Properties

Label 765.2.k.b.676.4
Level $765$
Weight $2$
Character 765.676
Analytic conductor $6.109$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [765,2,Mod(361,765)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(765, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 0, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("765.361");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 765 = 3^{2} \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 765.k (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.10855575463\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 18x^{10} + 83x^{8} + 152x^{6} + 111x^{4} + 22x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 85)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 676.4
Root \(-3.48265i\) of defining polynomial
Character \(\chi\) \(=\) 765.676
Dual form 765.2.k.b.361.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.12708i q^{2} +0.729699 q^{4} +(0.707107 + 0.707107i) q^{5} +(-1.72715 + 1.72715i) q^{7} +3.07658i q^{8} +(-0.796963 + 0.796963i) q^{10} +(-2.57251 + 2.57251i) q^{11} +3.64168 q^{13} +(-1.94663 - 1.94663i) q^{14} -2.00814 q^{16} +(-3.03394 - 2.79199i) q^{17} +2.61358i q^{19} +(0.515975 + 0.515975i) q^{20} +(-2.89941 - 2.89941i) q^{22} +(-0.993850 + 0.993850i) q^{23} +1.00000i q^{25} +4.10445i q^{26} +(-1.26030 + 1.26030i) q^{28} +(-0.601589 - 0.601589i) q^{29} +(-6.67744 - 6.67744i) q^{31} +3.88983i q^{32} +(3.14678 - 3.41948i) q^{34} -2.44256 q^{35} +(7.78199 + 7.78199i) q^{37} -2.94570 q^{38} +(-2.17547 + 2.17547i) q^{40} +(6.74550 - 6.74550i) q^{41} +7.47280i q^{43} +(-1.87716 + 1.87716i) q^{44} +(-1.12014 - 1.12014i) q^{46} +5.42683 q^{47} +1.03389i q^{49} -1.12708 q^{50} +2.65733 q^{52} +12.9453i q^{53} -3.63808 q^{55} +(-5.31372 - 5.31372i) q^{56} +(0.678037 - 0.678037i) q^{58} -1.40270i q^{59} +(0.804485 - 0.804485i) q^{61} +(7.52598 - 7.52598i) q^{62} -8.40042 q^{64} +(2.57506 + 2.57506i) q^{65} -2.07908 q^{67} +(-2.21387 - 2.03731i) q^{68} -2.75295i q^{70} +(-8.69168 - 8.69168i) q^{71} +(1.04359 + 1.04359i) q^{73} +(-8.77090 + 8.77090i) q^{74} +1.90713i q^{76} -8.88623i q^{77} +(6.34470 - 6.34470i) q^{79} +(-1.41997 - 1.41997i) q^{80} +(7.60269 + 7.60269i) q^{82} -2.52680i q^{83} +(-0.171086 - 4.11955i) q^{85} -8.42242 q^{86} +(-7.91453 - 7.91453i) q^{88} +1.66373 q^{89} +(-6.28973 + 6.28973i) q^{91} +(-0.725212 + 0.725212i) q^{92} +6.11645i q^{94} +(-1.84808 + 1.84808i) q^{95} +(-8.67432 - 8.67432i) q^{97} -1.16527 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 12 q^{4} - 4 q^{10} + 4 q^{11} + 4 q^{14} + 4 q^{16} - 12 q^{17} + 8 q^{20} + 20 q^{22} - 12 q^{23} + 4 q^{28} + 12 q^{29} - 12 q^{34} - 16 q^{35} + 12 q^{37} - 24 q^{38} - 8 q^{40} + 24 q^{41} - 8 q^{44}+ \cdots - 44 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/765\mathbb{Z}\right)^\times\).

\(n\) \(307\) \(496\) \(596\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{4}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.12708i 0.796963i 0.917176 + 0.398482i \(0.130463\pi\)
−0.917176 + 0.398482i \(0.869537\pi\)
\(3\) 0 0
\(4\) 0.729699 0.364850
\(5\) 0.707107 + 0.707107i 0.316228 + 0.316228i
\(6\) 0 0
\(7\) −1.72715 + 1.72715i −0.652802 + 0.652802i −0.953667 0.300865i \(-0.902725\pi\)
0.300865 + 0.953667i \(0.402725\pi\)
\(8\) 3.07658i 1.08773i
\(9\) 0 0
\(10\) −0.796963 + 0.796963i −0.252022 + 0.252022i
\(11\) −2.57251 + 2.57251i −0.775641 + 0.775641i −0.979086 0.203446i \(-0.934786\pi\)
0.203446 + 0.979086i \(0.434786\pi\)
\(12\) 0 0
\(13\) 3.64168 1.01002 0.505010 0.863113i \(-0.331489\pi\)
0.505010 + 0.863113i \(0.331489\pi\)
\(14\) −1.94663 1.94663i −0.520259 0.520259i
\(15\) 0 0
\(16\) −2.00814 −0.502035
\(17\) −3.03394 2.79199i −0.735839 0.677157i
\(18\) 0 0
\(19\) 2.61358i 0.599596i 0.954003 + 0.299798i \(0.0969193\pi\)
−0.954003 + 0.299798i \(0.903081\pi\)
\(20\) 0.515975 + 0.515975i 0.115376 + 0.115376i
\(21\) 0 0
\(22\) −2.89941 2.89941i −0.618157 0.618157i
\(23\) −0.993850 + 0.993850i −0.207232 + 0.207232i −0.803090 0.595858i \(-0.796812\pi\)
0.595858 + 0.803090i \(0.296812\pi\)
\(24\) 0 0
\(25\) 1.00000i 0.200000i
\(26\) 4.10445i 0.804949i
\(27\) 0 0
\(28\) −1.26030 + 1.26030i −0.238175 + 0.238175i
\(29\) −0.601589 0.601589i −0.111712 0.111712i 0.649041 0.760753i \(-0.275170\pi\)
−0.760753 + 0.649041i \(0.775170\pi\)
\(30\) 0 0
\(31\) −6.67744 6.67744i −1.19930 1.19930i −0.974376 0.224928i \(-0.927785\pi\)
−0.224928 0.974376i \(-0.572215\pi\)
\(32\) 3.88983i 0.687632i
\(33\) 0 0
\(34\) 3.14678 3.41948i 0.539669 0.586436i
\(35\) −2.44256 −0.412868
\(36\) 0 0
\(37\) 7.78199 + 7.78199i 1.27935 + 1.27935i 0.941031 + 0.338320i \(0.109859\pi\)
0.338320 + 0.941031i \(0.390141\pi\)
\(38\) −2.94570 −0.477856
\(39\) 0 0
\(40\) −2.17547 + 2.17547i −0.343972 + 0.343972i
\(41\) 6.74550 6.74550i 1.05347 1.05347i 0.0549831 0.998487i \(-0.482489\pi\)
0.998487 0.0549831i \(-0.0175105\pi\)
\(42\) 0 0
\(43\) 7.47280i 1.13959i 0.821786 + 0.569796i \(0.192978\pi\)
−0.821786 + 0.569796i \(0.807022\pi\)
\(44\) −1.87716 + 1.87716i −0.282992 + 0.282992i
\(45\) 0 0
\(46\) −1.12014 1.12014i −0.165156 0.165156i
\(47\) 5.42683 0.791585 0.395792 0.918340i \(-0.370470\pi\)
0.395792 + 0.918340i \(0.370470\pi\)
\(48\) 0 0
\(49\) 1.03389i 0.147699i
\(50\) −1.12708 −0.159393
\(51\) 0 0
\(52\) 2.65733 0.368506
\(53\) 12.9453i 1.77817i 0.457737 + 0.889087i \(0.348660\pi\)
−0.457737 + 0.889087i \(0.651340\pi\)
\(54\) 0 0
\(55\) −3.63808 −0.490558
