Properties

Label 85.2.e.a.81.3
Level $85$
Weight $2$
Character 85.81
Analytic conductor $0.679$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [85,2,Mod(21,85)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(85, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("85.21");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 85 = 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 85.e (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.678728417181\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 18x^{10} + 83x^{8} + 152x^{6} + 111x^{4} + 22x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 81.3
Root \(3.48265i\) of defining polynomial
Character \(\chi\) \(=\) 85.81
Dual form 85.2.e.a.21.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.12708i q^{2} +(-1.75550 - 1.75550i) q^{3} +0.729699 q^{4} +(-0.707107 - 0.707107i) q^{5} +(-1.97858 + 1.97858i) q^{6} +(-1.72715 + 1.72715i) q^{7} -3.07658i q^{8} +3.16356i q^{9} +(-0.796963 + 0.796963i) q^{10} +(2.57251 - 2.57251i) q^{11} +(-1.28099 - 1.28099i) q^{12} +3.64168 q^{13} +(1.94663 + 1.94663i) q^{14} +2.48265i q^{15} -2.00814 q^{16} +(3.03394 + 2.79199i) q^{17} +3.56558 q^{18} +2.61358i q^{19} +(-0.515975 - 0.515975i) q^{20} +6.06403 q^{21} +(-2.89941 - 2.89941i) q^{22} +(0.993850 - 0.993850i) q^{23} +(-5.40094 + 5.40094i) q^{24} +1.00000i q^{25} -4.10445i q^{26} +(0.287137 - 0.287137i) q^{27} +(-1.26030 + 1.26030i) q^{28} +(0.601589 + 0.601589i) q^{29} +2.79814 q^{30} +(-6.67744 - 6.67744i) q^{31} -3.88983i q^{32} -9.03208 q^{33} +(3.14678 - 3.41948i) q^{34} +2.44256 q^{35} +2.30845i q^{36} +(7.78199 + 7.78199i) q^{37} +2.94570 q^{38} +(-6.39297 - 6.39297i) q^{39} +(-2.17547 + 2.17547i) q^{40} +(-6.74550 + 6.74550i) q^{41} -6.83463i q^{42} +7.47280i q^{43} +(1.87716 - 1.87716i) q^{44} +(2.23698 - 2.23698i) q^{45} +(-1.12014 - 1.12014i) q^{46} -5.42683 q^{47} +(3.52529 + 3.52529i) q^{48} +1.03389i q^{49} +1.12708 q^{50} +(-0.424747 - 10.2274i) q^{51} +2.65733 q^{52} -12.9453i q^{53} +(-0.323626 - 0.323626i) q^{54} -3.63808 q^{55} +(5.31372 + 5.31372i) q^{56} +(4.58814 - 4.58814i) q^{57} +(0.678037 - 0.678037i) q^{58} +1.40270i q^{59} +1.81159i q^{60} +(0.804485 - 0.804485i) q^{61} +(-7.52598 + 7.52598i) q^{62} +(-5.46396 - 5.46396i) q^{63} -8.40042 q^{64} +(-2.57506 - 2.57506i) q^{65} +10.1798i q^{66} -2.07908 q^{67} +(2.21387 + 2.03731i) q^{68} -3.48941 q^{69} -2.75295i q^{70} +(8.69168 + 8.69168i) q^{71} +9.73296 q^{72} +(1.04359 + 1.04359i) q^{73} +(8.77090 - 8.77090i) q^{74} +(1.75550 - 1.75550i) q^{75} +1.90713i q^{76} +8.88623i q^{77} +(-7.20536 + 7.20536i) q^{78} +(6.34470 - 6.34470i) q^{79} +(1.41997 + 1.41997i) q^{80} +8.48255 q^{81} +(7.60269 + 7.60269i) q^{82} +2.52680i q^{83} +4.42492 q^{84} +(-0.171086 - 4.11955i) q^{85} +8.42242 q^{86} -2.11218i q^{87} +(-7.91453 - 7.91453i) q^{88} -1.66373 q^{89} +(-2.52124 - 2.52124i) q^{90} +(-6.28973 + 6.28973i) q^{91} +(0.725212 - 0.725212i) q^{92} +23.4445i q^{93} +6.11645i q^{94} +(1.84808 - 1.84808i) q^{95} +(-6.82860 + 6.82860i) q^{96} +(-8.67432 - 8.67432i) q^{97} +1.16527 q^{98} +(8.13830 + 8.13830i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 4 q^{3} - 12 q^{4} - 4 q^{10} - 4 q^{11} - 8 q^{12} - 4 q^{14} + 4 q^{16} + 12 q^{17} + 28 q^{18} - 8 q^{20} - 16 q^{21} + 20 q^{22} + 12 q^{23} + 4 q^{24} - 4 q^{27} + 4 q^{28} - 12 q^{29} - 8 q^{30}+ \cdots + 44 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/85\mathbb{Z}\right)^\times\).

\(n\) \(52\) \(71\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.12708i 0.796963i −0.917176 0.398482i \(-0.869537\pi\)
0.917176 0.398482i \(-0.130463\pi\)
\(3\) −1.75550 1.75550i −1.01354 1.01354i −0.999907 0.0136316i \(-0.995661\pi\)
−0.0136316 0.999907i \(-0.504339\pi\)
\(4\) 0.729699 0.364850
\(5\) −0.707107 0.707107i −0.316228 0.316228i
\(6\) −1.97858 + 1.97858i −0.807753 + 0.807753i
\(7\) −1.72715 + 1.72715i −0.652802 + 0.652802i −0.953667 0.300865i \(-0.902725\pi\)
0.300865 + 0.953667i \(0.402725\pi\)
\(8\) 3.07658i 1.08773i
\(9\) 3.16356i 1.05452i
\(10\) −0.796963 + 0.796963i −0.252022 + 0.252022i
\(11\) 2.57251 2.57251i 0.775641 0.775641i −0.203446 0.979086i \(-0.565214\pi\)
0.979086 + 0.203446i \(0.0652140\pi\)
\(12\) −1.28099 1.28099i −0.369789 0.369789i
\(13\) 3.64168 1.01002 0.505010 0.863113i \(-0.331489\pi\)
0.505010 + 0.863113i \(0.331489\pi\)
\(14\) 1.94663 + 1.94663i 0.520259 + 0.520259i
\(15\) 2.48265i 0.641018i
\(16\) −2.00814 −0.502035
\(17\) 3.03394 + 2.79199i 0.735839 + 0.677157i
\(18\) 3.56558 0.840415
\(19\) 2.61358i 0.599596i 0.954003 + 0.299798i \(0.0969193\pi\)
−0.954003 + 0.299798i \(0.903081\pi\)
\(20\) −0.515975 0.515975i −0.115376 0.115376i
\(21\) 6.06403 1.32328
\(22\) −2.89941 2.89941i −0.618157 0.618157i
\(23\) 0.993850 0.993850i 0.207232 0.207232i −0.595858 0.803090i \(-0.703188\pi\)
0.803090 + 0.595858i \(0.203188\pi\)
\(24\) −5.40094 + 5.40094i −1.10246 + 1.10246i
\(25\) 1.00000i 0.200000i
\(26\) 4.10445i 0.804949i
\(27\) 0.287137 0.287137i 0.0552596 0.0552596i
\(28\) −1.26030 + 1.26030i −0.238175 + 0.238175i
\(29\) 0.601589 + 0.601589i 0.111712 + 0.111712i 0.760753 0.649041i \(-0.224830\pi\)
−0.649041 + 0.760753i \(0.724830\pi\)
\(30\) 2.79814 0.510868
\(31\) −6.67744 6.67744i −1.19930 1.19930i −0.974376 0.224928i \(-0.927785\pi\)
−0.224928 0.974376i \(-0.572215\pi\)
\(32\) 3.88983i 0.687632i
\(33\) −9.03208 −1.57228
\(34\) 3.14678 3.41948i 0.539669 0.586436i
\(35\) 2.44256 0.412868
\(36\) 2.30845i 0.384742i
\(37\) 7.78199 + 7.78199i 1.27935 + 1.27935i 0.941031 + 0.338320i \(0.109859\pi\)
0.338320 + 0.941031i \(0.390141\pi\)
\(38\) 2.94570 0.477856
\(39\) −6.39297 6.39297i −1.02369 1.02369i
\(40\) −2.17547 + 2.17547i −0.343972 + 0.343972i
\(41\) −6.74550 + 6.74550i −1.05347 + 1.05347i −0.0549831 + 0.998487i \(0.517511\pi\)
−0.998487 + 0.0549831i \(0.982489\pi\)
\(42\) 6.83463i 1.05461i
\(43\) 7.47280i 1.13959i 0.821786 + 0.569796i \(0.192978\pi\)
−0.821786 + 0.569796i \(0.807022\pi\)
\(44\) 1.87716 1.87716i 0.282992 0.282992i
\(45\) 2.23698 2.23698i 0.333469 0.333469i
\(46\) −1.12014 1.12014i −0.165156 0.165156i
\(47\) −5.42683 −0.791585 −0.395792 0.918340i \(-0.629530\pi\)
−0.395792 + 0.918340i \(0.629530\pi\)
\(48\) 3.52529 + 3.52529i 0.508832 + 0.508832i
\(49\) 1.03389i 0.147699i
\(50\) 1.12708 0.159393
\(51\) −0.424747 10.2274i −0.0594765 1.43213i
\(52\) 2.65733 0.368506
\(53\) 12.9453i 1.77817i −0.457737 0.889087i \(-0.651340\pi\)
0.457737 0.889087i \(-0.348660\pi\)
\(54\) −0.323626 0.323626i −0.0440399 0.0440399i
\(55\) −3.63808 −0.490558
\(56\) 5.31372 + 5.31372i 0.710076 + 0.710076i
\(57\) 4.58814 4.58814i 0.607714 0.607714i
\(58\) 0.678037 0.678037i 0.0890306 0.0890306i
\(59\) 1.40270i 0.182616i 0.995823 + 0.0913081i \(0.0291048\pi\)
−0.995823 + 0.0913081i \(0.970895\pi\)
\(60\) 1.81159i 0.233875i
\(61\) 0.804485 0.804485i 0.103004 0.103004i −0.653727 0.756731i \(-0.726795\pi\)
