Properties

Label 800.5.e.e.399.16
Level $800$
Weight $5$
Character 800.399
Analytic conductor $82.696$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [800,5,Mod(399,800)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(800, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 1]))
 
N = Newforms(chi, 5, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("800.399");
 
S:= CuspForms(chi, 5);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 800 = 2^{5} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 800.e (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(82.6959704671\)
Analytic rank: \(0\)
Dimension: \(32\)
Twist minimal: no (minimal twist has level 40)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 399.16
Character \(\chi\) \(=\) 800.399
Dual form 800.5.e.e.399.15

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+7.09911i q^{3} +2.59084 q^{7} +30.6027 q^{9} +7.95663 q^{11} +54.6467 q^{13} -28.7782i q^{17} -316.702 q^{19} +18.3927i q^{21} -846.949 q^{23} +792.279i q^{27} +766.738i q^{29} -1194.00i q^{31} +56.4850i q^{33} +2436.16 q^{37} +387.943i q^{39} +2433.43 q^{41} +2338.16i q^{43} -2192.51 q^{47} -2394.29 q^{49} +204.299 q^{51} -3041.70 q^{53} -2248.30i q^{57} +455.150 q^{59} +3920.95i q^{61} +79.2868 q^{63} +4822.82i q^{67} -6012.58i q^{69} -874.716i q^{71} +7682.80i q^{73} +20.6144 q^{77} +1475.37i q^{79} -3145.66 q^{81} +6849.50i q^{83} -5443.16 q^{87} -13113.1 q^{89} +141.581 q^{91} +8476.32 q^{93} -8603.40i q^{97} +243.494 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q - 864 q^{9} - 384 q^{11} - 1408 q^{19} - 4416 q^{41} + 4960 q^{49} + 35584 q^{51} + 28032 q^{59} + 20768 q^{81} - 13632 q^{89} - 49152 q^{91} + 5248 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/800\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(351\) \(577\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 7.09911i 0.788789i 0.918941 + 0.394395i \(0.129046\pi\)
−0.918941 + 0.394395i \(0.870954\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 2.59084 0.0528743 0.0264372 0.999650i \(-0.491584\pi\)
0.0264372 + 0.999650i \(0.491584\pi\)
\(8\) 0 0
\(9\) 30.6027 0.377811
\(10\) 0 0
\(11\) 7.95663 0.0657573 0.0328786 0.999459i \(-0.489533\pi\)
0.0328786 + 0.999459i \(0.489533\pi\)
\(12\) 0 0
\(13\) 54.6467 0.323353 0.161677 0.986844i \(-0.448310\pi\)
0.161677 + 0.986844i \(0.448310\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) − 28.7782i − 0.0995785i −0.998760 0.0497892i \(-0.984145\pi\)
0.998760 0.0497892i \(-0.0158550\pi\)
\(18\) 0 0
\(19\) −316.702 −0.877291 −0.438646 0.898660i \(-0.644542\pi\)
−0.438646 + 0.898660i \(0.644542\pi\)
\(20\) 0 0
\(21\) 18.3927i 0.0417067i
\(22\) 0 0
\(23\) −846.949 −1.60104 −0.800519 0.599308i \(-0.795443\pi\)
−0.800519 + 0.599308i \(0.795443\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 792.279i 1.08680i
\(28\) 0 0
\(29\) 766.738i 0.911698i 0.890057 + 0.455849i \(0.150664\pi\)
−0.890057 + 0.455849i \(0.849336\pi\)
\(30\) 0 0
\(31\) − 1194.00i − 1.24245i −0.783631 0.621227i \(-0.786634\pi\)
0.783631 0.621227i \(-0.213366\pi\)
\(32\) 0 0
\(33\) 56.4850i 0.0518686i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 2436.16 1.77952 0.889758 0.456432i \(-0.150873\pi\)
0.889758 + 0.456432i \(0.150873\pi\)
\(38\) 0 0
\(39\) 387.943i 0.255058i
\(40\) 0 0
\(41\) 2433.43 1.44761 0.723806 0.690004i \(-0.242391\pi\)
0.723806 + 0.690004i \(0.242391\pi\)
\(42\) 0 0
\(43\) 2338.16i 1.26455i 0.774742 + 0.632277i \(0.217880\pi\)
−0.774742 + 0.632277i \(0.782120\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −2192.51 −0.992537 −0.496269 0.868169i \(-0.665297\pi\)
−0.496269 + 0.868169i \(0.665297\pi\)
\(48\) 0 0
\(49\) −2394.29 −0.997204
\(50\) 0 0
\(51\) 204.299 0.0785464
\(52\) 0 0
\(53\) −3041.70 −1.08284 −0.541420 0.840752i \(-0.682113\pi\)
−0.541420 + 0.840752i \(0.682113\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) − 2248.30i − 0.691998i
\(58\) 0 0
\(59\) 455.150 0.130753 0.0653764 0.997861i \(-0.479175\pi\)
0.0653764 + 0.997861i \(0.479175\pi\)
\(60\) 0 0
\(61\) 3920.95i 1.05374i 0.849947 + 0.526868i \(0.176634\pi\)
−0.849947 + 0.526868i \(0.823366\pi\)
\(62\) 0 0
\(63\) 79.2868 0.0199765
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 4822.82i 1.07436i 0.843466 + 0.537182i \(0.180511\pi\)
−0.843466 + 0.537182i \(0.819489\pi\)
\(68\) 0 0
