Properties

Label 1445.2.a.o.1.4
Level $1445$
Weight $2$
Character 1445.1
Self dual yes
Analytic conductor $11.538$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1445,2,Mod(1,1445)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1445, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1445.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1445 = 5 \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1445.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(11.5383830921\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.6.7718912.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} - 7x^{4} + 4x^{3} + 9x^{2} - 2x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 85)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(3.48265\) of defining polynomial
Character \(\chi\) \(=\) 1445.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.12708 q^{2} -2.48265 q^{3} -0.729699 q^{4} +1.00000 q^{5} -2.79814 q^{6} +2.44256 q^{7} -3.07658 q^{8} +3.16356 q^{9} +1.12708 q^{10} +3.63808 q^{11} +1.81159 q^{12} -3.64168 q^{13} +2.75295 q^{14} -2.48265 q^{15} -2.00814 q^{16} +3.56558 q^{18} -2.61358 q^{19} -0.729699 q^{20} -6.06403 q^{21} +4.10039 q^{22} +1.40552 q^{23} +7.63808 q^{24} +1.00000 q^{25} -4.10445 q^{26} -0.406074 q^{27} -1.78234 q^{28} -0.850775 q^{29} -2.79814 q^{30} -9.44332 q^{31} +3.88983 q^{32} -9.03208 q^{33} +2.44256 q^{35} -2.30845 q^{36} +11.0054 q^{37} -2.94570 q^{38} +9.04103 q^{39} -3.07658 q^{40} +9.53958 q^{41} -6.83463 q^{42} +7.47280 q^{43} -2.65470 q^{44} +3.16356 q^{45} +1.58412 q^{46} +5.42683 q^{47} +4.98551 q^{48} -1.03389 q^{49} +1.12708 q^{50} +2.65733 q^{52} +12.9453 q^{53} -0.457676 q^{54} +3.63808 q^{55} -7.51473 q^{56} +6.48861 q^{57} -0.958888 q^{58} +1.40270 q^{59} +1.81159 q^{60} -1.13771 q^{61} -10.6433 q^{62} +7.72720 q^{63} +8.40042 q^{64} -3.64168 q^{65} -10.1798 q^{66} -2.07908 q^{67} -3.48941 q^{69} +2.75295 q^{70} +12.2919 q^{71} -9.73296 q^{72} -1.47586 q^{73} +12.4039 q^{74} -2.48265 q^{75} +1.90713 q^{76} +8.88623 q^{77} +10.1899 q^{78} +8.97276 q^{79} -2.00814 q^{80} -8.48255 q^{81} +10.7518 q^{82} -2.52680 q^{83} +4.42492 q^{84} +8.42242 q^{86} +2.11218 q^{87} -11.1928 q^{88} +1.66373 q^{89} +3.56558 q^{90} -8.89503 q^{91} -1.02560 q^{92} +23.4445 q^{93} +6.11645 q^{94} -2.61358 q^{95} -9.65710 q^{96} +12.2673 q^{97} -1.16527 q^{98} +11.5093 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 2 q^{2} + 4 q^{3} + 6 q^{4} + 6 q^{5} + 4 q^{6} + 8 q^{7} + 6 q^{8} + 2 q^{9} + 2 q^{10} + 8 q^{12} + 8 q^{14} + 4 q^{15} + 2 q^{16} + 14 q^{18} - 12 q^{19} + 6 q^{20} + 8 q^{21} + 16 q^{22} + 24 q^{24}+ \cdots + 20 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.12708 0.796963 0.398482 0.917176i \(-0.369537\pi\)
0.398482 + 0.917176i \(0.369537\pi\)
\(3\) −2.48265 −1.43336 −0.716680 0.697402i \(-0.754339\pi\)
−0.716680 + 0.697402i \(0.754339\pi\)
\(4\) −0.729699 −0.364850
\(5\) 1.00000 0.447214
\(6\) −2.79814 −1.14234
\(7\) 2.44256 0.923202 0.461601 0.887088i \(-0.347275\pi\)
0.461601 + 0.887088i \(0.347275\pi\)
\(8\) −3.07658 −1.08773
\(9\) 3.16356 1.05452
\(10\) 1.12708 0.356413
\(11\) 3.63808 1.09692 0.548461 0.836176i \(-0.315214\pi\)
0.548461 + 0.836176i \(0.315214\pi\)
\(12\) 1.81159 0.522961
\(13\) −3.64168 −1.01002 −0.505010 0.863113i \(-0.668511\pi\)
−0.505010 + 0.863113i \(0.668511\pi\)
\(14\) 2.75295 0.735758
\(15\) −2.48265 −0.641018
\(16\) −2.00814 −0.502035
\(17\) 0 0
\(18\) 3.56558 0.840415
\(19\) −2.61358 −0.599596 −0.299798 0.954003i \(-0.596919\pi\)
−0.299798 + 0.954003i \(0.596919\pi\)
\(20\) −0.729699 −0.163166
\(21\) −6.06403 −1.32328
\(22\) 4.10039 0.874206
\(23\) 1.40552 0.293070 0.146535 0.989205i \(-0.453188\pi\)
0.146535 + 0.989205i \(0.453188\pi\)
\(24\) 7.63808 1.55912
\(25\) 1.00000 0.200000
\(26\) −4.10445 −0.804949
\(27\) −0.406074 −0.0781489
\(28\) −1.78234 −0.336830
\(29\) −0.850775 −0.157985 −0.0789925 0.996875i \(-0.525170\pi\)
−0.0789925 + 0.996875i \(0.525170\pi\)
\(30\) −2.79814 −0.510868
\(31\) −9.44332 −1.69607 −0.848035 0.529940i \(-0.822215\pi\)
−0.848035 + 0.529940i \(0.822215\pi\)
\(32\) 3.88983 0.687632
\(33\) −9.03208 −1.57228
\(34\) 0 0
\(35\) 2.44256 0.412868
\(36\) −2.30845 −0.384742
\(37\) 11.0054 1.80928 0.904638 0.426181i \(-0.140141\pi\)
0.904638 + 0.426181i \(0.140141\pi\)
\(38\) −2.94570 −0.477856
\(39\) 9.04103 1.44772
\(40\) −3.07658 −0.486450
\(41\) 9.53958 1.48983 0.744916 0.667158i \(-0.232489\pi\)
0.744916 + 0.667158i \(0.232489\pi\)
\(42\) −6.83463 −1.05461
\(43\) 7.47280 1.13959 0.569796 0.821786i \(-0.307022\pi\)
0.569796 + 0.821786i \(0.307022\pi\)
\(44\) −2.65470 −0.400212
\(45\) 3.16356 0.471596
\(46\) 1.58412 0.233566
\(47\) 5.42683 0.791585 0.395792 0.918340i \(-0.370470\pi\)
0.395792 + 0.918340i \(0.370470\pi\)
\(48\) 4.98551 0.719597
\(49\) −1.03389 −0.147699
\(50\) 1.12708 0.159393
\(51\) 0 0
\(52\) 2.65733 0.368506
\(53\) 12.9453 1.77817 0.889087 0.457737i \(-0.151340\pi\)
0.889087 + 0.457737i \(0.151340\pi\)
\(54\) −0.457676 −0.0622818
\(55\) 3.63808 0.490558
\(56\) −7.51473 −1.00420
\(57\) 6.48861 0.859437
\(58\) −0.958888 −0.125908
\(59\) 1.40270 0.182616 0.0913081 0.995823i \(-0.470895\pi\)
0.0913081 + 0.995823i \(0.470895\pi\)