0.756731 + 0.653727i \(0.226795\pi\)
\(62\) −7.52598 + 7.52598i −0.955800 + 0.955800i
\(63\) −5.46396 5.46396i −0.688394 0.688394i
\(64\) −8.40042 −1.05005
\(65\) −2.57506 2.57506i −0.319396 0.319396i
\(66\) 10.1798i 1.25305i
\(67\) −2.07908 −0.254000 −0.127000 0.991903i \(-0.540535\pi\)
−0.127000 + 0.991903i \(0.540535\pi\)
\(68\) 2.21387 + 2.03731i 0.268471 + 0.247060i
\(69\) −3.48941 −0.420076
\(70\) 2.75295i 0.329041i
\(71\) 8.69168 + 8.69168i 1.03151 + 1.03151i 0.999487 + 0.0320251i \(0.0101957\pi\)
0.0320251 + 0.999487i \(0.489804\pi\)
\(72\) 9.73296 1.14704
\(73\) 1.04359 + 1.04359i 0.122143 + 0.122143i 0.765536 0.643393i \(-0.222474\pi\)
−0.643393 + 0.765536i \(0.722474\pi\)
\(74\) 8.77090 8.77090i 1.01960 1.01960i
\(75\) 1.75550 1.75550i 0.202708 0.202708i
\(76\) 1.90713i 0.218762i
\(77\) 8.88623i 1.01268i
\(78\) −7.20536 + 7.20536i −0.815847 + 0.815847i
\(79\) 6.34470 6.34470i 0.713834 0.713834i −0.253501 0.967335i \(-0.581582\pi\)
0.967335 + 0.253501i \(0.0815821\pi\)
\(80\) 1.41997 + 1.41997i 0.158757 + 0.158757i
\(81\) 8.48255 0.942506
\(82\) 7.60269 + 7.60269i 0.839577 + 0.839577i
\(83\) 2.52680i 0.277353i 0.990338 + 0.138676i \(0.0442848\pi\)
−0.990338 + 0.138676i \(0.955715\pi\)
\(84\) 4.42492 0.482799
\(85\) −0.171086 4.11955i −0.0185569 0.446828i
\(86\) 8.42242 0.908213
\(87\) 2.11218i 0.226449i
\(88\) −7.91453 7.91453i −0.843691 0.843691i
\(89\) −1.66373 −0.176355 −0.0881775 0.996105i \(-0.528104\pi\)
−0.0881775 + 0.996105i \(0.528104\pi\)
\(90\) −2.52124 2.52124i −0.265762 0.265762i
\(91\) −6.28973 + 6.28973i −0.659343 + 0.659343i
\(92\) 0.725212 0.725212i 0.0756086 0.0756086i
\(93\) 23.4445i 2.43108i
\(94\) 6.11645i 0.630864i
\(95\) 1.84808 1.84808i 0.189609 0.189609i
\(96\) −6.82860 + 6.82860i −0.696941 + 0.696941i
\(97\) −8.67432 8.67432i −0.880744 0.880744i 0.112867 0.993610i \(-0.463997\pi\)
−0.993610 + 0.112867i \(0.963997\pi\)
\(98\) 1.16527 0.117710
\(99\) 8.13830 + 8.13830i 0.817930 + 0.817930i
\(100\) 0.729699i 0.0729699i
\(101\) −4.18131 −0.416056 −0.208028 0.978123i \(-0.566704\pi\)
−0.208028 + 0.978123i \(0.566704\pi\)
\(102\) −11.5271 + 0.478722i −1.14135 + 0.0474006i
\(103\) 8.08417 0.796557 0.398279 0.917265i \(-0.369608\pi\)
0.398279 + 0.917265i \(0.369608\pi\)
\(104\) 11.2039i 1.09863i
\(105\) −4.28792 4.28792i −0.418458 0.418458i
\(106\) −14.5903 −1.41714
\(107\) −6.22304 6.22304i −0.601604 0.601604i 0.339134 0.940738i \(-0.389866\pi\)
−0.940738 + 0.339134i \(0.889866\pi\)
\(108\) 0.209524 0.209524i 0.0201615 0.0201615i
\(109\) 10.1218 10.1218i 0.969496 0.969496i −0.0300524 0.999548i \(-0.509567\pi\)
0.999548 + 0.0300524i \(0.00956740\pi\)
\(110\) 4.10039i 0.390957i
\(111\) 27.3226i 2.59334i
\(112\) 3.46836 3.46836i 0.327730 0.327730i
\(113\) −8.10334 + 8.10334i −0.762298 + 0.762298i −0.976737 0.214440i \(-0.931208\pi\)
0.214440 + 0.976737i \(0.431208\pi\)
\(114\) −5.17118 5.17118i −0.484325 0.484325i
\(115\) −1.40552 −0.131065
\(116\) 0.438979 + 0.438979i 0.0407582 + 0.0407582i
\(117\) 11.5207i 1.06509i
\(118\) 1.58095 0.145538
\(119\) −10.0623 + 0.417888i −0.922407 + 0.0383077i
\(120\) 7.63808 0.697258
\(121\) 2.23561i 0.203237i
\(122\) −0.906716 0.906716i −0.0820902 0.0820902i
\(123\) 23.6835 2.13547
\(124\) −4.87252 4.87252i −0.437565 0.437565i
\(125\) 0.707107 0.707107i 0.0632456 0.0632456i
\(126\) −6.15830 + 6.15830i −0.548625 + 0.548625i
\(127\) 2.51562i 0.223225i −0.993752 0.111613i \(-0.964398\pi\)
0.993752 0.111613i \(-0.0356015\pi\)
\(128\) 1.68825i 0.149221i
\(129\) 13.1185 13.1185i 1.15502 1.15502i
\(130\) −2.90228 + 2.90228i −0.254547 + 0.254547i
\(131\) −1.57140 1.57140i −0.137294 0.137294i 0.635120 0.772414i \(-0.280951\pi\)
−0.772414 + 0.635120i \(0.780951\pi\)
\(132\) −6.59071 −0.573647
\(133\) −4.51405 4.51405i −0.391417 0.391417i
\(134\) 2.34328i 0.202428i
\(135\) −0.406074 −0.0349493
\(136\) 8.58977 9.33416i 0.736567 0.800398i
\(137\) −22.1633 −1.89354 −0.946771 0.321908i \(-0.895676\pi\)
−0.946771 + 0.321908i \(0.895676\pi\)
\(138\) 3.93283i 0.334785i
\(139\) 9.81865 + 9.81865i 0.832807 + 0.832807i 0.987900 0.155093i \(-0.0495676\pi\)
−0.155093 + 0.987900i \(0.549568\pi\)
\(140\) 1.78234 0.150635
\(141\) 9.52680 + 9.52680i 0.802302 + 0.802302i
\(142\) 9.79618 9.79618i 0.822077 0.822077i
\(143\) 9.36825 9.36825i 0.783413 0.783413i
\(144\) 6.35288i 0.529407i
\(145\) 0.850775i 0.0706530i
\(146\) 1.17621 1.17621i 0.0973438 0.0973438i
\(147\) 1.81500 1.81500i 0.149698 0.149698i
\(148\) 5.67851 + 5.67851i 0.466771 + 0.466771i
\(149\) −11.6461 −0.954087 −0.477044 0.878880i \(-0.658292\pi\)
−0.477044 + 0.878880i \(0.658292\pi\)
\(150\) −1.97858 1.97858i −0.161551 0.161551i
\(151\) 2.82731i 0.230083i −0.993361 0.115042i \(-0.963300\pi\)
0.993361 0.115042i \(-0.0367002\pi\)
\(152\) 8.04088 0.652201
\(153\) −8.83264 + 9.59807i −0.714076 + 0.775958i
\(154\) 10.0155 0.807068
\(155\) 9.44332i 0.758506i
\(156\) −4.66495 4.66495i −0.373495 0.373495i
\(157\) 1.36913 0.109268 0.0546342 0.998506i \(-0.482601\pi\)
0.0546342 + 0.998506i \(0.482601\pi\)
\(158\) −7.15096 7.15096i −0.568900 0.568900i
\(159\) −22.7255 + 22.7255i −1.80225 + 1.80225i
\(160\) −2.75053 + 2.75053i −0.217448 + 0.217448i
\(161\) 3.43306i 0.270563i
\(162\) 9.56048i 0.751143i
\(163\) −8.54984 + 8.54984i −0.669675 + 0.669675i −0.957641 0.287966i \(-0.907021\pi\)
0.287966 + 0.957641i \(0.407021\pi\)
\(164\) −4.92219 + 4.92219i −0.384358 + 0.384358i
\(165\) 6.38665 + 6.38665i 0.497200 + 0.497200i
\(166\) 2.84790 0.221040
\(167\) 4.16611 + 4.16611i 0.322383 + 0.322383i 0.849681 0.527297i \(-0.176795\pi\)
−0.527297 + 0.849681i \(0.676795\pi\)
\(168\) 18.6565i 1.43938i
\(169\) 0.261831 0.0201408
\(170\) −4.64305 + 0.192827i −0.356106 + 0.0147892i
\(171\) −8.26822 −0.632287
\(172\) 5.45290i 0.415780i
\(173\) 1.46761 + 1.46761i 0.111580 + 0.111580i 0.760693 0.649112i \(-0.224859\pi\)
−0.649112 + 0.760693i \(0.724859\pi\)
\(174\) −2.38059 −0.180472
\(175\) −1.72715 1.72715i −0.130560 0.130560i
\(176\) −5.16596 + 5.16596i −0.389399 + 0.389399i
\(177\) 2.46244 2.46244i 0.185089 0.185089i
\(178\) 1.87515i 0.140548i
\(179\) 10.5373i 0.787597i 0.919197 + 0.393799i \(0.128839\pi\)
−0.919197 + 0.393799i \(0.871161\pi\)
\(180\) 1.63232 1.63232i 0.121666 0.121666i
\(181\) −2.39758 + 2.39758i −0.178210 + 0.178210i −0.790575 0.612365i \(-0.790218\pi\)
0.612365 + 0.790575i \(0.290218\pi\)
\(182\) 7.08901 + 7.08901i 0.525472 + 0.525472i
\(183\) −2.82455 −0.208797
\(184\) −3.05766 3.05766i −0.225414 0.225414i
\(185\) 11.0054i 0.809133i
\(186\) 26.4237 1.93748
\(187\) 14.9873 0.622424i 1.09598 0.0455162i
\(188\) −3.95995 −0.288809
\(189\) 0.991860i 0.0721472i
\(190\) −2.08293 2.08293i −0.151111 0.151111i
\(191\) −12.3426 −0.893077 −0.446538 0.894764i \(-0.647343\pi\)
−0.446538 + 0.894764i \(0.647343\pi\)
\(192\) 14.7469 + 14.7469i 1.06427 + 1.06427i