\(69\) − 6012.58i − 1.26288i
\(70\) 0 0
\(71\) − 874.716i − 0.173520i −0.996229 0.0867602i \(-0.972349\pi\)
0.996229 0.0867602i \(-0.0276514\pi\)
\(72\) 0 0
\(73\) 7682.80i 1.44170i 0.693093 + 0.720848i \(0.256248\pi\)
−0.693093 + 0.720848i \(0.743752\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 20.6144 0.00347687
\(78\) 0 0
\(79\) 1475.37i 0.236400i 0.992990 + 0.118200i \(0.0377123\pi\)
−0.992990 + 0.118200i \(0.962288\pi\)
\(80\) 0 0
\(81\) −3145.66 −0.479448
\(82\) 0 0
\(83\) 6849.50i 0.994266i 0.867674 + 0.497133i \(0.165614\pi\)
−0.867674 + 0.497133i \(0.834386\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) −5443.16 −0.719138
\(88\) 0 0
\(89\) −13113.1 −1.65548 −0.827740 0.561111i \(-0.810374\pi\)
−0.827740 + 0.561111i \(0.810374\pi\)
\(90\) 0 0
\(91\) 141.581 0.0170971
\(92\) 0 0
\(93\) 8476.32 0.980035
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) − 8603.40i − 0.914380i −0.889369 0.457190i \(-0.848856\pi\)
0.889369 0.457190i \(-0.151144\pi\)
\(98\) 0 0
\(99\) 243.494 0.0248438
\(100\) 0 0
\(101\) − 7164.77i − 0.702360i −0.936308 0.351180i \(-0.885781\pi\)
0.936308 0.351180i \(-0.114219\pi\)
\(102\) 0 0
\(103\) −8010.36 −0.755053 −0.377527 0.925999i \(-0.623225\pi\)
−0.377527 + 0.925999i \(0.623225\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 2003.50i 0.174994i 0.996165 + 0.0874969i \(0.0278868\pi\)
−0.996165 + 0.0874969i \(0.972113\pi\)
\(108\) 0 0
\(109\) − 20282.4i − 1.70713i −0.520985 0.853566i \(-0.674435\pi\)
0.520985 0.853566i \(-0.325565\pi\)
\(110\) 0 0
\(111\) 17294.5i 1.40366i
\(112\) 0 0
\(113\) 570.501i 0.0446786i 0.999750 + 0.0223393i \(0.00711141\pi\)
−0.999750 + 0.0223393i \(0.992889\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 1672.34 0.122166
\(118\) 0 0
\(119\) − 74.5597i − 0.00526514i
\(120\) 0 0
\(121\) −14577.7 −0.995676
\(122\) 0 0
\(123\) 17275.2i 1.14186i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) −6367.53 −0.394788 −0.197394 0.980324i \(-0.563248\pi\)
−0.197394 + 0.980324i \(0.563248\pi\)
\(128\) 0 0
\(129\) −16598.8 −0.997467
\(130\) 0 0
\(131\) −17348.8 −1.01094 −0.505472 0.862843i \(-0.668681\pi\)
−0.505472 + 0.862843i \(0.668681\pi\)
\(132\) 0 0
\(133\) −820.525 −0.0463862
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) − 425.657i − 0.0226787i −0.999936 0.0113394i \(-0.996390\pi\)
0.999936 0.0113394i \(-0.00360951\pi\)
\(138\) 0 0
\(139\) −21843.4 −1.13055 −0.565276 0.824902i \(-0.691230\pi\)
−0.565276 + 0.824902i \(0.691230\pi\)
\(140\) 0 0
\(141\) − 15564.9i − 0.782903i
\(142\) 0 0
\(143\) 434.804 0.0212628
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) − 16997.3i − 0.786584i
\(148\) 0 0
\(149\) 19745.1i 0.889381i 0.895684 + 0.444690i \(0.146686\pi\)
−0.895684 + 0.444690i \(0.853314\pi\)
\(150\) 0 0
\(151\) − 28379.1i − 1.24464i −0.782761 0.622322i \(-0.786189\pi\)
0.782761 0.622322i \(-0.213811\pi\)
\(152\) 0 0
\(153\) − 880.690i − 0.0376218i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 4457.00 0.180819 0.0904094 0.995905i \(-0.471182\pi\)
0.0904094 + 0.995905i \(0.471182\pi\)
\(158\) 0 0
\(159\) − 21593.3i − 0.854133i
\(160\) 0 0
\(161\) −2194.31 −0.0846538
\(162\) 0 0
\(163\) − 1910.59i − 0.0719107i −0.999353 0.0359553i \(-0.988553\pi\)
0.999353 0.0359553i \(-0.0114474\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 50764.6 1.82024 0.910119 0.414347i \(-0.135990\pi\)
0.910119 + 0.414347i \(0.135990\pi\)
\(168\) 0 0
\(169\) −25574.7 −0.895443
\(170\) 0 0
\(171\) −9691.94 −0.331450
\(172\) 0 0
\(173\) −42367.9 −1.41561 −0.707806 0.706407i \(-0.750315\pi\)
−0.707806 + 0.706407i \(0.750315\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 3231.16i 0.103136i
\(178\) 0 0
\(179\) −51902.2 −1.61987 −0.809934 0.586521i \(-0.800497\pi\)
−0.809934 + 0.586521i \(0.800497\pi\)
\(180\) 0 0
\(181\) 8176.63i 0.249584i 0.992183 + 0.124792i \(0.0398264\pi\)
−0.992183 + 0.124792i \(0.960174\pi\)
\(182\) 0 0
\(183\) −27835.2 −0.831175
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) − 228.977i − 0.00654801i
\(188\) 0 0
\(189\) 2052.67i 0.0574640i
\(190\) 0 0
\(191\) − 38144.4i − 1.04560i −0.852456 0.522799i \(-0.824888\pi\)
0.852456 0.522799i \(-0.175112\pi\)
\(192\) 0 0
\(193\) 35295.2i 0.947547i 0.880647 + 0.473774i \(0.157109\pi\)
−0.880647 + 0.473774i \(0.842891\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 6283.20 0.161901 0.0809503 0.996718i \(-0.474204\pi\)