\(60\) 1.81159 0.233875
\(61\) −1.13771 −0.145669 −0.0728346 0.997344i \(-0.523205\pi\)
−0.0728346 + 0.997344i \(0.523205\pi\)
\(62\) −10.6433 −1.35171
\(63\) 7.72720 0.973536
\(64\) 8.40042 1.05005
\(65\) −3.64168 −0.451695
\(66\) −10.1798 −1.25305
\(67\) −2.07908 −0.254000 −0.127000 0.991903i \(-0.540535\pi\)
−0.127000 + 0.991903i \(0.540535\pi\)
\(68\) 0 0
\(69\) −3.48941 −0.420076
\(70\) 2.75295 0.329041
\(71\) 12.2919 1.45878 0.729389 0.684099i \(-0.239804\pi\)
0.729389 + 0.684099i \(0.239804\pi\)
\(72\) −9.73296 −1.14704
\(73\) −1.47586 −0.172737 −0.0863684 0.996263i \(-0.527526\pi\)
−0.0863684 + 0.996263i \(0.527526\pi\)
\(74\) 12.4039 1.44193
\(75\) −2.48265 −0.286672
\(76\) 1.90713 0.218762
\(77\) 8.88623 1.01268
\(78\) 10.1899 1.15378
\(79\) 8.97276 1.00951 0.504757 0.863261i \(-0.331582\pi\)
0.504757 + 0.863261i \(0.331582\pi\)
\(80\) −2.00814 −0.224517
\(81\) −8.48255 −0.942506
\(82\) 10.7518 1.18734
\(83\) −2.52680 −0.277353 −0.138676 0.990338i \(-0.544285\pi\)
−0.138676 + 0.990338i \(0.544285\pi\)
\(84\) 4.42492 0.482799
\(85\) 0 0
\(86\) 8.42242 0.908213
\(87\) 2.11218 0.226449
\(88\) −11.1928 −1.19316
\(89\) 1.66373 0.176355 0.0881775 0.996105i \(-0.471896\pi\)
0.0881775 + 0.996105i \(0.471896\pi\)
\(90\) 3.56558 0.375845
\(91\) −8.89503 −0.932452
\(92\) −1.02560 −0.106927
\(93\) 23.4445 2.43108
\(94\) 6.11645 0.630864
\(95\) −2.61358 −0.268147
\(96\) −9.65710 −0.985624
\(97\) 12.2673 1.24556 0.622780 0.782397i \(-0.286003\pi\)
0.622780 + 0.782397i \(0.286003\pi\)
\(98\) −1.16527 −0.117710
\(99\) 11.5093 1.15673
\(100\) −0.729699 −0.0729699
\(101\) −4.18131 −0.416056 −0.208028 0.978123i \(-0.566704\pi\)
−0.208028 + 0.978123i \(0.566704\pi\)
\(102\) 0 0
\(103\) 8.08417 0.796557 0.398279 0.917265i \(-0.369608\pi\)
0.398279 + 0.917265i \(0.369608\pi\)
\(104\) 11.2039 1.09863
\(105\) −6.06403 −0.591789
\(106\) 14.5903 1.41714
\(107\) 8.80071 0.850796 0.425398 0.905006i \(-0.360134\pi\)
0.425398 + 0.905006i \(0.360134\pi\)
\(108\) 0.296312 0.0285126
\(109\) −14.3144 −1.37107 −0.685537 0.728038i \(-0.740433\pi\)
−0.685537 + 0.728038i \(0.740433\pi\)
\(110\) 4.10039 0.390957
\(111\) −27.3226 −2.59334
\(112\) −4.90501 −0.463480
\(113\) −11.4598 −1.07805 −0.539026 0.842289i \(-0.681208\pi\)
−0.539026 + 0.842289i \(0.681208\pi\)
\(114\) 7.31315 0.684940
\(115\) 1.40552 0.131065
\(116\) 0.620810 0.0576408
\(117\) −11.5207 −1.06509
\(118\) 1.58095 0.145538
\(119\) 0 0
\(120\) 7.63808 0.697258
\(121\) 2.23561 0.203237
\(122\) −1.28229 −0.116093
\(123\) −23.6835 −2.13547
\(124\) 6.89079 0.618811
\(125\) 1.00000 0.0894427
\(126\) 8.70915 0.775872
\(127\) −2.51562 −0.223225 −0.111613 0.993752i \(-0.535602\pi\)
−0.111613 + 0.993752i \(0.535602\pi\)
\(128\) 1.68825 0.149221
\(129\) −18.5524 −1.63345
\(130\) −4.10445 −0.359984
\(131\) 2.22230 0.194163 0.0970817 0.995276i \(-0.469049\pi\)
0.0970817 + 0.995276i \(0.469049\pi\)
\(132\) 6.59071 0.573647
\(133\) −6.38383 −0.553548
\(134\) −2.34328 −0.202428
\(135\) −0.406074 −0.0349493
\(136\) 0 0
\(137\) −22.1633 −1.89354 −0.946771 0.321908i \(-0.895676\pi\)
−0.946771 + 0.321908i \(0.895676\pi\)
\(138\) −3.93283 −0.334785
\(139\) 13.8857 1.17777 0.588884 0.808218i \(-0.299568\pi\)
0.588884 + 0.808218i \(0.299568\pi\)
\(140\) −1.78234 −0.150635
\(141\) −13.4729 −1.13463
\(142\) 13.8539 1.16259
\(143\) −13.2487 −1.10791
\(144\) −6.35288 −0.529407
\(145\) −0.850775 −0.0706530
\(146\) −1.66341 −0.137665
\(147\) 2.56679 0.211705
\(148\) −8.03063 −0.660114
\(149\) 11.6461 0.954087 0.477044 0.878880i \(-0.341708\pi\)
0.477044 + 0.878880i \(0.341708\pi\)
\(150\) −2.79814 −0.228467
\(151\) 2.82731 0.230083 0.115042 0.993361i \(-0.463300\pi\)
0.115042 + 0.993361i \(0.463300\pi\)
\(152\) 8.04088 0.652201
\(153\) 0 0
\(154\) 10.0155 0.807068
\(155\) −9.44332 −0.758506
\(156\) −6.59723 −0.528201
\(157\) −1.36913 −0.109268 −0.0546342 0.998506i \(-0.517399\pi\)
−0.0546342 + 0.998506i \(0.517399\pi\)
\(158\) 10.1130 0.804545
\(159\) −32.1387 −2.54877
\(160\) 3.88983 0.307518
\(161\) 3.43306 0.270563
\(162\) −9.56048 −0.751143
\(163\) 12.0913 0.947063 0.473532 0.880777i \(-0.342979\pi\)
0.473532 + 0.880777i \(0.342979\pi\)
\(164\) −6.96103 −0.543565
\(165\) −9.03208 −0.703147
\(166\) −2.84790 −0.221040
\(167\) 5.89177 0.455919 0.227959 0.973671i \(-0.426795\pi\)
0.227959 + 0.973671i \(0.426795\pi\)
\(168\) 18.6565 1.43938
\(169\) 0.261831 0.0201408
\(170\) 0 0
\(171\) −8.26822 −0.632287
\(172\) −5.45290 −0.415780
\(173\) 2.07551 0.157798 0.0788992 0.996883i \(-0.474859\pi\)
0.0788992 + 0.996883i \(0.474859\pi\)
\(174\) 2.38059 0.180472
\(175\) 2.44256 0.184640
\(176\) −7.30577 −0.550693
\(177\) −3.48242 −0.261755
\(178\) 1.87515 0.140548
\(179\) 10.5373 0.787597 0.393799 0.919197i \(-0.371161\pi\)
0.393799 + 0.919197i \(0.371161\pi\)
\(180\) −2.30845 −0.172062
\(181\) −3.39068 −0.252028 −0.126014 0.992028i \(-0.540218\pi\)
−0.126014 + 0.992028i \(0.540218\pi\)
\(182\) −10.0254 −0.743130
\(183\) 2.82455 0.208797
\(184\) −4.32418 −0.318783
\(185\) 11.0054 0.809133
\(186\) 26.4237 1.93748
\(187\) 0 0
\(188\) −3.95995 −0.288809
\(189\) −0.991860 −0.0721472
\(190\) −2.94570 −0.213704