\(56\) −5.31372 5.31372i −0.710076 0.710076i
\(57\) 0 0
\(58\) 0.678037 0.678037i 0.0890306 0.0890306i
\(59\) 1.40270i 0.182616i −0.995823 0.0913081i \(-0.970895\pi\)
0.995823 0.0913081i \(-0.0291048\pi\)
\(60\) 0 0
\(61\) 0.804485 0.804485i 0.103004 0.103004i −0.653727 0.756731i \(-0.726795\pi\)
0.756731 + 0.653727i \(0.226795\pi\)
\(62\) 7.52598 7.52598i 0.955800 0.955800i
\(63\) 0 0
\(64\) −8.40042 −1.05005
\(65\) 2.57506 + 2.57506i 0.319396 + 0.319396i
\(66\) 0 0
\(67\) −2.07908 −0.254000 −0.127000 0.991903i \(-0.540535\pi\)
−0.127000 + 0.991903i \(0.540535\pi\)
\(68\) −2.21387 2.03731i −0.268471 0.247060i
\(69\) 0 0
\(70\) 2.75295i 0.329041i
\(71\) −8.69168 8.69168i −1.03151 1.03151i −0.999487 0.0320251i \(-0.989804\pi\)
−0.0320251 0.999487i \(-0.510196\pi\)
\(72\) 0 0
\(73\) 1.04359 + 1.04359i 0.122143 + 0.122143i 0.765536 0.643393i \(-0.222474\pi\)
−0.643393 + 0.765536i \(0.722474\pi\)
\(74\) −8.77090 + 8.77090i −1.01960 + 1.01960i
\(75\) 0 0
\(76\) 1.90713i 0.218762i
\(77\) 8.88623i 1.01268i
\(78\) 0 0
\(79\) 6.34470 6.34470i 0.713834 0.713834i −0.253501 0.967335i \(-0.581582\pi\)
0.967335 + 0.253501i \(0.0815821\pi\)
\(80\) −1.41997 1.41997i −0.158757 0.158757i
\(81\) 0 0
\(82\) 7.60269 + 7.60269i 0.839577 + 0.839577i
\(83\) 2.52680i 0.277353i −0.990338 0.138676i \(-0.955715\pi\)
0.990338 0.138676i \(-0.0442848\pi\)
\(84\) 0 0
\(85\) −0.171086 4.11955i −0.0185569 0.446828i
\(86\) −8.42242 −0.908213
\(87\) 0 0
\(88\) −7.91453 7.91453i −0.843691 0.843691i
\(89\) 1.66373 0.176355 0.0881775 0.996105i \(-0.471896\pi\)
0.0881775 + 0.996105i \(0.471896\pi\)
\(90\) 0 0
\(91\) −6.28973 + 6.28973i −0.659343 + 0.659343i
\(92\) −0.725212 + 0.725212i −0.0756086 + 0.0756086i
\(93\) 0 0
\(94\) 6.11645i 0.630864i
\(95\) −1.84808 + 1.84808i −0.189609 + 0.189609i
\(96\) 0 0
\(97\) −8.67432 8.67432i −0.880744 0.880744i 0.112867 0.993610i \(-0.463997\pi\)
−0.993610 + 0.112867i \(0.963997\pi\)
\(98\) −1.16527 −0.117710
\(99\) 0 0
\(100\) 0.729699i 0.0729699i
\(101\) 4.18131 0.416056 0.208028 0.978123i \(-0.433296\pi\)
0.208028 + 0.978123i \(0.433296\pi\)
\(102\) 0 0
\(103\) 8.08417 0.796557 0.398279 0.917265i \(-0.369608\pi\)
0.398279 + 0.917265i \(0.369608\pi\)
\(104\) 11.2039i 1.09863i
\(105\) 0 0
\(106\) −14.5903 −1.41714
\(107\) 6.22304 + 6.22304i 0.601604 + 0.601604i 0.940738 0.339134i \(-0.110134\pi\)
−0.339134 + 0.940738i \(0.610134\pi\)
\(108\) 0 0
\(109\) 10.1218 10.1218i 0.969496 0.969496i −0.0300524 0.999548i \(-0.509567\pi\)
0.999548 + 0.0300524i \(0.00956740\pi\)
\(110\) 4.10039i 0.390957i
\(111\) 0 0
\(112\) 3.46836 3.46836i 0.327730 0.327730i
\(113\) 8.10334 8.10334i 0.762298 0.762298i −0.214440 0.976737i \(-0.568792\pi\)
0.976737 + 0.214440i \(0.0687925\pi\)
\(114\) 0 0
\(115\) −1.40552 −0.131065
\(116\) −0.438979 0.438979i −0.0407582 0.0407582i
\(117\) 0 0
\(118\) 1.58095 0.145538
\(119\) 10.0623 0.417888i 0.922407 0.0383077i
\(120\) 0 0
\(121\) 2.23561i 0.203237i
\(122\) 0.906716 + 0.906716i 0.0820902 + 0.0820902i
\(123\) 0 0
\(124\) −4.87252 4.87252i −0.437565 0.437565i
\(125\) −0.707107 + 0.707107i −0.0632456 + 0.0632456i
\(126\) 0 0
\(127\) 2.51562i 0.223225i −0.993752 0.111613i \(-0.964398\pi\)
0.993752 0.111613i \(-0.0356015\pi\)
\(128\) 1.68825i 0.149221i
\(129\) 0 0
\(130\) −2.90228 + 2.90228i −0.254547 + 0.254547i
\(131\) 1.57140 + 1.57140i 0.137294 + 0.137294i 0.772414 0.635120i \(-0.219049\pi\)
−0.635120 + 0.772414i \(0.719049\pi\)
\(132\) 0 0
\(133\) −4.51405 4.51405i −0.391417 0.391417i
\(134\) 2.34328i 0.202428i
\(135\) 0 0
\(136\) 8.58977 9.33416i 0.736567 0.800398i
\(137\) 22.1633 1.89354 0.946771 0.321908i \(-0.104324\pi\)
0.946771 + 0.321908i \(0.104324\pi\)
\(138\) 0 0
\(139\) 9.81865 + 9.81865i 0.832807 + 0.832807i 0.987900 0.155093i \(-0.0495676\pi\)
−0.155093 + 0.987900i \(0.549568\pi\)
\(140\) −1.78234 −0.150635
\(141\) 0 0
\(142\) 9.79618 9.79618i 0.822077 0.822077i
\(143\) −9.36825 + 9.36825i −0.783413 + 0.783413i
\(144\) 0 0
\(145\) 0.850775i 0.0706530i
\(146\) −1.17621 + 1.17621i −0.0973438 + 0.0973438i
\(147\) 0 0
\(148\) 5.67851 + 5.67851i 0.466771 + 0.466771i
\(149\) 11.6461 0.954087 0.477044 0.878880i \(-0.341708\pi\)
0.477044 + 0.878880i \(0.341708\pi\)
\(150\) 0 0
\(151\) 2.82731i 0.230083i −0.993361 0.115042i \(-0.963300\pi\)
0.993361 0.115042i \(-0.0367002\pi\)
\(152\) −8.04088 −0.652201
\(153\) 0 0
\(154\) 10.0155 0.807068
\(155\) 9.44332i 0.758506i
\(156\) 0 0
\(157\) 1.36913 0.109268 0.0546342 0.998506i \(-0.482601\pi\)
0.0546342 + 0.998506i \(0.482601\pi\)
\(158\) 7.15096 + 7.15096i 0.568900 + 0.568900i
\(159\) 0 0
\(160\) −2.75053 + 2.75053i −0.217448 + 0.217448i
\(161\) 3.43306i 0.270563i
\(162\) 0 0
\(163\) −8.54984 + 8.54984i −0.669675 + 0.669675i −0.957641 0.287966i \(-0.907021\pi\)
0.287966 + 0.957641i \(0.407021\pi\)
\(164\) 4.92219 4.92219i 0.384358 0.384358i
\(165\) 0 0
\(166\) 2.84790 0.221040
\(167\) −4.16611 4.16611i −0.322383 0.322383i 0.527297 0.849681i \(-0.323205\pi\)
−0.849681 + 0.527297i \(0.823205\pi\)
\(168\) 0 0
\(169\) 0.261831 0.0201408
\(170\) 4.64305 0.192827i 0.356106 0.0147892i
\(171\) 0 0
\(172\) 5.45290i 0.415780i
\(173\) −1.46761 1.46761i −0.111580 0.111580i 0.649112 0.760693i \(-0.275141\pi\)
−0.760693 + 0.649112i \(0.775141\pi\)
\(174\) 0 0
\(175\) −1.72715 1.72715i −0.130560 0.130560i
\(176\) 5.16596 5.16596i 0.389399 0.389399i
\(177\) 0 0
\(178\) 1.87515i 0.140548i
\(179\) 10.5373i 0.787597i −0.919197 0.393799i \(-0.871161\pi\)
0.919197 0.393799i \(-0.128839\pi\)