0.0809503 + 0.996718i \(0.474204\pi\)
\(198\) 0 0
\(199\) 20814.6i 0.525609i 0.964849 + 0.262805i \(0.0846474\pi\)
−0.964849 + 0.262805i \(0.915353\pi\)
\(200\) 0 0
\(201\) −34237.7 −0.847448
\(202\) 0 0
\(203\) 1986.50i 0.0482054i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −25918.9 −0.604890
\(208\) 0 0
\(209\) −2519.88 −0.0576883
\(210\) 0 0
\(211\) −21192.8 −0.476017 −0.238009 0.971263i \(-0.576495\pi\)
−0.238009 + 0.971263i \(0.576495\pi\)
\(212\) 0 0
\(213\) 6209.70 0.136871
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) − 3093.46i − 0.0656939i
\(218\) 0 0
\(219\) −54541.0 −1.13720
\(220\) 0 0
\(221\) − 1572.63i − 0.0321990i
\(222\) 0 0
\(223\) 46813.2 0.941365 0.470683 0.882303i \(-0.344008\pi\)
0.470683 + 0.882303i \(0.344008\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) − 1993.76i − 0.0386920i −0.999813 0.0193460i \(-0.993842\pi\)
0.999813 0.0193460i \(-0.00615841\pi\)
\(228\) 0 0
\(229\) − 45591.9i − 0.869394i −0.900577 0.434697i \(-0.856856\pi\)
0.900577 0.434697i \(-0.143144\pi\)
\(230\) 0 0
\(231\) 146.344i 0.00274252i
\(232\) 0 0
\(233\) 82293.2i 1.51584i 0.652350 + 0.757918i \(0.273783\pi\)
−0.652350 + 0.757918i \(0.726217\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) −10473.8 −0.186470
\(238\) 0 0
\(239\) − 104832.i − 1.83527i −0.397426 0.917634i \(-0.630097\pi\)
0.397426 0.917634i \(-0.369903\pi\)
\(240\) 0 0
\(241\) 10146.4 0.174693 0.0873467 0.996178i \(-0.472161\pi\)
0.0873467 + 0.996178i \(0.472161\pi\)
\(242\) 0 0
\(243\) 41843.3i 0.708620i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −17306.7 −0.283675
\(248\) 0 0
\(249\) −48625.3 −0.784267
\(250\) 0 0
\(251\) −14884.6 −0.236260 −0.118130 0.992998i \(-0.537690\pi\)
−0.118130 + 0.992998i \(0.537690\pi\)
\(252\) 0 0
\(253\) −6738.86 −0.105280
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 63894.6i 0.967382i 0.875239 + 0.483691i \(0.160704\pi\)
−0.875239 + 0.483691i \(0.839296\pi\)
\(258\) 0 0
\(259\) 6311.70 0.0940907
\(260\) 0 0
\(261\) 23464.3i 0.344450i
\(262\) 0 0
\(263\) −46265.3 −0.668874 −0.334437 0.942418i \(-0.608546\pi\)
−0.334437 + 0.942418i \(0.608546\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) − 93091.0i − 1.30583i
\(268\) 0 0
\(269\) 87276.9i 1.20613i 0.797691 + 0.603066i \(0.206054\pi\)
−0.797691 + 0.603066i \(0.793946\pi\)
\(270\) 0 0
\(271\) 142380.i 1.93869i 0.245696 + 0.969347i \(0.420984\pi\)
−0.245696 + 0.969347i \(0.579016\pi\)
\(272\) 0 0
\(273\) 1005.10i 0.0134860i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −75663.5 −0.986114 −0.493057 0.869997i \(-0.664121\pi\)
−0.493057 + 0.869997i \(0.664121\pi\)
\(278\) 0 0
\(279\) − 36539.6i − 0.469413i
\(280\) 0 0
\(281\) 43571.0 0.551804 0.275902 0.961186i \(-0.411023\pi\)
0.275902 + 0.961186i \(0.411023\pi\)
\(282\) 0 0
\(283\) 67132.6i 0.838225i 0.907934 + 0.419112i \(0.137659\pi\)
−0.907934 + 0.419112i \(0.862341\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 6304.64 0.0765415
\(288\) 0 0
\(289\) 82692.8 0.990084
\(290\) 0 0
\(291\) 61076.4 0.721253
\(292\) 0 0
\(293\) −42456.8 −0.494552 −0.247276 0.968945i \(-0.579535\pi\)
−0.247276 + 0.968945i \(0.579535\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 6303.87i 0.0714652i
\(298\) 0 0
\(299\) −46283.0 −0.517701
\(300\) 0 0
\(301\) 6057.80i 0.0668624i
\(302\) 0 0
\(303\) 50863.5 0.554014
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 22580.4i 0.239582i 0.992799 + 0.119791i \(0.0382225\pi\)
−0.992799 + 0.119791i \(0.961777\pi\)
\(308\) 0 0
\(309\) − 56866.4i − 0.595578i
\(310\) 0 0
\(311\) − 104096.i − 1.07625i −0.842865 0.538125i \(-0.819133\pi\)
0.842865 0.538125i \(-0.180867\pi\)
\(312\) 0 0
\(313\) 84004.7i 0.857462i 0.903432 + 0.428731i \(0.141039\pi\)
−0.903432 + 0.428731i \(0.858961\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −52955.1 −0.526974 −0.263487 0.964663i \(-0.584873\pi\)
−0.263487 + 0.964663i \(0.584873\pi\)
\(318\) 0 0
\(319\) 6100.65i 0.0599508i
\(320\) 0 0
\(321\) −14223.1 −0.138033
\(322\) 0 0
\(323\) 9114.11i 0.0873593i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 143987. 1.34657
\(328\) 0 0
\(329\) −5680.46 −0.0524797
\(330\) 0 0
\(331\) 61731.5 0.563444 0.281722 0.959496i \(-0.409094\pi\)
0.281722 + 0.959496i \(0.409094\pi\)
\(332\) 0 0
\(333\) 74553.0 0.672321
