)
−0.308715 + 0.951154i \(0.599899\pi\)
\(348\) 0 0
\(349\) 82400.1i 0.676514i 0.941054 + 0.338257i \(0.109837\pi\)
−0.941054 + 0.338257i \(0.890163\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −153677. −1.23327 −0.616635 0.787249i \(-0.711505\pi\)
−0.616635 + 0.787249i \(0.711505\pi\)
\(354\) 0 0
\(355\) 9779.62 0.0776007
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 235554.i 1.82768i 0.406072 + 0.913841i \(0.366898\pi\)
−0.406072 + 0.913841i \(0.633102\pi\)
\(360\) 0 0
\(361\) −30020.8 −0.230360
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 85896.3i 0.644746i
\(366\) 0 0
\(367\) 112718.i 0.836878i 0.908245 + 0.418439i \(0.137423\pi\)
−0.908245 + 0.418439i \(0.862577\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 7880.56 0.0572545
\(372\) 0 0
\(373\) − 16080.3i − 0.115578i −0.998329 0.0577892i \(-0.981595\pi\)
0.998329 0.0577892i \(-0.0184051\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −41899.7 −0.294801
\(378\) 0 0
\(379\) −208815. −1.45373 −0.726864 0.686781i \(-0.759023\pi\)
−0.726864 + 0.686781i \(0.759023\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 96057.8i 0.654840i 0.944879 + 0.327420i \(0.106179\pi\)
−0.944879 + 0.327420i \(0.893821\pi\)
\(384\) 0 0
\(385\) 230.476 0.00155490
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 168851.i 1.11584i 0.829893 + 0.557922i \(0.188401\pi\)
−0.829893 + 0.557922i \(0.811599\pi\)
\(390\) 0 0
\(391\) 24373.6i 0.159429i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −16495.1 −0.105721
\(396\) 0 0
\(397\) − 189472.i − 1.20216i −0.799188 0.601081i \(-0.794737\pi\)
0.799188 0.601081i \(-0.205263\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −120359. −0.748494 −0.374247 0.927329i \(-0.622099\pi\)
−0.374247 + 0.927329i \(0.622099\pi\)
\(402\) 0 0
\(403\) 65248.1 0.401751
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 19383.6i 0.117016i
\(408\) 0 0
\(409\) 150488. 0.899615 0.449807 0.893126i \(-0.351493\pi\)
0.449807 + 0.893126i \(0.351493\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) − 1179.22i − 0.00691346i
\(414\) 0 0
\(415\) − 76579.7i − 0.444649i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 288889. 1.64552 0.822761 0.568388i \(-0.192433\pi\)
0.822761 + 0.568388i \(0.192433\pi\)
\(420\) 0 0
\(421\) − 182304.i − 1.02857i −0.857620 0.514284i \(-0.828058\pi\)
0.857620 0.514284i \(-0.171942\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −3597.27 −0.0199157
\(426\) 0 0
\(427\) 10158.6 0.0557155
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 100495.i 0.540992i 0.962721 + 0.270496i \(0.0871877\pi\)
−0.962721 + 0.270496i \(0.912812\pi\)
\(432\) 0 0
\(433\) 328152. 1.75025 0.875124 0.483898i \(-0.160779\pi\)
0.875124 + 0.483898i \(0.160779\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 268230.i 1.40458i
\(438\) 0 0
\(439\) − 155253.i − 0.805582i −0.915292 0.402791i \(-0.868040\pi\)
0.915292 0.402791i \(-0.131960\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −337851. −1.72154 −0.860772 0.508991i \(-0.830019\pi\)
−0.860772 + 0.508991i \(0.830019\pi\)
\(444\) 0 0
\(445\) 146608.i 0.740353i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 245472. 1.21761 0.608806 0.793319i \(-0.291649\pi\)
0.608806 + 0.793319i \(0.291649\pi\)
\(450\) 0 0
\(451\) 19361.9 0.0951910
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) − 1582.92i − 0.00764605i
\(456\) 0 0
\(457\) −115007. −0.550671 −0.275336 0.961348i \(-0.588789\pi\)