\(193\) 8.45396 8.45396i 0.608529 0.608529i −0.334032 0.942562i \(-0.608409\pi\)
0.942562 + 0.334032i \(0.108409\pi\)
\(194\) −9.77662 + 9.77662i −0.701920 + 0.701920i
\(195\) 9.04103i 0.647441i
\(196\) 0.754430i 0.0538878i
\(197\) 0.864156 0.864156i 0.0615686 0.0615686i −0.675652 0.737221i \(-0.736138\pi\)
0.737221 + 0.675652i \(0.236138\pi\)
\(198\) 9.17248 9.17248i 0.651860 0.651860i
\(199\) 15.3689 + 15.3689i 1.08947 + 1.08947i 0.995583 + 0.0938906i \(0.0299304\pi\)
0.0938906 + 0.995583i \(0.470070\pi\)
\(200\) 3.07658 0.217547
\(201\) 3.64982 + 3.64982i 0.257438 + 0.257438i
\(202\) 4.71265i 0.331581i
\(203\) −2.07807 −0.145852
\(204\) −0.309938 7.46294i −0.0217000 0.522511i
\(205\) 9.53958 0.666273
\(206\) 9.11148i 0.634827i
\(207\) 3.14411 + 3.14411i 0.218531 + 0.218531i
\(208\) −7.31300 −0.507065
\(209\) 6.72345 + 6.72345i 0.465071 + 0.465071i
\(210\) −4.83281 + 4.83281i −0.333496 + 0.333496i
\(211\) −11.9397 + 11.9397i −0.821965 + 0.821965i −0.986390 0.164425i \(-0.947423\pi\)
0.164425 + 0.986390i \(0.447423\pi\)
\(212\) 9.44618i 0.648767i
\(213\) 30.5165i 2.09096i
\(214\) −7.01384 + 7.01384i −0.479456 + 0.479456i
\(215\) 5.28407 5.28407i 0.360371 0.360371i
\(216\) −0.883401 0.883401i −0.0601078 0.0601078i
\(217\) 23.0659 1.56582
\(218\) −11.4081 11.4081i −0.772653 0.772653i
\(219\) 3.66406i 0.247594i
\(220\) −2.65470 −0.178980
\(221\) 11.0486 + 10.1675i 0.743212 + 0.683942i
\(222\) −30.7946 −2.06680
\(223\) 9.61320i 0.643748i −0.946783 0.321874i \(-0.895687\pi\)
0.946783 0.321874i \(-0.104313\pi\)
\(224\) 6.71833 + 6.71833i 0.448887 + 0.448887i
\(225\) −3.16356 −0.210904
\(226\) 9.13308 + 9.13308i 0.607523 + 0.607523i
\(227\) 1.25815 1.25815i 0.0835064 0.0835064i −0.664120 0.747626i \(-0.731194\pi\)
0.747626 + 0.664120i \(0.231194\pi\)
\(228\) 3.34796 3.34796i 0.221724 0.221724i
\(229\) 16.7429i 1.10640i −0.833048 0.553201i \(-0.813406\pi\)
0.833048 0.553201i \(-0.186594\pi\)
\(230\) 1.58412i 0.104454i
\(231\) 15.5998 15.5998i 1.02639 1.02639i
\(232\) 1.85084 1.85084i 0.121513 0.121513i
\(233\) 9.25323 + 9.25323i 0.606199 + 0.606199i 0.941951 0.335751i \(-0.108990\pi\)
−0.335751 + 0.941951i \(0.608990\pi\)
\(234\) 12.9847 0.848836
\(235\) 3.83735 + 3.83735i 0.250321 + 0.250321i
\(236\) 1.02355i 0.0666275i
\(237\) −22.2762 −1.44700
\(238\) 0.470992 + 11.3409i 0.0305299 + 0.735124i
\(239\) −23.9469 −1.54900 −0.774498 0.632577i \(-0.781997\pi\)
−0.774498 + 0.632577i \(0.781997\pi\)
\(240\) 4.98551i 0.321814i
\(241\) −12.2266 12.2266i −0.787587 0.787587i 0.193511 0.981098i \(-0.438012\pi\)
−0.981098 + 0.193511i \(0.938012\pi\)
\(242\) −2.51970 −0.161972
\(243\) −15.7525 15.7525i −1.01053 1.01053i
\(244\) 0.587032 0.587032i 0.0375809 0.0375809i
\(245\) 0.731071 0.731071i 0.0467064 0.0467064i
\(246\) 26.6931i 1.70189i
\(247\) 9.51781i 0.605604i
\(248\) −20.5437 + 20.5437i −1.30452 + 1.30452i
\(249\) 4.43581 4.43581i 0.281108 0.281108i
\(250\) −0.796963 0.796963i −0.0504044 0.0504044i
\(251\) 18.2106 1.14944 0.574722 0.818349i \(-0.305110\pi\)
0.574722 + 0.818349i \(0.305110\pi\)
\(252\) −3.98705 3.98705i −0.251160 0.251160i
\(253\) 5.11338i 0.321475i
\(254\) −2.83529 −0.177902
\(255\) −6.93154 + 7.53222i −0.434070 + 0.471686i
\(256\) −14.8981 −0.931128
\(257\) 2.58018i 0.160947i −0.996757 0.0804735i \(-0.974357\pi\)
0.996757 0.0804735i \(-0.0256432\pi\)
\(258\) −14.7856 14.7856i −0.920509 0.920509i
\(259\) −26.8814 −1.67033
\(260\) −1.87902 1.87902i −0.116532 0.116532i
\(261\) −1.90317 + 1.90317i −0.117803 + 0.117803i
\(262\) −1.77109 + 1.77109i −0.109418 + 0.109418i
\(263\) 9.58787i 0.591213i 0.955310 + 0.295607i \(0.0955218\pi\)
−0.955310 + 0.295607i \(0.904478\pi\)
\(264\) 27.7879i 1.71023i
\(265\) −9.15372 + 9.15372i −0.562308 + 0.562308i
\(266\) −5.08767 + 5.08767i −0.311945 + 0.311945i
\(267\) 2.92068 + 2.92068i 0.178743 + 0.178743i
\(268\) −1.51710 −0.0926717
\(269\) −5.01049 5.01049i −0.305495 0.305495i 0.537664 0.843159i \(-0.319307\pi\)
−0.843159 + 0.537664i \(0.819307\pi\)
\(270\) 0.457676i 0.0278533i
\(271\) −13.7773 −0.836909 −0.418454 0.908238i \(-0.637428\pi\)
−0.418454 + 0.908238i \(0.637428\pi\)
\(272\) −6.09258 5.60670i −0.369417 0.339956i
\(273\) 22.0833 1.33654
\(274\) 24.9798i 1.50908i
\(275\) 2.57251 + 2.57251i 0.155128 + 0.155128i
\(276\) −2.54622 −0.153264
\(277\) 3.19263 + 3.19263i 0.191827 + 0.191827i 0.796485 0.604658i \(-0.206690\pi\)
−0.604658 + 0.796485i \(0.706690\pi\)
\(278\) 11.0664 11.0664i 0.663717 0.663717i
\(279\) 21.1245 21.1245i 1.26469 1.26469i
\(280\) 7.51473i 0.449091i
\(281\) 3.44172i 0.205316i −0.994717 0.102658i \(-0.967265\pi\)
0.994717 0.102658i \(-0.0327347\pi\)
\(282\) 10.7374 10.7374i 0.639405 0.639405i
\(283\) 16.6458 16.6458i 0.989493 0.989493i −0.0104528 0.999945i \(-0.503327\pi\)
0.999945 + 0.0104528i \(0.00332730\pi\)
\(284\) 6.34231 + 6.34231i 0.376347 + 0.376347i
\(285\) −6.48861 −0.384352
\(286\) −10.5587 10.5587i −0.624351 0.624351i
\(287\) 23.3010i 1.37542i
\(288\) 12.3057 0.725122
\(289\) 1.40960 + 16.9415i 0.0829174 + 0.996556i
\(290\) −0.958888 −0.0563079
\(291\) 30.4555i 1.78534i
\(292\) 0.761510 + 0.761510i 0.0445640 + 0.0445640i
\(293\) 15.5924 0.910918 0.455459 0.890257i \(-0.349475\pi\)
0.455459 + 0.890257i \(0.349475\pi\)
\(294\) −2.04564 2.04564i −0.119304 0.119304i
\(295\) 0.991860 0.991860i 0.0577483 0.0577483i
\(296\) 23.9419 23.9419i 1.39160 1.39160i
\(297\) 1.47733i 0.0857232i
\(298\) 13.1261i 0.760372i
\(299\) 3.61928 3.61928i 0.209309 0.209309i
\(300\) 1.28099 1.28099i 0.0739579 0.0739579i
\(301\) −12.9067 12.9067i −0.743928 0.743928i
\(302\) −3.18660 −0.183368
\(303\) 7.34029 + 7.34029i 0.421688 + 0.421688i
\(304\) 5.24843i 0.301018i
\(305\) −1.13771 −0.0651453
\(306\) 10.8178 + 9.95505i 0.618410 + 0.569093i
\(307\) 21.6549 1.23591 0.617955 0.786214i \(-0.287962\pi\)
0.617955 + 0.786214i \(0.287962\pi\)
\(308\) 6.48428i 0.369476i
\(309\) −14.1918 14.1918i −0.807341 0.807341i
\(310\) 10.6433 0.604501
\(311\) −6.26814 6.26814i −0.355434 0.355434i 0.506693 0.862127i \(-0.330868\pi\)
−0.862127 + 0.506693i \(0.830868\pi\)
\(312\) −19.6685 + 19.6685i −1.11351 + 1.11351i
\(313\) −12.1015 + 12.1015i −0.684016 + 0.684016i −0.960903 0.276887i \(-0.910697\pi\)
0.276887 + 0.960903i \(0.410697\pi\)
\(314\) 1.54311i 0.0870828i
\(315\) 7.72720i 0.435379i
\(316\) 4.62972 4.62972i 0.260442 0.260442i
\(317\) 7.30027 7.30027i 0.410024 0.410024i −0.471723 0.881747i \(-0.656368\pi\)
0.881747 + 0.471723i \(0.156368\pi\)
\(318\) 25.6134 + 25.6134i 1.43633 + 1.43633i
\(319\) 3.09519 0.173297
\(320\) 5.93999 + 5.93999i 0.332056 + 0.332056i
\(321\) 21.8491i 1.21950i
\(322\) 3.86932 0.215629
\(323\) −7.29708 + 7.92944i −0.406020 + 0.441206i
\(324\) 6.18971 0.343873
\(325\) 3.64168i 0.202004i
\(326\) 9.63632 + 9.63632i 0.533706 + 0.533706i
\(327\) −35.5378 −1.96524
\(328\) 20.7531 + 20.7531i 1.14590 + 1.14590i
