Properties

Label 40.5.g.a.11.15
Level $40$
Weight $5$
Character 40.11
Analytic conductor $4.135$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [40,5,Mod(11,40)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(40, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 0]))
 
N = Newforms(chi, 5, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("40.11");
 
S:= CuspForms(chi, 5);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 40 = 2^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 40.g (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.13479852335\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 6 x^{15} + 14 x^{14} - 84 x^{13} + 628 x^{12} - 1392 x^{11} + 2016 x^{10} - 18048 x^{9} + \cdots + 4294967296 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{25}\cdot 5^{5} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 11.15
Root \(-3.73120 + 1.44159i\) of defining polynomial
Character \(\chi\) \(=\) 40.11
Dual form 40.5.g.a.11.16

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(3.73120 - 1.44159i) q^{2} +7.09911 q^{3} +(11.8437 - 10.7577i) q^{4} +11.1803i q^{5} +(26.4882 - 10.2340i) q^{6} +2.59084i q^{7} +(28.6828 - 57.2127i) q^{8} -30.6027 q^{9} +(16.1174 + 41.7160i) q^{10} -7.95663 q^{11} +(84.0793 - 76.3700i) q^{12} +54.6467i q^{13} +(3.73492 + 9.66694i) q^{14} +79.3704i q^{15} +(24.5442 - 254.821i) q^{16} -28.7782 q^{17} +(-114.185 + 44.1165i) q^{18} -316.702 q^{19} +(120.275 + 132.416i) q^{20} +18.3927i q^{21} +(-29.6878 + 11.4702i) q^{22} +846.949i q^{23} +(203.623 - 406.159i) q^{24} -125.000 q^{25} +(78.7780 + 203.898i) q^{26} -792.279 q^{27} +(27.8715 + 30.6850i) q^{28} -766.738i q^{29} +(114.419 + 296.147i) q^{30} +1194.00i q^{31} +(-275.767 - 986.169i) q^{32} -56.4850 q^{33} +(-107.377 + 41.4862i) q^{34} -28.9665 q^{35} +(-362.448 + 329.214i) q^{36} -2436.16i q^{37} +(-1181.68 + 456.554i) q^{38} +387.943i q^{39} +(639.658 + 320.684i) q^{40} +2433.43 q^{41} +(26.5146 + 68.6266i) q^{42} +2338.16 q^{43} +(-94.2356 + 85.5950i) q^{44} -342.149i q^{45} +(1220.95 + 3160.13i) q^{46} -2192.51i q^{47} +(174.242 - 1809.00i) q^{48} +2394.29 q^{49} +(-466.400 + 180.198i) q^{50} -204.299 q^{51} +(587.872 + 647.216i) q^{52} -3041.70i q^{53} +(-2956.15 + 1142.14i) q^{54} -88.9578i q^{55} +(148.229 + 74.3127i) q^{56} -2248.30 q^{57} +(-1105.32 - 2860.85i) q^{58} +455.150 q^{59} +(853.842 + 940.036i) q^{60} +3920.95i q^{61} +(1721.25 + 4455.04i) q^{62} -79.2868i q^{63} +(-2450.59 - 3282.05i) q^{64} -610.969 q^{65} +(-210.756 + 81.4280i) q^{66} -4822.82 q^{67} +(-340.839 + 309.587i) q^{68} +6012.58i q^{69} +(-108.080 + 41.7577i) q^{70} +874.716i q^{71} +(-877.773 + 1750.86i) q^{72} -7682.80 q^{73} +(-3511.93 - 9089.78i) q^{74} -887.388 q^{75} +(-3750.91 + 3406.98i) q^{76} -20.6144i q^{77} +(559.253 + 1447.49i) q^{78} +1475.37i q^{79} +(2848.98 + 274.413i) q^{80} -3145.66 q^{81} +(9079.62 - 3508.01i) q^{82} +6849.50 q^{83} +(197.863 + 217.836i) q^{84} -321.750i q^{85} +(8724.14 - 3370.66i) q^{86} -5443.16i q^{87} +(-228.219 + 455.220i) q^{88} +13113.1 q^{89} +(-493.237 - 1276.62i) q^{90} -141.581 q^{91} +(9111.21 + 10031.0i) q^{92} +8476.32i q^{93} +(-3160.70 - 8180.70i) q^{94} -3540.84i q^{95} +(-1957.70 - 7000.92i) q^{96} -8603.40 q^{97} +(8933.56 - 3451.57i) q^{98} +243.494 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 6 q^{2} + 8 q^{4} + 84 q^{6} - 216 q^{8} + 432 q^{9} - 50 q^{10} + 192 q^{11} + 260 q^{12} + 972 q^{14} - 824 q^{16} - 806 q^{18} - 704 q^{19} - 300 q^{20} - 1100 q^{22} - 1256 q^{24} - 2000 q^{25}+ \cdots + 2624 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/40\mathbb{Z}\right)^\times\).

\(n\) \(17\) \(21\) \(31\)
\(\chi(n)\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 3.73120 1.44159i 0.932799 0.360397i
\(3\) 7.09911 0.788789 0.394395 0.918941i \(-0.370954\pi\)
0.394395 + 0.918941i \(0.370954\pi\)
\(4\) 11.8437 10.7577i 0.740228 0.672356i
\(5\) 11.1803i 0.447214i
\(6\) 26.4882 10.2340i 0.735782 0.284277i
\(7\) 2.59084i 0.0528743i 0.999650 + 0.0264372i \(0.00841619\pi\)
−0.999650 + 0.0264372i \(0.991584\pi\)
\(8\) 28.6828 57.2127i 0.448169 0.893949i
\(9\) −30.6027 −0.377811
\(10\) 16.1174 + 41.7160i 0.161174 + 0.417160i
\(11\) −7.95663 −0.0657573 −0.0328786 0.999459i \(-0.510467\pi\)
−0.0328786 + 0.999459i \(0.510467\pi\)
\(12\) 84.0793 76.3700i 0.583884 0.530347i
\(13\) 54.6467i 0.323353i 0.986844 + 0.161677i \(0.0516901\pi\)
−0.986844 + 0.161677i \(0.948310\pi\)
\(14\) 3.73492 + 9.66694i 0.0190557 + 0.0493211i
\(15\) 79.3704i 0.352757i
\(16\) 24.5442 254.821i 0.0958759 0.995393i
\(17\) −28.7782 −0.0995785 −0.0497892 0.998760i \(-0.515855\pi\)
−0.0497892 + 0.998760i \(0.515855\pi\)
\(18\) −114.185 + 44.1165i −0.352422 + 0.136162i
\(19\) −316.702 −0.877291 −0.438646 0.898660i \(-0.644542\pi\)
−0.438646 + 0.898660i \(0.644542\pi\)
\(20\) 120.275 + 132.416i 0.300687 + 0.331040i
\(21\) 18.3927i 0.0417067i
\(22\) −29.6878 + 11.4702i −0.0613383 + 0.0236987i
\(23\) 846.949i 1.60104i 0.599308 + 0.800519i \(0.295443\pi\)
−0.599308 + 0.800519i \(0.704557\pi\)
\(24\) 203.623 406.159i 0.353511 0.705137i
\(25\) −125.000 −0.200000
\(26\) 78.7780 + 203.898i 0.116535 + 0.301624i
\(27\) −792.279 −1.08680
\(28\) 27.8715 + 30.6850i 0.0355503 + 0.0391391i
\(29\) 766.738i 0.911698i −0.890057 0.455849i \(-0.849336\pi\)
0.890057 0.455849i \(-0.150664\pi\)
\(30\) 114.419 + 296.147i 0.127133 + 0.329052i
\(31\) 1194.00i 1.24245i 0.783631 + 0.621227i \(0.213366\pi\)
−0.783631 + 0.621227i \(0.786634\pi\)
\(32\) −275.767 986.169i −0.269304 0.963055i
\(33\) −56.4850 −0.0518686
\(34\) −107.377 + 41.4862i −0.0928867 + 0.0358878i
\(35\) −28.9665 −0.0236461
\(36\) −362.448 + 329.214i −0.279666 + 0.254023i
\(37\) 2436.16i 1.77952i −0.456432 0.889758i \(-0.650873\pi\)
0.456432 0.889758i \(-0.349127\pi\)
\(38\) −1181.68 + 456.554i −0.818336 + 0.316173i
\(39\) 387.943i 0.255058i
\(40\) 639.658 + 320.684i 0.399786 + 0.200427i
\(41\) 2433.43 1.44761 0.723806 0.690004i \(-0.242391\pi\)
0.723806 + 0.690004i \(0.242391\pi\)
\(42\) 26.5146 + 68.6266i 0.0150310 + 0.0389040i
\(43\) 2338.16 1.26455 0.632277 0.774742i \(-0.282120\pi\)
0.632277 + 0.774742i \(0.282120\pi\)
\(44\) −94.2356 + 85.5950i −0.0486754 + 0.0442123i
\(45\) 342.149i 0.168962i
\(46\) 1220.95 + 3160.13i 0.577009 + 1.49345i
\(47\) 2192.51i 0.992537i −0.868169 0.496269i \(-0.834703\pi\)
0.868169 0.496269i \(-0.165297\pi\)
\(48\) 174.242 1809.00i 0.0756259 0.785156i
\(49\) 2394.29 0.997204
\(50\) −466.400 + 180.198i −0.186560 + 0.0720794i
\(51\) −204.299 −0.0785464
\(52\) 587.872 + 647.216i 0.217408 + 0.239355i
\(53\) 3041.70i 1.08284i −0.840752 0.541420i \(-0.817887\pi\)
0.840752 0.541420i \(-0.182113\pi\)
\(54\) −2956.15 + 1142.14i −1.01377 + 0.391680i
\(55\) 88.9578i 0.0294075i
\(56\) 148.229 + 74.3127i 0.0472669 + 0.0236967i
\(57\) −2248.30 −0.691998
\(58\) −1105.32 2860.85i −0.328573 0.850431i