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) − 15465.0i − 0.136173i −0.997679 0.0680865i \(-0.978311\pi\)
0.997679 0.0680865i \(-0.0216894\pi\)
\(338\) 0 0
\(339\) −4050.05 −0.0352420
\(340\) 0 0
\(341\) − 9500.20i − 0.0817004i
\(342\) 0 0
\(343\) −12423.8 −0.105601
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 74344.2i 0.617431i 0.951154 + 0.308715i \(0.0998991\pi\)
−0.951154 + 0.308715i \(0.900101\pi\)
\(348\) 0 0
\(349\) − 82400.1i − 0.676514i −0.941054 0.338257i \(-0.890163\pi\)
0.941054 0.338257i \(-0.109837\pi\)
\(350\) 0 0
\(351\) 43295.4i 0.351421i
\(352\) 0 0
\(353\) − 153677.i − 1.23327i −0.787249 0.616635i \(-0.788495\pi\)
0.787249 0.616635i \(-0.211505\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 529.307 0.00415309
\(358\) 0 0
\(359\) 235554.i 1.82768i 0.406072 + 0.913841i \(0.366898\pi\)
−0.406072 + 0.913841i \(0.633102\pi\)
\(360\) 0 0
\(361\) −30020.8 −0.230360
\(362\) 0 0
\(363\) − 103489.i − 0.785379i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −112718. −0.836878 −0.418439 0.908245i \(-0.637423\pi\)
−0.418439 + 0.908245i \(0.637423\pi\)
\(368\) 0 0
\(369\) 74469.7 0.546924
\(370\) 0 0
\(371\) −7880.56 −0.0572545
\(372\) 0 0
\(373\) −16080.3 −0.115578 −0.0577892 0.998329i \(-0.518405\pi\)
−0.0577892 + 0.998329i \(0.518405\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 41899.7i 0.294801i
\(378\) 0 0
\(379\) 208815. 1.45373 0.726864 0.686781i \(-0.240977\pi\)
0.726864 + 0.686781i \(0.240977\pi\)
\(380\) 0 0
\(381\) − 45203.8i − 0.311404i
\(382\) 0 0
\(383\) −96057.8 −0.654840 −0.327420 0.944879i \(-0.606179\pi\)
−0.327420 + 0.944879i \(0.606179\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 71554.0i 0.477763i
\(388\) 0 0
\(389\) 168851.i 1.11584i 0.829893 + 0.557922i \(0.188401\pi\)
−0.829893 + 0.557922i \(0.811599\pi\)
\(390\) 0 0
\(391\) 24373.6i 0.159429i
\(392\) 0 0
\(393\) − 123161.i − 0.797422i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 189472. 1.20216 0.601081 0.799188i \(-0.294737\pi\)
0.601081 + 0.799188i \(0.294737\pi\)
\(398\) 0 0
\(399\) − 5824.99i − 0.0365889i
\(400\) 0 0
\(401\) 120359. 0.748494 0.374247 0.927329i \(-0.377901\pi\)
0.374247 + 0.927329i \(0.377901\pi\)
\(402\) 0 0
\(403\) − 65248.1i − 0.401751i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 19383.6 0.117016
\(408\) 0 0
\(409\) −150488. −0.899615 −0.449807 0.893126i \(-0.648507\pi\)
−0.449807 + 0.893126i \(0.648507\pi\)
\(410\) 0 0
\(411\) 3021.79 0.0178887
\(412\) 0 0
\(413\) 1179.22 0.00691346
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) − 155068.i − 0.891767i
\(418\) 0 0
\(419\) 288889. 1.64552 0.822761 0.568388i \(-0.192433\pi\)
0.822761 + 0.568388i \(0.192433\pi\)
\(420\) 0 0
\(421\) − 182304.i − 1.02857i −0.857620 0.514284i \(-0.828058\pi\)
0.857620 0.514284i \(-0.171942\pi\)
\(422\) 0 0
\(423\) −67096.9 −0.374992
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 10158.6i 0.0557155i
\(428\) 0 0
\(429\) 3086.72i 0.0167719i
\(430\) 0 0
\(431\) − 100495.i − 0.540992i −0.962721 0.270496i \(-0.912812\pi\)
0.962721 0.270496i \(-0.0871877\pi\)
\(432\) 0 0
\(433\) − 328152.i − 1.75025i −0.483898 0.875124i \(-0.660779\pi\)
0.483898 0.875124i \(-0.339221\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 268230. 1.40458
\(438\) 0 0
\(439\) 155253.i 0.805582i 0.915292 + 0.402791i \(0.131960\pi\)
−0.915292 + 0.402791i \(0.868040\pi\)
\(440\) 0 0
\(441\) −73271.7 −0.376755
\(442\) 0 0
\(443\) − 337851.i − 1.72154i −0.508991 0.860772i \(-0.669981\pi\)
0.508991 0.860772i \(-0.330019\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) −140173. −0.701534
\(448\) 0 0
\(449\) 245472. 1.21761 0.608806 0.793319i \(-0.291649\pi\)
0.608806 + 0.793319i \(0.291649\pi\)
\(450\) 0 0
\(451\) 19361.9 0.0951910
\(452\) 0 0
\(453\) 201466. 0.981762
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) − 115007.i − 0.550671i −0.961348 0.275336i \(-0.911211\pi\)
0.961348 0.275336i \(-0.0887890\pi\)
\(458\) 0 0
\(459\) 22800.4 0.108222
\(460\) 0 0
\(461\) 115456.i 0.543270i 0.962400 + 0.271635i \(0.0875644\pi\)
−0.962400 + 0.271635i \(0.912436\pi\)
\(462\) 0 0
\(463\) 308334. 1.43833 0.719167 0.694837i \(-0.244524\pi\)
0.719167 + 0.694837i \(0.244524\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 234153.i 1.07366i 0.843691 + 0.536829i \(0.180378\pi\)
−0.843691 + 0.536829i \(0.819622\pi\)
\(468\) 0 0