\(329\) 9.37296 9.37296i 0.516748 0.516748i
\(330\) 7.19824 7.19824i 0.396250 0.396250i
\(331\) 6.56727i 0.360970i −0.983578 0.180485i \(-0.942233\pi\)
0.983578 0.180485i \(-0.0577667\pi\)
\(332\) 1.84381i 0.101192i
\(333\) −24.6188 + 24.6188i −1.34910 + 1.34910i
\(334\) 4.69553 4.69553i 0.256928 0.256928i
\(335\) 1.47013 + 1.47013i 0.0803217 + 0.0803217i
\(336\) −12.1774 −0.664333
\(337\) −21.3377 21.3377i −1.16234 1.16234i −0.983962 0.178379i \(-0.942915\pi\)
−0.178379 0.983962i \(-0.557085\pi\)
\(338\) 0.295103i 0.0160515i
\(339\) 28.4508 1.54524
\(340\) −0.124841 3.00604i −0.00677047 0.163025i
\(341\) −34.3555 −1.86046
\(342\) 9.31892i 0.503909i
\(343\) −13.8758 13.8758i −0.749220 0.749220i
\(344\) 22.9907 1.23957
\(345\) 2.46739 + 2.46739i 0.132840 + 0.132840i
\(346\) 1.65411 1.65411i 0.0889254 0.0889254i
\(347\) 4.97815 4.97815i 0.267241 0.267241i −0.560746 0.827988i \(-0.689486\pi\)
0.827988 + 0.560746i \(0.189486\pi\)
\(348\) 1.54126i 0.0826200i
\(349\) 35.4396i 1.89704i −0.316723 0.948518i \(-0.602583\pi\)
0.316723 0.948518i \(-0.397417\pi\)
\(350\) −1.94663 + 1.94663i −0.104052 + 0.104052i
\(351\) 1.04566 1.04566i 0.0558133 0.0558133i
\(352\) −10.0066 10.0066i −0.533355 0.533355i
\(353\) −8.54669 −0.454895 −0.227447 0.973790i \(-0.573038\pi\)
−0.227447 + 0.973790i \(0.573038\pi\)
\(354\) −2.77536 2.77536i −0.147509 0.147509i
\(355\) 12.2919i 0.652386i
\(356\) −1.21402 −0.0643430
\(357\) 18.3979 + 16.9307i 0.973721 + 0.896068i
\(358\) 11.8764 0.627686
\(359\) 20.2839i 1.07054i 0.844681 + 0.535271i \(0.179790\pi\)
−0.844681 + 0.535271i \(0.820210\pi\)
\(360\) −6.88224 6.88224i −0.362726 0.362726i
\(361\) 12.1692 0.640485
\(362\) 2.70225 + 2.70225i 0.142027 + 0.142027i
\(363\) −3.92461 + 3.92461i −0.205988 + 0.205988i
\(364\) −4.58962 + 4.58962i −0.240561 + 0.240561i
\(365\) 1.47586i 0.0772503i
\(366\) 3.18348i 0.166403i
\(367\) −8.99600 + 8.99600i −0.469587 + 0.469587i −0.901781 0.432193i \(-0.857740\pi\)
0.432193 + 0.901781i \(0.357740\pi\)
\(368\) −1.99579 + 1.99579i −0.104038 + 0.104038i
\(369\) −21.3398 21.3398i −1.11091 1.11091i
\(370\) −12.4039 −0.644849
\(371\) 22.3585 + 22.3585i 1.16080 + 1.16080i
\(372\) 17.1074i 0.886979i
\(373\) −11.1454 −0.577086 −0.288543 0.957467i \(-0.593171\pi\)
−0.288543 + 0.957467i \(0.593171\pi\)
\(374\) −0.701519 16.8918i −0.0362747 0.873453i
\(375\) −2.48265 −0.128204
\(376\) 16.6961i 0.861034i
\(377\) 2.19079 + 2.19079i 0.112832 + 0.112832i
\(378\) 1.11790 0.0574987
\(379\) 8.96691 + 8.96691i 0.460599 + 0.460599i 0.898852 0.438253i \(-0.144402\pi\)
−0.438253 + 0.898852i \(0.644402\pi\)
\(380\) 1.34854 1.34854i 0.0691787 0.0691787i
\(381\) −4.41617 + 4.41617i −0.226247 + 0.226247i
\(382\) 13.9110i 0.711749i
\(383\) 17.3523i 0.886661i 0.896358 + 0.443331i \(0.146203\pi\)
−0.896358 + 0.443331i \(0.853797\pi\)
\(384\) 2.96372 2.96372i 0.151241 0.151241i
\(385\) 6.28351 6.28351i 0.320237 0.320237i
\(386\) −9.52825 9.52825i −0.484975 0.484975i
\(387\) −23.6407 −1.20172
\(388\) −6.32965 6.32965i −0.321339 0.321339i
\(389\) 19.4510i 0.986205i −0.869971 0.493103i \(-0.835863\pi\)
0.869971 0.493103i \(-0.164137\pi\)
\(390\) 10.1899 0.515987
\(391\) 5.79010 0.240464i 0.292818 0.0121608i
\(392\) 3.18085 0.160657
\(393\) 5.51720i 0.278306i
\(394\) −0.973970 0.973970i −0.0490679 0.0490679i
\(395\) −8.97276 −0.451468
\(396\) 5.93851 + 5.93851i 0.298421 + 0.298421i
\(397\) −3.36574 + 3.36574i −0.168922 + 0.168922i −0.786505 0.617584i \(-0.788112\pi\)
0.617584 + 0.786505i \(0.288112\pi\)
\(398\) 17.3219 17.3219i 0.868270 0.868270i
\(399\) 15.8488i 0.793434i
\(400\) 2.00814i 0.100407i
\(401\) 17.1148 17.1148i 0.854672 0.854672i −0.136032 0.990704i \(-0.543435\pi\)
0.990704 + 0.136032i \(0.0434350\pi\)
\(402\) 4.11362 4.11362i 0.205169 0.205169i
\(403\) −24.3171 24.3171i −1.21132 1.21132i
\(404\) −3.05110 −0.151798
\(405\) −5.99807 5.99807i −0.298047 0.298047i
\(406\) 2.34214i 0.116239i
\(407\) 40.0385 1.98463
\(408\) −31.4655 + 1.30677i −1.55777 + 0.0646947i
\(409\) 18.2463 0.902221 0.451111 0.892468i \(-0.351028\pi\)
0.451111 + 0.892468i \(0.351028\pi\)
\(410\) 10.7518i 0.530995i
\(411\) 38.9078 + 38.9078i 1.91918 + 1.91918i
\(412\) 5.89901 0.290624
\(413\) −2.42268 2.42268i −0.119212 0.119212i
\(414\) 3.54365 3.54365i 0.174161 0.174161i
\(415\) 1.78672 1.78672i 0.0877066 0.0877066i
\(416\) 14.1655i 0.694522i
\(417\) 34.4733i 1.68816i
\(418\) 7.57784 7.57784i 0.370644 0.370644i
\(419\) 1.23229 1.23229i 0.0602015 0.0602015i −0.676365 0.736567i \(-0.736446\pi\)
0.736567 + 0.676365i \(0.236446\pi\)
\(420\) −3.12889 3.12889i −0.152674 0.152674i
\(421\) −37.0251 −1.80449 −0.902247 0.431220i \(-0.858083\pi\)
−0.902247 + 0.431220i \(0.858083\pi\)
\(422\) 13.4570 + 13.4570i 0.655076 + 0.655076i
\(423\) 17.1681i 0.834743i
\(424\) −39.8273 −1.93418
\(425\) −2.79199 + 3.03394i −0.135431 + 0.147168i
\(426\) −34.3944 −1.66641
\(427\) 2.77894i 0.134482i
\(428\) −4.54095 4.54095i −0.219495 0.219495i
\(429\) −32.8920 −1.58804
\(430\) −5.95555 5.95555i −0.287202 0.287202i
\(431\) 21.4877 21.4877i 1.03503 1.03503i 0.0356645 0.999364i \(-0.488645\pi\)
0.999364 0.0356645i \(-0.0113548\pi\)
\(432\) −0.576612 + 0.576612i −0.0277423 + 0.0277423i
\(433\) 15.8246i 0.760483i 0.924887 + 0.380242i \(0.124159\pi\)
−0.924887 + 0.380242i \(0.875841\pi\)
\(434\) 25.9970i 1.24790i
\(435\) −1.49354 + 1.49354i −0.0716096 + 0.0716096i
\(436\) 7.38590 7.38590i 0.353720 0.353720i
\(437\) 2.59751 + 2.59751i 0.124256 + 0.124256i
\(438\) −4.12967 −0.197323
\(439\) −2.94661 2.94661i −0.140634 0.140634i 0.633285 0.773919i \(-0.281706\pi\)
−0.773919 + 0.633285i \(0.781706\pi\)
\(440\) 11.1928i 0.533597i
\(441\) −3.27078 −0.155751
\(442\) 11.4596 12.4527i 0.545077 0.592313i
\(443\) 15.7201 0.746884 0.373442 0.927654i \(-0.378177\pi\)
0.373442 + 0.927654i \(0.378177\pi\)
\(444\) 19.9373i 0.946181i
\(445\) 1.17643 + 1.17643i 0.0557683 + 0.0557683i
\(446\) −10.8348 −0.513043
\(447\) 20.4448 + 20.4448i 0.967004 + 0.967004i
\(448\) 14.5088 14.5088i 0.685476 0.685476i
\(449\) −11.7004 + 11.7004i −0.552176 + 0.552176i −0.927068 0.374892i \(-0.877680\pi\)
0.374892 + 0.927068i \(0.377680\pi\)
\(450\) 3.56558i 0.168083i
\(451\) 34.7057i 1.63423i
\(452\) −5.91300 + 5.91300i −0.278124 + 0.278124i
\(453\) −4.96335 + 4.96335i −0.233199 + 0.233199i
\(454\) −1.41803 1.41803i −0.0665515 0.0665515i
\(455\) 8.89503 0.417005
\(456\) −14.1158 14.1158i −0.661031 0.661031i
\(457\) 1.42830i 0.0668131i 0.999442 + 0.0334066i \(0.0106356\pi\)
−0.999442 + 0.0334066i \(0.989364\pi\)
\(458\) −18.8705 −0.881761
\(459\) 1.67284 0.0694735i 0.0780816 0.00324275i
\(460\) −1.02560 −0.0478191
\(461\) 11.1662i 0.520062i −0.965600 0.260031i \(-0.916267\pi\)
0.965600 0.260031i \(-0.0837327\pi\)
\(462\) −17.5821 17.5821i −0.817995 0.817995i
\(463\) −29.2204 −1.35799 −0.678994 0.734144i \(-0.737584\pi\)