\(59\) 455.150 0.130753 0.0653764 0.997861i \(-0.479175\pi\)
0.0653764 + 0.997861i \(0.479175\pi\)
\(60\) 853.842 + 940.036i 0.237178 + 0.261121i
\(61\) 3920.95i 1.05374i 0.849947 + 0.526868i \(0.176634\pi\)
−0.849947 + 0.526868i \(0.823366\pi\)
\(62\) 1721.25 + 4455.04i 0.447776 + 1.15896i
\(63\) 79.2868i 0.0199765i
\(64\) −2450.59 3282.05i −0.598288 0.801281i
\(65\) −610.969 −0.144608
\(66\) −210.756 + 81.4280i −0.0483830 + 0.0186933i
\(67\) −4822.82 −1.07436 −0.537182 0.843466i \(-0.680511\pi\)
−0.537182 + 0.843466i \(0.680511\pi\)
\(68\) −340.839 + 309.587i −0.0737108 + 0.0669521i
\(69\) 6012.58i 1.26288i
\(70\) −108.080 + 41.7577i −0.0220571 + 0.00852198i
\(71\) 874.716i 0.173520i 0.996229 + 0.0867602i \(0.0276514\pi\)
−0.996229 + 0.0867602i \(0.972349\pi\)
\(72\) −877.773 + 1750.86i −0.169323 + 0.337744i
\(73\) −7682.80 −1.44170 −0.720848 0.693093i \(-0.756248\pi\)
−0.720848 + 0.693093i \(0.756248\pi\)
\(74\) −3511.93 9089.78i −0.641332 1.65993i
\(75\) −887.388 −0.157758
\(76\) −3750.91 + 3406.98i −0.649396 + 0.589852i
\(77\) 20.6144i 0.00347687i
\(78\) 559.253 + 1447.49i 0.0919220 + 0.237918i
\(79\) 1475.37i 0.236400i 0.992990 + 0.118200i \(0.0377123\pi\)
−0.992990 + 0.118200i \(0.962288\pi\)
\(80\) 2848.98 + 274.413i 0.445153 + 0.0428770i
\(81\) −3145.66 −0.479448
\(82\) 9079.62 3508.01i 1.35033 0.521714i
\(83\) 6849.50 0.994266 0.497133 0.867674i \(-0.334386\pi\)
0.497133 + 0.867674i \(0.334386\pi\)
\(84\) 197.863 + 217.836i 0.0280417 + 0.0308725i
\(85\) 321.750i 0.0445328i
\(86\) 8724.14 3370.66i 1.17957 0.455741i
\(87\) 5443.16i 0.719138i
\(88\) −228.219 + 455.220i −0.0294704 + 0.0587836i
\(89\) 13113.1 1.65548 0.827740 0.561111i \(-0.189626\pi\)
0.827740 + 0.561111i \(0.189626\pi\)
\(90\) −493.237 1276.62i −0.0608935 0.157608i
\(91\) −141.581 −0.0170971
\(92\) 9111.21 + 10031.0i 1.07647 + 1.18513i
\(93\) 8476.32i 0.980035i
\(94\) −3160.70 8180.70i −0.357707 0.925838i
\(95\) 3540.84i 0.392337i
\(96\) −1957.70 7000.92i −0.212424 0.759648i
\(97\) −8603.40 −0.914380 −0.457190 0.889369i \(-0.651144\pi\)
−0.457190 + 0.889369i \(0.651144\pi\)
\(98\) 8933.56 3451.57i 0.930191 0.359389i
\(99\) 243.494 0.0248438
\(100\) −1480.46 + 1344.71i −0.148046 + 0.134471i
\(101\) 7164.77i 0.702360i −0.936308 0.351180i \(-0.885781\pi\)
0.936308 0.351180i \(-0.114219\pi\)
\(102\) −762.281 + 294.515i −0.0732680 + 0.0283079i
\(103\) 8010.36i 0.755053i 0.925999 + 0.377527i \(0.123225\pi\)
−0.925999 + 0.377527i \(0.876775\pi\)
\(104\) 3126.49 + 1567.42i 0.289061 + 0.144917i
\(105\) −205.636 −0.0186518
\(106\) −4384.88 11349.2i −0.390252 1.01007i
\(107\) −2003.50 −0.174994 −0.0874969 0.996165i \(-0.527887\pi\)
−0.0874969 + 0.996165i \(0.527887\pi\)
\(108\) −9383.48 + 8523.10i −0.804482 + 0.730718i
\(109\) 20282.4i 1.70713i 0.520985 + 0.853566i \(0.325565\pi\)
−0.520985 + 0.853566i \(0.674435\pi\)
\(110\) −128.240 331.919i −0.0105984 0.0274313i
\(111\) 17294.5i 1.40366i
\(112\) 660.200 + 63.5902i 0.0526307 + 0.00506937i
\(113\) −570.501 −0.0446786 −0.0223393 0.999750i \(-0.507111\pi\)
−0.0223393 + 0.999750i \(0.507111\pi\)
\(114\) −8388.85 + 3241.12i −0.645495 + 0.249394i
\(115\) −9469.18 −0.716006
\(116\) −8248.33 9080.98i −0.612985 0.674865i
\(117\) 1672.34i 0.122166i
\(118\) 1698.25 656.139i 0.121966 0.0471229i
\(119\) 74.5597i 0.00526514i
\(120\) 4541.00 + 2276.57i 0.315347 + 0.158095i
\(121\) −14577.7 −0.995676
\(122\) 5652.39 + 14629.8i 0.379763 + 0.982923i
\(123\) 17275.2 1.14186
\(124\) 12844.7 + 14141.3i 0.835371 + 0.919700i
\(125\) 1397.54i 0.0894427i
\(126\) −114.299 295.834i −0.00719947 0.0186341i
\(127\) 6367.53i 0.394788i −0.980324 0.197394i \(-0.936752\pi\)
0.980324 0.197394i \(-0.0632478\pi\)
\(128\) −13875.0 8713.22i −0.846862 0.531813i
\(129\) 16598.8 0.997467
\(130\) −2279.64 + 880.765i −0.134890 + 0.0521162i
\(131\) 17348.8 1.01094 0.505472 0.862843i \(-0.331319\pi\)
0.505472 + 0.862843i \(0.331319\pi\)
\(132\) −668.988 + 607.648i −0.0383946 + 0.0348742i
\(133\) 820.525i 0.0463862i
\(134\) −17994.9 + 6952.52i −1.00217 + 0.387198i
\(135\) 8857.95i 0.486033i
\(136\) −825.440 + 1646.48i −0.0446280 + 0.0890180i
\(137\) −425.657 −0.0226787 −0.0113394 0.999936i \(-0.503610\pi\)
−0.0113394 + 0.999936i \(0.503610\pi\)
\(138\) 8667.66 + 22434.1i 0.455138 + 1.17801i
\(139\) −21843.4 −1.13055 −0.565276 0.824902i \(-0.691230\pi\)
−0.565276 + 0.824902i \(0.691230\pi\)
\(140\) −343.069 + 311.613i −0.0175035 + 0.0158986i
\(141\) 15564.9i 0.782903i
\(142\) 1260.98 + 3263.74i 0.0625362 + 0.161860i
\(143\) 434.804i 0.0212628i
\(144\) −751.119 + 7798.20i −0.0362230 + 0.376071i
\(145\) 8572.39 0.407724
\(146\) −28666.0 + 11075.4i −1.34481 + 0.519583i
\(147\) 16997.3 0.786584
\(148\) −26207.4 28853.0i −1.19647 1.31725i
\(149\) 19745.1i 0.889381i −0.895684 0.444690i \(-0.853314\pi\)
0.895684 0.444690i \(-0.146686\pi\)
\(150\) −3311.02 + 1279.25i −0.147156 + 0.0568554i
\(151\) 28379.1i 1.24464i 0.782761 + 0.622322i \(0.213811\pi\)
−0.782761 + 0.622322i \(0.786189\pi\)
\(152\) −9083.92 + 18119.4i −0.393175 + 0.784253i
\(153\) 880.690 0.0376218
\(154\) −29.7174 76.9163i −0.00125305 0.00324322i
\(155\) −13349.3 −0.555642
\(156\) 4173.37 + 4594.66i 0.171489 + 0.188801i
\(157\) 4457.00i 0.180819i −0.995905 0.0904094i \(-0.971182\pi\)
0.995905 0.0904094i \(-0.0288176\pi\)
\(158\) 2126.87 + 5504.90i 0.0851977 + 0.220513i
\(159\) 21593.3i 0.854133i
\(160\) 11025.7 3083.17i 0.430691 0.120436i
\(161\) −2194.31 −0.0846538
\(162\) −11737.1 + 4534.74i −0.447228 + 0.172791i
\(163\) −1910.59 −0.0719107 −0.0359553 0.999353i \(-0.511447\pi\)
−0.0359553 + 0.999353i \(0.511447\pi\)
\(164\) 28820.8 26178.1i 1.07156 0.973310i
\(165\) 631.521i 0.0231964i
\(166\) 25556.8 9874.15i 0.927451 0.358330i
\(167\) 50764.6i 1.82024i 0.414347 + 0.910119i \(0.364010\pi\)
−0.414347 + 0.910119i \(0.635990\pi\)
\(168\) 1052.29 + 527.554i 0.0372837 + 0.0186917i
\(169\) 25574.7 0.895443
\(170\) −463.830 1200.51i −0.0160495 0.0415402i
\(171\) 9691.94 0.331450
\(172\) 27692.4 25153.2i 0.936059 0.850230i
\(173\) 42367.9i 1.41561i −0.706407 0.707806i \(-0.749685\pi\)
0.706407 0.707806i \(-0.250315\pi\)
\(174\) −7846.78 20309.5i −0.259175 0.670811i
\(175\) 323.855i 0.0105749i
\(176\) −195.289 + 2027.51i −0.00630454 + 0.0654544i
\(177\) 3231.16 0.103136
\(178\) 48927.4 18903.6i 1.54423 0.596630i
\(179\) −51902.2 −1.61987 −0.809934 0.586521i \(-0.800497\pi\)
−0.809934 + 0.586521i \(0.800497\pi\)
\(180\) −3680.73 4052.29i −0.113603 0.125071i
\(181\) 8176.63i 0.249584i 0.992183 + 0.124792i \(0.0398264\pi\)
−0.992183 + 0.124792i \(0.960174\pi\)
\(182\) −528.266 + 204.101i −0.0159481 + 0.00616173i
\(183\) 27835.2i 0.831175i
\(184\) 48456.2 + 24292.9i 1.43125 + 0.717536i
\(185\) 27237.1 0.795824
\(186\) 12219.4 + 31626.8i 0.353201 + 0.914175i
\(187\) 228.977 0.00654801
\(188\) −23586.4 25967.4i −0.667338 0.734704i
\(189\) 2052.67i 0.0574640i