\(469\) 12495.2i 0.0568063i
\(470\) 0 0
\(471\) 31640.7i 0.142628i
\(472\) 0 0
\(473\) 18603.9i 0.0831536i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −93084.2 −0.409109
\(478\) 0 0
\(479\) 175880.i 0.766558i 0.923633 + 0.383279i \(0.125205\pi\)
−0.923633 + 0.383279i \(0.874795\pi\)
\(480\) 0 0
\(481\) 133128. 0.575412
\(482\) 0 0
\(483\) − 15577.6i − 0.0667740i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) −289085. −1.21890 −0.609449 0.792826i \(-0.708609\pi\)
−0.609449 + 0.792826i \(0.708609\pi\)
\(488\) 0 0
\(489\) 13563.5 0.0567224
\(490\) 0 0
\(491\) −182813. −0.758304 −0.379152 0.925334i \(-0.623784\pi\)
−0.379152 + 0.925334i \(0.623784\pi\)
\(492\) 0 0
\(493\) 22065.3 0.0907855
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) − 2266.25i − 0.00917477i
\(498\) 0 0
\(499\) 463712. 1.86229 0.931145 0.364650i \(-0.118811\pi\)
0.931145 + 0.364650i \(0.118811\pi\)
\(500\) 0 0
\(501\) 360383.i 1.43578i
\(502\) 0 0
\(503\) 173588. 0.686094 0.343047 0.939318i \(-0.388541\pi\)
0.343047 + 0.939318i \(0.388541\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) − 181558.i − 0.706316i
\(508\) 0 0
\(509\) − 231066.i − 0.891867i −0.895066 0.445934i \(-0.852872\pi\)
0.895066 0.445934i \(-0.147128\pi\)
\(510\) 0 0
\(511\) 19904.9i 0.0762287i
\(512\) 0 0
\(513\) − 250917.i − 0.953443i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) −17445.0 −0.0652665
\(518\) 0 0
\(519\) − 300774.i − 1.11662i
\(520\) 0 0
\(521\) 39770.4 0.146516 0.0732578 0.997313i \(-0.476660\pi\)
0.0732578 + 0.997313i \(0.476660\pi\)
\(522\) 0 0
\(523\) − 71651.8i − 0.261953i −0.991385 0.130977i \(-0.958189\pi\)
0.991385 0.130977i \(-0.0418113\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −34361.1 −0.123722
\(528\) 0 0
\(529\) 437481. 1.56332
\(530\) 0 0
\(531\) 13928.8 0.0493998
\(532\) 0 0
\(533\) 132979. 0.468090
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) − 368459.i − 1.27774i
\(538\) 0 0
\(539\) −19050.5 −0.0655734
\(540\) 0 0
\(541\) 335147.i 1.14509i 0.819873 + 0.572546i \(0.194044\pi\)
−0.819873 + 0.572546i \(0.805956\pi\)
\(542\) 0 0
\(543\) −58046.7 −0.196869
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 174207.i 0.582225i 0.956689 + 0.291112i \(0.0940253\pi\)
−0.956689 + 0.291112i \(0.905975\pi\)
\(548\) 0 0
\(549\) 119992.i 0.398113i
\(550\) 0 0
\(551\) − 242828.i − 0.799825i
\(552\) 0 0
\(553\) 3822.45i 0.0124995i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −179035. −0.577069 −0.288534 0.957470i \(-0.593168\pi\)
−0.288534 + 0.957470i \(0.593168\pi\)
\(558\) 0 0
\(559\) 127773.i 0.408898i
\(560\) 0 0
\(561\) 1625.53 0.00516500
\(562\) 0 0
\(563\) − 126413.i − 0.398819i −0.979916 0.199410i \(-0.936098\pi\)
0.979916 0.199410i \(-0.0639024\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) −8149.90 −0.0253505
\(568\) 0 0
\(569\) 160597. 0.496035 0.248017 0.968756i \(-0.420221\pi\)
0.248017 + 0.968756i \(0.420221\pi\)
\(570\) 0 0
\(571\) 372210. 1.14160 0.570802 0.821088i \(-0.306633\pi\)
0.570802 + 0.821088i \(0.306633\pi\)
\(572\) 0 0
\(573\) 270791. 0.824756
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 328066.i 0.985393i 0.870201 + 0.492696i \(0.163989\pi\)
−0.870201 + 0.492696i \(0.836011\pi\)
\(578\) 0 0
\(579\) −250564. −0.747415
\(580\) 0 0
\(581\) 17746.0i 0.0525712i
\(582\) 0 0
\(583\) −24201.7 −0.0712047
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) − 128807.i − 0.373822i −0.982377 0.186911i \(-0.940152\pi\)
0.982377 0.186911i \(-0.0598476\pi\)
\(588\) 0 0
\(589\) 378142.i 1.08999i
\(590\) 0 0
\(591\) 44605.1i 0.127706i
\(592\) 0 0
\(593\) 210780.i 0.599405i 0.954033 + 0.299703i \(0.0968875\pi\)
−0.954033 + 0.299703i \(0.903113\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −147765. −0.414595
\(598\) 0 0
\(599\) − 187457.i − 0.522453i −0.965278 0.261226i \(-0.915873\pi\)
0.965278 0.261226i \(-0.0841269\pi\)
\(600\) 0 0
\(601\) 14463.8 0.0400436 0.0200218 0.999800i \(-0.493626\pi\)
0.0200218 + 0.999800i \(0.493626\pi\)
\(602\) 0 0
\(603\) 147591.i 0.405907i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 579553. 1.57295 0.786477 0.617620i \(-0.211903\pi\)
0.786477 + 0.617620i \(0.211903\pi\)
\(608\) 0 0
\(609\) −14102.4 −0.0380239
\(610\) 0 0
\(611\) −119814. −0.320940
\(612\) 0 0
\(613\) −377775. −1.00534 −0.502669 0.864479i \(-0.667648\pi\)