−0.678994 + 0.734144i \(0.737584\pi\)
\(464\) −1.20807 1.20807i −0.0560835 0.0560835i
\(465\) 16.5778 16.5778i 0.768775 0.768775i
\(466\) 10.4291 10.4291i 0.483119 0.483119i
\(467\) 10.9388i 0.506187i −0.967442 0.253093i \(-0.918552\pi\)
0.967442 0.253093i \(-0.0814480\pi\)
\(468\) 8.40664i 0.388597i
\(469\) 3.59088 3.59088i 0.165811 0.165811i
\(470\) 4.32498 4.32498i 0.199497 0.199497i
\(471\) −2.40351 2.40351i −0.110748 0.110748i
\(472\) 4.31552 0.198638
\(473\) 19.2239 + 19.2239i 0.883914 + 0.883914i
\(474\) 25.1070i 1.15320i
\(475\) −2.61358 −0.119919
\(476\) −7.34243 + 0.304933i −0.336540 + 0.0139766i
\(477\) 40.9533 1.87512
\(478\) 26.9900i 1.23449i
\(479\) −12.1620 12.1620i −0.555695 0.555695i 0.372384 0.928079i \(-0.378540\pi\)
−0.928079 + 0.372384i \(0.878540\pi\)
\(480\) 9.65710 0.440784
\(481\) 28.3395 + 28.3395i 1.29217 + 1.29217i
\(482\) −13.7803 + 13.7803i −0.627678 + 0.627678i
\(483\) 6.02674 6.02674i 0.274226 0.274226i
\(484\) 1.63132i 0.0741509i
\(485\) 12.2673i 0.557031i
\(486\) −17.7543 + 17.7543i −0.805352 + 0.805352i
\(487\) −18.2749 + 18.2749i −0.828113 + 0.828113i −0.987256 0.159143i \(-0.949127\pi\)
0.159143 + 0.987256i \(0.449127\pi\)
\(488\) −2.47506 2.47506i −0.112041 0.112041i
\(489\) 30.0185 1.35748
\(490\) −0.823973 0.823973i −0.0372233 0.0372233i
\(491\) 12.2373i 0.552261i −0.961120 0.276131i \(-0.910948\pi\)
0.961120 0.276131i \(-0.0890523\pi\)
\(492\) 17.2818 0.779124
\(493\) 0.145556 + 3.50481i 0.00655550 + 0.157849i
\(494\) 10.7273 0.482644
\(495\) 11.5093i 0.517304i
\(496\) 13.4092 + 13.4092i 0.602092 + 0.602092i
\(497\) −30.0237 −1.34675
\(498\) −4.99949 4.99949i −0.224033 0.224033i
\(499\) 4.53684 4.53684i 0.203097 0.203097i −0.598229 0.801325i \(-0.704129\pi\)
0.801325 + 0.598229i \(0.204129\pi\)
\(500\) 0.515975 0.515975i 0.0230751 0.0230751i
\(501\) 14.6272i 0.653496i
\(502\) 20.5248i 0.916065i
\(503\) 15.0825 15.0825i 0.672497 0.672497i −0.285794 0.958291i \(-0.592257\pi\)
0.958291 + 0.285794i \(0.0922574\pi\)
\(504\) −16.8103 + 16.8103i −0.748790 + 0.748790i
\(505\) 2.95663 + 2.95663i 0.131568 + 0.131568i
\(506\) −5.76317 −0.256204
\(507\) −0.459644 0.459644i −0.0204135 0.0204135i
\(508\) 1.83565i 0.0814436i
\(509\) 14.2265 0.630577 0.315289 0.948996i \(-0.397899\pi\)
0.315289 + 0.948996i \(0.397899\pi\)
\(510\) 8.48939 + 7.81237i 0.375916 + 0.345938i
\(511\) −3.60489 −0.159471
\(512\) 20.1677i 0.891296i
\(513\) 0.750456 + 0.750456i 0.0331334 + 0.0331334i
\(514\) −2.90805 −0.128269
\(515\) −5.71637 5.71637i −0.251893 0.251893i
\(516\) 9.57257 9.57257i 0.421409 0.421409i
\(517\) −13.9606 + 13.9606i −0.613985 + 0.613985i
\(518\) 30.2973i 1.33119i
\(519\) 5.15278i 0.226182i
\(520\) −7.92236 + 7.92236i −0.347419 + 0.347419i
\(521\) −17.3636 + 17.3636i −0.760714 + 0.760714i −0.976451 0.215738i \(-0.930784\pi\)
0.215738 + 0.976451i \(0.430784\pi\)
\(522\) 2.14501 + 2.14501i 0.0938846 + 0.0938846i
\(523\) 39.8642 1.74314 0.871570 0.490271i \(-0.163102\pi\)
0.871570 + 0.490271i \(0.163102\pi\)
\(524\) −1.14665 1.14665i −0.0500917 0.0500917i
\(525\) 6.06403i 0.264656i
\(526\) 10.8063 0.471175
\(527\) −1.61562 38.9023i −0.0703775 1.69461i
\(528\) 18.1377 0.789341
\(529\) 21.0245i 0.914110i
\(530\) 10.3169 + 10.3169i 0.448139 + 0.448139i
\(531\) −4.43754 −0.192573
\(532\) −3.29390 3.29390i −0.142809 0.142809i
\(533\) −24.5650 + 24.5650i −1.06403 + 1.06403i
\(534\) 3.29183 3.29183i 0.142451 0.142451i
\(535\) 8.80071i 0.380488i
\(536\) 6.39644i 0.276284i
\(537\) 18.4983 18.4983i 0.798260 0.798260i
\(538\) −5.64720 + 5.64720i −0.243468 + 0.243468i
\(539\) 2.65969 + 2.65969i 0.114561 + 0.114561i
\(540\) −0.296312 −0.0127512
\(541\) 16.1805 + 16.1805i 0.695654 + 0.695654i 0.963470 0.267816i \(-0.0863020\pi\)
−0.267816 + 0.963470i \(0.586302\pi\)
\(542\) 15.5280i 0.666985i
\(543\) 8.41789 0.361246
\(544\) 10.8604 11.8015i 0.465634 0.505986i
\(545\) −14.3144 −0.613163
\(546\) 24.8895i 1.06517i
\(547\) 10.9849 + 10.9849i 0.469682 + 0.469682i 0.901812 0.432130i \(-0.142238\pi\)
−0.432130 + 0.901812i \(0.642238\pi\)
\(548\) −16.1726 −0.690858
\(549\) 2.54504 + 2.54504i 0.108620 + 0.108620i
\(550\) 2.89941 2.89941i 0.123631 0.123631i
\(551\) −1.57230 + 1.57230i −0.0669822 + 0.0669822i
\(552\) 10.7354i 0.456931i
\(553\) 21.9165i 0.931985i
\(554\) 3.59834 3.59834i 0.152879 0.152879i
\(555\) −19.3200 + 19.3200i −0.820087 + 0.820087i
\(556\) 7.16467 + 7.16467i 0.303849 + 0.303849i
\(557\) −0.980081 −0.0415274 −0.0207637 0.999784i \(-0.506610\pi\)
−0.0207637 + 0.999784i \(0.506610\pi\)
\(558\) −23.8089 23.8089i −1.00791 1.00791i
\(559\) 27.2136i 1.15101i
\(560\) −4.90501 −0.207274
\(561\) −27.4028 25.2175i −1.15695 1.06468i
\(562\) −3.87908 −0.163629
\(563\) 28.8837i 1.21730i −0.793437 0.608652i \(-0.791711\pi\)
0.793437 0.608652i \(-0.208289\pi\)
\(564\) 6.95170 + 6.95170i 0.292720 + 0.292720i
\(565\) 11.4598 0.482119
\(566\) −18.7611 18.7611i −0.788589 0.788589i
\(567\) −14.6507 + 14.6507i −0.615270 + 0.615270i
\(568\) 26.7406 26.7406i 1.12201 1.12201i
\(569\) 18.2893i 0.766729i 0.923597 + 0.383365i \(0.125235\pi\)
−0.923597 + 0.383365i \(0.874765\pi\)
\(570\) 7.31315i 0.306314i
\(571\) −7.35702 + 7.35702i −0.307882 + 0.307882i −0.844087 0.536206i \(-0.819857\pi\)
0.536206 + 0.844087i \(0.319857\pi\)
\(572\) 6.83601 6.83601i 0.285828 0.285828i
\(573\) 21.6674 + 21.6674i 0.905168 + 0.905168i
\(574\) −26.2620 −1.09616
\(575\) 0.993850 + 0.993850i 0.0414464 + 0.0414464i
\(576\) 26.5753i 1.10730i
\(577\) −28.3066 −1.17842 −0.589209 0.807980i \(-0.700561\pi\)
−0.589209 + 0.807980i \(0.700561\pi\)
\(578\) 19.0943 1.58872i 0.794219 0.0660821i
\(579\) −29.6819 −1.23354
\(580\) 0.620810i 0.0257777i
\(581\) −4.36417 4.36417i −0.181056 0.181056i
\(582\) 34.3257 1.42285
\(583\) −33.3019 33.3019i −1.37922 1.37922i
\(584\) 3.21070 3.21070i 0.132860 0.132860i
\(585\) 8.14636 8.14636i 0.336810 0.336810i
\(586\) 17.5738i 0.725968i
\(587\) 2.68137i 0.110672i 0.998468 + 0.0553360i \(0.0176230\pi\)
−0.998468 + 0.0553360i \(0.982377\pi\)
\(588\) 1.32440 1.32440i 0.0546174 0.0546174i
\(589\) 17.4520 17.4520i 0.719097 0.719097i
\(590\) −1.11790 1.11790i −0.0460233 0.0460233i
\(591\) −3.03405 −0.124804
\(592\) −15.6273 15.6273i −0.642279 0.642279i
\(593\) 15.3155i 0.628934i 0.949268 + 0.314467i \(0.101826\pi\)
−0.949268 + 0.314467i \(0.898174\pi\)
\(594\) −1.66506 −0.0683183
\(595\) 7.41059 + 6.81961i 0.303805 + 0.279577i
\(596\) −8.49817 −0.348098
\(597\) 53.9603i 2.20845i
\(598\) −4.07921 4.07921i −0.166811 0.166811i
\(599\) 43.5243 1.77836 0.889178 0.457561i \(-0.151277\pi\)
0.889178 + 0.457561i \(0.151277\pi\)
\(600\) −5.40094 5.40094i −0.220492 0.220492i
\(601\) 21.7299 21.7299i 0.886381 0.886381i −0.107792 0.994173i \(-0.534378\pi\)
0.994173 + 0.107792i \(0.0343782\pi\)
\(602\) −14.5468 + 14.5468i −0.592883 + 0.592883i
\(603\) 6.57729i 0.267848i
\(604\) 2.06309i 0.0839459i