\(180\) 0 0
\(181\) −2.39758 + 2.39758i −0.178210 + 0.178210i −0.790575 0.612365i \(-0.790218\pi\)
0.612365 + 0.790575i \(0.290218\pi\)
\(182\) −7.08901 7.08901i −0.525472 0.525472i
\(183\) 0 0
\(184\) −3.05766 3.05766i −0.225414 0.225414i
\(185\) 11.0054i 0.809133i
\(186\) 0 0
\(187\) 14.9873 0.622424i 1.09598 0.0455162i
\(188\) 3.95995 0.288809
\(189\) 0 0
\(190\) −2.08293 2.08293i −0.151111 0.151111i
\(191\) 12.3426 0.893077 0.446538 0.894764i \(-0.352657\pi\)
0.446538 + 0.894764i \(0.352657\pi\)
\(192\) 0 0
\(193\) 8.45396 8.45396i 0.608529 0.608529i −0.334032 0.942562i \(-0.608409\pi\)
0.942562 + 0.334032i \(0.108409\pi\)
\(194\) 9.77662 9.77662i 0.701920 0.701920i
\(195\) 0 0
\(196\) 0.754430i 0.0538878i
\(197\) −0.864156 + 0.864156i −0.0615686 + 0.0615686i −0.737221 0.675652i \(-0.763862\pi\)
0.675652 + 0.737221i \(0.263862\pi\)
\(198\) 0 0
\(199\) 15.3689 + 15.3689i 1.08947 + 1.08947i 0.995583 + 0.0938906i \(0.0299304\pi\)
0.0938906 + 0.995583i \(0.470070\pi\)
\(200\) −3.07658 −0.217547
\(201\) 0 0
\(202\) 4.71265i 0.331581i
\(203\) 2.07807 0.145852
\(204\) 0 0
\(205\) 9.53958 0.666273
\(206\) 9.11148i 0.634827i
\(207\) 0 0
\(208\) −7.31300 −0.507065
\(209\) −6.72345 6.72345i −0.465071 0.465071i
\(210\) 0 0
\(211\) −11.9397 + 11.9397i −0.821965 + 0.821965i −0.986390 0.164425i \(-0.947423\pi\)
0.164425 + 0.986390i \(0.447423\pi\)
\(212\) 9.44618i 0.648767i
\(213\) 0 0
\(214\) −7.01384 + 7.01384i −0.479456 + 0.479456i
\(215\) −5.28407 + 5.28407i −0.360371 + 0.360371i
\(216\) 0 0
\(217\) 23.0659 1.56582
\(218\) 11.4081 + 11.4081i 0.772653 + 0.772653i
\(219\) 0 0
\(220\) −2.65470 −0.178980
\(221\) −11.0486 10.1675i −0.743212 0.683942i
\(222\) 0 0
\(223\) 9.61320i 0.643748i −0.946783 0.321874i \(-0.895687\pi\)
0.946783 0.321874i \(-0.104313\pi\)
\(224\) −6.71833 6.71833i −0.448887 0.448887i
\(225\) 0 0
\(226\) 9.13308 + 9.13308i 0.607523 + 0.607523i
\(227\) −1.25815 + 1.25815i −0.0835064 + 0.0835064i −0.747626 0.664120i \(-0.768806\pi\)
0.664120 + 0.747626i \(0.268806\pi\)
\(228\) 0 0
\(229\) 16.7429i 1.10640i −0.833048 0.553201i \(-0.813406\pi\)
0.833048 0.553201i \(-0.186594\pi\)
\(230\) 1.58412i 0.104454i
\(231\) 0 0
\(232\) 1.85084 1.85084i 0.121513 0.121513i
\(233\) −9.25323 9.25323i −0.606199 0.606199i 0.335751 0.941951i \(-0.391010\pi\)
−0.941951 + 0.335751i \(0.891010\pi\)
\(234\) 0 0
\(235\) 3.83735 + 3.83735i 0.250321 + 0.250321i
\(236\) 1.02355i 0.0666275i
\(237\) 0 0
\(238\) 0.470992 + 11.3409i 0.0305299 + 0.735124i
\(239\) 23.9469 1.54900 0.774498 0.632577i \(-0.218003\pi\)
0.774498 + 0.632577i \(0.218003\pi\)
\(240\) 0 0
\(241\) −12.2266 12.2266i −0.787587 0.787587i 0.193511 0.981098i \(-0.438012\pi\)
−0.981098 + 0.193511i \(0.938012\pi\)
\(242\) 2.51970 0.161972
\(243\) 0 0
\(244\) 0.587032 0.587032i 0.0375809 0.0375809i
\(245\) −0.731071 + 0.731071i −0.0467064 + 0.0467064i
\(246\) 0 0
\(247\) 9.51781i 0.605604i
\(248\) 20.5437 20.5437i 1.30452 1.30452i
\(249\) 0 0
\(250\) −0.796963 0.796963i −0.0504044 0.0504044i
\(251\) −18.2106 −1.14944 −0.574722 0.818349i \(-0.694890\pi\)
−0.574722 + 0.818349i \(0.694890\pi\)
\(252\) 0 0
\(253\) 5.11338i 0.321475i
\(254\) 2.83529 0.177902
\(255\) 0 0
\(256\) −14.8981 −0.931128
\(257\) 2.58018i 0.160947i 0.996757 + 0.0804735i \(0.0256432\pi\)
−0.996757 + 0.0804735i \(0.974357\pi\)
\(258\) 0 0
\(259\) −26.8814 −1.67033
\(260\) 1.87902 + 1.87902i 0.116532 + 0.116532i
\(261\) 0 0
\(262\) −1.77109 + 1.77109i −0.109418 + 0.109418i
\(263\) 9.58787i 0.591213i −0.955310 0.295607i \(-0.904478\pi\)
0.955310 0.295607i \(-0.0955218\pi\)
\(264\) 0 0
\(265\) −9.15372 + 9.15372i −0.562308 + 0.562308i
\(266\) 5.08767 5.08767i 0.311945 0.311945i
\(267\) 0 0
\(268\) −1.51710 −0.0926717
\(269\) 5.01049 + 5.01049i 0.305495 + 0.305495i 0.843159 0.537664i \(-0.180693\pi\)
−0.537664 + 0.843159i \(0.680693\pi\)
\(270\) 0 0
\(271\) −13.7773 −0.836909 −0.418454 0.908238i \(-0.637428\pi\)
−0.418454 + 0.908238i \(0.637428\pi\)
\(272\) 6.09258 + 5.60670i 0.369417 + 0.339956i
\(273\) 0 0
\(274\) 24.9798i 1.50908i
\(275\) −2.57251 2.57251i −0.155128 0.155128i
\(276\) 0 0
\(277\) 3.19263 + 3.19263i 0.191827 + 0.191827i 0.796485 0.604658i \(-0.206690\pi\)
−0.604658 + 0.796485i \(0.706690\pi\)
\(278\) −11.0664 + 11.0664i −0.663717 + 0.663717i
\(279\) 0 0
\(280\) 7.51473i 0.449091i
\(281\) 3.44172i 0.205316i 0.994717 + 0.102658i \(0.0327347\pi\)
−0.994717 + 0.102658i \(0.967265\pi\)
\(282\) 0 0
\(283\) 16.6458 16.6458i 0.989493 0.989493i −0.0104528 0.999945i \(-0.503327\pi\)
0.999945 + 0.0104528i \(0.00332730\pi\)
\(284\) −6.34231 6.34231i −0.376347 0.376347i
\(285\) 0 0
\(286\) −10.5587 10.5587i −0.624351 0.624351i
\(287\) 23.3010i 1.37542i
\(288\) 0 0
\(289\) 1.40960 + 16.9415i 0.0829174 + 0.996556i
\(290\) 0.958888 0.0563079
\(291\) 0 0
\(292\) 0.761510 + 0.761510i 0.0445640 + 0.0445640i
\(293\) −15.5924 −0.910918 −0.455459 0.890257i \(-0.650525\pi\)
−0.455459 + 0.890257i \(0.650525\pi\)
\(294\) 0 0
\(295\) 0.991860 0.991860i 0.0577483 0.0577483i
\(296\) −23.9419 + 23.9419i −1.39160 + 1.39160i
\(297\) 0 0
\(298\) 13.1261i 0.760372i
\(299\) −3.61928 + 3.61928i −0.209309 + 0.209309i
\(300\) 0 0
\(301\) −12.9067 12.9067i −0.743928 0.743928i
\(302\) 3.18660 0.183368
\(303\) 0 0
\(304\) 5.24843i 0.301018i
\(305\) 1.13771 0.0651453
\(306\) 0 0
\(307\) 21.6549 1.23591 0.617955 0.786214i \(-0.287962\pi\)
0.617955 + 0.786214i \(0.287962\pi\)
\(308\) 6.48428i 0.369476i
\(309\) 0 0
\(310\) 10.6433 0.604501