−0.275336 + 0.961348i \(0.588789\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) − 115456.i − 0.543270i −0.962400 0.271635i \(-0.912436\pi\)
0.962400 0.271635i \(-0.0875644\pi\)
\(462\) 0 0
\(463\) 308334.i 1.43833i 0.694837 + 0.719167i \(0.255476\pi\)
−0.694837 + 0.719167i \(0.744524\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −234153. −1.07366 −0.536829 0.843691i \(-0.680378\pi\)
−0.536829 + 0.843691i \(0.680378\pi\)
\(468\) 0 0
\(469\) − 12495.2i − 0.0568063i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 18603.9 0.0831536
\(474\) 0 0
\(475\) −39587.8 −0.175458
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 175880.i 0.766558i 0.923633 + 0.383279i \(0.125205\pi\)
−0.923633 + 0.383279i \(0.874795\pi\)
\(480\) 0 0
\(481\) 133128. 0.575412
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 96188.9i 0.408923i
\(486\) 0 0
\(487\) 289085.i 1.21890i 0.792826 + 0.609449i \(0.208609\pi\)
−0.792826 + 0.609449i \(0.791391\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 182813. 0.758304 0.379152 0.925334i \(-0.376216\pi\)
0.379152 + 0.925334i \(0.376216\pi\)
\(492\) 0 0
\(493\) 22065.3i 0.0907855i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 2266.25 0.00917477
\(498\) 0 0
\(499\) −463712. −1.86229 −0.931145 0.364650i \(-0.881189\pi\)
−0.931145 + 0.364650i \(0.881189\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) − 173588.i − 0.686094i −0.939318 0.343047i \(-0.888541\pi\)
0.939318 0.343047i \(-0.111459\pi\)
\(504\) 0 0
\(505\) 80104.6 0.314105
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) − 231066.i − 0.891867i −0.895066 0.445934i \(-0.852872\pi\)
0.895066 0.445934i \(-0.147128\pi\)
\(510\) 0 0
\(511\) 19904.9i 0.0762287i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −89558.5 −0.337670
\(516\) 0 0
\(517\) 17445.0i 0.0652665i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −39770.4 −0.146516 −0.0732578 0.997313i \(-0.523340\pi\)
−0.0732578 + 0.997313i \(0.523340\pi\)
\(522\) 0 0
\(523\) 71651.8 0.261953 0.130977 0.991385i \(-0.458189\pi\)
0.130977 + 0.991385i \(0.458189\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) − 34361.1i − 0.123722i
\(528\) 0 0
\(529\) −437481. −1.56332
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) − 132979.i − 0.468090i
\(534\) 0 0
\(535\) 22399.9i 0.0782596i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −19050.5 −0.0655734
\(540\) 0 0
\(541\) 335147.i 1.14509i 0.819873 + 0.572546i \(0.194044\pi\)
−0.819873 + 0.572546i \(0.805956\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 226764. 0.763452
\(546\) 0 0
\(547\) 174207. 0.582225 0.291112 0.956689i \(-0.405975\pi\)
0.291112 + 0.956689i \(0.405975\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 242828.i 0.799825i
\(552\) 0 0
\(553\) −3822.45 −0.0124995
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) − 179035.i − 0.577069i −0.957470 0.288534i \(-0.906832\pi\)
0.957470 0.288534i \(-0.0931680\pi\)
\(558\) 0 0
\(559\) − 127773.i − 0.408898i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −126413. −0.398819 −0.199410 0.979916i \(-0.563902\pi\)
−0.199410 + 0.979916i \(0.563902\pi\)
\(564\) 0 0
\(565\) − 6378.40i − 0.0199809i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 160597. 0.496035 0.248017 0.968756i \(-0.420221\pi\)
0.248017 + 0.968756i \(0.420221\pi\)
\(570\) 0 0
\(571\) 372210. 1.14160 0.570802 0.821088i \(-0.306633\pi\)
0.570802 + 0.821088i \(0.306633\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) − 105869.i − 0.320208i
\(576\) 0 0