\(605\) −1.58081 + 1.58081i −0.0642692 + 0.0642692i
\(606\) 8.27306 8.27306i 0.336070 0.336070i
\(607\) −10.3997 10.3997i −0.422112 0.422112i 0.463818 0.885930i \(-0.346479\pi\)
−0.885930 + 0.463818i \(0.846479\pi\)
\(608\) 10.1664 0.412301
\(609\) 3.64806 + 3.64806i 0.147827 + 0.147827i
\(610\) 1.28229i 0.0519184i
\(611\) −19.7628 −0.799516
\(612\) −6.44517 + 7.00370i −0.260531 + 0.283108i
\(613\) 23.6535 0.955354 0.477677 0.878535i \(-0.341479\pi\)
0.477677 + 0.878535i \(0.341479\pi\)
\(614\) 24.4067i 0.984974i
\(615\) −16.7467 16.7467i −0.675294 0.675294i
\(616\) 27.3392 1.10153
\(617\) 7.10492 + 7.10492i 0.286033 + 0.286033i 0.835509 0.549476i \(-0.185173\pi\)
−0.549476 + 0.835509i \(0.685173\pi\)
\(618\) −15.9952 + 15.9952i −0.643421 + 0.643421i
\(619\) −24.3145 + 24.3145i −0.977281 + 0.977281i −0.999748 0.0224668i \(-0.992848\pi\)
0.0224668 + 0.999748i \(0.492848\pi\)
\(620\) 6.89079i 0.276741i
\(621\) 0.570743i 0.0229031i
\(622\) −7.06467 + 7.06467i −0.283268 + 0.283268i
\(623\) 2.87351 2.87351i 0.115125 0.115125i
\(624\) 12.8380 + 12.8380i 0.513930 + 0.513930i
\(625\) −1.00000 −0.0400000
\(626\) 13.6393 + 13.6393i 0.545136 + 0.545136i
\(627\) 23.6060i 0.942735i
\(628\) 0.999052 0.0398665
\(629\) 1.88287 + 45.3373i 0.0750749 + 1.80772i
\(630\) 8.70915 0.346981
\(631\) 8.25061i 0.328451i −0.986423 0.164226i \(-0.947487\pi\)
0.986423 0.164226i \(-0.0525125\pi\)
\(632\) −19.5200 19.5200i −0.776462 0.776462i
\(633\) 41.9204 1.66619
\(634\) −8.22796 8.22796i −0.326774 0.326774i
\(635\) −1.77881 + 1.77881i −0.0705900 + 0.0705900i
\(636\) −16.5828 + 16.5828i −0.657550 + 0.657550i
\(637\) 3.76510i 0.149179i
\(638\) 3.48851i 0.138111i
\(639\) −27.4967 + 27.4967i −1.08775 + 1.08775i
\(640\) 1.19377 1.19377i 0.0471879 0.0471879i
\(641\) 12.1786 + 12.1786i 0.481024 + 0.481024i 0.905459 0.424434i \(-0.139527\pi\)
−0.424434 + 0.905459i \(0.639527\pi\)
\(642\) 24.6256 0.971895
\(643\) −8.88071 8.88071i −0.350221 0.350221i 0.509971 0.860192i \(-0.329656\pi\)
−0.860192 + 0.509971i \(0.829656\pi\)
\(644\) 2.50510i 0.0987149i
\(645\) −18.5524 −0.730499
\(646\) 8.93708 + 8.22436i 0.351625 + 0.323583i
\(647\) −3.62337 −0.142449 −0.0712247 0.997460i \(-0.522691\pi\)
−0.0712247 + 0.997460i \(0.522691\pi\)
\(648\) 26.0972i 1.02520i
\(649\) 3.60846 + 3.60846i 0.141645 + 0.141645i
\(650\) 4.10445 0.160990
\(651\) −40.4922 40.4922i −1.58701 1.58701i
\(652\) −6.23881 + 6.23881i −0.244331 + 0.244331i
\(653\) 6.89142 6.89142i 0.269682 0.269682i −0.559290 0.828972i \(-0.688926\pi\)
0.828972 + 0.559290i \(0.188926\pi\)
\(654\) 40.0538i 1.56623i
\(655\) 2.22230i 0.0868325i
\(656\) 13.5459 13.5459i 0.528879 0.528879i
\(657\) −3.30148 + 3.30148i −0.128803 + 0.128803i
\(658\) −10.5640 10.5640i −0.411829 0.411829i
\(659\) −7.19930 −0.280445 −0.140222 0.990120i \(-0.544782\pi\)
−0.140222 + 0.990120i \(0.544782\pi\)
\(660\) 4.66033 + 4.66033i 0.181403 + 0.181403i
\(661\) 11.0362i 0.429258i 0.976696 + 0.214629i \(0.0688542\pi\)
−0.976696 + 0.214629i \(0.931146\pi\)
\(662\) −7.40181 −0.287680
\(663\) −1.54679 37.2450i −0.0600725 1.44648i
\(664\) 7.77391 0.301686
\(665\) 6.38383i 0.247554i
\(666\) 27.7473 + 27.7473i 1.07519 + 1.07519i
\(667\) 1.19578 0.0463007
\(668\) 3.04001 + 3.04001i 0.117621 + 0.117621i
\(669\) −16.8760 + 16.8760i −0.652463 + 0.652463i
\(670\) 1.65695 1.65695i 0.0640135 0.0640135i
\(671\) 4.13909i 0.159788i
\(672\) 23.5881i 0.909929i
\(673\) 20.8675 20.8675i 0.804382 0.804382i −0.179395 0.983777i \(-0.557414\pi\)
0.983777 + 0.179395i \(0.0574141\pi\)
\(674\) −24.0493 + 24.0493i −0.926343 + 0.926343i
\(675\) 0.287137 + 0.287137i 0.0110519 + 0.0110519i
\(676\) 0.191058 0.00734837
\(677\) 0.394531 + 0.394531i 0.0151631 + 0.0151631i 0.714648 0.699485i \(-0.246587\pi\)
−0.699485 + 0.714648i \(0.746587\pi\)
\(678\) 32.0662i 1.23150i
\(679\) 29.9637 1.14990
\(680\) −12.6741 + 0.526360i −0.486031 + 0.0201850i
\(681\) −4.41737 −0.169274
\(682\) 38.7213i 1.48272i
\(683\) −25.5664 25.5664i −0.978272 0.978272i 0.0214974 0.999769i \(-0.493157\pi\)
−0.999769 + 0.0214974i \(0.993157\pi\)
\(684\) −6.03332 −0.230690
\(685\) 15.6718 + 15.6718i 0.598790 + 0.598790i
\(686\) −15.6390 + 15.6390i −0.597101 + 0.597101i
\(687\) −29.3922 + 29.3922i −1.12138 + 1.12138i
\(688\) 15.0064i 0.572115i
\(689\) 47.1427i 1.79599i
\(690\) 2.78093 2.78093i 0.105868 0.105868i
\(691\) 28.1588 28.1588i 1.07121 1.07121i 0.0739501 0.997262i \(-0.476439\pi\)
0.997262 0.0739501i \(-0.0235606\pi\)
\(692\) 1.07091 + 1.07091i 0.0407100 + 0.0407100i
\(693\) −28.1122 −1.06789
\(694\) −5.61075 5.61075i −0.212981 0.212981i
\(695\) 13.8857i 0.526714i
\(696\) −6.49829 −0.246317
\(697\) −39.2988 + 1.63209i −1.48855 + 0.0618198i
\(698\) −39.9431 −1.51187
\(699\) 32.4881i 1.22881i
\(700\) −1.26030 1.26030i −0.0476349 0.0476349i
\(701\) 20.0299 0.756520 0.378260 0.925699i \(-0.376522\pi\)
0.378260 + 0.925699i \(0.376522\pi\)
\(702\) −1.17854 1.17854i −0.0444812 0.0444812i
\(703\) −20.3388 + 20.3388i −0.767094 + 0.767094i
\(704\) −21.6101 + 21.6101i −0.814463 + 0.814463i
\(705\) 13.4729i 0.507420i
\(706\) 9.63277i 0.362534i
\(707\) 7.22175 7.22175i 0.271602 0.271602i
\(708\) 1.79684 1.79684i 0.0675295 0.0675295i
\(709\) −6.86493 6.86493i −0.257818 0.257818i 0.566348 0.824166i \(-0.308356\pi\)
−0.824166 + 0.566348i \(0.808356\pi\)
\(710\) −13.8539 −0.519927
\(711\) 20.0719 + 20.0719i 0.752753 + 0.752753i
\(712\) 5.11859i 0.191827i
\(713\) −13.2727 −0.497068
\(714\) 19.0822 20.7359i 0.714133 0.776020i
\(715\) −13.2487 −0.495474
\(716\) 7.68909i 0.287355i
\(717\) 42.0388 + 42.0388i 1.56997 + 1.56997i
\(718\) 22.8615 0.853182
\(719\) 14.7143 + 14.7143i 0.548750 + 0.548750i 0.926079 0.377329i \(-0.123157\pi\)
−0.377329 + 0.926079i \(0.623157\pi\)
\(720\) −4.49216 + 4.49216i −0.167413 + 0.167413i
\(721\) −13.9626 + 13.9626i −0.519994 + 0.519994i
\(722\) 13.7156i 0.510443i
\(723\) 42.9277i 1.59650i
\(724\) −1.74951 + 1.74951i −0.0650200 + 0.0650200i
\(725\) −0.601589 + 0.601589i −0.0223425 + 0.0223425i
\(726\) 4.42333 + 4.42333i 0.164165 + 0.164165i
\(727\) 39.1557 1.45220 0.726102 0.687587i \(-0.241330\pi\)
0.726102 + 0.687587i \(0.241330\pi\)
\(728\) 19.3509 + 19.3509i 0.717191 + 0.717191i
\(729\) 29.8595i 1.10591i
\(730\) −1.66341 −0.0615656
\(731\) −20.8640 + 22.6720i −0.771682 + 0.838556i
\(732\) −2.06107 −0.0761793
\(733\) 12.9215i 0.477265i −0.971110 0.238633i \(-0.923301\pi\)
0.971110 0.238633i \(-0.0766992\pi\)
\(734\) 10.1392 + 10.1392i 0.374244 + 0.374244i
\(735\) −2.56679 −0.0946776
\(736\) −3.86591 3.86591i −0.142499 0.142499i
\(737\) −5.34844 + 5.34844i −0.197012 + 0.197012i
\(738\) −24.0516 + 24.0516i −0.885352 + 0.885352i
\(739\) 37.9866i 1.39736i −0.715434 0.698680i \(-0.753771\pi\)
0.715434 0.698680i \(-0.246229\pi\)
\(740\) 8.03063i 0.295212i
\(741\) 16.7085 16.7085i 0.613803 0.613803i
\(742\) 25.1998 25.1998i 0.925112 0.925112i