\(311\) 6.26814 + 6.26814i 0.355434 + 0.355434i 0.862127 0.506693i \(-0.169132\pi\)
−0.506693 + 0.862127i \(0.669132\pi\)
\(312\) 0 0
\(313\) −12.1015 + 12.1015i −0.684016 + 0.684016i −0.960903 0.276887i \(-0.910697\pi\)
0.276887 + 0.960903i \(0.410697\pi\)
\(314\) 1.54311i 0.0870828i
\(315\) 0 0
\(316\) 4.62972 4.62972i 0.260442 0.260442i
\(317\) −7.30027 + 7.30027i −0.410024 + 0.410024i −0.881747 0.471723i \(-0.843632\pi\)
0.471723 + 0.881747i \(0.343632\pi\)
\(318\) 0 0
\(319\) 3.09519 0.173297
\(320\) −5.93999 5.93999i −0.332056 0.332056i
\(321\) 0 0
\(322\) 3.86932 0.215629
\(323\) 7.29708 7.92944i 0.406020 0.441206i
\(324\) 0 0
\(325\) 3.64168i 0.202004i
\(326\) −9.63632 9.63632i −0.533706 0.533706i
\(327\) 0 0
\(328\) 20.7531 + 20.7531i 1.14590 + 1.14590i
\(329\) −9.37296 + 9.37296i −0.516748 + 0.516748i
\(330\) 0 0
\(331\) 6.56727i 0.360970i −0.983578 0.180485i \(-0.942233\pi\)
0.983578 0.180485i \(-0.0577667\pi\)
\(332\) 1.84381i 0.101192i
\(333\) 0 0
\(334\) 4.69553 4.69553i 0.256928 0.256928i
\(335\) −1.47013 1.47013i −0.0803217 0.0803217i
\(336\) 0 0
\(337\) −21.3377 21.3377i −1.16234 1.16234i −0.983962 0.178379i \(-0.942915\pi\)
−0.178379 0.983962i \(-0.557085\pi\)
\(338\) 0.295103i 0.0160515i
\(339\) 0 0
\(340\) −0.124841 3.00604i −0.00677047 0.163025i
\(341\) 34.3555 1.86046
\(342\) 0 0
\(343\) −13.8758 13.8758i −0.749220 0.749220i
\(344\) −22.9907 −1.23957
\(345\) 0 0
\(346\) 1.65411 1.65411i 0.0889254 0.0889254i
\(347\) −4.97815 + 4.97815i −0.267241 + 0.267241i −0.827988 0.560746i \(-0.810514\pi\)
0.560746 + 0.827988i \(0.310514\pi\)
\(348\) 0 0
\(349\) 35.4396i 1.89704i −0.316723 0.948518i \(-0.602583\pi\)
0.316723 0.948518i \(-0.397417\pi\)
\(350\) 1.94663 1.94663i 0.104052 0.104052i
\(351\) 0 0
\(352\) −10.0066 10.0066i −0.533355 0.533355i
\(353\) 8.54669 0.454895 0.227447 0.973790i \(-0.426962\pi\)
0.227447 + 0.973790i \(0.426962\pi\)
\(354\) 0 0
\(355\) 12.2919i 0.652386i
\(356\) 1.21402 0.0643430
\(357\) 0 0
\(358\) 11.8764 0.627686
\(359\) 20.2839i 1.07054i −0.844681 0.535271i \(-0.820210\pi\)
0.844681 0.535271i \(-0.179790\pi\)
\(360\) 0 0
\(361\) 12.1692 0.640485
\(362\) −2.70225 2.70225i −0.142027 0.142027i
\(363\) 0 0
\(364\) −4.58962 + 4.58962i −0.240561 + 0.240561i
\(365\) 1.47586i 0.0772503i
\(366\) 0 0
\(367\) −8.99600 + 8.99600i −0.469587 + 0.469587i −0.901781 0.432193i \(-0.857740\pi\)
0.432193 + 0.901781i \(0.357740\pi\)
\(368\) 1.99579 1.99579i 0.104038 0.104038i
\(369\) 0 0
\(370\) −12.4039 −0.644849
\(371\) −22.3585 22.3585i −1.16080 1.16080i
\(372\) 0 0
\(373\) −11.1454 −0.577086 −0.288543 0.957467i \(-0.593171\pi\)
−0.288543 + 0.957467i \(0.593171\pi\)
\(374\) 0.701519 + 16.8918i 0.0362747 + 0.873453i
\(375\) 0 0
\(376\) 16.6961i 0.861034i
\(377\) −2.19079 2.19079i −0.112832 0.112832i
\(378\) 0 0
\(379\) 8.96691 + 8.96691i 0.460599 + 0.460599i 0.898852 0.438253i \(-0.144402\pi\)
−0.438253 + 0.898852i \(0.644402\pi\)
\(380\) −1.34854 + 1.34854i −0.0691787 + 0.0691787i
\(381\) 0 0
\(382\) 13.9110i 0.711749i
\(383\) 17.3523i 0.886661i −0.896358 0.443331i \(-0.853797\pi\)
0.896358 0.443331i \(-0.146203\pi\)
\(384\) 0 0
\(385\) 6.28351 6.28351i 0.320237 0.320237i
\(386\) 9.52825 + 9.52825i 0.484975 + 0.484975i
\(387\) 0 0
\(388\) −6.32965 6.32965i −0.321339 0.321339i
\(389\) 19.4510i 0.986205i 0.869971 + 0.493103i \(0.164137\pi\)
−0.869971 + 0.493103i \(0.835863\pi\)
\(390\) 0 0
\(391\) 5.79010 0.240464i 0.292818 0.0121608i
\(392\) −3.18085 −0.160657
\(393\) 0 0
\(394\) −0.973970 0.973970i −0.0490679 0.0490679i
\(395\) 8.97276 0.451468
\(396\) 0 0
\(397\) −3.36574 + 3.36574i −0.168922 + 0.168922i −0.786505 0.617584i \(-0.788112\pi\)
0.617584 + 0.786505i \(0.288112\pi\)
\(398\) −17.3219 + 17.3219i −0.868270 + 0.868270i
\(399\) 0 0
\(400\) 2.00814i 0.100407i
\(401\) −17.1148 + 17.1148i −0.854672 + 0.854672i −0.990704 0.136032i \(-0.956565\pi\)
0.136032 + 0.990704i \(0.456565\pi\)
\(402\) 0 0
\(403\) −24.3171 24.3171i −1.21132 1.21132i
\(404\) 3.05110 0.151798
\(405\) 0 0
\(406\) 2.34214i 0.116239i
\(407\) −40.0385 −1.98463
\(408\) 0 0
\(409\) 18.2463 0.902221 0.451111 0.892468i \(-0.351028\pi\)
0.451111 + 0.892468i \(0.351028\pi\)
\(410\) 10.7518i 0.530995i
\(411\) 0 0
\(412\) 5.89901 0.290624
\(413\) 2.42268 + 2.42268i 0.119212 + 0.119212i
\(414\) 0 0
\(415\) 1.78672 1.78672i 0.0877066 0.0877066i
\(416\) 14.1655i 0.694522i
\(417\) 0 0
\(418\) 7.57784 7.57784i 0.370644 0.370644i
\(419\) −1.23229 + 1.23229i −0.0602015 + 0.0602015i −0.736567 0.676365i \(-0.763554\pi\)
0.676365 + 0.736567i \(0.263554\pi\)
\(420\) 0 0
\(421\) −37.0251 −1.80449 −0.902247 0.431220i \(-0.858083\pi\)
−0.902247 + 0.431220i \(0.858083\pi\)
\(422\) −13.4570 13.4570i −0.655076 0.655076i
\(423\) 0 0
\(424\) −39.8273 −1.93418
\(425\) 2.79199 3.03394i 0.135431 0.147168i
\(426\) 0 0
\(427\) 2.77894i 0.134482i
\(428\) 4.54095 + 4.54095i 0.219495 + 0.219495i
\(429\) 0 0
\(430\) −5.95555 5.95555i −0.287202 0.287202i
\(431\) −21.4877 + 21.4877i −1.03503 + 1.03503i −0.0356645 + 0.999364i \(0.511355\pi\)
−0.999364 + 0.0356645i \(0.988645\pi\)
\(432\) 0 0
\(433\) 15.8246i 0.760483i 0.924887 + 0.380242i \(0.124159\pi\)
−0.924887 + 0.380242i \(0.875841\pi\)
\(434\) 25.9970i 1.24790i
\(435\) 0 0
\(436\) 7.38590 7.38590i 0.353720 0.353720i
\(437\) −2.59751 2.59751i −0.124256 0.124256i
\(438\) 0 0
\(439\) −2.94661 2.94661i −0.140634 0.140634i 0.633285 0.773919i \(-0.281706\pi\)
−0.773919 + 0.633285i \(0.781706\pi\)
\(440\) 11.1928i 0.533597i