\(191\) 12.3426 0.893077 0.446538 0.894764i \(-0.352657\pi\)
0.446538 + 0.894764i \(0.352657\pi\)
\(192\) −20.8553 −1.50510
\(193\) 11.9557 0.860590 0.430295 0.902688i \(-0.358409\pi\)
0.430295 + 0.902688i \(0.358409\pi\)
\(194\) 13.8262 0.992665
\(195\) 9.04103 0.647441
\(196\) 0.754430 0.0538878
\(197\) −1.22210 −0.0870711 −0.0435356 0.999052i \(-0.513862\pi\)
−0.0435356 + 0.999052i \(0.513862\pi\)
\(198\) 12.9718 0.921869
\(199\) −21.7349 −1.54075 −0.770374 0.637592i \(-0.779930\pi\)
−0.770374 + 0.637592i \(0.779930\pi\)
\(200\) −3.07658 −0.217547
\(201\) 5.16162 0.364073
\(202\) −4.71265 −0.331581
\(203\) −2.07807 −0.145852
\(204\) 0 0
\(205\) 9.53958 0.666273
\(206\) 9.11148 0.634827
\(207\) 4.44644 0.309049
\(208\) 7.31300 0.507065
\(209\) −9.50840 −0.657710
\(210\) −6.83463 −0.471634
\(211\) 16.8853 1.16243 0.581217 0.813749i \(-0.302577\pi\)
0.581217 + 0.813749i \(0.302577\pi\)
\(212\) −9.44618 −0.648767
\(213\) −30.5165 −2.09096
\(214\) 9.91907 0.678053
\(215\) 7.47280 0.509641
\(216\) 1.24932 0.0850053
\(217\) −23.0659 −1.56582
\(218\) −16.1335 −1.09270
\(219\) 3.66406 0.247594
\(220\) −2.65470 −0.178980
\(221\) 0 0
\(222\) −30.7946 −2.06680
\(223\) 9.61320 0.643748 0.321874 0.946783i \(-0.395687\pi\)
0.321874 + 0.946783i \(0.395687\pi\)
\(224\) 9.50115 0.634823
\(225\) 3.16356 0.210904
\(226\) −12.9161 −0.859168
\(227\) 1.77929 0.118096 0.0590479 0.998255i \(-0.481194\pi\)
0.0590479 + 0.998255i \(0.481194\pi\)
\(228\) −4.73473 −0.313565
\(229\) −16.7429 −1.10640 −0.553201 0.833048i \(-0.686594\pi\)
−0.553201 + 0.833048i \(0.686594\pi\)
\(230\) 1.58412 0.104454
\(231\) −22.0614 −1.45153
\(232\) 2.61748 0.171846
\(233\) −13.0860 −0.857295 −0.428648 0.903472i \(-0.641010\pi\)
−0.428648 + 0.903472i \(0.641010\pi\)
\(234\) −12.9847 −0.848836
\(235\) 5.42683 0.354007
\(236\) −1.02355 −0.0666275
\(237\) −22.2762 −1.44700
\(238\) 0 0
\(239\) −23.9469 −1.54900 −0.774498 0.632577i \(-0.781997\pi\)
−0.774498 + 0.632577i \(0.781997\pi\)
\(240\) 4.98551 0.321814
\(241\) −17.2911 −1.11382 −0.556908 0.830574i \(-0.688012\pi\)
−0.556908 + 0.830574i \(0.688012\pi\)
\(242\) 2.51970 0.161972
\(243\) 22.2775 1.42910
\(244\) 0.830189 0.0531474
\(245\) −1.03389 −0.0660529
\(246\) −26.6931 −1.70189
\(247\) 9.51781 0.605604
\(248\) 29.0531 1.84488
\(249\) 6.27318 0.397546
\(250\) 1.12708 0.0712826
\(251\) −18.2106 −1.14944 −0.574722 0.818349i \(-0.694890\pi\)
−0.574722 + 0.818349i \(0.694890\pi\)
\(252\) −5.63854 −0.355194
\(253\) 5.11338 0.321475
\(254\) −2.83529 −0.177902
\(255\) 0 0
\(256\) −14.8981 −0.931128
\(257\) 2.58018 0.160947 0.0804735 0.996757i \(-0.474357\pi\)
0.0804735 + 0.996757i \(0.474357\pi\)
\(258\) −20.9099 −1.30180
\(259\) 26.8814 1.67033
\(260\) 2.65733 0.164801
\(261\) −2.69148 −0.166599
\(262\) 2.50470 0.154741
\(263\) 9.58787 0.591213 0.295607 0.955310i \(-0.404478\pi\)
0.295607 + 0.955310i \(0.404478\pi\)
\(264\) 27.7879 1.71023
\(265\) 12.9453 0.795224
\(266\) −7.19506 −0.441157
\(267\) −4.13046 −0.252780
\(268\) 1.51710 0.0926717
\(269\) −7.08590 −0.432035 −0.216018 0.976389i \(-0.569307\pi\)
−0.216018 + 0.976389i \(0.569307\pi\)
\(270\) −0.457676 −0.0278533
\(271\) −13.7773 −0.836909 −0.418454 0.908238i \(-0.637428\pi\)
−0.418454 + 0.908238i \(0.637428\pi\)
\(272\) 0 0
\(273\) 22.0833 1.33654
\(274\) −24.9798 −1.50908
\(275\) 3.63808 0.219384
\(276\) 2.54622 0.153264
\(277\) −4.51506 −0.271284 −0.135642 0.990758i \(-0.543310\pi\)
−0.135642 + 0.990758i \(0.543310\pi\)
\(278\) 15.6502 0.938637
\(279\) −29.8746 −1.78854
\(280\) −7.51473 −0.449091
\(281\) −3.44172 −0.205316 −0.102658 0.994717i \(-0.532735\pi\)
−0.102658 + 0.994717i \(0.532735\pi\)
\(282\) −15.1850 −0.904255
\(283\) 23.5408 1.39935 0.699677 0.714459i \(-0.253327\pi\)
0.699677 + 0.714459i \(0.253327\pi\)
\(284\) −8.96938 −0.532235
\(285\) 6.48861 0.384352
\(286\) −14.9323 −0.882966
\(287\) 23.3010 1.37542
\(288\) 12.3057 0.725122
\(289\) 0 0
\(290\) −0.958888 −0.0563079
\(291\) −30.4555 −1.78534
\(292\) 1.07694 0.0630230
\(293\) −15.5924 −0.910918 −0.455459 0.890257i \(-0.650525\pi\)
−0.455459 + 0.890257i \(0.650525\pi\)
\(294\) 2.89297 0.168721
\(295\) 1.40270 0.0816685
\(296\) −33.8590 −1.96801
\(297\) −1.47733 −0.0857232
\(298\) 13.1261 0.760372
\(299\) −5.11844 −0.296007
\(300\) 1.81159 0.104592
\(301\) 18.2528 1.05207
\(302\) 3.18660 0.183368
\(303\) 10.3807 0.596358
\(304\) 5.24843 0.301018
\(305\) −1.13771 −0.0651453
\(306\) 0 0
\(307\) 21.6549 1.23591 0.617955 0.786214i \(-0.287962\pi\)
0.617955 + 0.786214i \(0.287962\pi\)
\(308\) −6.48428 −0.369476
\(309\) −20.0702 −1.14175
\(310\) −10.6433 −0.604501
\(311\) 8.86449 0.502659 0.251330 0.967902i \(-0.419132\pi\)
0.251330 + 0.967902i \(0.419132\pi\)
\(312\) −27.8154 −1.57474
\(313\) 17.1141 0.967345 0.483672 0.875249i \(-0.339303\pi\)
0.483672 + 0.875249i \(0.339303\pi\)
\(314\) −1.54311 −0.0870828
\(315\) 7.72720 0.435379
\(316\) −6.54742 −0.368321
\(317\) 10.3241 0.579862 0.289931 0.957048i \(-0.406368\pi\)
0.289931 + 0.957048i \(0.406368\pi\)
\(318\) −36.2228 −2.03127
\(319\) −3.09519 −0.173297
\(320\) 8.40042 0.469598
\(321\) −21.8491 −1.21950
\(322\) 3.86932 0.215629
\(323\) 0 0
\(324\) 6.18971 0.343873
\(325\) −3.64168 −0.202004