\(190\) −5104.43 13211.6i −0.141397 0.365971i
\(191\) 38144.4i 1.04560i 0.852456 + 0.522799i \(0.175112\pi\)
−0.852456 + 0.522799i \(0.824888\pi\)
\(192\) −17397.0 23299.6i −0.471923 0.632042i
\(193\) −35295.2 −0.947547 −0.473774 0.880647i \(-0.657109\pi\)
−0.473774 + 0.880647i \(0.657109\pi\)
\(194\) −32101.0 + 12402.5i −0.852932 + 0.329539i
\(195\) −4337.33 −0.114065
\(196\) 28357.1 25757.0i 0.738159 0.670476i
\(197\) 6283.20i 0.161901i −0.996718 0.0809503i \(-0.974204\pi\)
0.996718 0.0809503i \(-0.0257955\pi\)
\(198\) 908.525 351.018i 0.0231743 0.00895364i
\(199\) 20814.6i 0.525609i 0.964849 + 0.262805i \(0.0846474\pi\)
−0.964849 + 0.262805i \(0.915353\pi\)
\(200\) −3585.36 + 7151.59i −0.0896339 + 0.178790i
\(201\) −34237.7 −0.847448
\(202\) −10328.6 26733.2i −0.253128 0.655161i
\(203\) 1986.50 0.0482054
\(204\) −2419.65 + 2197.79i −0.0581423 + 0.0528111i
\(205\) 27206.6i 0.647391i
\(206\) 11547.6 + 29888.2i 0.272119 + 0.704313i
\(207\) 25918.9i 0.604890i
\(208\) 13925.1 + 1341.26i 0.321864 + 0.0310018i
\(209\) 2519.88 0.0576883
\(210\) −767.269 + 296.442i −0.0173984 + 0.00672205i
\(211\) 21192.8 0.476017 0.238009 0.971263i \(-0.423505\pi\)
0.238009 + 0.971263i \(0.423505\pi\)
\(212\) −32721.7 36024.8i −0.728054 0.801549i
\(213\) 6209.70i 0.136871i
\(214\) −7475.47 + 2888.23i −0.163234 + 0.0630672i
\(215\) 26141.4i 0.565526i
\(216\) −22724.8 + 45328.4i −0.487072 + 0.971546i
\(217\) −3093.46 −0.0656939
\(218\) 29238.9 + 75677.7i 0.615245 + 1.59241i
\(219\) −54541.0 −1.13720
\(220\) −956.981 1053.59i −0.0197723 0.0217683i
\(221\) 1572.63i 0.0321990i
\(222\) −24931.6 64529.3i −0.505876 1.30934i
\(223\) 46813.2i 0.941365i −0.882303 0.470683i \(-0.844008\pi\)
0.882303 0.470683i \(-0.155992\pi\)
\(224\) 2555.01 714.468i 0.0509209 0.0142392i
\(225\) 3825.34 0.0755622
\(226\) −2128.65 + 822.427i −0.0416762 + 0.0161020i
\(227\) 1993.76 0.0386920 0.0193460 0.999813i \(-0.493842\pi\)
0.0193460 + 0.999813i \(0.493842\pi\)
\(228\) −26628.1 + 24186.5i −0.512237 + 0.465269i
\(229\) 45591.9i 0.869394i 0.900577 + 0.434697i \(0.143144\pi\)
−0.900577 + 0.434697i \(0.856856\pi\)
\(230\) −35331.4 + 13650.6i −0.667890 + 0.258046i
\(231\) 146.344i 0.00274252i
\(232\) −43867.2 21992.2i −0.815011 0.408595i
\(233\) −82293.2 −1.51584 −0.757918 0.652350i \(-0.773783\pi\)
−0.757918 + 0.652350i \(0.773783\pi\)
\(234\) −2410.82 6239.82i −0.0440284 0.113957i
\(235\) 24513.1 0.443876
\(236\) 5390.64 4896.36i 0.0967869 0.0879123i
\(237\) 10473.8i 0.186470i
\(238\) −107.484 278.197i −0.00189754 0.00491132i
\(239\) 104832.i 1.83527i −0.397426 0.917634i \(-0.630097\pi\)
0.397426 0.917634i \(-0.369903\pi\)
\(240\) 20225.2 + 1948.08i 0.351132 + 0.0338209i
\(241\) 10146.4 0.174693 0.0873467 0.996178i \(-0.472161\pi\)
0.0873467 + 0.996178i \(0.472161\pi\)
\(242\) −54392.2 + 21015.0i −0.928766 + 0.358838i
\(243\) 41843.3 0.708620
\(244\) 42180.3 + 46438.4i 0.708485 + 0.780005i
\(245\) 26768.9i 0.445963i
\(246\) 64457.2 24903.7i 1.06513 0.411523i
\(247\) 17306.7i 0.283675i
\(248\) 68311.9 + 34247.3i 1.11069 + 0.556830i
\(249\) 48625.3 0.784267
\(250\) −2014.68 5214.51i −0.0322349 0.0834321i
\(251\) 14884.6 0.236260 0.118130 0.992998i \(-0.462310\pi\)
0.118130 + 0.992998i \(0.462310\pi\)
\(252\) −852.942 939.045i −0.0134313 0.0147872i
\(253\) 6738.86i 0.105280i
\(254\) −9179.35 23758.5i −0.142280 0.368257i
\(255\) 2284.14i 0.0351270i
\(256\) −64331.2 12508.8i −0.981616 0.190868i
\(257\) 63894.6 0.967382 0.483691 0.875239i \(-0.339296\pi\)
0.483691 + 0.875239i \(0.339296\pi\)
\(258\) 61933.6 23928.7i 0.930436 0.359484i
\(259\) 6311.70 0.0940907
\(260\) −7236.10 + 6572.61i −0.107043 + 0.0972280i
\(261\) 23464.3i 0.344450i
\(262\) 64731.8 25009.8i 0.943007 0.364341i
\(263\) 46265.3i 0.668874i 0.942418 + 0.334437i \(0.108546\pi\)
−0.942418 + 0.334437i \(0.891454\pi\)
\(264\) −1620.15 + 3231.66i −0.0232459 + 0.0463679i
\(265\) 34007.2 0.484261
\(266\) −1182.86 3061.54i −0.0167174 0.0432690i
\(267\) 93091.0 1.30583
\(268\) −57119.9 + 51882.4i −0.795275 + 0.722355i
\(269\) 87276.9i 1.20613i −0.797691 0.603066i \(-0.793946\pi\)
0.797691 0.603066i \(-0.206054\pi\)
\(270\) −12769.5 33050.8i −0.175165 0.453371i
\(271\) 142380.i 1.93869i −0.245696 0.969347i \(-0.579016\pi\)
0.245696 0.969347i \(-0.420984\pi\)
\(272\) −706.338 + 7333.27i −0.00954717 + 0.0991197i
\(273\) −1005.10 −0.0134860
\(274\) −1588.21 + 613.622i −0.0211547 + 0.00817334i
\(275\) 994.579 0.0131515
\(276\) 64681.5 + 71210.9i 0.849106 + 0.934821i
\(277\) 75663.5i 0.986114i 0.869997 + 0.493057i \(0.164121\pi\)
−0.869997 + 0.493057i \(0.835879\pi\)
\(278\) −81501.9 + 31489.1i −1.05458 + 0.407447i
\(279\) 36539.6i 0.469413i
\(280\) −830.841 + 1657.25i −0.0105975 + 0.0211384i
\(281\) 43571.0 0.551804 0.275902 0.961186i \(-0.411023\pi\)
0.275902 + 0.961186i \(0.411023\pi\)
\(282\) −22438.2 58075.7i −0.282156 0.730291i
\(283\) 67132.6 0.838225 0.419112 0.907934i \(-0.362341\pi\)
0.419112 + 0.907934i \(0.362341\pi\)
\(284\) 9409.93 + 10359.8i 0.116667 + 0.128445i
\(285\) 25136.8i 0.309471i
\(286\) −626.807 1622.34i −0.00766305 0.0198339i
\(287\) 6304.64i 0.0765415i
\(288\) 8439.21 + 30179.4i 0.101746 + 0.363853i
\(289\) −82692.8 −0.990084
\(290\) 31985.3 12357.9i 0.380324 0.146942i
\(291\) −61076.4 −0.721253
\(292\) −90992.4 + 82649.2i −1.06718 + 0.969333i
\(293\) 42456.8i 0.494552i −0.968945 0.247276i \(-0.920465\pi\)
0.968945 0.247276i \(-0.0795355\pi\)
\(294\) 63420.3 24503.1i 0.733725 0.283482i
\(295\) 5088.73i 0.0584744i
\(296\) −139379. 69876.0i −1.59080 0.797525i
\(297\) 6303.87 0.0714652
\(298\) −28464.3 73673.0i −0.320530 0.829614i
\(299\) −46283.0 −0.517701
\(300\) −10509.9 + 9546.25i −0.116777 + 0.106069i
\(301\) 6057.80i 0.0668624i
\(302\) 40911.0 + 105888.i 0.448566 + 1.16100i
\(303\) 50863.5i 0.554014i
\(304\) −7773.21 + 80702.2i −0.0841110 + 0.873250i
\(305\) −43837.5 −0.471245
\(306\) 3286.03 1269.59i 0.0350936 0.0135588i
\(307\) −22580.4 −0.239582 −0.119791 0.992799i \(-0.538223\pi\)
−0.119791 + 0.992799i \(0.538223\pi\)
\(308\) −221.763 244.149i −0.00233769 0.00257368i
\(309\) 56866.4i 0.595578i
\(310\) −49808.9 + 19244.2i −0.518303 + 0.200252i
\(311\) 104096.i 1.07625i 0.842865 + 0.538125i \(0.180867\pi\)
−0.842865 + 0.538125i \(0.819133\pi\)
\(312\) 22195.3 + 11127.3i 0.228008 + 0.114309i
\(313\) −84004.7 −0.857462 −0.428731 0.903432i \(-0.641039\pi\)
−0.428731 + 0.903432i \(0.641039\pi\)
\(314\) −6425.16 16629.9i −0.0651665 0.168668i
\(315\) 886.453 0.00893377
\(316\) 15871.6 + 17473.8i 0.158945 + 0.174990i
\(317\) 52955.1i 0.526974i 0.964663 + 0.263487i \(0.0848726\pi\)
−0.964663 + 0.263487i \(0.915127\pi\)
\(318\) −31128.7 80569.0i −0.307827 0.796735i
\(319\) 6100.65i 0.0599508i
\(320\) 36694.4 27398.4i 0.358344 0.267563i
\(321\) −14223.1 −0.138033
\(322\) −8187.40 + 3163.29i −0.0789650 + 0.0305089i
\(323\) 9114.11 0.0873593
\(324\) −37256.1 + 33840.0i −0.354901 + 0.322359i