\(441\) 0 0
\(442\) 11.4596 12.4527i 0.545077 0.592313i
\(443\) −15.7201 −0.746884 −0.373442 0.927654i \(-0.621823\pi\)
−0.373442 + 0.927654i \(0.621823\pi\)
\(444\) 0 0
\(445\) 1.17643 + 1.17643i 0.0557683 + 0.0557683i
\(446\) 10.8348 0.513043
\(447\) 0 0
\(448\) 14.5088 14.5088i 0.685476 0.685476i
\(449\) 11.7004 11.7004i 0.552176 0.552176i −0.374892 0.927068i \(-0.622320\pi\)
0.927068 + 0.374892i \(0.122320\pi\)
\(450\) 0 0
\(451\) 34.7057i 1.63423i
\(452\) 5.91300 5.91300i 0.278124 0.278124i
\(453\) 0 0
\(454\) −1.41803 1.41803i −0.0665515 0.0665515i
\(455\) −8.89503 −0.417005
\(456\) 0 0
\(457\) 1.42830i 0.0668131i 0.999442 + 0.0334066i \(0.0106356\pi\)
−0.999442 + 0.0334066i \(0.989364\pi\)
\(458\) 18.8705 0.881761
\(459\) 0 0
\(460\) −1.02560 −0.0478191
\(461\) 11.1662i 0.520062i 0.965600 + 0.260031i \(0.0837327\pi\)
−0.965600 + 0.260031i \(0.916267\pi\)
\(462\) 0 0
\(463\) −29.2204 −1.35799 −0.678994 0.734144i \(-0.737584\pi\)
−0.678994 + 0.734144i \(0.737584\pi\)
\(464\) 1.20807 + 1.20807i 0.0560835 + 0.0560835i
\(465\) 0 0
\(466\) 10.4291 10.4291i 0.483119 0.483119i
\(467\) 10.9388i 0.506187i 0.967442 + 0.253093i \(0.0814480\pi\)
−0.967442 + 0.253093i \(0.918552\pi\)
\(468\) 0 0
\(469\) 3.59088 3.59088i 0.165811 0.165811i
\(470\) −4.32498 + 4.32498i −0.199497 + 0.199497i
\(471\) 0 0
\(472\) 4.31552 0.198638
\(473\) −19.2239 19.2239i −0.883914 0.883914i
\(474\) 0 0
\(475\) −2.61358 −0.119919
\(476\) 7.34243 0.304933i 0.336540 0.0139766i
\(477\) 0 0
\(478\) 26.9900i 1.23449i
\(479\) 12.1620 + 12.1620i 0.555695 + 0.555695i 0.928079 0.372384i \(-0.121460\pi\)
−0.372384 + 0.928079i \(0.621460\pi\)
\(480\) 0 0
\(481\) 28.3395 + 28.3395i 1.29217 + 1.29217i
\(482\) 13.7803 13.7803i 0.627678 0.627678i
\(483\) 0 0
\(484\) 1.63132i 0.0741509i
\(485\) 12.2673i 0.557031i
\(486\) 0 0
\(487\) −18.2749 + 18.2749i −0.828113 + 0.828113i −0.987256 0.159143i \(-0.949127\pi\)
0.159143 + 0.987256i \(0.449127\pi\)
\(488\) 2.47506 + 2.47506i 0.112041 + 0.112041i
\(489\) 0 0
\(490\) −0.823973 0.823973i −0.0372233 0.0372233i
\(491\) 12.2373i 0.552261i 0.961120 + 0.276131i \(0.0890523\pi\)
−0.961120 + 0.276131i \(0.910948\pi\)
\(492\) 0 0
\(493\) 0.145556 + 3.50481i 0.00655550 + 0.157849i
\(494\) −10.7273 −0.482644
\(495\) 0 0
\(496\) 13.4092 + 13.4092i 0.602092 + 0.602092i
\(497\) 30.0237 1.34675
\(498\) 0 0
\(499\) 4.53684 4.53684i 0.203097 0.203097i −0.598229 0.801325i \(-0.704129\pi\)
0.801325 + 0.598229i \(0.204129\pi\)
\(500\) −0.515975 + 0.515975i −0.0230751 + 0.0230751i
\(501\) 0 0
\(502\) 20.5248i 0.916065i
\(503\) −15.0825 + 15.0825i −0.672497 + 0.672497i −0.958291 0.285794i \(-0.907743\pi\)
0.285794 + 0.958291i \(0.407743\pi\)
\(504\) 0 0
\(505\) 2.95663 + 2.95663i 0.131568 + 0.131568i
\(506\) 5.76317 0.256204
\(507\) 0 0
\(508\) 1.83565i 0.0814436i
\(509\) −14.2265 −0.630577 −0.315289 0.948996i \(-0.602101\pi\)
−0.315289 + 0.948996i \(0.602101\pi\)
\(510\) 0 0
\(511\) −3.60489 −0.159471
\(512\) 20.1677i 0.891296i
\(513\) 0 0
\(514\) −2.90805 −0.128269
\(515\) 5.71637 + 5.71637i 0.251893 + 0.251893i
\(516\) 0 0
\(517\) −13.9606 + 13.9606i −0.613985 + 0.613985i
\(518\) 30.2973i 1.33119i
\(519\) 0 0
\(520\) −7.92236 + 7.92236i −0.347419 + 0.347419i
\(521\) 17.3636 17.3636i 0.760714 0.760714i −0.215738 0.976451i \(-0.569216\pi\)
0.976451 + 0.215738i \(0.0692156\pi\)
\(522\) 0 0
\(523\) 39.8642 1.74314 0.871570 0.490271i \(-0.163102\pi\)
0.871570 + 0.490271i \(0.163102\pi\)
\(524\) 1.14665 + 1.14665i 0.0500917 + 0.0500917i
\(525\) 0 0
\(526\) 10.8063 0.471175
\(527\) 1.61562 + 38.9023i 0.0703775 + 1.69461i
\(528\) 0 0
\(529\) 21.0245i 0.914110i
\(530\) −10.3169 10.3169i −0.448139 0.448139i
\(531\) 0 0
\(532\) −3.29390 3.29390i −0.142809 0.142809i
\(533\) 24.5650 24.5650i 1.06403 1.06403i
\(534\) 0 0
\(535\) 8.80071i 0.380488i
\(536\) 6.39644i 0.276284i
\(537\) 0 0
\(538\) −5.64720 + 5.64720i −0.243468 + 0.243468i
\(539\) −2.65969 2.65969i −0.114561 0.114561i
\(540\) 0 0
\(541\) 16.1805 + 16.1805i 0.695654 + 0.695654i 0.963470 0.267816i \(-0.0863020\pi\)
−0.267816 + 0.963470i \(0.586302\pi\)
\(542\) 15.5280i 0.666985i
\(543\) 0 0
\(544\) 10.8604 11.8015i 0.465634 0.505986i
\(545\) 14.3144 0.613163
\(546\) 0 0
\(547\) 10.9849 + 10.9849i 0.469682 + 0.469682i 0.901812 0.432130i \(-0.142238\pi\)
−0.432130 + 0.901812i \(0.642238\pi\)
\(548\) 16.1726 0.690858
\(549\) 0 0
\(550\) 2.89941 2.89941i 0.123631 0.123631i
\(551\) 1.57230 1.57230i 0.0669822 0.0669822i
\(552\) 0 0
\(553\) 21.9165i 0.931985i
\(554\) −3.59834 + 3.59834i −0.152879 + 0.152879i
\(555\) 0 0
\(556\) 7.16467 + 7.16467i 0.303849 + 0.303849i
\(557\) 0.980081 0.0415274 0.0207637 0.999784i \(-0.493390\pi\)
0.0207637 + 0.999784i \(0.493390\pi\)
\(558\) 0 0
\(559\) 27.2136i 1.15101i
\(560\) 4.90501 0.207274
\(561\) 0 0
\(562\) −3.87908 −0.163629
\(563\) 28.8837i 1.21730i 0.793437 + 0.608652i \(0.208289\pi\)
−0.793437 + 0.608652i \(0.791711\pi\)
\(564\) 0 0
\(565\) 11.4598 0.482119
\(566\) 18.7611 + 18.7611i 0.788589 + 0.788589i
\(567\) 0 0
\(568\) 26.7406 26.7406i 1.12201 1.12201i
\(569\) 18.2893i 0.766729i −0.923597 0.383365i \(-0.874765\pi\)
0.923597 0.383365i \(-0.125235\pi\)
\(570\) 0 0
\(571\) −7.35702 + 7.35702i −0.307882 + 0.307882i −0.844087 0.536206i \(-0.819857\pi\)
0.536206 + 0.844087i \(0.319857\pi\)
\(572\) −6.83601 + 6.83601i −0.285828 + 0.285828i
\(573\) 0 0
\(574\) −26.2620 −1.09616
\(575\) −0.993850 0.993850i −0.0414464 0.0414464i
\(576\) 0 0