\(743\) 8.65513 + 8.65513i 0.317526 + 0.317526i 0.847816 0.530290i \(-0.177917\pi\)
−0.530290 + 0.847816i \(0.677917\pi\)
\(744\) 72.1288 2.64437
\(745\) 8.23505 + 8.23505i 0.301709 + 0.301709i
\(746\) 12.5617i 0.459916i
\(747\) −7.99371 −0.292474
\(748\) 10.9362 0.454183i 0.399867 0.0166066i
\(749\) 21.4963 0.785457
\(750\) 2.79814i 0.102174i
\(751\) −9.97504 9.97504i −0.363995 0.363995i 0.501287 0.865281i \(-0.332860\pi\)
−0.865281 + 0.501287i \(0.832860\pi\)
\(752\) 10.8978 0.397403
\(753\) −31.9688 31.9688i −1.16501 1.16501i
\(754\) 2.46919 2.46919i 0.0899227 0.0899227i
\(755\) −1.99921 + 1.99921i −0.0727588 + 0.0727588i
\(756\) 0.723760i 0.0263229i
\(757\) 0.782070i 0.0284248i −0.999899 0.0142124i \(-0.995476\pi\)
0.999899 0.0142124i \(-0.00452410\pi\)
\(758\) 10.1064 10.1064i 0.367081 0.367081i
\(759\) −8.97654 + 8.97654i −0.325828 + 0.325828i
\(760\) −5.68576 5.68576i −0.206244 0.206244i
\(761\) 2.86350 0.103802 0.0519009 0.998652i \(-0.483472\pi\)
0.0519009 + 0.998652i \(0.483472\pi\)
\(762\) 4.97736 + 4.97736i 0.180311 + 0.180311i
\(763\) 34.9639i 1.26578i
\(764\) −9.00636 −0.325839
\(765\) 13.0325 0.541242i 0.471190 0.0195686i
\(766\) 19.5574 0.706636
\(767\) 5.10819i 0.184446i
\(768\) 26.1535 + 26.1535i 0.943734 + 0.943734i
\(769\) 38.6633 1.39423 0.697117 0.716957i \(-0.254466\pi\)
0.697117 + 0.716957i \(0.254466\pi\)
\(770\) −7.08200 7.08200i −0.255217 0.255217i
\(771\) −4.52950 + 4.52950i −0.163126 + 0.163126i
\(772\) 6.16885 6.16885i 0.222022 0.222022i
\(773\) 37.9989i 1.36672i −0.730080 0.683362i \(-0.760517\pi\)
0.730080 0.683362i \(-0.239483\pi\)
\(774\) 26.6449i 0.957730i
\(775\) 6.67744 6.67744i 0.239861 0.239861i
\(776\) −26.6872 + 26.6872i −0.958016 + 0.958016i
\(777\) 47.1902 + 47.1902i 1.69294 + 1.69294i
\(778\) −21.9228 −0.785969
\(779\) −17.6299 17.6299i −0.631656 0.631656i
\(780\) 6.59723i 0.236219i
\(781\) 44.7188 1.60017
\(782\) −0.271021 6.52589i −0.00969171 0.233365i
\(783\) 0.345477 0.0123464
\(784\) 2.07620i 0.0741499i
\(785\) −0.968120 0.968120i −0.0345537 0.0345537i
\(786\) 6.21831 0.221800
\(787\) −25.0127 25.0127i −0.891606 0.891606i 0.103068 0.994674i \(-0.467134\pi\)
−0.994674 + 0.103068i \(0.967134\pi\)
\(788\) 0.630574 0.630574i 0.0224633 0.0224633i
\(789\) 16.8315 16.8315i 0.599217 0.599217i
\(790\) 10.1130i 0.359804i
\(791\) 27.9914i 0.995259i
\(792\) 25.0381 25.0381i 0.889691 0.889691i
\(793\) 2.92968 2.92968i 0.104036 0.104036i
\(794\) 3.79344 + 3.79344i 0.134624 + 0.134624i
\(795\) 32.1387 1.13984
\(796\) 11.2147 + 11.2147i 0.397494 + 0.397494i
\(797\) 26.7826i 0.948688i 0.880340 + 0.474344i \(0.157315\pi\)
−0.880340 + 0.474344i \(0.842685\pi\)
\(798\) 17.8628 0.632337
\(799\) −16.4647 15.1516i −0.582479 0.536027i
\(800\) 3.88983 0.137526
\(801\) 5.26331i 0.185970i
\(802\) −19.2897 19.2897i −0.681142 0.681142i
\(803\) 5.36931 0.189479
\(804\) 2.66327 + 2.66327i 0.0939263 + 0.0939263i
\(805\) 2.42754 2.42754i 0.0855596 0.0855596i
\(806\) −27.4072 + 27.4072i −0.965378 + 0.965378i
\(807\) 17.5918i 0.619262i
\(808\) 12.8641i 0.452558i
\(809\) −38.1898 + 38.1898i −1.34268 + 1.34268i −0.449303 + 0.893379i \(0.648328\pi\)
−0.893379 + 0.449303i \(0.851672\pi\)
\(810\) −6.76028 + 6.76028i −0.237532 + 0.237532i
\(811\) −37.3327 37.3327i −1.31093 1.31093i −0.920730 0.390200i \(-0.872406\pi\)
−0.390200 0.920730i \(-0.627594\pi\)
\(812\) −1.51637 −0.0532141
\(813\) 24.1860 + 24.1860i 0.848239 + 0.848239i
\(814\) 45.1264i 1.58168i
\(815\) 12.0913 0.423540
\(816\) 0.852952 + 20.5381i 0.0298593 + 0.718977i
\(817\) −19.5308 −0.683295
\(818\) 20.5650i 0.719037i
\(819\) −19.8980 19.8980i −0.695292 0.695292i
\(820\) 6.96103 0.243090
\(821\) −8.42042 8.42042i −0.293875 0.293875i 0.544734 0.838609i \(-0.316631\pi\)
−0.838609 + 0.544734i \(0.816631\pi\)
\(822\) 43.8520 43.8520i 1.52951 1.52951i
\(823\) −27.9601 + 27.9601i −0.974627 + 0.974627i −0.999686 0.0250590i \(-0.992023\pi\)
0.0250590 + 0.999686i \(0.492023\pi\)
\(824\) 24.8716i 0.866443i
\(825\) 9.03208i 0.314457i
\(826\) −2.73054 + 2.73054i −0.0950078 + 0.0950078i
\(827\) −12.9612 + 12.9612i −0.450704 + 0.450704i −0.895588 0.444884i \(-0.853245\pi\)
0.444884 + 0.895588i \(0.353245\pi\)
\(828\) 2.29425 + 2.29425i 0.0797309 + 0.0797309i
\(829\) −39.4065 −1.36864 −0.684322 0.729180i \(-0.739902\pi\)
−0.684322 + 0.729180i \(0.739902\pi\)
\(830\) −2.01377 2.01377i −0.0698990 0.0698990i
\(831\) 11.2093i 0.388847i
\(832\) −30.5916 −1.06057
\(833\) −2.88661 + 3.13676i −0.100015 + 0.108682i
\(834\) −38.8540 −1.34541
\(835\) 5.89177i 0.203893i
\(836\) 4.90610 + 4.90610i 0.169681 + 0.169681i
\(837\) −3.83468 −0.132546
\(838\) −1.38889 1.38889i −0.0479783 0.0479783i
\(839\) −14.5709 + 14.5709i −0.503043 + 0.503043i −0.912382 0.409339i \(-0.865759\pi\)
0.409339 + 0.912382i \(0.365759\pi\)
\(840\) −13.1921 + 13.1921i −0.455171 + 0.455171i
\(841\) 28.2762i 0.975041i
\(842\) 41.7301i 1.43812i
\(843\) −6.04194 + 6.04194i −0.208095 + 0.208095i
\(844\) −8.71241 + 8.71241i −0.299894 + 0.299894i
\(845\) −0.185142 0.185142i −0.00636909 0.00636909i
\(846\) −19.3498 −0.665259
\(847\) 3.86123 + 3.86123i 0.132673 + 0.132673i
\(848\) 25.9960i 0.892706i
\(849\) −58.4436 −2.00578
\(850\) 3.41948 + 3.14678i 0.117287 + 0.107934i
\(851\) 15.4683 0.530245
\(852\) 22.2679i 0.762884i
\(853\) 5.82880 + 5.82880i 0.199574 + 0.199574i 0.799817 0.600243i \(-0.204930\pi\)
−0.600243 + 0.799817i \(0.704930\pi\)
\(854\) 3.13207 0.107177
\(855\) 5.84652 + 5.84652i 0.199947 + 0.199947i
\(856\) −19.1457 + 19.1457i −0.654386 + 0.654386i
\(857\) 19.6053 19.6053i 0.669703 0.669703i −0.287944 0.957647i \(-0.592972\pi\)
0.957647 + 0.287944i \(0.0929716\pi\)
\(858\) 37.0717i 1.26561i
\(859\) 7.00671i 0.239066i −0.992830 0.119533i \(-0.961860\pi\)
0.992830 0.119533i \(-0.0381397\pi\)
\(860\) 3.85578 3.85578i 0.131481 0.131481i
\(861\) −40.9049 + 40.9049i −1.39404 + 1.39404i
\(862\) −24.2183 24.2183i −0.824879 0.824879i
\(863\) 29.4176 1.00139 0.500693 0.865625i \(-0.333079\pi\)
0.500693 + 0.865625i \(0.333079\pi\)
\(864\) −1.11692 1.11692i −0.0379983 0.0379983i
\(865\) 2.07551i 0.0705696i
\(866\) 17.8356 0.606077
\(867\) 27.2662 32.2153i 0.926008 1.09409i
\(868\) 16.8312 0.571287
\(869\) 32.6436i 1.10736i
\(870\) 1.68333 + 1.68333i 0.0570702 + 0.0570702i
\(871\) −7.57133 −0.256545
\(872\) −31.1406 31.1406i −1.05455 1.05455i
\(873\) 27.4418 27.4418i 0.928763 0.928763i
\(874\) 2.92759 2.92759i 0.0990271 0.0990271i
\(875\) 2.44256i 0.0825737i
\(876\) 2.67366i 0.0903347i
\(877\) −36.4433 + 36.4433i −1.23060 + 1.23060i −0.266872 + 0.963732i \(0.585990\pi\)
−0.963732 + 0.266872i \(0.914010\pi\)
\(878\) −3.32106 + 3.32106i −0.112080 + 0.112080i
\(879\) −27.3725 27.3725i −0.923250 0.923250i
\(880\) 7.30577 0.246277
\(881\) −33.0055 33.0055i −1.11198 1.11198i −0.992882 0.119102i \(-0.961998\pi\)
−0.119102 0.992882i \(-0.538002\pi\)