\(325\) 6830.84i 0.0646706i
\(326\) −7128.80 + 2754.29i −0.0670782 + 0.0259164i
\(327\) 143987.i 1.34657i
\(328\) 69797.8 139223.i 0.648775 1.29409i
\(329\) 5680.46 0.0524797
\(330\) −910.393 2356.33i −0.00835990 0.0216375i
\(331\) −61731.5 −0.563444 −0.281722 0.959496i \(-0.590906\pi\)
−0.281722 + 0.959496i \(0.590906\pi\)
\(332\) 81123.1 73684.8i 0.735984 0.668501i
\(333\) 74553.0i 0.672321i
\(334\) 73181.6 + 189413.i 0.656008 + 1.69792i
\(335\) 53920.8i 0.480471i
\(336\) 4686.83 + 451.433i 0.0415146 + 0.00399867i
\(337\) −15465.0 −0.136173 −0.0680865 0.997679i \(-0.521689\pi\)
−0.0680865 + 0.997679i \(0.521689\pi\)
\(338\) 95424.4 36868.2i 0.835268 0.322715i
\(339\) −4050.05 −0.0352420
\(340\) −3461.28 3810.69i −0.0299419 0.0329645i
\(341\) 9500.20i 0.0817004i
\(342\) 36162.5 13971.8i 0.309177 0.119454i
\(343\) 12423.8i 0.105601i
\(344\) 67065.1 133773.i 0.566735 1.13045i
\(345\) −67222.7 −0.564778
\(346\) −61077.0 158083.i −0.510182 1.32048i
\(347\) −74344.2 −0.617431 −0.308715 0.951154i \(-0.599899\pi\)
−0.308715 + 0.951154i \(0.599899\pi\)
\(348\) −58555.8 64466.8i −0.483516 0.532326i
\(349\) 82400.1i 0.676514i 0.941054 + 0.338257i \(0.109837\pi\)
−0.941054 + 0.338257i \(0.890163\pi\)
\(350\) −466.866 1208.37i −0.00381115 0.00986422i
\(351\) 43295.4i 0.351421i
\(352\) 2194.18 + 7846.58i 0.0177087 + 0.0633279i
\(353\) 153677. 1.23327 0.616635 0.787249i \(-0.288495\pi\)
0.616635 + 0.787249i \(0.288495\pi\)
\(354\) 12056.1 4658.00i 0.0962055 0.0371700i
\(355\) −9779.62 −0.0776007
\(356\) 155307. 141066.i 1.22543 1.11307i
\(357\) 529.307i 0.00415309i
\(358\) −193657. + 74821.5i −1.51101 + 0.583795i
\(359\) 235554.i 1.82768i 0.406072 + 0.913841i \(0.366898\pi\)
−0.406072 + 0.913841i \(0.633102\pi\)
\(360\) −19575.2 9813.80i −0.151044 0.0757237i
\(361\) −30020.8 −0.230360
\(362\) 11787.3 + 30508.6i 0.0899493 + 0.232812i
\(363\) −103489. −0.785379
\(364\) −1676.84 + 1523.08i −0.0126557 + 0.0114953i
\(365\) 85896.3i 0.644746i
\(366\) 40126.9 + 103859.i 0.299553 + 0.775319i
\(367\) 112718.i 0.836878i −0.908245 0.418439i \(-0.862577\pi\)
0.908245 0.418439i \(-0.137423\pi\)
\(368\) 215820. + 20787.7i 1.59366 + 0.153501i
\(369\) −74469.7 −0.546924
\(370\) 101627. 39264.6i 0.742344 0.286812i
\(371\) 7880.56 0.0572545
\(372\) 91185.6 + 100391.i 0.658932 + 0.725449i
\(373\) 16080.3i 0.115578i −0.998329 0.0577892i \(-0.981595\pi\)
0.998329 0.0577892i \(-0.0184051\pi\)
\(374\) 854.359 330.091i 0.00610798 0.00235988i
\(375\) 9921.30i 0.0705515i
\(376\) −125440. 62887.6i −0.887277 0.444825i
\(377\) 41899.7 0.294801
\(378\) −2959.10 7658.92i −0.0207098 0.0536023i
\(379\) 208815. 1.45373 0.726864 0.686781i \(-0.240977\pi\)
0.726864 + 0.686781i \(0.240977\pi\)
\(380\) −38091.2 41936.4i −0.263790 0.290419i
\(381\) 45203.8i 0.311404i
\(382\) 54988.5 + 142324.i 0.376830 + 0.975332i
\(383\) 96057.8i 0.654840i 0.944879 + 0.327420i \(0.106179\pi\)
−0.944879 + 0.327420i \(0.893821\pi\)
\(384\) −98500.0 61856.1i −0.667996 0.419488i
\(385\) 230.476 0.00155490
\(386\) −131693. + 50881.1i −0.883871 + 0.341493i
\(387\) −71554.0 −0.477763
\(388\) −101896. + 92552.7i −0.676850 + 0.614788i
\(389\) 168851.i 1.11584i −0.829893 0.557922i \(-0.811599\pi\)
0.829893 0.557922i \(-0.188401\pi\)
\(390\) −16183.4 + 6252.64i −0.106400 + 0.0411087i
\(391\) 24373.6i 0.159429i
\(392\) 68675.0 136984.i 0.446917 0.891449i
\(393\) 123161. 0.797422
\(394\) −9057.78 23443.9i −0.0583485 0.151021i
\(395\) −16495.1 −0.105721
\(396\) 2883.86 2619.44i 0.0183901 0.0167039i
\(397\) 189472.i 1.20216i −0.799188 0.601081i \(-0.794737\pi\)
0.799188 0.601081i \(-0.205263\pi\)
\(398\) 30006.1 + 77663.5i 0.189428 + 0.490288i
\(399\) 5824.99i 0.0365889i
\(400\) −3068.03 + 31852.6i −0.0191752 + 0.199079i
\(401\) 120359. 0.748494 0.374247 0.927329i \(-0.377901\pi\)
0.374247 + 0.927329i \(0.377901\pi\)
\(402\) −127748. + 49356.7i −0.790499 + 0.305417i
\(403\) −65248.1 −0.401751
\(404\) −77076.4 84857.1i −0.472236 0.519907i
\(405\) 35169.5i 0.214415i
\(406\) 7412.01 2863.71i 0.0449660 0.0173731i
\(407\) 19383.6i 0.117016i
\(408\) −5859.88 + 11688.5i −0.0352021 + 0.0702165i
\(409\) 150488. 0.899615 0.449807 0.893126i \(-0.351493\pi\)
0.449807 + 0.893126i \(0.351493\pi\)
\(410\) 39220.7 + 101513.i 0.233318 + 0.603886i
\(411\) −3021.79 −0.0178887
\(412\) 86173.0 + 94871.9i 0.507664 + 0.558912i
\(413\) 1179.22i 0.00691346i
\(414\) −37364.4 96708.6i −0.218000 0.564241i
\(415\) 76579.7i 0.444649i
\(416\) 53890.9 15069.8i 0.311407 0.0870802i
\(417\) −155068. −0.891767
\(418\) 9402.17 3632.63i 0.0538116 0.0207907i
\(419\) 288889. 1.64552 0.822761 0.568388i \(-0.192433\pi\)
0.822761 + 0.568388i \(0.192433\pi\)
\(420\) −2435.48 + 2212.17i −0.0138066 + 0.0125406i
\(421\) 182304.i 1.02857i −0.857620 0.514284i \(-0.828058\pi\)
0.857620 0.514284i \(-0.171942\pi\)
\(422\) 79074.4 30551.2i 0.444029 0.171555i
\(423\) 67096.9i 0.374992i
\(424\) −174024. 87244.6i −0.968004 0.485296i
\(425\) 3597.27 0.0199157
\(426\) 8951.83 + 23169.6i 0.0493279 + 0.127673i
\(427\) −10158.6 −0.0557155
\(428\) −23728.8 + 21553.1i −0.129535 + 0.117658i
\(429\) 3086.72i 0.0167719i
\(430\) 37685.2 + 97538.8i 0.203814 + 0.527522i
\(431\) 100495.i 0.540992i 0.962721 + 0.270496i \(0.0871877\pi\)
−0.962721 + 0.270496i \(0.912812\pi\)
\(432\) −19445.9 + 201889.i −0.104198 + 1.08180i
\(433\) 328152. 1.75025 0.875124 0.483898i \(-0.160779\pi\)
0.875124 + 0.483898i \(0.160779\pi\)
\(434\) −11542.3 + 4459.49i −0.0612792 + 0.0236759i
\(435\) 60856.3 0.321608
\(436\) 218192. + 240218.i 1.14780 + 1.26367i
\(437\) 268230.i 1.40458i
\(438\) −203503. + 78625.6i −1.06077 + 0.409842i
\(439\) 155253.i 0.805582i 0.915292 + 0.402791i \(0.131960\pi\)
−0.915292 + 0.402791i \(0.868040\pi\)
\(440\) −5089.52 2551.56i −0.0262888 0.0131796i
\(441\) −73271.7 −0.376755
\(442\) −2267.09 5867.80i −0.0116044 0.0300352i
\(443\) −337851. −1.72154 −0.860772 0.508991i \(-0.830019\pi\)
−0.860772 + 0.508991i \(0.830019\pi\)
\(444\) −186049. 204831.i −0.943761 1.03903i
\(445\) 146608.i 0.740353i
\(446\) −67485.2 174669.i −0.339265 0.878105i
\(447\) 140173.i 0.701534i
\(448\) 8503.26 6349.09i 0.0423672 0.0316341i
\(449\) −245472. −1.21761 −0.608806 0.793319i \(-0.708351\pi\)
−0.608806 + 0.793319i \(0.708351\pi\)
\(450\) 14273.1 5514.56i 0.0704844 0.0272324i
\(451\) −19361.9 −0.0951910
\(452\) −6756.82 + 6137.28i −0.0330724 + 0.0300399i
\(453\) 201466.i 0.981762i
\(454\) 7439.12 2874.18i 0.0360919 0.0139445i
\(455\) 1582.92i 0.00764605i
\(456\) −64487.7 + 128631.i −0.310132 + 0.618611i
\(457\) −115007. −0.550671 −0.275336 0.961348i \(-0.588789\pi\)
−0.275336 + 0.961348i \(0.588789\pi\)
\(458\) 65724.7 + 170112.i 0.313327 + 0.810970i
\(459\) 22800.4 0.108222
\(460\) −112150. + 101866.i −0.530008 + 0.481410i
\(461\) 115456.i 0.543270i 0.962400 + 0.271635i \(0.0875644\pi\)
−0.962400 + 0.271635i \(0.912436\pi\)