\(577\) 328066. 0.985393 0.492696 0.870201i \(-0.336011\pi\)
0.492696 + 0.870201i \(0.336011\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) − 17746.0i − 0.0525712i
\(582\) 0 0
\(583\) − 24201.7i − 0.0712047i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 128807. 0.373822 0.186911 0.982377i \(-0.440152\pi\)
0.186911 + 0.982377i \(0.440152\pi\)
\(588\) 0 0
\(589\) − 378142.i − 1.08999i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 210780. 0.599405 0.299703 0.954033i \(-0.403113\pi\)
0.299703 + 0.954033i \(0.403113\pi\)
\(594\) 0 0
\(595\) −833.603 −0.00235464
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) − 187457.i − 0.522453i −0.965278 0.261226i \(-0.915873\pi\)
0.965278 0.261226i \(-0.0841269\pi\)
\(600\) 0 0
\(601\) 14463.8 0.0400436 0.0200218 0.999800i \(-0.493626\pi\)
0.0200218 + 0.999800i \(0.493626\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 162984.i 0.445280i
\(606\) 0 0
\(607\) − 579553.i − 1.57295i −0.617620 0.786477i \(-0.711903\pi\)
0.617620 0.786477i \(-0.288097\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 119814. 0.320940
\(612\) 0 0
\(613\) − 377775.i − 1.00534i −0.864479 0.502669i \(-0.832352\pi\)
0.864479 0.502669i \(-0.167648\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −699981. −1.83872 −0.919361 0.393414i \(-0.871294\pi\)
−0.919361 + 0.393414i \(0.871294\pi\)
\(618\) 0 0
\(619\) 117981. 0.307915 0.153957 0.988077i \(-0.450798\pi\)
0.153957 + 0.988077i \(0.450798\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 33973.9i 0.0875324i
\(624\) 0 0
\(625\) 15625.0 0.0400000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) − 70108.2i − 0.177202i
\(630\) 0 0
\(631\) 749113.i 1.88143i 0.339193 + 0.940717i \(0.389846\pi\)
−0.339193 + 0.940717i \(0.610154\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 71191.1 0.176554
\(636\) 0 0
\(637\) 130840.i 0.322449i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −190520. −0.463686 −0.231843 0.972753i \(-0.574475\pi\)
−0.231843 + 0.972753i \(0.574475\pi\)
\(642\) 0 0
\(643\) −272152. −0.658248 −0.329124 0.944287i \(-0.606753\pi\)
−0.329124 + 0.944287i \(0.606753\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) − 26959.8i − 0.0644034i −0.999481 0.0322017i \(-0.989748\pi\)
0.999481 0.0322017i \(-0.0102519\pi\)
\(648\) 0 0
\(649\) −3621.46 −0.00859794
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 497282.i 1.16621i 0.812397 + 0.583104i \(0.198162\pi\)
−0.812397 + 0.583104i \(0.801838\pi\)
\(654\) 0 0
\(655\) − 193965.i − 0.452108i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 150938. 0.347558 0.173779 0.984785i \(-0.444402\pi\)
0.173779 + 0.984785i \(0.444402\pi\)
\(660\) 0 0
\(661\) − 535544.i − 1.22572i −0.790191 0.612861i \(-0.790018\pi\)
0.790191 0.612861i \(-0.209982\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −9173.75 −0.0207445
\(666\) 0 0
\(667\) −649388. −1.45966
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) − 31197.5i − 0.0692908i
\(672\) 0 0
\(673\) −189265. −0.417868 −0.208934 0.977930i \(-0.566999\pi\)
−0.208934 + 0.977930i \(0.566999\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) − 464037.i − 1.01245i −0.862400 0.506227i \(-0.831040\pi\)
0.862400 0.506227i \(-0.168960\pi\)
\(678\) 0 0
\(679\) 22290.0i 0.0483472i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −42942.9 −0.0920556 −0.0460278 0.998940i \(-0.514656\pi\)
−0.0460278 + 0.998940i \(0.514656\pi\)
\(684\) 0 0
\(685\) − 4758.99i − 0.0101422i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −166219. −0.350140