\(882\) 3.68642i 0.124128i
\(883\) 9.95880 0.335140 0.167570 0.985860i \(-0.446408\pi\)
0.167570 + 0.985860i \(0.446408\pi\)
\(884\) 8.06219 + 7.41924i 0.271161 + 0.249536i
\(885\) −3.48242 −0.117060
\(886\) 17.7177i 0.595239i
\(887\) 13.3201 + 13.3201i 0.447246 + 0.447246i 0.894438 0.447192i \(-0.147576\pi\)
−0.447192 + 0.894438i \(0.647576\pi\)
\(888\) −84.0601 −2.82087
\(889\) 4.34486 + 4.34486i 0.145722 + 0.145722i
\(890\) 1.32593 1.32593i 0.0444453 0.0444453i
\(891\) 21.8214 21.8214i 0.731046 0.731046i
\(892\) 7.01475i 0.234871i
\(893\) 14.1834i 0.474631i
\(894\) 23.0428 23.0428i 0.770667 0.770667i
\(895\) 7.45102 7.45102i 0.249060 0.249060i
\(896\) −2.91586 2.91586i −0.0974119 0.0974119i
\(897\) −12.7073 −0.424285
\(898\) 13.1872 + 13.1872i 0.440064 + 0.440064i
\(899\) 8.03414i 0.267954i
\(900\) −2.30845 −0.0769484
\(901\) 36.1432 39.2753i 1.20410 1.30845i
\(902\) 39.1160 1.30242
\(903\) 45.3153i 1.50800i
\(904\) 24.9306 + 24.9306i 0.829178 + 0.829178i
\(905\) 3.39068 0.112710
\(906\) 5.59407 + 5.59407i 0.185851 + 0.185851i
\(907\) 18.9094 18.9094i 0.627876 0.627876i −0.319658 0.947533i \(-0.603568\pi\)
0.947533 + 0.319658i \(0.103568\pi\)
\(908\) 0.918072 0.918072i 0.0304673 0.0304673i
\(909\) 13.2278i 0.438740i
\(910\) 10.0254i 0.332338i
\(911\) 7.34196 7.34196i 0.243250 0.243250i −0.574943 0.818193i \(-0.694976\pi\)
0.818193 + 0.574943i \(0.194976\pi\)
\(912\) −9.21362 + 9.21362i −0.305093 + 0.305093i
\(913\) 6.50023 + 6.50023i 0.215126 + 0.215126i
\(914\) 1.60980 0.0532476
\(915\) 1.99726 + 1.99726i 0.0660273 + 0.0660273i
\(916\) 12.2173i 0.403670i
\(917\) 5.42811 0.179252
\(918\) −0.0783019 1.88542i −0.00258435 0.0622282i
\(919\) 20.4602 0.674919 0.337460 0.941340i \(-0.390432\pi\)
0.337460 + 0.941340i \(0.390432\pi\)
\(920\) 4.32418i 0.142564i
\(921\) −38.0151 38.0151i −1.25264 1.25264i
\(922\) −12.5852 −0.414470
\(923\) 31.6523 + 31.6523i 1.04185 + 1.04185i
\(924\) 11.3832 11.3832i 0.374478 0.374478i
\(925\) −7.78199 + 7.78199i −0.255870 + 0.255870i
\(926\) 32.9337i 1.08227i
\(927\) 25.5748i 0.839986i
\(928\) 2.34008 2.34008i 0.0768169 0.0768169i
\(929\) 3.22981 3.22981i 0.105966 0.105966i −0.652136 0.758102i \(-0.726127\pi\)
0.758102 + 0.652136i \(0.226127\pi\)
\(930\) −18.6844 18.6844i −0.612685 0.612685i
\(931\) −2.70215 −0.0885595
\(932\) 6.75208 + 6.75208i 0.221172 + 0.221172i
\(933\) 22.0075i 0.720492i
\(934\) −12.3288 −0.403412
\(935\) −11.0377 10.1575i −0.360972 0.332185i
\(936\) 35.4443 1.15853
\(937\) 2.90874i 0.0950243i −0.998871 0.0475122i \(-0.984871\pi\)
0.998871 0.0475122i \(-0.0151293\pi\)
\(938\) −4.04720 4.04720i −0.132146 0.132146i
\(939\) 42.4883 1.38655
\(940\) 2.80011 + 2.80011i 0.0913296 + 0.0913296i
\(941\) −10.8860 + 10.8860i −0.354872 + 0.354872i −0.861919 0.507046i \(-0.830737\pi\)
0.507046 + 0.861919i \(0.330737\pi\)
\(942\) −2.70893 + 2.70893i −0.0882618 + 0.0882618i
\(943\) 13.4080i 0.436626i
\(944\) 2.81682i 0.0916797i
\(945\) 0.701351 0.701351i 0.0228149 0.0228149i
\(946\) 21.6667 21.6667i 0.704447 0.704447i
\(947\) 16.9623 + 16.9623i 0.551200 + 0.551200i 0.926787 0.375587i \(-0.122559\pi\)
−0.375587 + 0.926787i \(0.622559\pi\)
\(948\) −16.2550 −0.527937
\(949\) 3.80043 + 3.80043i 0.123367 + 0.123367i
\(950\) 2.94570i 0.0955712i
\(951\) −25.6313 −0.831151
\(952\) 1.28567 + 30.9574i 0.0416687 + 1.00333i
\(953\) −9.31030 −0.301590 −0.150795 0.988565i \(-0.548183\pi\)
−0.150795 + 0.988565i \(0.548183\pi\)
\(954\) 46.1575i 1.49440i
\(955\) 8.72751 + 8.72751i 0.282416 + 0.282416i
\(956\) −17.4740 −0.565151
\(957\) −5.43360 5.43360i −0.175643 0.175643i
\(958\) −13.7075 + 13.7075i −0.442868 + 0.442868i
\(959\) 38.2795 38.2795i 1.23611 1.23611i
\(960\) 20.8553i 0.673102i
\(961\) 58.1763i 1.87666i
\(962\) 31.9408 31.9408i 1.02981 1.02981i
\(963\) 19.6870 19.6870i 0.634404 0.634404i
\(964\) −8.92177 8.92177i −0.287351 0.287351i
\(965\) −11.9557 −0.384868
\(966\) −6.79260 6.79260i −0.218548 0.218548i
\(967\) 1.29315i 0.0415848i 0.999784 + 0.0207924i \(0.00661890\pi\)
−0.999784 + 0.0207924i \(0.993381\pi\)
\(968\) −6.87802 −0.221068
\(969\) 26.7302 1.11011i 0.858697 0.0356619i
\(970\) 13.8262 0.443933
\(971\) 39.3251i 1.26200i 0.775781 + 0.631002i \(0.217356\pi\)
−0.775781 + 0.631002i \(0.782644\pi\)
\(972\) −11.4946 11.4946i −0.368690 0.368690i
\(973\) −33.9166 −1.08732
\(974\) 20.5972 + 20.5972i 0.659976 + 0.659976i
\(975\) 6.39297 6.39297i 0.204739 0.204739i
\(976\) −1.61552 + 1.61552i −0.0517115 + 0.0517115i
\(977\) 53.3750i 1.70762i 0.520586 + 0.853809i \(0.325714\pi\)
−0.520586 + 0.853809i \(0.674286\pi\)
\(978\) 33.8331i 1.08186i
\(979\) −4.27996 + 4.27996i −0.136788 + 0.136788i
\(980\) 0.533462 0.533462i 0.0170408 0.0170408i
\(981\) 32.0211 + 32.0211i 1.02235 + 1.02235i
\(982\) −13.7924 −0.440132
\(983\) −36.1157 36.1157i −1.15191 1.15191i −0.986169 0.165742i \(-0.946998\pi\)
−0.165742 0.986169i \(-0.553002\pi\)
\(984\) 72.8641i 2.32282i
\(985\) −1.22210 −0.0389394
\(986\) 3.95019 0.164052i 0.125800 0.00522449i
\(987\) −32.9085 −1.04749
\(988\) 6.94514i 0.220954i
\(989\) 7.42685 + 7.42685i 0.236160 + 0.236160i
\(990\) −12.9718 −0.412272
\(991\) 7.48752 + 7.48752i 0.237849 + 0.237849i 0.815959 0.578110i \(-0.196210\pi\)
−0.578110 + 0.815959i \(0.696210\pi\)
\(992\) −25.9741 + 25.9741i −0.824679 + 0.824679i
\(993\) −11.5288 + 11.5288i −0.365857 + 0.365857i
\(994\) 33.8390i 1.07331i
\(995\) 21.7349i 0.689043i
\(996\) 3.23680 3.23680i 0.102562 0.102562i
\(997\) −2.43619 + 2.43619i −0.0771550 + 0.0771550i −0.744631 0.667476i \(-0.767375\pi\)
0.667476 + 0.744631i \(0.267375\pi\)
\(998\) −5.11336 5.11336i −0.161861 0.161861i
\(999\) 4.46900 0.141393
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 85.2.e.a.81.3 yes 12
3.2 odd 2 765.2.k.b.676.4 12
4.3 odd 2 1360.2.bt.d.81.6 12
5.2 odd 4 425.2.j.c.149.4 12
5.3 odd 4 425.2.j.b.149.3 12
5.4 even 2 425.2.e.f.251.4 12
17.2 even 8 1445.2.a.o.1.4 6
17.4 even 4 inner 85.2.e.a.21.4 12
17.8 even 8 1445.2.d.g.866.6 12
17.9 even 8 1445.2.d.g.866.5 12
17.15 even 8 1445.2.a.n.1.4 6
51.38 odd 4 765.2.k.b.361.3 12
68.55 odd 4 1360.2.bt.d.1041.6 12
85.4 even 4 425.2.e.f.276.3 12
85.19 even 8 7225.2.a.z.1.3 6
85.38 odd 4 425.2.j.c.174.4 12
85.49 even 8 7225.2.a.bb.1.3 6
85.72 odd 4 425.2.j.b.174.3 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
85.2.e.a.21.4 12 17.4 even 4 inner
85.2.e.a.81.3 yes 12 1.1 even 1 trivial
425.2.e.f.251.4 12 5.4 even 2
425.2.e.f.276.3 12 85.4 even 4
425.2.j.b.149.3 12 5.3 odd 4
425.2.j.b.174.3 12 85.72 odd 4
425.2.j.c.149.4 12 5.2 odd 4
425.2.j.c.174.4 12 85.38 odd 4
765.2.k.b.361.3 12 51.38 odd 4
765.2.k.b.676.4 12 3.2 odd 2
1360.2.bt.d.81.6 12 4.3 odd 2
1360.2.bt.d.1041.6 12 68.55 odd 4
1445.2.a.n.1.4 6 17.15 even 8
1445.2.a.o.1.4 6 17.2 even 8
1445.2.d.g.866.5 12 17.9 even 8
1445.2.d.g.866.6 12 17.8 even 8
7225.2.a.z.1.3 6 85.19 even 8
7225.2.a.bb.1.3 6 85.49 even 8