\(462\) −210.967 546.037i −0.000988395 0.00255822i
\(463\) 308334.i 1.43833i −0.694837 0.719167i \(-0.744524\pi\)
0.694837 0.719167i \(-0.255476\pi\)
\(464\) −195381. 18819.0i −0.907498 0.0874099i
\(465\) −94768.1 −0.438285
\(466\) −307052. + 118633.i −1.41397 + 0.546302i
\(467\) −234153. −1.07366 −0.536829 0.843691i \(-0.680378\pi\)
−0.536829 + 0.843691i \(0.680378\pi\)
\(468\) −17990.5 19806.6i −0.0821393 0.0904311i
\(469\) 12495.2i 0.0568063i
\(470\) 91463.0 35337.7i 0.414047 0.159972i
\(471\) 31640.7i 0.142628i
\(472\) 13055.0 26040.4i 0.0585994 0.116886i
\(473\) −18603.9 −0.0831536
\(474\) 15098.9 + 39079.8i 0.0672030 + 0.173939i
\(475\) 39587.8 0.175458
\(476\) −802.090 883.059i −0.00354005 0.00389741i
\(477\) 93084.2i 0.409109i
\(478\) −151125. 391150.i −0.661425 1.71194i
\(479\) 175880.i 0.766558i 0.923633 + 0.383279i \(0.125205\pi\)
−0.923633 + 0.383279i \(0.874795\pi\)
\(480\) 78272.6 21887.7i 0.339725 0.0949988i
\(481\) 133128. 0.575412
\(482\) 37858.1 14626.9i 0.162954 0.0629589i
\(483\) −15577.6 −0.0667740
\(484\) −172653. + 156822.i −0.737028 + 0.669448i
\(485\) 96188.9i 0.408923i
\(486\) 156126. 60320.7i 0.661000 0.255384i
\(487\) 289085.i 1.21890i −0.792826 0.609449i \(-0.791391\pi\)
0.792826 0.609449i \(-0.208609\pi\)
\(488\) 224328. + 112464.i 0.941985 + 0.472252i
\(489\) −13563.5 −0.0567224
\(490\) 38589.8 + 99880.2i 0.160724 + 0.415994i
\(491\) 182813. 0.758304 0.379152 0.925334i \(-0.376216\pi\)
0.379152 + 0.925334i \(0.376216\pi\)
\(492\) 204602. 185841.i 0.845237 0.767736i
\(493\) 22065.3i 0.0907855i
\(494\) −24949.2 64574.8i −0.102236 0.264612i
\(495\) 2722.35i 0.0111105i
\(496\) 304255. + 29305.8i 1.23673 + 0.119121i
\(497\) −2266.25 −0.00917477
\(498\) 181431. 70097.7i 0.731563 0.282647i
\(499\) 463712. 1.86229 0.931145 0.364650i \(-0.118811\pi\)
0.931145 + 0.364650i \(0.118811\pi\)
\(500\) −15034.3 16552.0i −0.0601373 0.0662080i
\(501\) 360383.i 1.43578i
\(502\) 55537.3 21457.4i 0.220383 0.0851472i
\(503\) 173588.i 0.686094i −0.939318 0.343047i \(-0.888541\pi\)
0.939318 0.343047i \(-0.111459\pi\)
\(504\) −4536.21 2274.17i −0.0178580 0.00895286i
\(505\) 80104.6 0.314105
\(506\) −9714.65 25144.0i −0.0379425 0.0982050i
\(507\) 181558. 0.706316
\(508\) −68499.9 75414.8i −0.265438 0.292233i
\(509\) 231066.i 0.891867i 0.895066 + 0.445934i \(0.147128\pi\)
−0.895066 + 0.445934i \(0.852872\pi\)
\(510\) −3292.78 8522.56i −0.0126597 0.0327665i
\(511\) 19904.9i 0.0762287i
\(512\) −258065. + 46066.4i −0.984439 + 0.175729i
\(513\) 250917. 0.953443
\(514\) 238403. 92109.7i 0.902373 0.348641i
\(515\) −89558.5 −0.337670
\(516\) 196591. 178565.i 0.738353 0.670653i
\(517\) 17445.0i 0.0652665i
\(518\) 23550.2 9098.87i 0.0877678 0.0339100i
\(519\) 300774.i 1.11662i
\(520\) −17524.3 + 34955.2i −0.0648089 + 0.129272i
\(521\) 39770.4 0.146516 0.0732578 0.997313i \(-0.476660\pi\)
0.0732578 + 0.997313i \(0.476660\pi\)
\(522\) 33825.8 + 87549.8i 0.124139 + 0.321302i
\(523\) −71651.8 −0.261953 −0.130977 0.991385i \(-0.541811\pi\)
−0.130977 + 0.991385i \(0.541811\pi\)
\(524\) 205473. 186633.i 0.748329 0.679713i
\(525\) 2299.08i 0.00834134i
\(526\) 66695.5 + 172625.i 0.241060 + 0.623925i
\(527\) 34361.1i 0.123722i
\(528\) −1386.38 + 14393.5i −0.00497295 + 0.0516297i
\(529\) −437481. −1.56332
\(530\) 126888. 49024.4i 0.451718 0.174526i
\(531\) −13928.8 −0.0493998
\(532\) −8826.95 9718.01i −0.0311880 0.0343364i
\(533\) 132979.i 0.468090i
\(534\) 347341. 134199.i 1.21807 0.470615i
\(535\) 22399.9i 0.0782596i
\(536\) −138332. + 275927.i −0.481498 + 0.960427i
\(537\) −368459. −1.27774
\(538\) −125817. 325647.i −0.434686 1.12508i
\(539\) −19050.5 −0.0655734
\(540\) −95291.1 104911.i −0.326787 0.359775i
\(541\) 335147.i 1.14509i 0.819873 + 0.572546i \(0.194044\pi\)
−0.819873 + 0.572546i \(0.805956\pi\)
\(542\) −205253. 531246.i −0.698699 1.80841i
\(543\) 58046.7i 0.196869i
\(544\) 7936.07 + 28380.1i 0.0268168 + 0.0958996i
\(545\) −226764. −0.763452
\(546\) −3750.22 + 1448.94i −0.0125797 + 0.00486031i
\(547\) −174207. −0.582225 −0.291112 0.956689i \(-0.594025\pi\)
−0.291112 + 0.956689i \(0.594025\pi\)
\(548\) −5041.34 + 4579.09i −0.0167874 + 0.0152482i
\(549\) 119992.i 0.398113i
\(550\) 3710.97 1433.77i 0.0122677 0.00473974i
\(551\) 242828.i 0.799825i
\(552\) 343996. + 172458.i 1.12895 + 0.565985i
\(553\) −3822.45 −0.0124995
\(554\) 109076. + 282315.i 0.355392 + 0.919846i
\(555\) 193359. 0.627738
\(556\) −258705. + 234984.i −0.836866 + 0.760132i
\(557\) 179035.i 0.577069i 0.957470 + 0.288534i \(0.0931680\pi\)
−0.957470 + 0.288534i \(0.906832\pi\)
\(558\) −52675.0 136336.i −0.169175 0.437868i
\(559\) 127773.i 0.408898i
\(560\) −710.960 + 7381.26i −0.00226709 + 0.0235372i
\(561\) 1625.53 0.00516500
\(562\) 162572. 62811.4i 0.514722 0.198868i
\(563\) −126413. −0.398819 −0.199410 0.979916i \(-0.563902\pi\)
−0.199410 + 0.979916i \(0.563902\pi\)
\(564\) −167442. 184345.i −0.526389 0.579527i
\(565\) 6378.40i 0.0199809i
\(566\) 250485. 96777.5i 0.781895 0.302094i
\(567\) 8149.90i 0.0253505i
\(568\) 50044.9 + 25089.4i 0.155118 + 0.0777665i
\(569\) −160597. −0.496035 −0.248017 0.968756i \(-0.579779\pi\)
−0.248017 + 0.968756i \(0.579779\pi\)
\(570\) −36236.9 93790.3i −0.111532 0.288674i
\(571\) −372210. −1.14160 −0.570802 0.821088i \(-0.693367\pi\)
−0.570802 + 0.821088i \(0.693367\pi\)
\(572\) −4677.48 5149.66i −0.0142962 0.0157393i
\(573\) 270791.i 0.824756i
\(574\) 9088.69 + 23523.9i 0.0275853 + 0.0713978i
\(575\) 105869.i 0.320208i
\(576\) 74994.6 + 100440.i 0.226040 + 0.302733i
\(577\) 328066. 0.985393 0.492696 0.870201i \(-0.336011\pi\)
0.492696 + 0.870201i \(0.336011\pi\)
\(578\) −308543. + 119209.i −0.923550 + 0.356823i
\(579\) −250564. −0.747415
\(580\) 101528. 92219.2i 0.301809 0.274135i
\(581\) 17746.0i 0.0525712i
\(582\) −227888. + 88047.0i −0.672784 + 0.259937i
\(583\) 24201.7i 0.0712047i
\(584\) −220365. + 439554.i −0.646125 + 1.28880i
\(585\) 18697.3 0.0546345
\(586\) −61205.2 158415.i −0.178235 0.461318i
\(587\) 128807. 0.373822 0.186911 0.982377i \(-0.440152\pi\)
0.186911 + 0.982377i \(0.440152\pi\)
\(588\) 201310. 182852.i 0.582252 0.528864i
\(589\) 378142.i 1.08999i
\(590\) 7335.85 + 18987.1i 0.0210740 + 0.0545449i
\(591\) 44605.1i 0.127706i
\(592\) −620784. 59793.6i −1.77132 0.170613i
\(593\) −210780. −0.599405 −0.299703 0.954033i \(-0.596887\pi\)
−0.299703 + 0.954033i \(0.596887\pi\)
\(594\) 23521.0 9087.58i 0.0666627 0.0257558i
\(595\) 833.603 0.00235464
\(596\) −212412. 233855.i −0.597980 0.658345i
\(597\) 147765.i 0.414595i
\(598\) −172691. + 66720.9i −0.482911 + 0.186578i
\(599\) 187457.i 0.522453i −0.965278 0.261226i \(-0.915873\pi\)
0.965278 0.261226i \(-0.0841269\pi\)
\(600\) −25452.8 + 50769.9i −0.0707023 + 0.141027i
\(601\) 14463.8 0.0400436 0.0200218 0.999800i \(-0.493626\pi\)
0.0200218 + 0.999800i \(0.493626\pi\)
\(602\) 8732.85 + 22602.9i 0.0240970 + 0.0623692i