\(690\) 0 0
\(691\) 695800. 1.45723 0.728615 0.684924i \(-0.240164\pi\)
0.728615 + 0.684924i \(0.240164\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) − 244216.i − 0.505598i
\(696\) 0 0
\(697\) −70029.8 −0.144151
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) − 243528.i − 0.495580i −0.968814 0.247790i \(-0.920296\pi\)
0.968814 0.247790i \(-0.0797043\pi\)
\(702\) 0 0
\(703\) − 771536.i − 1.56115i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 18562.8 0.0371368
\(708\) 0 0
\(709\) 210565.i 0.418883i 0.977821 + 0.209442i \(0.0671646\pi\)
−0.977821 + 0.209442i \(0.932835\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 1.01126e6 1.98922
\(714\) 0 0
\(715\) −4861.25 −0.00950903
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 174495.i 0.337539i 0.985656 + 0.168770i \(0.0539794\pi\)
−0.985656 + 0.168770i \(0.946021\pi\)
\(720\) 0 0
\(721\) −20753.6 −0.0399229
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) − 95842.3i − 0.182340i
\(726\) 0 0
\(727\) − 511384.i − 0.967561i −0.875189 0.483781i \(-0.839263\pi\)
0.875189 0.483781i \(-0.160737\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −67288.0 −0.125922
\(732\) 0 0
\(733\) 384728.i 0.716055i 0.933711 + 0.358027i \(0.116551\pi\)
−0.933711 + 0.358027i \(0.883449\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −38373.4 −0.0706473
\(738\) 0 0
\(739\) 66307.5 0.121415 0.0607077 0.998156i \(-0.480664\pi\)
0.0607077 + 0.998156i \(0.480664\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) − 786533.i − 1.42475i −0.701798 0.712376i \(-0.747619\pi\)
0.701798 0.712376i \(-0.252381\pi\)
\(744\) 0 0
\(745\) 220757. 0.397743
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 5190.76i 0.00925268i
\(750\) 0 0
\(751\) − 743780.i − 1.31876i −0.751811 0.659379i \(-0.770819\pi\)
0.751811 0.659379i \(-0.229181\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −317288. −0.556622
\(756\) 0 0
\(757\) 378393.i 0.660315i 0.943926 + 0.330158i \(0.107102\pi\)
−0.943926 + 0.330158i \(0.892898\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 487660. 0.842070 0.421035 0.907044i \(-0.361667\pi\)
0.421035 + 0.907044i \(0.361667\pi\)
\(762\) 0 0
\(763\) 52548.6 0.0902634
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 24872.5i 0.0422793i
\(768\) 0 0
\(769\) −264950. −0.448034 −0.224017 0.974585i \(-0.571917\pi\)
−0.224017 + 0.974585i \(0.571917\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 515794.i 0.863212i 0.902062 + 0.431606i \(0.142053\pi\)
−0.902062 + 0.431606i \(0.857947\pi\)
\(774\) 0 0
\(775\) 149250.i 0.248491i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −770674. −1.26998
\(780\) 0 0
\(781\) − 6959.79i − 0.0114102i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −49830.8 −0.0808646
\(786\) 0 0
\(787\) 537891. 0.868449 0.434225 0.900805i \(-0.357022\pi\)
0.434225 + 0.900805i \(0.357022\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) − 1478.08i − 0.00236235i
\(792\) 0 0
\(793\) −214267. −0.340729
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) − 839237.i − 1.32120i −0.750739 0.660599i \(-0.770302\pi\)
0.750739 0.660599i \(-0.229698\pi\)
\(798\) 0 0
\(799\) − 63096.6i − 0.0988353i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 61129.2 0.0948021
\(804\) 0 0
\(805\) − 24533.1i − 0.0378583i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −514568. −0.786223 −0.393111 0.919491i \(-0.628601\pi\)
−0.393111 + 0.919491i \(0.628601\pi\)
\(810\) 0 0