\(577\) −28.3066 −1.17842 −0.589209 0.807980i \(-0.700561\pi\)
−0.589209 + 0.807980i \(0.700561\pi\)
\(578\) −19.0943 + 1.58872i −0.794219 + 0.0660821i
\(579\) 0 0
\(580\) 0.620810i 0.0257777i
\(581\) 4.36417 + 4.36417i 0.181056 + 0.181056i
\(582\) 0 0
\(583\) −33.3019 33.3019i −1.37922 1.37922i
\(584\) −3.21070 + 3.21070i −0.132860 + 0.132860i
\(585\) 0 0
\(586\) 17.5738i 0.725968i
\(587\) 2.68137i 0.110672i −0.998468 0.0553360i \(-0.982377\pi\)
0.998468 0.0553360i \(-0.0176230\pi\)
\(588\) 0 0
\(589\) 17.4520 17.4520i 0.719097 0.719097i
\(590\) 1.11790 + 1.11790i 0.0460233 + 0.0460233i
\(591\) 0 0
\(592\) −15.6273 15.6273i −0.642279 0.642279i
\(593\) 15.3155i 0.628934i −0.949268 0.314467i \(-0.898174\pi\)
0.949268 0.314467i \(-0.101826\pi\)
\(594\) 0 0
\(595\) 7.41059 + 6.81961i 0.303805 + 0.279577i
\(596\) 8.49817 0.348098
\(597\) 0 0
\(598\) −4.07921 4.07921i −0.166811 0.166811i
\(599\) −43.5243 −1.77836 −0.889178 0.457561i \(-0.848723\pi\)
−0.889178 + 0.457561i \(0.848723\pi\)
\(600\) 0 0
\(601\) 21.7299 21.7299i 0.886381 0.886381i −0.107792 0.994173i \(-0.534378\pi\)
0.994173 + 0.107792i \(0.0343782\pi\)
\(602\) 14.5468 14.5468i 0.592883 0.592883i
\(603\) 0 0
\(604\) 2.06309i 0.0839459i
\(605\) 1.58081 1.58081i 0.0642692 0.0642692i
\(606\) 0 0
\(607\) −10.3997 10.3997i −0.422112 0.422112i 0.463818 0.885930i \(-0.346479\pi\)
−0.885930 + 0.463818i \(0.846479\pi\)
\(608\) −10.1664 −0.412301
\(609\) 0 0
\(610\) 1.28229i 0.0519184i
\(611\) 19.7628 0.799516
\(612\) 0 0
\(613\) 23.6535 0.955354 0.477677 0.878535i \(-0.341479\pi\)
0.477677 + 0.878535i \(0.341479\pi\)
\(614\) 24.4067i 0.984974i
\(615\) 0 0
\(616\) 27.3392 1.10153
\(617\) −7.10492 7.10492i −0.286033 0.286033i 0.549476 0.835509i \(-0.314827\pi\)
−0.835509 + 0.549476i \(0.814827\pi\)
\(618\) 0 0
\(619\) −24.3145 + 24.3145i −0.977281 + 0.977281i −0.999748 0.0224668i \(-0.992848\pi\)
0.0224668 + 0.999748i \(0.492848\pi\)
\(620\) 6.89079i 0.276741i
\(621\) 0 0
\(622\) −7.06467 + 7.06467i −0.283268 + 0.283268i
\(623\) −2.87351 + 2.87351i −0.115125 + 0.115125i
\(624\) 0 0
\(625\) −1.00000 −0.0400000
\(626\) −13.6393 13.6393i −0.545136 0.545136i
\(627\) 0 0
\(628\) 0.999052 0.0398665
\(629\) −1.88287 45.3373i −0.0750749 1.80772i
\(630\) 0 0
\(631\) 8.25061i 0.328451i −0.986423 0.164226i \(-0.947487\pi\)
0.986423 0.164226i \(-0.0525125\pi\)
\(632\) 19.5200 + 19.5200i 0.776462 + 0.776462i
\(633\) 0 0
\(634\) −8.22796 8.22796i −0.326774 0.326774i
\(635\) 1.77881 1.77881i 0.0705900 0.0705900i
\(636\) 0 0
\(637\) 3.76510i 0.149179i
\(638\) 3.48851i 0.138111i
\(639\) 0 0
\(640\) 1.19377 1.19377i 0.0471879 0.0471879i
\(641\) −12.1786 12.1786i −0.481024 0.481024i 0.424434 0.905459i \(-0.360473\pi\)
−0.905459 + 0.424434i \(0.860473\pi\)
\(642\) 0 0
\(643\) −8.88071 8.88071i −0.350221 0.350221i 0.509971 0.860192i \(-0.329656\pi\)
−0.860192 + 0.509971i \(0.829656\pi\)
\(644\) 2.50510i 0.0987149i
\(645\) 0 0
\(646\) 8.93708 + 8.22436i 0.351625 + 0.323583i
\(647\) 3.62337 0.142449 0.0712247 0.997460i \(-0.477309\pi\)
0.0712247 + 0.997460i \(0.477309\pi\)
\(648\) 0 0
\(649\) 3.60846 + 3.60846i 0.141645 + 0.141645i
\(650\) −4.10445 −0.160990
\(651\) 0 0
\(652\) −6.23881 + 6.23881i −0.244331 + 0.244331i
\(653\) −6.89142 + 6.89142i −0.269682 + 0.269682i −0.828972 0.559290i \(-0.811074\pi\)
0.559290 + 0.828972i \(0.311074\pi\)
\(654\) 0 0
\(655\) 2.22230i 0.0868325i
\(656\) −13.5459 + 13.5459i −0.528879 + 0.528879i
\(657\) 0 0
\(658\) −10.5640 10.5640i −0.411829 0.411829i
\(659\) 7.19930 0.280445 0.140222 0.990120i \(-0.455218\pi\)
0.140222 + 0.990120i \(0.455218\pi\)
\(660\) 0 0
\(661\) 11.0362i 0.429258i 0.976696 + 0.214629i \(0.0688542\pi\)
−0.976696 + 0.214629i \(0.931146\pi\)
\(662\) 7.40181 0.287680
\(663\) 0 0
\(664\) 7.77391 0.301686
\(665\) 6.38383i 0.247554i
\(666\) 0 0
\(667\) 1.19578 0.0463007
\(668\) −3.04001 3.04001i −0.117621 0.117621i
\(669\) 0 0
\(670\) 1.65695 1.65695i 0.0640135 0.0640135i
\(671\) 4.13909i 0.159788i
\(672\) 0 0
\(673\) 20.8675 20.8675i 0.804382 0.804382i −0.179395 0.983777i \(-0.557414\pi\)
0.983777 + 0.179395i \(0.0574141\pi\)
\(674\) 24.0493 24.0493i 0.926343 0.926343i
\(675\) 0 0
\(676\) 0.191058 0.00734837
\(677\) −0.394531 0.394531i −0.0151631 0.0151631i 0.699485 0.714648i \(-0.253413\pi\)
−0.714648 + 0.699485i \(0.753413\pi\)
\(678\) 0 0
\(679\) 29.9637 1.14990
\(680\) 12.6741 0.526360i 0.486031 0.0201850i
\(681\) 0 0
\(682\) 38.7213i 1.48272i
\(683\) 25.5664 + 25.5664i 0.978272 + 0.978272i 0.999769 0.0214974i \(-0.00684335\pi\)
−0.0214974 + 0.999769i \(0.506843\pi\)
\(684\) 0 0
\(685\) 15.6718 + 15.6718i 0.598790 + 0.598790i
\(686\) 15.6390 15.6390i 0.597101 0.597101i
\(687\) 0 0
\(688\) 15.0064i 0.572115i
\(689\) 47.1427i 1.79599i
\(690\) 0 0
\(691\) 28.1588 28.1588i 1.07121 1.07121i 0.0739501 0.997262i \(-0.476439\pi\)
0.997262 0.0739501i \(-0.0235606\pi\)
\(692\) −1.07091 1.07091i −0.0407100 0.0407100i
\(693\) 0 0
\(694\) −5.61075 5.61075i −0.212981 0.212981i
\(695\) 13.8857i 0.526714i
\(696\) 0 0
\(697\) −39.2988 + 1.63209i −1.48855 + 0.0618198i
\(698\) 39.9431 1.51187
\(699\) 0 0
\(700\) −1.26030 1.26030i −0.0476349 0.0476349i
\(701\) −20.0299 −0.756520 −0.378260 0.925699i \(-0.623478\pi\)
−0.378260 + 0.925699i \(0.623478\pi\)
\(702\) 0 0
\(703\) −20.3388 + 20.3388i −0.767094 + 0.767094i
\(704\) 21.6101 21.6101i 0.814463 0.814463i
\(705\) 0 0
\(706\) 9.63277i 0.362534i
\(707\) −7.22175 + 7.22175i −0.271602 + 0.271602i
\(708\) 0 0