\(603\) 147591. 0.405907
\(604\) 305294. + 336113.i 0.836843 + 0.921321i
\(605\) 162984.i 0.445280i
\(606\) −73324.1 189782.i −0.199665 0.516784i
\(607\) 579553.i 1.57295i 0.617620 + 0.786477i \(0.288097\pi\)
−0.617620 + 0.786477i \(0.711903\pi\)
\(608\) 87336.0 + 312322.i 0.236258 + 0.844880i
\(609\) 14102.4 0.0380239
\(610\) −163566. + 63195.6i −0.439577 + 0.169835i
\(611\) 119814. 0.320940
\(612\) 10430.6 9474.19i 0.0278488 0.0252953i
\(613\) 377775.i 1.00534i −0.864479 0.502669i \(-0.832352\pi\)
0.864479 0.502669i \(-0.167648\pi\)
\(614\) −84251.9 + 32551.6i −0.223482 + 0.0863448i
\(615\) 193143.i 0.510656i
\(616\) −1179.40 591.279i −0.00310814 0.00155823i
\(617\) 699981. 1.83872 0.919361 0.393414i \(-0.128706\pi\)
0.919361 + 0.393414i \(0.128706\pi\)
\(618\) 81977.9 + 212180.i 0.214644 + 0.555555i
\(619\) −117981. −0.307915 −0.153957 0.988077i \(-0.549202\pi\)
−0.153957 + 0.988077i \(0.549202\pi\)
\(620\) −158105. + 143608.i −0.411302 + 0.373589i
\(621\) 671020.i 1.74001i
\(622\) 150064. + 388403.i 0.387877 + 1.00393i
\(623\) 33973.9i 0.0875324i
\(624\) 98855.8 + 9521.75i 0.253883 + 0.0244539i
\(625\) 15625.0 0.0400000
\(626\) −313438. + 121100.i −0.799840 + 0.309027i
\(627\) 17888.9 0.0455039
\(628\) −47947.0 52787.2i −0.121575 0.133847i
\(629\) 70108.2i 0.177202i
\(630\) 3307.53 1277.90i 0.00833341 0.00321970i
\(631\) 749113.i 1.88143i −0.339193 0.940717i \(-0.610154\pi\)
0.339193 0.940717i \(-0.389846\pi\)
\(632\) 84409.9 + 42317.8i 0.211329 + 0.105947i
\(633\) 150450. 0.375478
\(634\) 76339.3 + 197586.i 0.189920 + 0.491561i
\(635\) 71191.1 0.176554
\(636\) −232295. 255744.i −0.574281 0.632254i
\(637\) 130840.i 0.322449i
\(638\) 8794.62 + 22762.7i 0.0216061 + 0.0559220i
\(639\) 26768.7i 0.0655579i
\(640\) 97416.8 155127.i 0.237834 0.378728i
\(641\) 190520. 0.463686 0.231843 0.972753i \(-0.425525\pi\)
0.231843 + 0.972753i \(0.425525\pi\)
\(642\) −53069.1 + 20503.8i −0.128757 + 0.0497467i
\(643\) 272152. 0.658248 0.329124 0.944287i \(-0.393247\pi\)
0.329124 + 0.944287i \(0.393247\pi\)
\(644\) −25988.7 + 23605.7i −0.0626631 + 0.0569174i
\(645\) 185581.i 0.446081i
\(646\) 34006.5 13138.8i 0.0814887 0.0314840i
\(647\) 26959.8i 0.0644034i −0.999481 0.0322017i \(-0.989748\pi\)
0.999481 0.0322017i \(-0.0102519\pi\)
\(648\) −90226.4 + 179971.i −0.214874 + 0.428602i
\(649\) −3621.46 −0.00859794
\(650\) −9847.25 25487.2i −0.0233071 0.0603247i
\(651\) −21960.8 −0.0518187
\(652\) −22628.4 + 20553.6i −0.0532303 + 0.0483495i
\(653\) 497282.i 1.16621i −0.812397 0.583104i \(-0.801838\pi\)
0.812397 0.583104i \(-0.198162\pi\)
\(654\) 207570. + 537244.i 0.485299 + 1.25608i
\(655\) 193965.i 0.452108i
\(656\) 59726.8 620089.i 0.138791 1.44094i
\(657\) 235115. 0.544689
\(658\) 21194.9 8188.88i 0.0489530 0.0189135i
\(659\) 150938. 0.347558 0.173779 0.984785i \(-0.444402\pi\)
0.173779 + 0.984785i \(0.444402\pi\)
\(660\) −6793.71 7479.52i −0.0155962 0.0171706i
\(661\) 535544.i 1.22572i −0.790191 0.612861i \(-0.790018\pi\)
0.790191 0.612861i \(-0.209982\pi\)
\(662\) −230332. + 88991.3i −0.525580 + 0.203063i
\(663\) 11164.3i 0.0253982i
\(664\) 196463. 391879.i 0.445600 0.888823i
\(665\) 9173.75 0.0207445
\(666\) 107475. + 278172.i 0.242302 + 0.627141i
\(667\) 649388. 1.45966
\(668\) 546110. + 601239.i 1.22385 + 1.34739i
\(669\) 332332.i 0.742539i
\(670\) −77731.6 201189.i −0.173160 0.448183i
\(671\) 31197.5i 0.0692908i
\(672\) 18138.3 5072.09i 0.0401659 0.0112318i
\(673\) −189265. −0.417868 −0.208934 0.977930i \(-0.566999\pi\)
−0.208934 + 0.977930i \(0.566999\pi\)
\(674\) −57703.1 + 22294.2i −0.127022 + 0.0490763i
\(675\) 99034.9 0.217361
\(676\) 302898. 275125.i 0.662832 0.602056i
\(677\) 464037.i 1.01245i 0.862400 + 0.506227i \(0.168960\pi\)
−0.862400 + 0.506227i \(0.831040\pi\)
\(678\) −15111.5 + 5838.50i −0.0328737 + 0.0127011i
\(679\) 22290.0i 0.0483472i
\(680\) −18408.2 9228.70i −0.0398101 0.0199583i
\(681\) 14153.9 0.0305199
\(682\) −13695.4 35447.1i −0.0294446 0.0762100i
\(683\) −42942.9 −0.0920556 −0.0460278 0.998940i \(-0.514656\pi\)
−0.0460278 + 0.998940i \(0.514656\pi\)
\(684\) 114788. 104263.i 0.245349 0.222853i
\(685\) 4758.99i 0.0101422i
\(686\) 17910.0 + 46355.8i 0.0380582 + 0.0985044i
\(687\) 323661.i 0.685769i
\(688\) 57388.3 595812.i 0.121240 1.25873i
\(689\) 166219. 0.350140
\(690\) −250821. + 96907.4i −0.526824 + 0.203544i
\(691\) −695800. −1.45723 −0.728615 0.684924i \(-0.759836\pi\)
−0.728615 + 0.684924i \(0.759836\pi\)
\(692\) −455780. 501790.i −0.951795 1.04788i
\(693\) 630.855i 0.00131360i
\(694\) −277393. + 107174.i −0.575939 + 0.222520i
\(695\) 244216.i 0.505598i
\(696\) −311418. 156125.i −0.642872 0.322296i
\(697\) −70029.8 −0.144151
\(698\) 118787. + 307451.i 0.243814 + 0.631052i
\(699\) −584208. −1.19568
\(700\) −3483.93 3835.63i −0.00711007 0.00782781i
\(701\) 243528.i 0.495580i 0.968814 + 0.247790i \(0.0797043\pi\)
−0.968814 + 0.247790i \(0.920296\pi\)
\(702\) −62414.2 161544.i −0.126651 0.327805i
\(703\) 771536.i 1.56115i
\(704\) 19498.4 + 26114.0i 0.0393418 + 0.0526901i
\(705\) 174021. 0.350125
\(706\) 573397. 221538.i 1.15039 0.444467i
\(707\) 18562.8 0.0371368
\(708\) 38268.7 34759.8i 0.0763445 0.0693443i
\(709\) 210565.i 0.418883i 0.977821 + 0.209442i \(0.0671646\pi\)
−0.977821 + 0.209442i \(0.932835\pi\)
\(710\) −36489.7 + 14098.2i −0.0723858 + 0.0279670i
\(711\) 45150.3i 0.0893144i
\(712\) 376120. 750234.i 0.741936 1.47991i
\(713\) −1.01126e6 −1.98922
\(714\) −763.042 1974.95i −0.00149676 0.00387400i
\(715\) 4861.25 0.00950903
\(716\) −614712. + 558348.i −1.19907 + 1.08913i
\(717\) 744216.i 1.44764i
\(718\) 339571. + 878897.i 0.658691 + 1.70486i
\(719\) 174495.i 0.337539i 0.985656 + 0.168770i \(0.0539794\pi\)
−0.985656 + 0.168770i \(0.946021\pi\)
\(720\) −87186.5 8397.77i −0.168184 0.0161994i
\(721\) −20753.6 −0.0399229
\(722\) −112013. + 43277.6i −0.214880 + 0.0830211i
\(723\) 72030.1 0.137796
\(724\) 87961.6 + 96841.1i 0.167809 + 0.184749i
\(725\) 95842.3i 0.182340i
\(726\) −386136. + 149188.i −0.732601 + 0.283048i
\(727\) 511384.i 0.967561i 0.875189 + 0.483781i \(0.160737\pi\)
−0.875189 + 0.483781i \(0.839263\pi\)
\(728\) −4060.94 + 8100.23i −0.00766239 + 0.0152839i
\(729\) 551848. 1.03840
\(730\) −123827. 320496.i −0.232365 0.601419i
\(731\) −67288.0 −0.125922
\(732\) 299443. + 329671.i 0.558845 + 0.615259i
\(733\) 384728.i 0.716055i 0.933711 + 0.358027i \(0.116551\pi\)
−0.933711 + 0.358027i \(0.883449\pi\)
\(734\) −162493. 420574.i −0.301608 0.780639i
\(735\) 190036.i 0.351771i
\(736\) 835234. 233560.i 1.54189 0.431165i
\(737\) 38373.4 0.0706473
\(738\) −277861. + 107355.i −0.510170 + 0.197110i
\(739\) −66307.5 −0.121415 −0.0607077 0.998156i \(-0.519336\pi\)
−0.0607077 + 0.998156i \(0.519336\pi\)
\(740\) 322586. 293008.i 0.589091 0.535077i
\(741\) 122862.i 0.223760i
\(742\) 29403.9 11360.5i 0.0534069 0.0206343i
\(743\) 786533.i 1.42475i −0.701798 0.712376i \(-0.747619\pi\)