−0.502669 + 0.864479i \(0.667648\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 699981.i 1.83872i 0.393414 + 0.919361i \(0.371294\pi\)
−0.393414 + 0.919361i \(0.628706\pi\)
\(618\) 0 0
\(619\) −117981. −0.307915 −0.153957 0.988077i \(-0.549202\pi\)
−0.153957 + 0.988077i \(0.549202\pi\)
\(620\) 0 0
\(621\) − 671020.i − 1.74001i
\(622\) 0 0
\(623\) −33973.9 −0.0875324
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) − 17888.9i − 0.0455039i
\(628\) 0 0
\(629\) − 70108.2i − 0.177202i
\(630\) 0 0
\(631\) 749113.i 1.88143i 0.339193 + 0.940717i \(0.389846\pi\)
−0.339193 + 0.940717i \(0.610154\pi\)
\(632\) 0 0
\(633\) − 150450.i − 0.375478i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −130840. −0.322449
\(638\) 0 0
\(639\) − 26768.7i − 0.0655579i
\(640\) 0 0
\(641\) 190520. 0.463686 0.231843 0.972753i \(-0.425525\pi\)
0.231843 + 0.972753i \(0.425525\pi\)
\(642\) 0 0
\(643\) 272152.i 0.658248i 0.944287 + 0.329124i \(0.106753\pi\)
−0.944287 + 0.329124i \(0.893247\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −26959.8 −0.0644034 −0.0322017 0.999481i \(-0.510252\pi\)
−0.0322017 + 0.999481i \(0.510252\pi\)
\(648\) 0 0
\(649\) 3621.46 0.00859794
\(650\) 0 0
\(651\) 21960.8 0.0518187
\(652\) 0 0
\(653\) −497282. −1.16621 −0.583104 0.812397i \(-0.698162\pi\)
−0.583104 + 0.812397i \(0.698162\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 235115.i 0.544689i
\(658\) 0 0
\(659\) 150938. 0.347558 0.173779 0.984785i \(-0.444402\pi\)
0.173779 + 0.984785i \(0.444402\pi\)
\(660\) 0 0
\(661\) − 535544.i − 1.22572i −0.790191 0.612861i \(-0.790018\pi\)
0.790191 0.612861i \(-0.209982\pi\)
\(662\) 0 0
\(663\) 11164.3 0.0253982
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) − 649388.i − 1.45966i
\(668\) 0 0
\(669\) 332332.i 0.742539i
\(670\) 0 0
\(671\) 31197.5i 0.0692908i
\(672\) 0 0
\(673\) 189265.i 0.417868i 0.977930 + 0.208934i \(0.0669994\pi\)
−0.977930 + 0.208934i \(0.933001\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −464037. −1.01245 −0.506227 0.862400i \(-0.668960\pi\)
−0.506227 + 0.862400i \(0.668960\pi\)
\(678\) 0 0
\(679\) − 22290.0i − 0.0483472i
\(680\) 0 0
\(681\) 14153.9 0.0305199
\(682\) 0 0
\(683\) − 42942.9i − 0.0920556i −0.998940 0.0460278i \(-0.985344\pi\)
0.998940 0.0460278i \(-0.0146563\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 323661. 0.685769
\(688\) 0 0
\(689\) −166219. −0.350140
\(690\) 0 0
\(691\) 695800. 1.45723 0.728615 0.684924i \(-0.240164\pi\)
0.728615 + 0.684924i \(0.240164\pi\)
\(692\) 0 0
\(693\) 630.855 0.00131360
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) − 70029.8i − 0.144151i
\(698\) 0 0
\(699\) −584208. −1.19568
\(700\) 0 0
\(701\) 243528.i 0.495580i 0.968814 + 0.247790i \(0.0797043\pi\)
−0.968814 + 0.247790i \(0.920296\pi\)
\(702\) 0 0
\(703\) −771536. −1.56115
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) − 18562.8i − 0.0371368i
\(708\) 0 0
\(709\) − 210565.i − 0.418883i −0.977821 0.209442i \(-0.932835\pi\)
0.977821 0.209442i \(-0.0671646\pi\)
\(710\) 0 0
\(711\) 45150.3i 0.0893144i
\(712\) 0 0
\(713\) 1.01126e6i 1.98922i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 744216. 1.44764
\(718\) 0 0
\(719\) 174495.i 0.337539i 0.985656 + 0.168770i \(0.0539794\pi\)
−0.985656 + 0.168770i \(0.946021\pi\)
\(720\) 0 0
\(721\) −20753.6 −0.0399229
\(722\) 0 0
\(723\) 72030.1i 0.137796i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 511384. 0.967561 0.483781 0.875189i \(-0.339263\pi\)
0.483781 + 0.875189i \(0.339263\pi\)
\(728\) 0 0
\(729\) −551848. −1.03840
\(730\) 0 0
\(731\) 67288.0 0.125922
\(732\) 0 0
\(733\) 384728. 0.716055 0.358027 0.933711i \(-0.383449\pi\)
0.358027 + 0.933711i \(0.383449\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 38373.4i 0.0706473i
\(738\) 0 0
\(739\) −66307.5 −0.121415 −0.0607077 0.998156i \(-0.519336\pi\)
−0.0607077 + 0.998156i \(0.519336\pi\)
\(740\) 0 0
\(741\) − 122862.i − 0.223760i
\(742\) 0 0
\(743\) 786533. 1.42475 0.712376 0.701798i \(-0.247619\pi\)
0.712376 + 0.701798i \(0.247619\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 209613.i 0.375645i
\(748\) 0 0
\(749\) 5190.76i 0.00925268i
\(750\) 0 0
\(751\) − 743780.i − 1.31876i −0.751811 0.659379i \(-0.770819\pi\)
0.751811 0.659379i \(-0.229181\pi\)
\(752\) 0 0
\(753\) − 105667.i − 0.186359i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −378393. −0.660315 −0.330158 0.943926i \(-0.607102\pi\)