\(709\) −6.86493 6.86493i −0.257818 0.257818i 0.566348 0.824166i \(-0.308356\pi\)
−0.824166 + 0.566348i \(0.808356\pi\)
\(710\) 13.8539 0.519927
\(711\) 0 0
\(712\) 5.11859i 0.191827i
\(713\) 13.2727 0.497068
\(714\) 0 0
\(715\) −13.2487 −0.495474
\(716\) 7.68909i 0.287355i
\(717\) 0 0
\(718\) 22.8615 0.853182
\(719\) −14.7143 14.7143i −0.548750 0.548750i 0.377329 0.926079i \(-0.376843\pi\)
−0.926079 + 0.377329i \(0.876843\pi\)
\(720\) 0 0
\(721\) −13.9626 + 13.9626i −0.519994 + 0.519994i
\(722\) 13.7156i 0.510443i
\(723\) 0 0
\(724\) −1.74951 + 1.74951i −0.0650200 + 0.0650200i
\(725\) 0.601589 0.601589i 0.0223425 0.0223425i
\(726\) 0 0
\(727\) 39.1557 1.45220 0.726102 0.687587i \(-0.241330\pi\)
0.726102 + 0.687587i \(0.241330\pi\)
\(728\) −19.3509 19.3509i −0.717191 0.717191i
\(729\) 0 0
\(730\) −1.66341 −0.0615656
\(731\) 20.8640 22.6720i 0.771682 0.838556i
\(732\) 0 0
\(733\) 12.9215i 0.477265i −0.971110 0.238633i \(-0.923301\pi\)
0.971110 0.238633i \(-0.0766992\pi\)
\(734\) −10.1392 10.1392i −0.374244 0.374244i
\(735\) 0 0
\(736\) −3.86591 3.86591i −0.142499 0.142499i
\(737\) 5.34844 5.34844i 0.197012 0.197012i
\(738\) 0 0
\(739\) 37.9866i 1.39736i −0.715434 0.698680i \(-0.753771\pi\)
0.715434 0.698680i \(-0.246229\pi\)
\(740\) 8.03063i 0.295212i
\(741\) 0 0
\(742\) 25.1998 25.1998i 0.925112 0.925112i
\(743\) −8.65513 8.65513i −0.317526 0.317526i 0.530290 0.847816i \(-0.322083\pi\)
−0.847816 + 0.530290i \(0.822083\pi\)
\(744\) 0 0
\(745\) 8.23505 + 8.23505i 0.301709 + 0.301709i
\(746\) 12.5617i 0.459916i
\(747\) 0 0
\(748\) 10.9362 0.454183i 0.399867 0.0166066i
\(749\) −21.4963 −0.785457
\(750\) 0 0
\(751\) −9.97504 9.97504i −0.363995 0.363995i 0.501287 0.865281i \(-0.332860\pi\)
−0.865281 + 0.501287i \(0.832860\pi\)
\(752\) −10.8978 −0.397403
\(753\) 0 0
\(754\) 2.46919 2.46919i 0.0899227 0.0899227i
\(755\) 1.99921 1.99921i 0.0727588 0.0727588i
\(756\) 0 0
\(757\) 0.782070i 0.0284248i −0.999899 0.0142124i \(-0.995476\pi\)
0.999899 0.0142124i \(-0.00452410\pi\)
\(758\) −10.1064 + 10.1064i −0.367081 + 0.367081i
\(759\) 0 0
\(760\) −5.68576 5.68576i −0.206244 0.206244i
\(761\) −2.86350 −0.103802 −0.0519009 0.998652i \(-0.516528\pi\)
−0.0519009 + 0.998652i \(0.516528\pi\)
\(762\) 0 0
\(763\) 34.9639i 1.26578i
\(764\) 9.00636 0.325839
\(765\) 0 0
\(766\) 19.5574 0.706636
\(767\) 5.10819i 0.184446i
\(768\) 0 0
\(769\) 38.6633 1.39423 0.697117 0.716957i \(-0.254466\pi\)
0.697117 + 0.716957i \(0.254466\pi\)
\(770\) 7.08200 + 7.08200i 0.255217 + 0.255217i
\(771\) 0 0
\(772\) 6.16885 6.16885i 0.222022 0.222022i
\(773\) 37.9989i 1.36672i 0.730080 + 0.683362i \(0.239483\pi\)
−0.730080 + 0.683362i \(0.760517\pi\)
\(774\) 0 0
\(775\) 6.67744 6.67744i 0.239861 0.239861i
\(776\) 26.6872 26.6872i 0.958016 0.958016i
\(777\) 0 0
\(778\) −21.9228 −0.785969
\(779\) 17.6299 + 17.6299i 0.631656 + 0.631656i
\(780\) 0 0
\(781\) 44.7188 1.60017
\(782\) 0.271021 + 6.52589i 0.00969171 + 0.233365i
\(783\) 0 0
\(784\) 2.07620i 0.0741499i
\(785\) 0.968120 + 0.968120i 0.0345537 + 0.0345537i
\(786\) 0 0
\(787\) −25.0127 25.0127i −0.891606 0.891606i 0.103068 0.994674i \(-0.467134\pi\)
−0.994674 + 0.103068i \(0.967134\pi\)
\(788\) −0.630574 + 0.630574i −0.0224633 + 0.0224633i
\(789\) 0 0
\(790\) 10.1130i 0.359804i
\(791\) 27.9914i 0.995259i
\(792\) 0 0
\(793\) 2.92968 2.92968i 0.104036 0.104036i
\(794\) −3.79344 3.79344i −0.134624 0.134624i
\(795\) 0 0
\(796\) 11.2147 + 11.2147i 0.397494 + 0.397494i
\(797\) 26.7826i 0.948688i −0.880340 0.474344i \(-0.842685\pi\)
0.880340 0.474344i \(-0.157315\pi\)
\(798\) 0 0
\(799\) −16.4647 15.1516i −0.582479 0.536027i
\(800\) −3.88983 −0.137526
\(801\) 0 0
\(802\) −19.2897 19.2897i −0.681142 0.681142i
\(803\) −5.36931 −0.189479
\(804\) 0 0
\(805\) 2.42754 2.42754i 0.0855596 0.0855596i
\(806\) 27.4072 27.4072i 0.965378 0.965378i
\(807\) 0 0
\(808\) 12.8641i 0.452558i
\(809\) 38.1898 38.1898i 1.34268 1.34268i 0.449303 0.893379i \(-0.351672\pi\)
0.893379 0.449303i \(-0.148328\pi\)
\(810\) 0 0
\(811\) −37.3327 37.3327i −1.31093 1.31093i −0.920730 0.390200i \(-0.872406\pi\)
−0.390200 0.920730i \(-0.627594\pi\)
\(812\) 1.51637 0.0532141
\(813\) 0 0
\(814\) 45.1264i 1.58168i
\(815\) −12.0913 −0.423540
\(816\) 0 0
\(817\) −19.5308 −0.683295
\(818\) 20.5650i 0.719037i
\(819\) 0 0
\(820\) 6.96103 0.243090
\(821\) 8.42042 + 8.42042i 0.293875 + 0.293875i 0.838609 0.544734i \(-0.183369\pi\)
−0.544734 + 0.838609i \(0.683369\pi\)
\(822\) 0 0
\(823\) −27.9601 + 27.9601i −0.974627 + 0.974627i −0.999686 0.0250590i \(-0.992023\pi\)
0.0250590 + 0.999686i \(0.492023\pi\)
\(824\) 24.8716i 0.866443i
\(825\) 0 0
\(826\) −2.73054 + 2.73054i −0.0950078 + 0.0950078i
\(827\) 12.9612 12.9612i 0.450704 0.450704i −0.444884 0.895588i \(-0.646755\pi\)
0.895588 + 0.444884i \(0.146755\pi\)
\(828\) 0 0
\(829\) −39.4065 −1.36864 −0.684322 0.729180i \(-0.739902\pi\)
−0.684322 + 0.729180i \(0.739902\pi\)
\(830\) 2.01377 + 2.01377i 0.0698990 + 0.0698990i
\(831\) 0 0
\(832\) −30.5916 −1.06057
\(833\) 2.88661 3.13676i 0.100015 0.108682i
\(834\) 0 0
\(835\) 5.89177i 0.203893i
\(836\) −4.90610 4.90610i −0.169681 0.169681i
\(837\) 0 0
\(838\) −1.38889 1.38889i −0.0479783 0.0479783i
\(839\) 14.5709 14.5709i 0.503043 0.503043i −0.409339 0.912382i \(-0.634241\pi\)
0.912382 + 0.409339i \(0.134241\pi\)
\(840\) 0 0
\(841\) 28.2762i 0.975041i
\(842\) 41.7301i 1.43812i
\(843\) 0 0
\(844\) −8.71241 + 8.71241i −0.299894 + 0.299894i
\(845\) 0.185142 + 0.185142i 0.00636909 + 0.00636909i