\(811\) −174798. −0.265763 −0.132881 0.991132i \(-0.542423\pi\)
−0.132881 + 0.991132i \(0.542423\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) − 21361.1i − 0.0321594i
\(816\) 0 0
\(817\) −740500. −1.10938
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) − 1.02886e6i − 1.52641i −0.646159 0.763203i \(-0.723626\pi\)
0.646159 0.763203i \(-0.276374\pi\)
\(822\) 0 0
\(823\) 54452.4i 0.0803928i 0.999192 + 0.0401964i \(0.0127984\pi\)
−0.999192 + 0.0401964i \(0.987202\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 1.20898e6 1.76770 0.883848 0.467773i \(-0.154944\pi\)
0.883848 + 0.467773i \(0.154944\pi\)
\(828\) 0 0
\(829\) 366682.i 0.533556i 0.963758 + 0.266778i \(0.0859591\pi\)
−0.963758 + 0.266778i \(0.914041\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 68903.2 0.0993001
\(834\) 0 0
\(835\) 567566. 0.814035
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) − 1.27074e6i − 1.80523i −0.430444 0.902617i \(-0.641643\pi\)
0.430444 0.902617i \(-0.358357\pi\)
\(840\) 0 0
\(841\) 119393. 0.168806
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) − 285934.i − 0.400454i
\(846\) 0 0
\(847\) 37768.5i 0.0526457i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 2.06330e6 2.84907
\(852\) 0 0
\(853\) 927864.i 1.27522i 0.770358 + 0.637612i \(0.220077\pi\)
−0.770358 + 0.637612i \(0.779923\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −155651. −0.211928 −0.105964 0.994370i \(-0.533793\pi\)
−0.105964 + 0.994370i \(0.533793\pi\)
\(858\) 0 0
\(859\) 1.04127e6 1.41116 0.705578 0.708632i \(-0.250687\pi\)
0.705578 + 0.708632i \(0.250687\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) − 1.42220e6i − 1.90959i −0.297264 0.954795i \(-0.596074\pi\)
0.297264 0.954795i \(-0.403926\pi\)
\(864\) 0 0
\(865\) 473687. 0.633081
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 11739.0i 0.0155450i
\(870\) 0 0
\(871\) 263551.i 0.347399i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 3620.81 0.00472922
\(876\) 0 0
\(877\) − 577824.i − 0.751271i −0.926768 0.375635i \(-0.877424\pi\)
0.926768 0.375635i \(-0.122576\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 95874.2 0.123524 0.0617618 0.998091i \(-0.480328\pi\)
0.0617618 + 0.998091i \(0.480328\pi\)
\(882\) 0 0
\(883\) −1.28768e6 −1.65153 −0.825765 0.564014i \(-0.809256\pi\)
−0.825765 + 0.564014i \(0.809256\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) − 1.17289e6i − 1.49077i −0.666633 0.745386i \(-0.732265\pi\)
0.666633 0.745386i \(-0.267735\pi\)
\(888\) 0 0
\(889\) 16497.3 0.0208741
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) − 694374.i − 0.870744i
\(894\) 0 0
\(895\) 580284.i 0.724427i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 915484. 1.13274
\(900\) 0 0
\(901\) 87534.6i 0.107828i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 91417.5 0.111617
\(906\) 0 0
\(907\) −410980. −0.499581 −0.249791 0.968300i \(-0.580362\pi\)
−0.249791 + 0.968300i \(0.580362\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) − 67611.8i − 0.0814678i −0.999170 0.0407339i \(-0.987030\pi\)
0.999170 0.0407339i \(-0.0129696\pi\)
\(912\) 0 0
\(913\) −54498.9 −0.0653802
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) − 44948.0i − 0.0534529i
\(918\) 0 0
\(919\) 423513.i 0.501459i 0.968057 + 0.250729i \(0.0806705\pi\)
−0.968057 + 0.250729i \(0.919330\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −47800.4 −0.0561084
\(924\) 0 0
\(925\) 304520.i 0.355903i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −963117. −1.11596 −0.557979 0.829855i \(-0.688423\pi\)