−0.330158 + 0.943926i \(0.607102\pi\)
\(758\) 0 0
\(759\) − 47839.9i − 0.0830437i
\(760\) 0 0
\(761\) −487660. −0.842070 −0.421035 0.907044i \(-0.638333\pi\)
−0.421035 + 0.907044i \(0.638333\pi\)
\(762\) 0 0
\(763\) − 52548.6i − 0.0902634i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 24872.5 0.0422793
\(768\) 0 0
\(769\) 264950. 0.448034 0.224017 0.974585i \(-0.428083\pi\)
0.224017 + 0.974585i \(0.428083\pi\)
\(770\) 0 0
\(771\) −453595. −0.763061
\(772\) 0 0
\(773\) −515794. −0.863212 −0.431606 0.902062i \(-0.642053\pi\)
−0.431606 + 0.902062i \(0.642053\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 44807.4i 0.0742178i
\(778\) 0 0
\(779\) −770674. −1.26998
\(780\) 0 0
\(781\) − 6959.79i − 0.0114102i
\(782\) 0 0
\(783\) −607471. −0.990836
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 537891.i 0.868449i 0.900805 + 0.434225i \(0.142978\pi\)
−0.900805 + 0.434225i \(0.857022\pi\)
\(788\) 0 0
\(789\) − 328443.i − 0.527601i
\(790\) 0 0
\(791\) 1478.08i 0.00236235i
\(792\) 0 0
\(793\) 214267.i 0.340729i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −839237. −1.32120 −0.660599 0.750739i \(-0.729698\pi\)
−0.660599 + 0.750739i \(0.729698\pi\)
\(798\) 0 0
\(799\) 63096.6i 0.0988353i
\(800\) 0 0
\(801\) −401295. −0.625459
\(802\) 0 0
\(803\) 61129.2i 0.0948021i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −619588. −0.951384
\(808\) 0 0
\(809\) −514568. −0.786223 −0.393111 0.919491i \(-0.628601\pi\)
−0.393111 + 0.919491i \(0.628601\pi\)
\(810\) 0 0
\(811\) −174798. −0.265763 −0.132881 0.991132i \(-0.542423\pi\)
−0.132881 + 0.991132i \(0.542423\pi\)
\(812\) 0 0
\(813\) −1.01077e6 −1.52922
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) − 740500.i − 1.10938i
\(818\) 0 0
\(819\) 4332.76 0.00645947
\(820\) 0 0
\(821\) 1.02886e6i 1.52641i 0.646159 + 0.763203i \(0.276374\pi\)
−0.646159 + 0.763203i \(0.723626\pi\)
\(822\) 0 0
\(823\) 54452.4 0.0803928 0.0401964 0.999192i \(-0.487202\pi\)
0.0401964 + 0.999192i \(0.487202\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) − 1.20898e6i − 1.76770i −0.467773 0.883848i \(-0.654944\pi\)
0.467773 0.883848i \(-0.345056\pi\)
\(828\) 0 0
\(829\) − 366682.i − 0.533556i −0.963758 0.266778i \(-0.914041\pi\)
0.963758 0.266778i \(-0.0859591\pi\)
\(830\) 0 0
\(831\) − 537143.i − 0.777836i
\(832\) 0 0
\(833\) 68903.2i 0.0993001i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 945980. 1.35030
\(838\) 0 0
\(839\) − 1.27074e6i − 1.80523i −0.430444 0.902617i \(-0.641643\pi\)
0.430444 0.902617i \(-0.358357\pi\)
\(840\) 0 0
\(841\) 119393. 0.168806
\(842\) 0 0
\(843\) 309315.i 0.435257i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −37768.5 −0.0526457
\(848\) 0 0
\(849\) −476581. −0.661183
\(850\) 0 0
\(851\) −2.06330e6 −2.84907
\(852\) 0 0
\(853\) 927864. 1.27522 0.637612 0.770358i \(-0.279923\pi\)
0.637612 + 0.770358i \(0.279923\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 155651.i 0.211928i 0.994370 + 0.105964i \(0.0337929\pi\)
−0.994370 + 0.105964i \(0.966207\pi\)
\(858\) 0 0
\(859\) −1.04127e6 −1.41116 −0.705578 0.708632i \(-0.749313\pi\)
−0.705578 + 0.708632i \(0.749313\pi\)
\(860\) 0 0
\(861\) 44757.3i 0.0603751i
\(862\) 0 0
\(863\) 1.42220e6 1.90959 0.954795 0.297264i \(-0.0960740\pi\)
0.954795 + 0.297264i \(0.0960740\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 587045.i 0.780968i
\(868\) 0 0
\(869\) 11739.0i 0.0155450i
\(870\) 0 0
\(871\) 263551.i 0.347399i
\(872\) 0 0
\(873\) − 263287.i − 0.345463i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 577824. 0.751271 0.375635 0.926768i \(-0.377424\pi\)
0.375635 + 0.926768i \(0.377424\pi\)
\(878\) 0 0
\(879\) − 301405.i − 0.390098i
\(880\) 0 0
\(881\) −95874.2 −0.123524 −0.0617618 0.998091i \(-0.519672\pi\)
−0.0617618 + 0.998091i \(0.519672\pi\)
\(882\) 0 0
\(883\) 1.28768e6i 1.65153i 0.564014 + 0.825765i \(0.309256\pi\)
−0.564014 + 0.825765i \(0.690744\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −1.17289e6 −1.49077 −0.745386 0.666633i \(-0.767735\pi\)
−0.745386 + 0.666633i \(0.767735\pi\)
\(888\) 0 0
\(889\) −16497.3 −0.0208741
\(890\) 0 0
\(891\) −25028.8 −0.0315272
\(892\) 0 0
\(893\) 694374. 0.870744
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) − 328568.i − 0.408357i
\(898\) 0 0
\(899\) 915484. 1.13274
\(900\) 0 0
\(901\) 87534.6i 0.107828i
\(902\) 0 0