\(326\) 13.6278 0.754775
\(327\) 35.5378 1.96524
\(328\) −29.3493 −1.62054
\(329\) 13.2554 0.730792
\(330\) −10.1798 −0.560382
\(331\) −6.56727 −0.360970 −0.180485 0.983578i \(-0.557767\pi\)
−0.180485 + 0.983578i \(0.557767\pi\)
\(332\) 1.84381 0.101192
\(333\) 34.8163 1.90792
\(334\) 6.64048 0.363351
\(335\) −2.07908 −0.113592
\(336\) 12.1774 0.664333
\(337\) −30.1761 −1.64380 −0.821899 0.569633i \(-0.807085\pi\)
−0.821899 + 0.569633i \(0.807085\pi\)
\(338\) 0.295103 0.0160515
\(339\) 28.4508 1.54524
\(340\) 0 0
\(341\) −34.3555 −1.86046
\(342\) −9.31892 −0.503909
\(343\) −19.6233 −1.05956
\(344\) −22.9907 −1.23957
\(345\) −3.48941 −0.187863
\(346\) 2.33926 0.125759
\(347\) −7.04017 −0.377936 −0.188968 0.981983i \(-0.560514\pi\)
−0.188968 + 0.981983i \(0.560514\pi\)
\(348\) −1.54126 −0.0826200
\(349\) −35.4396 −1.89704 −0.948518 0.316723i \(-0.897417\pi\)
−0.948518 + 0.316723i \(0.897417\pi\)
\(350\) 2.75295 0.147152
\(351\) 1.47879 0.0789320
\(352\) 14.1515 0.754278
\(353\) 8.54669 0.454895 0.227447 0.973790i \(-0.426962\pi\)
0.227447 + 0.973790i \(0.426962\pi\)
\(354\) −3.92495 −0.208609
\(355\) 12.2919 0.652386
\(356\) −1.21402 −0.0643430
\(357\) 0 0
\(358\) 11.8764 0.627686
\(359\) −20.2839 −1.07054 −0.535271 0.844681i \(-0.679790\pi\)
−0.535271 + 0.844681i \(0.679790\pi\)
\(360\) −9.73296 −0.512972
\(361\) −12.1692 −0.640485
\(362\) −3.82156 −0.200857
\(363\) −5.55023 −0.291312
\(364\) 6.49070 0.340205
\(365\) −1.47586 −0.0772503
\(366\) 3.18348 0.166403
\(367\) 12.7223 0.664097 0.332048 0.943262i \(-0.392260\pi\)
0.332048 + 0.943262i \(0.392260\pi\)
\(368\) −2.82247 −0.147132
\(369\) 30.1791 1.57106
\(370\) 12.4039 0.644849
\(371\) 31.6197 1.64161
\(372\) −17.1074 −0.886979
\(373\) −11.1454 −0.577086 −0.288543 0.957467i \(-0.593171\pi\)
−0.288543 + 0.957467i \(0.593171\pi\)
\(374\) 0 0
\(375\) −2.48265 −0.128204
\(376\) −16.6961 −0.861034
\(377\) 3.09825 0.159568
\(378\) −1.11790 −0.0574987
\(379\) −12.6811 −0.651386 −0.325693 0.945476i \(-0.605598\pi\)
−0.325693 + 0.945476i \(0.605598\pi\)
\(380\) 1.90713 0.0978335
\(381\) 6.24541 0.319962
\(382\) 13.9110 0.711749
\(383\) 17.3523 0.886661 0.443331 0.896358i \(-0.353797\pi\)
0.443331 + 0.896358i \(0.353797\pi\)
\(384\) −4.19133 −0.213888
\(385\) 8.88623 0.452884
\(386\) 13.4750 0.685859
\(387\) 23.6407 1.20172
\(388\) −8.95147 −0.454442
\(389\) 19.4510 0.986205 0.493103 0.869971i \(-0.335863\pi\)
0.493103 + 0.869971i \(0.335863\pi\)
\(390\) 10.1899 0.515987
\(391\) 0 0
\(392\) 3.18085 0.160657
\(393\) −5.51720 −0.278306
\(394\) −1.37740 −0.0693925
\(395\) 8.97276 0.451468
\(396\) −8.39832 −0.422032
\(397\) −4.75987 −0.238891 −0.119446 0.992841i \(-0.538112\pi\)
−0.119446 + 0.992841i \(0.538112\pi\)
\(398\) −24.4969 −1.22792
\(399\) 15.8488 0.793434
\(400\) −2.00814 −0.100407
\(401\) −24.2040 −1.20869 −0.604345 0.796723i \(-0.706565\pi\)
−0.604345 + 0.796723i \(0.706565\pi\)
\(402\) 5.81754 0.290153
\(403\) 34.3896 1.71307
\(404\) 3.05110 0.151798
\(405\) −8.48255 −0.421501
\(406\) −2.34214 −0.116239
\(407\) 40.0385 1.98463
\(408\) 0 0
\(409\) 18.2463 0.902221 0.451111 0.892468i \(-0.351028\pi\)
0.451111 + 0.892468i \(0.351028\pi\)
\(410\) 10.7518 0.530995
\(411\) 55.0239 2.71413
\(412\) −5.89901 −0.290624
\(413\) 3.42619 0.168592
\(414\) 5.01148 0.246301
\(415\) −2.52680 −0.124036
\(416\) −14.1655 −0.694522
\(417\) −34.4733 −1.68816
\(418\) −10.7167 −0.524170
\(419\) 1.74273 0.0851377 0.0425689 0.999094i \(-0.486446\pi\)
0.0425689 + 0.999094i \(0.486446\pi\)
\(420\) 4.42492 0.215914
\(421\) 37.0251 1.80449 0.902247 0.431220i \(-0.141917\pi\)
0.902247 + 0.431220i \(0.141917\pi\)
\(422\) 19.0310 0.926417
\(423\) 17.1681 0.834743
\(424\) −39.8273 −1.93418
\(425\) 0 0
\(426\) −34.3944 −1.66641
\(427\) −2.77894 −0.134482
\(428\) −6.42187 −0.310413
\(429\) 32.8920 1.58804
\(430\) 8.42242 0.406165
\(431\) 30.3883 1.46375 0.731876 0.681438i \(-0.238645\pi\)
0.731876 + 0.681438i \(0.238645\pi\)
\(432\) 0.815453 0.0392335
\(433\) 15.8246 0.760483 0.380242 0.924887i \(-0.375841\pi\)
0.380242 + 0.924887i \(0.375841\pi\)
\(434\) −25.9970 −1.24790
\(435\) 2.11218 0.101271
\(436\) 10.4452 0.500236
\(437\) −3.67343 −0.175724
\(438\) 4.12967 0.197323
\(439\) −4.16714 −0.198887 −0.0994434 0.995043i \(-0.531706\pi\)
−0.0994434 + 0.995043i \(0.531706\pi\)
\(440\) −11.1928 −0.533597
\(441\) −3.27078 −0.155751
\(442\) 0 0
\(443\) 15.7201 0.746884 0.373442 0.927654i \(-0.378177\pi\)
0.373442 + 0.927654i \(0.378177\pi\)
\(444\) 19.9373 0.946181
\(445\) 1.66373 0.0788683
\(446\) 10.8348 0.513043
\(447\) −28.9133 −1.36755
\(448\) 20.5185 0.969410
\(449\) 16.5469 0.780895 0.390447 0.920625i \(-0.372320\pi\)
0.390447 + 0.920625i \(0.372320\pi\)
\(450\) 3.56558 0.168083
\(451\) 34.7057 1.63423
\(452\) 8.36224 0.393327
\(453\) −7.01924 −0.329792
\(454\) 2.00540 0.0941181
\(455\) −8.89503 −0.417005
\(456\) −19.9627 −0.934839
\(457\) −1.42830 −0.0668131 −0.0334066 0.999442i \(-0.510636\pi\)
−0.0334066 + 0.999442i \(0.510636\pi\)
\(458\) −18.8705 −0.881761
\(459\) 0 0
\(460\) −1.02560 −0.0478191
\(461\) 11.1662 0.520062 0.260031 0.965600i \(-0.416267\pi\)
0.260031 + 0.965600i \(0.416267\pi\)
\(462\) −24.8649 −1.15682