0.701798 0.712376i \(-0.252381\pi\)
\(744\) 484953. + 243125.i 0.876101 + 0.439222i
\(745\) 220757. 0.397743
\(746\) −23181.2 59998.8i −0.0416541 0.107811i
\(747\) −209613. −0.375645
\(748\) 2711.93 2463.27i 0.00484702 0.00440259i
\(749\) 5190.76i 0.00925268i
\(750\) −14302.4 37018.3i −0.0254265 0.0658104i
\(751\) 743780.i 1.31876i 0.751811 + 0.659379i \(0.229181\pi\)
−0.751811 + 0.659379i \(0.770819\pi\)
\(752\) −558698. 53813.6i −0.987965 0.0951604i
\(753\) 105667. 0.186359
\(754\) 156336. 60402.1i 0.274990 0.106245i
\(755\) −317288. −0.556622
\(756\) −22082.0 24311.1i −0.0386362 0.0425365i
\(757\) 378393.i 0.660315i 0.943926 + 0.330158i \(0.107102\pi\)
−0.943926 + 0.330158i \(0.892898\pi\)
\(758\) 779130. 301025.i 1.35604 0.523919i
\(759\) 47839.9i 0.0830437i
\(760\) −202581. 101561.i −0.350729 0.175833i
\(761\) −487660. −0.842070 −0.421035 0.907044i \(-0.638333\pi\)
−0.421035 + 0.907044i \(0.638333\pi\)
\(762\) −65165.2 168664.i −0.112229 0.290478i
\(763\) −52548.6 −0.0902634
\(764\) 410346. + 451770.i 0.703013 + 0.773981i
\(765\) 9846.41i 0.0168250i
\(766\) 138476. + 358410.i 0.236002 + 0.610834i
\(767\) 24872.5i 0.0422793i
\(768\) −456694. 88800.9i −0.774288 0.150555i
\(769\) −264950. −0.448034 −0.224017 0.974585i \(-0.571917\pi\)
−0.224017 + 0.974585i \(0.571917\pi\)
\(770\) 859.950 332.251i 0.00145041 0.000560382i
\(771\) 453595. 0.763061
\(772\) −418024. + 379695.i −0.701401 + 0.637089i
\(773\) 515794.i 0.863212i −0.902062 0.431606i \(-0.857947\pi\)
0.902062 0.431606i \(-0.142053\pi\)
\(774\) −266982. + 103151.i −0.445657 + 0.172184i
\(775\) 149250.i 0.248491i
\(776\) −246770. + 492224.i −0.409797 + 0.817408i
\(777\) 44807.4 0.0742178
\(778\) −243413. 630015.i −0.402147 1.04086i
\(779\) −770674. −1.26998
\(780\) −51369.8 + 46659.7i −0.0844343 + 0.0766924i
\(781\) 6959.79i 0.0114102i
\(782\) −35136.7 90942.8i −0.0574576 0.148715i
\(783\) 607471.i 0.990836i
\(784\) 58765.9 610114.i 0.0956078 0.992610i
\(785\) 49830.8 0.0808646
\(786\) 459538. 177547.i 0.743834 0.287388i
\(787\) −537891. −0.868449 −0.434225 0.900805i \(-0.642978\pi\)
−0.434225 + 0.900805i \(0.642978\pi\)
\(788\) −67592.7 74416.1i −0.108855 0.119843i
\(789\) 328443.i 0.527601i
\(790\) −61546.6 + 23779.2i −0.0986166 + 0.0381016i
\(791\) 1478.08i 0.00236235i
\(792\) 6984.11 13931.0i 0.0111342 0.0222091i
\(793\) −214267. −0.340729
\(794\) −273140. 706955.i −0.433255 1.12138i
\(795\) 241421. 0.381980
\(796\) 223917. + 246521.i 0.353396 + 0.389071i
\(797\) 839237.i 1.32120i 0.750739 + 0.660599i \(0.229698\pi\)
−0.750739 + 0.660599i \(0.770302\pi\)
\(798\) −8397.24 21734.2i −0.0131865 0.0341301i
\(799\) 63096.6i 0.0988353i
\(800\) 34470.9 + 123271.i 0.0538607 + 0.192611i
\(801\) −401295. −0.625459
\(802\) 449081. 173507.i 0.698194 0.269755i
\(803\) 61129.2 0.0948021
\(804\) −405500. + 368319.i −0.627305 + 0.569786i
\(805\) 24533.1i 0.0378583i
\(806\) −243453. + 94060.8i −0.374753 + 0.144790i
\(807\) 619588.i 0.951384i
\(808\) −409916. 205506.i −0.627874 0.314776i
\(809\) 514568. 0.786223 0.393111 0.919491i \(-0.371399\pi\)
0.393111 + 0.919491i \(0.371399\pi\)
\(810\) −50699.9 131224.i −0.0772747 0.200007i
\(811\) 174798. 0.265763 0.132881 0.991132i \(-0.457577\pi\)
0.132881 + 0.991132i \(0.457577\pi\)
\(812\) 23527.4 21370.1i 0.0356830 0.0324112i
\(813\) 1.01077e6i 1.52922i
\(814\) 27943.2 + 72324.1i 0.0421723 + 0.109153i
\(815\) 21361.1i 0.0321594i
\(816\) −5014.37 + 52059.7i −0.00753071 + 0.0781846i
\(817\) −740500. −1.10938
\(818\) 561502. 216942.i 0.839160 0.324218i
\(819\) 4332.76 0.00645947
\(820\) 292680. + 322226.i 0.435277 + 0.479217i
\(821\) 1.02886e6i 1.52641i 0.646159 + 0.763203i \(0.276374\pi\)
−0.646159 + 0.763203i \(0.723626\pi\)
\(822\) −11274.9 + 4356.17i −0.0166866 + 0.00644705i
\(823\) 54452.4i 0.0803928i −0.999192 0.0401964i \(-0.987202\pi\)
0.999192 0.0401964i \(-0.0127984\pi\)
\(824\) 458294. + 229760.i 0.674979 + 0.338392i
\(825\) 7060.62 0.0103737
\(826\) 1699.95 + 4399.91i 0.00249159 + 0.00644887i
\(827\) 1.20898e6 1.76770 0.883848 0.467773i \(-0.154944\pi\)
0.883848 + 0.467773i \(0.154944\pi\)
\(828\) −278828. 306975.i −0.406701 0.447757i
\(829\) 366682.i 0.533556i 0.963758 + 0.266778i \(0.0859591\pi\)
−0.963758 + 0.266778i \(0.914041\pi\)
\(830\) 110396. + 285734.i 0.160250 + 0.414769i
\(831\) 537143.i 0.777836i
\(832\) 179353. 133917.i 0.259097 0.193458i
\(833\) −68903.2 −0.0993001
\(834\) −578591. + 223545.i −0.831839 + 0.321390i
\(835\) −567566. −0.814035
\(836\) 29844.6 27108.1i 0.0427025 0.0387870i
\(837\) 945980.i 1.35030i
\(838\) 1.07790e6 416459.i 1.53494 0.593041i
\(839\) 1.27074e6i 1.80523i −0.430444 0.902617i \(-0.641643\pi\)
0.430444 0.902617i \(-0.358357\pi\)
\(840\) −5898.23 + 11765.0i −0.00835917 + 0.0166738i
\(841\) 119393. 0.168806
\(842\) −262808. 680214.i −0.370693 0.959448i
\(843\) 309315. 0.435257
\(844\) 251000. 227985.i 0.352362 0.320053i
\(845\) 285934.i 0.400454i
\(846\) 96726.0 + 250352.i 0.135146 + 0.349792i
\(847\) 37768.5i 0.0526457i
\(848\) −775088. 74656.2i −1.07785 0.103818i
\(849\) 476581. 0.661183
\(850\) 13422.1 5185.78i 0.0185773 0.00717755i
\(851\) 2.06330e6 2.84907
\(852\) 66802.1 + 73545.6i 0.0920260 + 0.101316i
\(853\) 927864.i 1.27522i 0.770358 + 0.637612i \(0.220077\pi\)
−0.770358 + 0.637612i \(0.779923\pi\)
\(854\) −37903.6 + 14644.4i −0.0519714 + 0.0200797i
\(855\) 108359.i 0.148229i
\(856\) −57466.2 + 114626.i −0.0784269 + 0.156435i
\(857\) 155651. 0.211928 0.105964 0.994370i \(-0.466207\pi\)
0.105964 + 0.994370i \(0.466207\pi\)
\(858\) −4449.77 11517.1i −0.00604454 0.0156448i
\(859\) −1.04127e6 −1.41116 −0.705578 0.708632i \(-0.749313\pi\)
−0.705578 + 0.708632i \(0.749313\pi\)
\(860\) 281221. + 309610.i 0.380234 + 0.418618i
\(861\) 44757.3i 0.0603751i
\(862\) 144873. + 374967.i 0.194972 + 0.504637i
\(863\) 1.42220e6i 1.90959i −0.297264 0.954795i \(-0.596074\pi\)
0.297264 0.954795i \(-0.403926\pi\)
\(864\) 218484. + 781321.i 0.292680 + 1.04665i
\(865\) 473687. 0.633081
\(866\) 1.22440e6 473060.i 1.63263 0.630784i
\(867\) −587045. −0.780968
\(868\) −36637.9 + 33278.5i −0.0486285 + 0.0441697i
\(869\) 11739.0i 0.0155450i
\(870\) 227067. 87729.7i 0.299996 0.115907i
\(871\) 263551.i 0.347399i
\(872\) 1.16041e6 + 581758.i 1.52609 + 0.765084i
\(873\) 263287. 0.345463
\(874\) −386678. 1.00082e6i −0.506205 1.31019i
\(875\) 3620.81 0.00472922
\(876\) −645965. + 586735.i −0.841784 + 0.764600i
\(877\) 577824.i 0.751271i −0.926768 0.375635i \(-0.877424\pi\)
0.926768 0.375635i \(-0.122576\pi\)
\(878\) 223810. + 579278.i 0.290329 + 0.751446i
\(879\) 301405.i 0.390098i
\(880\) −22668.3 2183.40i −0.0292721 0.00281947i
\(881\) −95874.2 −0.123524 −0.0617618 0.998091i \(-0.519672\pi\)
−0.0617618 + 0.998091i \(0.519672\pi\)
\(882\) −273391. + 105627.i −0.351437 + 0.135781i
\(883\) 1.28768e6 1.65153 0.825765 0.564014i \(-0.190744\pi\)
0.825765 + 0.564014i \(0.190744\pi\)