−0.557979 + 0.829855i \(0.688423\pi\)
\(930\) 0 0
\(931\) 758276. 0.874839
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 2560.04i 0.00292836i
\(936\) 0 0
\(937\) −1.35035e6 −1.53804 −0.769019 0.639226i \(-0.779255\pi\)
−0.769019 + 0.639226i \(0.779255\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 651491.i 0.735748i 0.929876 + 0.367874i \(0.119914\pi\)
−0.929876 + 0.367874i \(0.880086\pi\)
\(942\) 0 0
\(943\) − 2.06099e6i − 2.31768i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −1.31859e6 −1.47032 −0.735158 0.677896i \(-0.762892\pi\)
−0.735158 + 0.677896i \(0.762892\pi\)
\(948\) 0 0
\(949\) − 419840.i − 0.466177i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 76396.5 0.0841178 0.0420589 0.999115i \(-0.486608\pi\)
0.0420589 + 0.999115i \(0.486608\pi\)
\(954\) 0 0
\(955\) 426468. 0.467605
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) − 1102.81i − 0.00119912i
\(960\) 0 0
\(961\) −502111. −0.543692
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 394612.i 0.423756i
\(966\) 0 0
\(967\) 462106.i 0.494184i 0.968992 + 0.247092i \(0.0794749\pi\)
−0.968992 + 0.247092i \(0.920525\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 901828. 0.956501 0.478250 0.878223i \(-0.341271\pi\)
0.478250 + 0.878223i \(0.341271\pi\)
\(972\) 0 0
\(973\) − 56592.7i − 0.0597771i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −46500.7 −0.0487159 −0.0243580 0.999703i \(-0.507754\pi\)
−0.0243580 + 0.999703i \(0.507754\pi\)
\(978\) 0 0
\(979\) 104336. 0.108860
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 649309.i 0.671961i 0.941869 + 0.335981i \(0.109068\pi\)
−0.941869 + 0.335981i \(0.890932\pi\)
\(984\) 0 0
\(985\) 70248.3 0.0724042
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) − 1.98030e6i − 2.02460i
\(990\) 0 0
\(991\) 194704.i 0.198257i 0.995075 + 0.0991285i \(0.0316055\pi\)
−0.995075 + 0.0991285i \(0.968395\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −232715. −0.235060
\(996\) 0 0
\(997\) − 1.72172e6i − 1.73210i −0.499959 0.866049i \(-0.666652\pi\)
0.499959 0.866049i \(-0.333348\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1440.5.g.a.271.5 16
3.2 odd 2 160.5.g.a.111.6 16
4.3 odd 2 360.5.g.a.91.2 16
8.3 odd 2 inner 1440.5.g.a.271.12 16
8.5 even 2 360.5.g.a.91.1 16
12.11 even 2 40.5.g.a.11.15 16
15.2 even 4 800.5.e.e.399.16 32
15.8 even 4 800.5.e.e.399.17 32
15.14 odd 2 800.5.g.h.751.12 16
24.5 odd 2 40.5.g.a.11.16 yes 16
24.11 even 2 160.5.g.a.111.5 16
60.23 odd 4 200.5.e.e.99.13 32
60.47 odd 4 200.5.e.e.99.20 32
60.59 even 2 200.5.g.h.51.2 16
120.29 odd 2 200.5.g.h.51.1 16
120.53 even 4 200.5.e.e.99.19 32
120.59 even 2 800.5.g.h.751.11 16
120.77 even 4 200.5.e.e.99.14 32
120.83 odd 4 800.5.e.e.399.15 32
120.107 odd 4 800.5.e.e.399.18 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
40.5.g.a.11.15 16 12.11 even 2
40.5.g.a.11.16 yes 16 24.5 odd 2
160.5.g.a.111.5 16 24.11 even 2
160.5.g.a.111.6 16 3.2 odd 2
200.5.e.e.99.13 32 60.23 odd 4
200.5.e.e.99.14 32 120.77 even 4
200.5.e.e.99.19 32 120.53 even 4
200.5.e.e.99.20 32 60.47 odd 4
200.5.g.h.51.1 16 120.29 odd 2
200.5.g.h.51.2 16 60.59 even 2
360.5.g.a.91.1 16 8.5 even 2
360.5.g.a.91.2 16 4.3 odd 2
800.5.e.e.399.15 32 120.83 odd 4
800.5.e.e.399.16 32 15.2 even 4
800.5.e.e.399.17 32 15.8 even 4
800.5.e.e.399.18 32 120.107 odd 4
800.5.g.h.751.11 16 120.59 even 2
800.5.g.h.751.12 16 15.14 odd 2
1440.5.g.a.271.5 16 1.1 even 1 trivial
1440.5.g.a.271.12 16 8.3 odd 2 inner