\(463\) 29.2204 1.35799 0.678994 0.734144i \(-0.262416\pi\)
0.678994 + 0.734144i \(0.262416\pi\)
\(464\) 1.70848 0.0793140
\(465\) 23.4445 1.08721
\(466\) −14.7490 −0.683233
\(467\) −10.9388 −0.506187 −0.253093 0.967442i \(-0.581448\pi\)
−0.253093 + 0.967442i \(0.581448\pi\)
\(468\) 8.40664 0.388597
\(469\) −5.07827 −0.234493
\(470\) 6.11645 0.282131
\(471\) 3.39907 0.156621
\(472\) −4.31552 −0.198638
\(473\) 27.1866 1.25004
\(474\) −25.1070 −1.15320
\(475\) −2.61358 −0.119919
\(476\) 0 0
\(477\) 40.9533 1.87512
\(478\) −26.9900 −1.23449
\(479\) −17.1996 −0.785871 −0.392935 0.919566i \(-0.628540\pi\)
−0.392935 + 0.919566i \(0.628540\pi\)
\(480\) −9.65710 −0.440784
\(481\) −40.0781 −1.82741
\(482\) −19.4884 −0.887670
\(483\) −8.52310 −0.387814
\(484\) −1.63132 −0.0741509
\(485\) 12.2673 0.557031
\(486\) 25.1084 1.13894
\(487\) −25.8446 −1.17113 −0.585564 0.810626i \(-0.699127\pi\)
−0.585564 + 0.810626i \(0.699127\pi\)
\(488\) 3.50026 0.158450
\(489\) −30.0185 −1.35748
\(490\) −1.16527 −0.0526417
\(491\) 12.2373 0.552261 0.276131 0.961120i \(-0.410948\pi\)
0.276131 + 0.961120i \(0.410948\pi\)
\(492\) 17.2818 0.779124
\(493\) 0 0
\(494\) 10.7273 0.482644
\(495\) 11.5093 0.517304
\(496\) 18.9635 0.851487
\(497\) 30.0237 1.34675
\(498\) 7.07035 0.316830
\(499\) 6.41606 0.287222 0.143611 0.989634i \(-0.454129\pi\)
0.143611 + 0.989634i \(0.454129\pi\)
\(500\) −0.729699 −0.0326332
\(501\) −14.6272 −0.653496
\(502\) −20.5248 −0.916065
\(503\) −21.3299 −0.951054 −0.475527 0.879701i \(-0.657743\pi\)
−0.475527 + 0.879701i \(0.657743\pi\)
\(504\) −23.7733 −1.05895
\(505\) −4.18131 −0.186066
\(506\) 5.76317 0.256204
\(507\) −0.650034 −0.0288690
\(508\) 1.83565 0.0814436
\(509\) 14.2265 0.630577 0.315289 0.948996i \(-0.397899\pi\)
0.315289 + 0.948996i \(0.397899\pi\)
\(510\) 0 0
\(511\) −3.60489 −0.159471
\(512\) −20.1677 −0.891296
\(513\) 1.06131 0.0468578
\(514\) 2.90805 0.128269
\(515\) 8.08417 0.356231
\(516\) 13.5377 0.595962
\(517\) 19.7432 0.868306
\(518\) 30.2973 1.33119
\(519\) −5.15278 −0.226182
\(520\) 11.2039 0.491324
\(521\) −24.5559 −1.07581 −0.537906 0.843005i \(-0.680784\pi\)
−0.537906 + 0.843005i \(0.680784\pi\)
\(522\) −3.03351 −0.132773
\(523\) −39.8642 −1.74314 −0.871570 0.490271i \(-0.836898\pi\)
−0.871570 + 0.490271i \(0.836898\pi\)
\(524\) −1.62161 −0.0708404
\(525\) −6.06403 −0.264656
\(526\) 10.8063 0.471175
\(527\) 0 0
\(528\) 18.1377 0.789341
\(529\) −21.0245 −0.914110
\(530\) 14.5903 0.633764
\(531\) 4.43754 0.192573
\(532\) 4.65827 0.201962
\(533\) −34.7401 −1.50476
\(534\) −4.65534 −0.201456
\(535\) 8.80071 0.380488
\(536\) 6.39644 0.276284
\(537\) −26.1605 −1.12891
\(538\) −7.98635 −0.344316
\(539\) −3.76138 −0.162014
\(540\) 0.296312 0.0127512
\(541\) 22.8827 0.983803 0.491901 0.870651i \(-0.336302\pi\)
0.491901 + 0.870651i \(0.336302\pi\)
\(542\) −15.5280 −0.666985
\(543\) 8.41789 0.361246
\(544\) 0 0
\(545\) −14.3144 −0.613163
\(546\) 24.8895 1.06517
\(547\) 15.5350 0.664231 0.332115 0.943239i \(-0.392238\pi\)
0.332115 + 0.943239i \(0.392238\pi\)
\(548\) 16.1726 0.690858
\(549\) −3.59923 −0.153611
\(550\) 4.10039 0.174841
\(551\) 2.22357 0.0947271
\(552\) 10.7354 0.456931
\(553\) 21.9165 0.931985
\(554\) −5.08882 −0.216203
\(555\) −27.3226 −1.15978
\(556\) −10.1324 −0.429708
\(557\) 0.980081 0.0415274 0.0207637 0.999784i \(-0.493390\pi\)
0.0207637 + 0.999784i \(0.493390\pi\)
\(558\) −33.6709 −1.42540
\(559\) −27.2136 −1.15101
\(560\) −4.90501 −0.207274
\(561\) 0 0
\(562\) −3.87908 −0.163629
\(563\) 28.8837 1.21730 0.608652 0.793437i \(-0.291711\pi\)
0.608652 + 0.793437i \(0.291711\pi\)
\(564\) 9.83119 0.413968
\(565\) −11.4598 −0.482119
\(566\) 26.5322 1.11523
\(567\) −20.7192 −0.870123
\(568\) −37.8170 −1.58676
\(569\) 18.2893 0.766729 0.383365 0.923597i \(-0.374765\pi\)
0.383365 + 0.923597i \(0.374765\pi\)
\(570\) 7.31315 0.306314
\(571\) 10.4044 0.435410 0.217705 0.976015i \(-0.430143\pi\)
0.217705 + 0.976015i \(0.430143\pi\)
\(572\) 9.66758 0.404222
\(573\) −30.6423 −1.28010
\(574\) 26.2620 1.09616
\(575\) 1.40552 0.0586141
\(576\) 26.5753 1.10730
\(577\) −28.3066 −1.17842 −0.589209 0.807980i \(-0.700561\pi\)
−0.589209 + 0.807980i \(0.700561\pi\)
\(578\) 0 0
\(579\) −29.6819 −1.23354
\(580\) 0.620810 0.0257777
\(581\) −6.17187 −0.256052
\(582\) −34.3257 −1.42285
\(583\) 47.0960 1.95052
\(584\) 4.54061 0.187892
\(585\) −11.5207 −0.476322
\(586\) −17.5738 −0.725968
\(587\) 2.68137 0.110672 0.0553360 0.998468i \(-0.482377\pi\)
0.0553360 + 0.998468i \(0.482377\pi\)
\(588\) −1.87299 −0.0772407
\(589\) 24.6809 1.01696
\(590\) 1.58095 0.0650868
\(591\) 3.03405 0.124804
\(592\) −22.1004 −0.908320
\(593\) −15.3155 −0.628934 −0.314467 0.949268i \(-0.601826\pi\)
−0.314467 + 0.949268i \(0.601826\pi\)
\(594\) −1.66506 −0.0683183
\(595\) 0 0
\(596\) −8.49817 −0.348098
\(597\) 53.9603 2.20845
\(598\) −5.76887 −0.235907
\(599\) −43.5243 −1.77836 −0.889178 0.457561i \(-0.848723\pi\)
−0.889178 + 0.457561i \(0.848723\pi\)
\(600\) 7.63808 0.311823
\(601\) 30.7307 1.25353 0.626766 0.779208i \(-0.284378\pi\)
0.626766 + 0.779208i \(0.284378\pi\)
\(602\) 20.5723 0.838463
\(603\) −6.57729 −0.267848
\(604\) −2.06309 −0.0839459
\(605\) 2.23561 0.0908903