\(903\) −43005.0 −0.0527404
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) − 410980.i − 0.499581i −0.968300 0.249791i \(-0.919638\pi\)
0.968300 0.249791i \(-0.0803618\pi\)
\(908\) 0 0
\(909\) − 219261.i − 0.265359i
\(910\) 0 0
\(911\) 67611.8i 0.0814678i 0.999170 + 0.0407339i \(0.0129696\pi\)
−0.999170 + 0.0407339i \(0.987030\pi\)
\(912\) 0 0
\(913\) 54498.9i 0.0653802i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −44948.0 −0.0534529
\(918\) 0 0
\(919\) − 423513.i − 0.501459i −0.968057 0.250729i \(-0.919330\pi\)
0.968057 0.250729i \(-0.0806705\pi\)
\(920\) 0 0
\(921\) −160301. −0.188980
\(922\) 0 0
\(923\) − 47800.4i − 0.0561084i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) −245139. −0.285268
\(928\) 0 0
\(929\) −963117. −1.11596 −0.557979 0.829855i \(-0.688423\pi\)
−0.557979 + 0.829855i \(0.688423\pi\)
\(930\) 0 0
\(931\) 758276. 0.874839
\(932\) 0 0
\(933\) 738989. 0.848935
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) − 1.35035e6i − 1.53804i −0.639226 0.769019i \(-0.720745\pi\)
0.639226 0.769019i \(-0.279255\pi\)
\(938\) 0 0
\(939\) −596358. −0.676357
\(940\) 0 0
\(941\) − 651491.i − 0.735748i −0.929876 0.367874i \(-0.880086\pi\)
0.929876 0.367874i \(-0.119914\pi\)
\(942\) 0 0
\(943\) −2.06099e6 −2.31768
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 1.31859e6i 1.47032i 0.677896 + 0.735158i \(0.262892\pi\)
−0.677896 + 0.735158i \(0.737108\pi\)
\(948\) 0 0
\(949\) 419840.i 0.466177i
\(950\) 0 0
\(951\) − 375934.i − 0.415671i
\(952\) 0 0
\(953\) 76396.5i 0.0841178i 0.999115 + 0.0420589i \(0.0133917\pi\)
−0.999115 + 0.0420589i \(0.986608\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) −43309.2 −0.0472886
\(958\) 0 0
\(959\) − 1102.81i − 0.00119912i
\(960\) 0 0
\(961\) −502111. −0.543692
\(962\) 0 0
\(963\) 61312.6i 0.0661146i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −462106. −0.494184 −0.247092 0.968992i \(-0.579475\pi\)
−0.247092 + 0.968992i \(0.579475\pi\)
\(968\) 0 0
\(969\) −64702.0 −0.0689081
\(970\) 0 0
\(971\) −901828. −0.956501 −0.478250 0.878223i \(-0.658729\pi\)
−0.478250 + 0.878223i \(0.658729\pi\)
\(972\) 0 0
\(973\) −56592.7 −0.0597771
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 46500.7i 0.0487159i 0.999703 + 0.0243580i \(0.00775414\pi\)
−0.999703 + 0.0243580i \(0.992246\pi\)
\(978\) 0 0
\(979\) −104336. −0.108860
\(980\) 0 0
\(981\) − 620697.i − 0.644973i
\(982\) 0 0
\(983\) −649309. −0.671961 −0.335981 0.941869i \(-0.609068\pi\)
−0.335981 + 0.941869i \(0.609068\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) − 40326.2i − 0.0413955i
\(988\) 0 0
\(989\) − 1.98030e6i − 2.02460i
\(990\) 0 0
\(991\) 194704.i 0.198257i 0.995075 + 0.0991285i \(0.0316055\pi\)
−0.995075 + 0.0991285i \(0.968395\pi\)
\(992\) 0 0
\(993\) 438238.i 0.444439i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 1.72172e6 1.73210 0.866049 0.499959i \(-0.166652\pi\)
0.866049 + 0.499959i \(0.166652\pi\)
\(998\) 0 0
\(999\) 1.93012e6i 1.93398i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 800.5.e.e.399.16 32
4.3 odd 2 200.5.e.e.99.20 32
5.2 odd 4 800.5.g.h.751.12 16
5.3 odd 4 160.5.g.a.111.6 16
5.4 even 2 inner 800.5.e.e.399.17 32
8.3 odd 2 inner 800.5.e.e.399.18 32
8.5 even 2 200.5.e.e.99.14 32
15.8 even 4 1440.5.g.a.271.5 16
20.3 even 4 40.5.g.a.11.15 16
20.7 even 4 200.5.g.h.51.2 16
20.19 odd 2 200.5.e.e.99.13 32
40.3 even 4 160.5.g.a.111.5 16
40.13 odd 4 40.5.g.a.11.16 yes 16
40.19 odd 2 inner 800.5.e.e.399.15 32
40.27 even 4 800.5.g.h.751.11 16
40.29 even 2 200.5.e.e.99.19 32
40.37 odd 4 200.5.g.h.51.1 16
60.23 odd 4 360.5.g.a.91.2 16
120.53 even 4 360.5.g.a.91.1 16
120.83 odd 4 1440.5.g.a.271.12 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
40.5.g.a.11.15 16 20.3 even 4
40.5.g.a.11.16 yes 16 40.13 odd 4
160.5.g.a.111.5 16 40.3 even 4
160.5.g.a.111.6 16 5.3 odd 4
200.5.e.e.99.13 32 20.19 odd 2
200.5.e.e.99.14 32 8.5 even 2
200.5.e.e.99.19 32 40.29 even 2
200.5.e.e.99.20 32 4.3 odd 2
200.5.g.h.51.1 16 40.37 odd 4
200.5.g.h.51.2 16 20.7 even 4
360.5.g.a.91.1 16 120.53 even 4
360.5.g.a.91.2 16 60.23 odd 4
800.5.e.e.399.15 32 40.19 odd 2 inner
800.5.e.e.399.16 32 1.1 even 1 trivial
800.5.e.e.399.17 32 5.4 even 2 inner
800.5.e.e.399.18 32 8.3 odd 2 inner
800.5.g.h.751.11 16 40.27 even 4
800.5.g.h.751.12 16 5.2 odd 4
1440.5.g.a.271.5 16 15.8 even 4
1440.5.g.a.271.12 16 120.83 odd 4