\(884\) −16917.9 18625.7i −0.0216492 0.0238346i
\(885\) 36125.5i 0.0461240i
\(886\) −1.26059e6 + 487042.i −1.60585 + 0.620439i
\(887\) 1.17289e6i 1.49077i −0.666633 0.745386i \(-0.732265\pi\)
0.666633 0.745386i \(-0.267735\pi\)
\(888\) −989468. 496057.i −1.25480 0.629079i
\(889\) 16497.3 0.0208741
\(890\) 211349. + 547025.i 0.266821 + 0.690601i
\(891\) 25028.8 0.0315272
\(892\) −503601. 554439.i −0.632932 0.696825i
\(893\) 694374.i 0.870744i
\(894\) −202071. 523012.i −0.252831 0.654390i
\(895\) 580284.i 0.724427i
\(896\) 22574.6 35947.9i 0.0281193 0.0447772i
\(897\) −328568. −0.408357
\(898\) −915903. + 353869.i −1.13579 + 0.438823i
\(899\) 915484. 1.13274
\(900\) 45306.0 41151.8i 0.0559333 0.0508047i
\(901\) 87534.6i 0.107828i
\(902\) −72243.2 + 27911.9i −0.0887940 + 0.0343065i
\(903\) 43005.0i 0.0527404i
\(904\) −16363.6 + 32639.9i −0.0200236 + 0.0399404i
\(905\) −91417.5 −0.111617
\(906\) 290431. + 751711.i 0.353824 + 0.915787i
\(907\) 410980. 0.499581 0.249791 0.968300i \(-0.419638\pi\)
0.249791 + 0.968300i \(0.419638\pi\)
\(908\) 23613.4 21448.3i 0.0286409 0.0260148i
\(909\) 219261.i 0.265359i
\(910\) −2281.92 5906.20i −0.00275561 0.00713223i
\(911\) 67611.8i 0.0814678i −0.999170 0.0407339i \(-0.987030\pi\)
0.999170 0.0407339i \(-0.0129696\pi\)
\(912\) −55182.8 + 572914.i −0.0663459 + 0.688810i
\(913\) −54498.9 −0.0653802
\(914\) −429114. + 165793.i −0.513666 + 0.198460i
\(915\) −311207. −0.371713
\(916\) 490463. + 539974.i 0.584542 + 0.643550i
\(917\) 44948.0i 0.0534529i
\(918\) 85072.6 32868.7i 0.100950 0.0390029i
\(919\) 423513.i 0.501459i −0.968057 0.250729i \(-0.919330\pi\)
0.968057 0.250729i \(-0.0806705\pi\)
\(920\) −271603. + 541757.i −0.320892 + 0.640072i
\(921\) −160301. −0.188980
\(922\) 166440. + 430790.i 0.195793 + 0.506762i
\(923\) −47800.4 −0.0561084
\(924\) −1574.32 1733.24i −0.00184395 0.00203009i
\(925\) 304520.i 0.355903i
\(926\) −444491. 1.15046e6i −0.518371 1.34168i
\(927\) 245139.i 0.285268i
\(928\) −756133. + 211441.i −0.878016 + 0.245524i
\(929\) 963117. 1.11596 0.557979 0.829855i \(-0.311577\pi\)
0.557979 + 0.829855i \(0.311577\pi\)
\(930\) −353599. + 136617.i −0.408832 + 0.157956i
\(931\) −758276. −0.874839
\(932\) −974652. + 885285.i −1.12206 + 1.01918i
\(933\) 738989.i 0.848935i
\(934\) −873671. + 337552.i −1.00151 + 0.386943i
\(935\) 2560.04i 0.00292836i
\(936\) −95678.9 47967.4i −0.109211 0.0547513i
\(937\) −1.35035e6 −1.53804 −0.769019 0.639226i \(-0.779255\pi\)
−0.769019 + 0.639226i \(0.779255\pi\)
\(938\) −18012.9 46621.9i −0.0204728 0.0529889i
\(939\) −596358. −0.676357
\(940\) 290324. 263704.i 0.328570 0.298443i
\(941\) 651491.i 0.735748i −0.929876 0.367874i \(-0.880086\pi\)
0.929876 0.367874i \(-0.119914\pi\)
\(942\) −45612.9 118058.i −0.0514027 0.133043i
\(943\) 2.06099e6i 2.31768i
\(944\) 11171.3 115982.i 0.0125360 0.130150i
\(945\) 22949.6 0.0256987
\(946\) −69414.7 + 26819.1i −0.0775656 + 0.0299683i
\(947\) −1.31859e6 −1.47032 −0.735158 0.677896i \(-0.762892\pi\)
−0.735158 + 0.677896i \(0.762892\pi\)
\(948\) 112674. + 124048.i 0.125374 + 0.138030i
\(949\) 419840.i 0.466177i
\(950\) 147710. 57069.2i 0.163667 0.0632346i
\(951\) 375934.i 0.415671i
\(952\) −4265.76 2138.58i −0.00470677 0.00235968i
\(953\) −76396.5 −0.0841178 −0.0420589 0.999115i \(-0.513392\pi\)
−0.0420589 + 0.999115i \(0.513392\pi\)
\(954\) 134189. + 347316.i 0.147442 + 0.381617i
\(955\) −426468. −0.467605
\(956\) −1.12775e6 1.24160e6i −1.23395 1.35852i
\(957\) 43309.2i 0.0472886i
\(958\) 253546. + 656242.i 0.276265 + 0.715044i
\(959\) 1102.81i 0.00119912i
\(960\) 260497. 194504.i 0.282658 0.211051i
\(961\) −502111. −0.543692
\(962\) 496727. 191916.i 0.536744 0.207377i
\(963\) 61312.6 0.0661146
\(964\) 120170. 109151.i 0.129313 0.117456i
\(965\) 394612.i 0.423756i
\(966\) −58123.2 + 22456.5i −0.0622867 + 0.0240651i
\(967\) 462106.i 0.494184i −0.968992 0.247092i \(-0.920525\pi\)
0.968992 0.247092i \(-0.0794749\pi\)
\(968\) −418130. + 834029.i −0.446232 + 0.890083i
\(969\) 64702.0 0.0689081
\(970\) −138665. 358900.i −0.147375 0.381443i
\(971\) 901828. 0.956501 0.478250 0.878223i \(-0.341271\pi\)
0.478250 + 0.878223i \(0.341271\pi\)
\(972\) 495577. 450137.i 0.524540 0.476444i
\(973\) 56592.7i 0.0597771i
\(974\) −416741. 1.07863e6i −0.439287 1.13699i
\(975\) 48492.8i 0.0510115i
\(976\) 999139. + 96236.6i 1.04888 + 0.101028i
\(977\) 46500.7 0.0487159 0.0243580 0.999703i \(-0.492246\pi\)
0.0243580 + 0.999703i \(0.492246\pi\)
\(978\) −50608.1 + 19553.0i −0.0529106 + 0.0204426i
\(979\) −104336. −0.108860
\(980\) 287972. + 317042.i 0.299846 + 0.330115i
\(981\) 620697.i 0.644973i
\(982\) 682110. 263540.i 0.707345 0.273290i
\(983\) 649309.i 0.671961i 0.941869 + 0.335981i \(0.109068\pi\)
−0.941869 + 0.335981i \(0.890932\pi\)
\(984\) 495502. 988361.i 0.511747 1.02076i
\(985\) 70248.3 0.0724042
\(986\) 31809.1 + 82330.1i 0.0327188 + 0.0846846i
\(987\) 40326.2 0.0413955
\(988\) −186180. 204975.i −0.190730 0.209984i
\(989\) 1.98030e6i 2.02460i
\(990\) 3924.50 + 10157.6i 0.00400419 + 0.0103639i
\(991\) 194704.i 0.198257i −0.995075 0.0991285i \(-0.968395\pi\)
0.995075 0.0991285i \(-0.0316055\pi\)
\(992\) 1.17748e6 329265.i 1.19655 0.334597i
\(993\) −438238. −0.444439
\(994\) −8455.83 + 3267.00i −0.00855822 + 0.00330656i
\(995\) −232715. −0.235060
\(996\) 575902. 523096.i 0.580537 0.527306i
\(997\) 1.72172e6i 1.73210i −0.499959 0.866049i \(-0.666652\pi\)
0.499959 0.866049i \(-0.333348\pi\)
\(998\) 1.73020e6 668481.i 1.73714 0.671163i
\(999\) 1.93012e6i 1.93398i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 40.5.g.a.11.15 16
3.2 odd 2 360.5.g.a.91.2 16
4.3 odd 2 160.5.g.a.111.6 16
5.2 odd 4 200.5.e.e.99.20 32
5.3 odd 4 200.5.e.e.99.13 32
5.4 even 2 200.5.g.h.51.2 16
8.3 odd 2 inner 40.5.g.a.11.16 yes 16
8.5 even 2 160.5.g.a.111.5 16
12.11 even 2 1440.5.g.a.271.5 16
20.3 even 4 800.5.e.e.399.17 32
20.7 even 4 800.5.e.e.399.16 32
20.19 odd 2 800.5.g.h.751.12 16
24.5 odd 2 1440.5.g.a.271.12 16
24.11 even 2 360.5.g.a.91.1 16
40.3 even 4 200.5.e.e.99.19 32
40.13 odd 4 800.5.e.e.399.15 32
40.19 odd 2 200.5.g.h.51.1 16
40.27 even 4 200.5.e.e.99.14 32
40.29 even 2 800.5.g.h.751.11 16
40.37 odd 4 800.5.e.e.399.18 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
40.5.g.a.11.15 16 1.1 even 1 trivial
40.5.g.a.11.16 yes 16 8.3 odd 2 inner
160.5.g.a.111.5 16 8.5 even 2
160.5.g.a.111.6 16 4.3 odd 2
200.5.e.e.99.13 32 5.3 odd 4
200.5.e.e.99.14 32 40.27 even 4
200.5.e.e.99.19 32 40.3 even 4
200.5.e.e.99.20 32 5.2 odd 4
200.5.g.h.51.1 16 40.19 odd 2
200.5.g.h.51.2 16 5.4 even 2
360.5.g.a.91.1 16 24.11 even 2
360.5.g.a.91.2 16 3.2 odd 2
800.5.e.e.399.15 32 40.13 odd 4
800.5.e.e.399.16 32 20.7 even 4
800.5.e.e.399.17 32 20.3 even 4
800.5.e.e.399.18 32 40.37 odd 4
800.5.g.h.751.11 16 40.29 even 2
800.5.g.h.751.12 16 20.19 odd 2
1440.5.g.a.271.5 16 12.11 even 2
1440.5.g.a.271.12 16 24.5 odd 2