\(606\) 11.6999 0.475275
\(607\) 14.7075 0.596957 0.298479 0.954416i \(-0.403521\pi\)
0.298479 + 0.954416i \(0.403521\pi\)
\(608\) −10.1664 −0.412301
\(609\) 5.15913 0.209058
\(610\) −1.28229 −0.0519184
\(611\) −19.7628 −0.799516
\(612\) 0 0
\(613\) 23.6535 0.955354 0.477677 0.878535i \(-0.341479\pi\)
0.477677 + 0.878535i \(0.341479\pi\)
\(614\) 24.4067 0.984974
\(615\) −23.6835 −0.955009
\(616\) −27.3392 −1.10153
\(617\) −10.0479 −0.404512 −0.202256 0.979333i \(-0.564827\pi\)
−0.202256 + 0.979333i \(0.564827\pi\)
\(618\) −22.6206 −0.909935
\(619\) 34.3858 1.38208 0.691042 0.722815i \(-0.257152\pi\)
0.691042 + 0.722815i \(0.257152\pi\)
\(620\) 6.89079 0.276741
\(621\) −0.570743 −0.0229031
\(622\) 9.99096 0.400601
\(623\) 4.06376 0.162811
\(624\) −18.1556 −0.726807
\(625\) 1.00000 0.0400000
\(626\) 19.2889 0.770938
\(627\) 23.6060 0.942735
\(628\) 0.999052 0.0398665
\(629\) 0 0
\(630\) 8.70915 0.346981
\(631\) 8.25061 0.328451 0.164226 0.986423i \(-0.447487\pi\)
0.164226 + 0.986423i \(0.447487\pi\)
\(632\) −27.6054 −1.09808
\(633\) −41.9204 −1.66619
\(634\) 11.6361 0.462128
\(635\) −2.51562 −0.0998293
\(636\) 23.4516 0.929916
\(637\) 3.76510 0.149179
\(638\) −3.48851 −0.138111
\(639\) 38.8862 1.53831
\(640\) 1.68825 0.0667337
\(641\) −17.2231 −0.680271 −0.340136 0.940376i \(-0.610473\pi\)
−0.340136 + 0.940376i \(0.610473\pi\)
\(642\) −24.6256 −0.971895
\(643\) −12.5592 −0.495287 −0.247644 0.968851i \(-0.579656\pi\)
−0.247644 + 0.968851i \(0.579656\pi\)
\(644\) −2.50510 −0.0987149
\(645\) −18.5524 −0.730499
\(646\) 0 0
\(647\) −3.62337 −0.142449 −0.0712247 0.997460i \(-0.522691\pi\)
−0.0712247 + 0.997460i \(0.522691\pi\)
\(648\) 26.0972 1.02520
\(649\) 5.10314 0.200316
\(650\) −4.10445 −0.160990
\(651\) 57.2646 2.24438
\(652\) −8.82301 −0.345536
\(653\) −9.74594 −0.381388 −0.190694 0.981650i \(-0.561074\pi\)
−0.190694 + 0.981650i \(0.561074\pi\)
\(654\) 40.0538 1.56623
\(655\) 2.22230 0.0868325
\(656\) −19.1568 −0.747948
\(657\) −4.66899 −0.182155
\(658\) 14.9398 0.582414
\(659\) 7.19930 0.280445 0.140222 0.990120i \(-0.455218\pi\)
0.140222 + 0.990120i \(0.455218\pi\)
\(660\) 6.59071 0.256543
\(661\) −11.0362 −0.429258 −0.214629 0.976696i \(-0.568854\pi\)
−0.214629 + 0.976696i \(0.568854\pi\)
\(662\) −7.40181 −0.287680
\(663\) 0 0
\(664\) 7.77391 0.301686
\(665\) −6.38383 −0.247554
\(666\) 39.2406 1.52054
\(667\) −1.19578 −0.0463007
\(668\) −4.29922 −0.166342
\(669\) −23.8662 −0.922722
\(670\) −2.34328 −0.0905287
\(671\) −4.13909 −0.159788
\(672\) −23.5881 −0.909929
\(673\) −29.5111 −1.13757 −0.568784 0.822487i \(-0.692586\pi\)
−0.568784 + 0.822487i \(0.692586\pi\)
\(674\) −34.0108 −1.31005
\(675\) −0.406074 −0.0156298
\(676\) −0.191058 −0.00734837
\(677\) 0.557951 0.0214438 0.0107219 0.999943i \(-0.496587\pi\)
0.0107219 + 0.999943i \(0.496587\pi\)
\(678\) 32.0662 1.23150
\(679\) 29.9637 1.14990
\(680\) 0 0
\(681\) −4.41737 −0.169274
\(682\) −38.7213 −1.48272
\(683\) −36.1564 −1.38348 −0.691742 0.722144i \(-0.743157\pi\)
−0.691742 + 0.722144i \(0.743157\pi\)
\(684\) 6.03332 0.230690
\(685\) −22.1633 −0.846818
\(686\) −22.1169 −0.844428
\(687\) 41.5668 1.58587
\(688\) −15.0064 −0.572115
\(689\) −47.1427 −1.79599
\(690\) −3.93283 −0.149720
\(691\) 39.8226 1.51492 0.757461 0.652880i \(-0.226439\pi\)
0.757461 + 0.652880i \(0.226439\pi\)
\(692\) −1.51450 −0.0575727
\(693\) 28.1122 1.06789
\(694\) −7.93480 −0.301201
\(695\) 13.8857 0.526714
\(696\) −6.49829 −0.246317
\(697\) 0 0
\(698\) −39.9431 −1.51187
\(699\) 32.4881 1.22881
\(700\) −1.78234 −0.0673660
\(701\) −20.0299 −0.756520 −0.378260 0.925699i \(-0.623478\pi\)
−0.378260 + 0.925699i \(0.623478\pi\)
\(702\) 1.66671 0.0629059
\(703\) −28.7635 −1.08483
\(704\) 30.5614 1.15182
\(705\) −13.4729 −0.507420
\(706\) 9.63277 0.362534
\(707\) −10.2131 −0.384103
\(708\) 2.54112 0.0955012
\(709\) 9.70848 0.364610 0.182305 0.983242i \(-0.441644\pi\)
0.182305 + 0.983242i \(0.441644\pi\)
\(710\) 13.8539 0.519927
\(711\) 28.3859 1.06455
\(712\) −5.11859 −0.191827
\(713\) −13.2727 −0.497068
\(714\) 0 0
\(715\) −13.2487 −0.495474
\(716\) −7.68909 −0.287355
\(717\) 59.4518 2.22027
\(718\) −22.8615 −0.853182
\(719\) −20.8091 −0.776050 −0.388025 0.921649i \(-0.626843\pi\)
−0.388025 + 0.921649i \(0.626843\pi\)
\(720\) −6.35288 −0.236758
\(721\) 19.7461 0.735383
\(722\) −13.7156 −0.510443
\(723\) 42.9277 1.59650
\(724\) 2.47418 0.0919522
\(725\) −0.850775 −0.0315970
\(726\) −6.25554 −0.232165
\(727\) −39.1557 −1.45220 −0.726102 0.687587i \(-0.758670\pi\)
−0.726102 + 0.687587i \(0.758670\pi\)
\(728\) 27.3663 1.01426
\(729\) −29.8595 −1.10591
\(730\) −1.66341 −0.0615656
\(731\) 0 0
\(732\) −2.06107 −0.0761793
\(733\) 12.9215 0.477265 0.238633 0.971110i \(-0.423301\pi\)
0.238633 + 0.971110i \(0.423301\pi\)
\(734\) 14.3390 0.529261
\(735\) 2.56679 0.0946776
\(736\) 5.46722 0.201525
\(737\) −7.56384 −0.278618
\(738\) 34.0141 1.25208
\(739\) −37.9866 −1.39736 −0.698680 0.715434i \(-0.746229\pi\)
−0.698680 + 0.715434i \(0.746229\pi\)
\(740\) −8.03063 −0.295212
\(741\) −23.6294 −0.868049
\(742\) 35.6378 1.30831
\(743\) −12.2402 −0.449050 −0.224525 0.974468i \(-0.572083\pi\)
−0.224525 + 0.974468i \(0.572083\pi\)
\(744\) −72.1288 −2.64437
\(745\) 11.6461 0.426681
\(746\) −12.5617 −0.459916
\(747\) −7.99371 −0.292474
\(748\) 0 0
\(749\) 21.4963 0.785457
\(750\) −2.79814 −0.102174
\(751\) −14.1068 −0.514766 −0.257383 0.966309i \(-0.582860\pi\)
−0.257383 + 0.966309i \(0.582860\pi\)
\(752\) −10.8978 −0.397403
\(753\) 45.2107 1.64757
\(754\) 3.49196 0.127170
\(755\) 2.82731 0.102896
\(756\) 0.723760 0.0263229
\(757\) −0.782070 −0.0284248 −0.0142124 0.999899i \(-0.504524\pi\)
−0.0142124 + 0.999899i \(0.504524\pi\)
\(758\) −14.2926 −0.519130
\(759\) −12.6947 −0.460790
\(760\) 8.04088 0.291673
\(761\) −2.86350 −0.103802 −0.0519009 0.998652i \(-0.516528\pi\)
−0.0519009 + 0.998652i \(0.516528\pi\)
\(762\) 7.03905 0.254998
\(763\) −34.9639 −1.26578
\(764\) −9.00636 −0.325839
\(765\) 0 0
\(766\) 19.5574 0.706636
\(767\) −5.10819 −0.184446
\(768\) 36.9867 1.33464
\(769\) −38.6633 −1.39423 −0.697117 0.716957i \(-0.745534\pi\)
−0.697117 + 0.716957i \(0.745534\pi\)
\(770\) 10.0155 0.360932
\(771\) −6.40568 −0.230695
\(772\) −8.72407 −0.313986
\(773\) −37.9989 −1.36672 −0.683362 0.730080i \(-0.739483\pi\)
−0.683362 + 0.730080i \(0.739483\pi\)
\(774\) 26.6449 0.957730
\(775\) −9.44332 −0.339214
\(776\) −37.7414 −1.35484
\(777\) −66.7371 −2.39418
\(778\) 21.9228 0.785969
\(779\) −24.9324 −0.893297
\(780\) −6.59723 −0.236219
\(781\) 44.7188 1.60017
\(782\) 0 0
\(783\) 0.345477 0.0123464
\(784\) 2.07620 0.0741499
\(785\) −1.36913 −0.0488663
\(786\) −6.21831 −0.221800
\(787\) 35.3733 1.26092 0.630461 0.776221i \(-0.282866\pi\)
0.630461 + 0.776221i \(0.282866\pi\)
\(788\) 0.891767 0.0317679
\(789\) −23.8033 −0.847421
\(790\) 10.1130 0.359804
\(791\) −27.9914 −0.995259
\(792\) −35.4092 −1.25821
\(793\) 4.14319 0.147129
\(794\) −5.36474 −0.190387
\(795\) −32.1387 −1.13984
\(796\) 15.8600 0.562141
\(797\) −26.7826 −0.948688 −0.474344 0.880340i \(-0.657315\pi\)
−0.474344 + 0.880340i \(0.657315\pi\)
\(798\) 17.8628 0.632337
\(799\) 0 0
\(800\) 3.88983 0.137526
\(801\) 5.26331 0.185970
\(802\) −27.2797 −0.963281
\(803\) −5.36931 −0.189479
\(804\) −3.76643 −0.132832
\(805\) 3.43306 0.121000
\(806\) 38.7596 1.36525
\(807\) 17.5918 0.619262
\(808\) 12.8641 0.452558
\(809\) 54.0086 1.89884 0.949420 0.314009i \(-0.101672\pi\)
0.949420 + 0.314009i \(0.101672\pi\)
\(810\) −9.56048 −0.335921
\(811\) 52.7965 1.85394 0.926968 0.375141i \(-0.122406\pi\)
0.926968 + 0.375141i \(0.122406\pi\)
\(812\) 1.51637 0.0532141
\(813\) 34.2041 1.19959
\(814\) 45.1264 1.58168
\(815\) 12.0913 0.423540
\(816\) 0 0
\(817\) −19.5308 −0.683295
\(818\) 20.5650 0.719037
\(819\) −28.1400 −0.983291
\(820\) −6.96103 −0.243090
\(821\) 11.9083 0.415601 0.207801 0.978171i \(-0.433369\pi\)
0.207801 + 0.978171i \(0.433369\pi\)
\(822\) 62.0161 2.16306
\(823\) 39.5415 1.37833 0.689165 0.724604i \(-0.257977\pi\)
0.689165 + 0.724604i \(0.257977\pi\)
\(824\) −24.8716 −0.866443
\(825\) −9.03208 −0.314457
\(826\) 3.86157 0.134361
\(827\) −18.3299 −0.637392 −0.318696 0.947857i \(-0.603245\pi\)
−0.318696 + 0.947857i \(0.603245\pi\)
\(828\) −3.24457 −0.112756
\(829\) 39.4065 1.36864 0.684322 0.729180i \(-0.260098\pi\)
0.684322 + 0.729180i \(0.260098\pi\)
\(830\) −2.84790 −0.0988521
\(831\) 11.2093 0.388847
\(832\) −30.5916 −1.06057
\(833\) 0 0
\(834\) −38.8540 −1.34541
\(835\) 5.89177 0.203893
\(836\) 6.93827 0.239965
\(837\) 3.83468 0.132546
\(838\) 1.96418 0.0678516
\(839\) −20.6064 −0.711410 −0.355705 0.934598i \(-0.615759\pi\)
−0.355705 + 0.934598i \(0.615759\pi\)
\(840\) 18.6565 0.643710
\(841\) −28.2762 −0.975041
\(842\) 41.7301 1.43812
\(843\) 8.54459 0.294291
\(844\) −12.3212 −0.424114
\(845\) 0.261831 0.00900725
\(846\) 19.3498 0.665259
\(847\) 5.46061 0.187629
\(848\) −25.9960 −0.892706
\(849\) −58.4436 −2.00578
\(850\) 0 0
\(851\) 15.4683 0.530245
\(852\) 22.2679 0.762884
\(853\) 8.24316 0.282241 0.141120 0.989992i \(-0.454930\pi\)
0.141120 + 0.989992i \(0.454930\pi\)
\(854\) −3.13207 −0.107177
\(855\) −8.26822 −0.282767
\(856\) −27.0761 −0.925441
\(857\) −27.7260 −0.947104 −0.473552 0.880766i \(-0.657028\pi\)
−0.473552 + 0.880766i \(0.657028\pi\)
\(858\) 37.0717 1.26561
\(859\) −7.00671 −0.239066 −0.119533 0.992830i \(-0.538140\pi\)
−0.119533 + 0.992830i \(0.538140\pi\)
\(860\) −5.45290 −0.185942
\(861\) −57.8483 −1.97147
\(862\) 34.2499 1.16656
\(863\) −29.4176 −1.00139 −0.500693 0.865625i \(-0.666921\pi\)
−0.500693 + 0.865625i \(0.666921\pi\)
\(864\) −1.57956 −0.0537377
\(865\) 2.07551 0.0705696
\(866\) 17.8356 0.606077
\(867\) 0 0
\(868\) 16.8312 0.571287
\(869\) 32.6436 1.10736
\(870\) 2.38059 0.0807095
\(871\) 7.57133 0.256545
\(872\) 44.0395 1.49137
\(873\) 38.8085 1.31347
\(874\) −4.14023 −0.140045
\(875\) 2.44256 0.0825737
\(876\) −2.67366 −0.0903347
\(877\) 51.5386 1.74034 0.870168 0.492755i \(-0.164010\pi\)
0.870168 + 0.492755i \(0.164010\pi\)
\(878\) −4.69668 −0.158505
\(879\) 38.7105 1.30567
\(880\) −7.30577 −0.246277
\(881\) −46.6768 −1.57258 −0.786291 0.617856i \(-0.788002\pi\)
−0.786291 + 0.617856i \(0.788002\pi\)
\(882\) −3.68642 −0.124128
\(883\) 9.95880 0.335140 0.167570 0.985860i \(-0.446408\pi\)
0.167570 + 0.985860i \(0.446408\pi\)
\(884\) 0 0
\(885\) −3.48242 −0.117060
\(886\) 17.7177 0.595239
\(887\) 18.8375 0.632502 0.316251 0.948676i \(-0.397576\pi\)
0.316251 + 0.948676i \(0.397576\pi\)
\(888\) 84.0601 2.82087
\(889\) −6.14455 −0.206082
\(890\) 1.87515 0.0628551
\(891\) −30.8602 −1.03386
\(892\) −7.01475 −0.234871
\(893\) −14.1834 −0.474631
\(894\) −32.5875 −1.08989
\(895\) 10.5373 0.352224
\(896\) 4.12364 0.137761
\(897\) 12.7073 0.424285
\(898\) 18.6496 0.622344
\(899\) 8.03414 0.267954
\(900\) −2.30845 −0.0769484
\(901\) 0 0
\(902\) 39.1160 1.30242
\(903\) −45.3153 −1.50800
\(904\) 35.2571 1.17263
\(905\) −3.39068 −0.112710
\(906\) −7.91121 −0.262832
\(907\) 26.7419 0.887950 0.443975 0.896039i \(-0.353568\pi\)
0.443975 + 0.896039i \(0.353568\pi\)
\(908\) −1.29835 −0.0430872
\(909\) −13.2278 −0.438740
\(910\) −10.0254 −0.332338
\(911\) −10.3831 −0.344008 −0.172004 0.985096i \(-0.555024\pi\)
−0.172004 + 0.985096i \(0.555024\pi\)
\(912\) −13.0300 −0.431467
\(913\) −9.19271 −0.304234
\(914\) −1.60980 −0.0532476
\(915\) 2.82455 0.0933766
\(916\) 12.2173 0.403670
\(917\) 5.42811 0.179252
\(918\) 0 0
\(919\) 20.4602 0.674919 0.337460 0.941340i \(-0.390432\pi\)
0.337460 + 0.941340i \(0.390432\pi\)
\(920\) −4.32418 −0.142564
\(921\) −53.7615 −1.77150
\(922\) 12.5852 0.414470
\(923\) −44.7631 −1.47340
\(924\) 16.0982 0.529592
\(925\) 11.0054 0.361855
\(926\) 32.9337 1.08227
\(927\) 25.5748 0.839986
\(928\) −3.30937 −0.108635
\(929\) 4.56763 0.149859 0.0749296 0.997189i \(-0.476127\pi\)
0.0749296 + 0.997189i \(0.476127\pi\)
\(930\) 26.4237 0.866468
\(931\) 2.70215 0.0885595
\(932\) 9.54888 0.312784
\(933\) −22.0075 −0.720492
\(934\) −12.3288 −0.403412
\(935\) 0 0
\(936\) 35.4443 1.15853
\(937\) 2.90874 0.0950243 0.0475122 0.998871i \(-0.484871\pi\)
0.0475122 + 0.998871i \(0.484871\pi\)
\(938\) −5.72360 −0.186882
\(939\) −42.4883 −1.38655
\(940\) −3.95995 −0.129159
\(941\) −15.3951 −0.501865 −0.250933 0.968005i \(-0.580737\pi\)
−0.250933 + 0.968005i \(0.580737\pi\)
\(942\) 3.83101 0.124821
\(943\) 13.4080 0.436626
\(944\) −2.81682 −0.0916797
\(945\) −0.991860 −0.0322652
\(946\) 30.6414 0.996238
\(947\) −23.9883 −0.779514 −0.389757 0.920918i \(-0.627441\pi\)
−0.389757 + 0.920918i \(0.627441\pi\)
\(948\) 16.2550 0.527937
\(949\) 5.37463 0.174468
\(950\) −2.94570 −0.0955712
\(951\) −25.6313 −0.831151
\(952\) 0 0
\(953\) −9.31030 −0.301590 −0.150795 0.988565i \(-0.548183\pi\)
−0.150795 + 0.988565i \(0.548183\pi\)
\(954\) 46.1575 1.49440
\(955\) 12.3426 0.399396
\(956\) 17.4740 0.565151
\(957\) 7.68427 0.248397
\(958\) −19.3853 −0.626310
\(959\) −54.1353 −1.74812
\(960\) −20.8553 −0.673102
\(961\) 58.1763 1.87666
\(962\) −45.1711 −1.45637
\(963\) 27.8416 0.897183
\(964\) 12.6173 0.406375
\(965\) 11.9557 0.384868
\(966\) −9.60618 −0.309074
\(967\) −1.29315 −0.0415848 −0.0207924 0.999784i \(-0.506619\pi\)
−0.0207924 + 0.999784i \(0.506619\pi\)
\(968\) −6.87802 −0.221068
\(969\) 0 0
\(970\) 13.8262 0.443933
\(971\) −39.3251 −1.26200 −0.631002 0.775781i \(-0.717356\pi\)
−0.631002 + 0.775781i \(0.717356\pi\)
\(972\) −16.2558 −0.521407
\(973\) 33.9166 1.08732
\(974\) −29.1288 −0.933346
\(975\) 9.04103 0.289545
\(976\) 2.28469 0.0731311
\(977\) 53.3750 1.70762 0.853809 0.520586i \(-0.174286\pi\)
0.853809 + 0.520586i \(0.174286\pi\)
\(978\) −33.8331 −1.08186
\(979\) 6.05277 0.193448
\(980\) 0.754430 0.0240994
\(981\) −45.2846 −1.44583
\(982\) 13.7924 0.440132
\(983\) −51.0753 −1.62905 −0.814524 0.580129i \(-0.803002\pi\)
−0.814524 + 0.580129i \(0.803002\pi\)
\(984\) 72.8641 2.32282
\(985\) −1.22210 −0.0389394
\(986\) 0 0
\(987\) −32.9085 −1.04749
\(988\) −6.94514 −0.220954
\(989\) 10.5031 0.333981
\(990\) 12.9718 0.412272
\(991\) −10.5889 −0.336369 −0.168185 0.985756i \(-0.553790\pi\)
−0.168185 + 0.985756i \(0.553790\pi\)
\(992\) −36.7329 −1.16627
\(993\) 16.3042 0.517400
\(994\) 33.8390 1.07331
\(995\) −21.7349 −0.689043
\(996\) −4.57753 −0.145045
\(997\) −3.44530 −0.109114 −0.0545568 0.998511i \(-0.517375\pi\)
−0.0545568 + 0.998511i \(0.517375\pi\)
\(998\) 7.23139 0.228906
\(999\) −4.46900 −0.141393
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1445.2.a.o.1.4 6
5.4 even 2 7225.2.a.z.1.3 6
17.2 even 8 85.2.e.a.21.4 12
17.4 even 4 1445.2.d.g.866.6 12
17.9 even 8 85.2.e.a.81.3 yes 12
17.13 even 4 1445.2.d.g.866.5 12
17.16 even 2 1445.2.a.n.1.4 6
51.2 odd 8 765.2.k.b.361.3 12
51.26 odd 8 765.2.k.b.676.4 12
68.19 odd 8 1360.2.bt.d.1041.6 12
68.43 odd 8 1360.2.bt.d.81.6 12
85.2 odd 8 425.2.j.b.174.3 12
85.9 even 8 425.2.e.f.251.4 12
85.19 even 8 425.2.e.f.276.3 12
85.43 odd 8 425.2.j.b.149.3 12
85.53 odd 8 425.2.j.c.174.4 12
85.77 odd 8 425.2.j.c.149.4 12
85.84 even 2 7225.2.a.bb.1.3 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
85.2.e.a.21.4 12 17.2 even 8
85.2.e.a.81.3 yes 12 17.9 even 8
425.2.e.f.251.4 12 85.9 even 8
425.2.e.f.276.3 12 85.19 even 8
425.2.j.b.149.3 12 85.43 odd 8
425.2.j.b.174.3 12 85.2 odd 8
425.2.j.c.149.4 12 85.77 odd 8
425.2.j.c.174.4 12 85.53 odd 8
765.2.k.b.361.3 12 51.2 odd 8
765.2.k.b.676.4 12 51.26 odd 8
1360.2.bt.d.81.6 12 68.43 odd 8
1360.2.bt.d.1041.6 12 68.19 odd 8
1445.2.a.n.1.4 6 17.16 even 2
1445.2.a.o.1.4 6 1.1 even 1 trivial
1445.2.d.g.866.5 12 17.13 even 4
1445.2.d.g.866.6 12 17.4 even 4
7225.2.a.z.1.3 6 5.4 even 2
7225.2.a.bb.1.3 6 85.84 even 2