\(846\) 0 0
\(847\) 3.86123 + 3.86123i 0.132673 + 0.132673i
\(848\) 25.9960i 0.892706i
\(849\) 0 0
\(850\) 3.41948 + 3.14678i 0.117287 + 0.107934i
\(851\) −15.4683 −0.530245
\(852\) 0 0
\(853\) 5.82880 + 5.82880i 0.199574 + 0.199574i 0.799817 0.600243i \(-0.204930\pi\)
−0.600243 + 0.799817i \(0.704930\pi\)
\(854\) −3.13207 −0.107177
\(855\) 0 0
\(856\) −19.1457 + 19.1457i −0.654386 + 0.654386i
\(857\) −19.6053 + 19.6053i −0.669703 + 0.669703i −0.957647 0.287944i \(-0.907028\pi\)
0.287944 + 0.957647i \(0.407028\pi\)
\(858\) 0 0
\(859\) 7.00671i 0.239066i −0.992830 0.119533i \(-0.961860\pi\)
0.992830 0.119533i \(-0.0381397\pi\)
\(860\) −3.85578 + 3.85578i −0.131481 + 0.131481i
\(861\) 0 0
\(862\) −24.2183 24.2183i −0.824879 0.824879i
\(863\) −29.4176 −1.00139 −0.500693 0.865625i \(-0.666921\pi\)
−0.500693 + 0.865625i \(0.666921\pi\)
\(864\) 0 0
\(865\) 2.07551i 0.0705696i
\(866\) −17.8356 −0.606077
\(867\) 0 0
\(868\) 16.8312 0.571287
\(869\) 32.6436i 1.10736i
\(870\) 0 0
\(871\) −7.57133 −0.256545
\(872\) 31.1406 + 31.1406i 1.05455 + 1.05455i
\(873\) 0 0
\(874\) 2.92759 2.92759i 0.0990271 0.0990271i
\(875\) 2.44256i 0.0825737i
\(876\) 0 0
\(877\) −36.4433 + 36.4433i −1.23060 + 1.23060i −0.266872 + 0.963732i \(0.585990\pi\)
−0.963732 + 0.266872i \(0.914010\pi\)
\(878\) 3.32106 3.32106i 0.112080 0.112080i
\(879\) 0 0
\(880\) 7.30577 0.246277
\(881\) 33.0055 + 33.0055i 1.11198 + 1.11198i 0.992882 + 0.119102i \(0.0380016\pi\)
0.119102 + 0.992882i \(0.461998\pi\)
\(882\) 0 0
\(883\) 9.95880 0.335140 0.167570 0.985860i \(-0.446408\pi\)
0.167570 + 0.985860i \(0.446408\pi\)
\(884\) −8.06219 7.41924i −0.271161 0.249536i
\(885\) 0 0
\(886\) 17.7177i 0.595239i
\(887\) −13.3201 13.3201i −0.447246 0.447246i 0.447192 0.894438i \(-0.352424\pi\)
−0.894438 + 0.447192i \(0.852424\pi\)
\(888\) 0 0
\(889\) 4.34486 + 4.34486i 0.145722 + 0.145722i
\(890\) −1.32593 + 1.32593i −0.0444453 + 0.0444453i
\(891\) 0 0
\(892\) 7.01475i 0.234871i
\(893\) 14.1834i 0.474631i
\(894\) 0 0
\(895\) 7.45102 7.45102i 0.249060 0.249060i
\(896\) 2.91586 + 2.91586i 0.0974119 + 0.0974119i
\(897\) 0 0
\(898\) 13.1872 + 13.1872i 0.440064 + 0.440064i
\(899\) 8.03414i 0.267954i
\(900\) 0 0
\(901\) 36.1432 39.2753i 1.20410 1.30845i
\(902\) −39.1160 −1.30242
\(903\) 0 0
\(904\) 24.9306 + 24.9306i 0.829178 + 0.829178i
\(905\) −3.39068 −0.112710
\(906\) 0 0
\(907\) 18.9094 18.9094i 0.627876 0.627876i −0.319658 0.947533i \(-0.603568\pi\)
0.947533 + 0.319658i \(0.103568\pi\)
\(908\) −0.918072 + 0.918072i −0.0304673 + 0.0304673i
\(909\) 0 0
\(910\) 10.0254i 0.332338i
\(911\) −7.34196 + 7.34196i −0.243250 + 0.243250i −0.818193 0.574943i \(-0.805024\pi\)
0.574943 + 0.818193i \(0.305024\pi\)
\(912\) 0 0
\(913\) 6.50023 + 6.50023i 0.215126 + 0.215126i
\(914\) −1.60980 −0.0532476
\(915\) 0 0
\(916\) 12.2173i 0.403670i
\(917\) −5.42811 −0.179252
\(918\) 0 0
\(919\) 20.4602 0.674919 0.337460 0.941340i \(-0.390432\pi\)
0.337460 + 0.941340i \(0.390432\pi\)
\(920\) 4.32418i 0.142564i
\(921\) 0 0
\(922\) −12.5852 −0.414470
\(923\) −31.6523 31.6523i −1.04185 1.04185i
\(924\) 0 0
\(925\) −7.78199 + 7.78199i −0.255870 + 0.255870i
\(926\) 32.9337i 1.08227i
\(927\) 0 0
\(928\) 2.34008 2.34008i 0.0768169 0.0768169i
\(929\) −3.22981 + 3.22981i −0.105966 + 0.105966i −0.758102 0.652136i \(-0.773873\pi\)
0.652136 + 0.758102i \(0.273873\pi\)
\(930\) 0 0
\(931\) −2.70215 −0.0885595
\(932\) −6.75208 6.75208i −0.221172 0.221172i
\(933\) 0 0
\(934\) −12.3288 −0.403412
\(935\) 11.0377 + 10.1575i 0.360972 + 0.332185i
\(936\) 0 0
\(937\) 2.90874i 0.0950243i −0.998871 0.0475122i \(-0.984871\pi\)
0.998871 0.0475122i \(-0.0151293\pi\)
\(938\) 4.04720 + 4.04720i 0.132146 + 0.132146i
\(939\) 0 0
\(940\) 2.80011 + 2.80011i 0.0913296 + 0.0913296i
\(941\) 10.8860 10.8860i 0.354872 0.354872i −0.507046 0.861919i \(-0.669263\pi\)
0.861919 + 0.507046i \(0.169263\pi\)
\(942\) 0 0
\(943\) 13.4080i 0.436626i
\(944\) 2.81682i 0.0916797i
\(945\) 0 0
\(946\) 21.6667 21.6667i 0.704447 0.704447i
\(947\) −16.9623 16.9623i −0.551200 0.551200i 0.375587 0.926787i \(-0.377441\pi\)
−0.926787 + 0.375587i \(0.877441\pi\)
\(948\) 0 0
\(949\) 3.80043 + 3.80043i 0.123367 + 0.123367i
\(950\) 2.94570i 0.0955712i
\(951\) 0 0
\(952\) 1.28567 + 30.9574i 0.0416687 + 1.00333i
\(953\) 9.31030 0.301590 0.150795 0.988565i \(-0.451817\pi\)
0.150795 + 0.988565i \(0.451817\pi\)
\(954\) 0 0
\(955\) 8.72751 + 8.72751i 0.282416 + 0.282416i
\(956\) 17.4740 0.565151
\(957\) 0 0
\(958\) −13.7075 + 13.7075i −0.442868 + 0.442868i
\(959\) −38.2795 + 38.2795i −1.23611 + 1.23611i
\(960\) 0 0
\(961\) 58.1763i 1.87666i
\(962\) −31.9408 + 31.9408i −1.02981 + 1.02981i
\(963\) 0 0
\(964\) −8.92177 8.92177i −0.287351 0.287351i
\(965\) 11.9557 0.384868
\(966\) 0 0
\(967\) 1.29315i 0.0415848i 0.999784 + 0.0207924i \(0.00661890\pi\)
−0.999784 + 0.0207924i \(0.993381\pi\)
\(968\) 6.87802 0.221068
\(969\) 0 0
\(970\) 13.8262 0.443933
\(971\) 39.3251i 1.26200i −0.775781 0.631002i \(-0.782644\pi\)
0.775781 0.631002i \(-0.217356\pi\)
\(972\) 0 0
\(973\) −33.9166 −1.08732
\(974\) −20.5972 20.5972i −0.659976 0.659976i
\(975\) 0 0
\(976\) −1.61552 + 1.61552i −0.0517115 + 0.0517115i
\(977\) 53.3750i 1.70762i −0.520586 0.853809i \(-0.674286\pi\)
0.520586 0.853809i \(-0.325714\pi\)
\(978\) 0 0
\(979\) −4.27996 + 4.27996i −0.136788 + 0.136788i
\(980\) −0.533462 + 0.533462i −0.0170408 + 0.0170408i
\(981\) 0 0
\(982\) −13.7924 −0.440132
\(983\) 36.1157 + 36.1157i 1.15191 + 1.15191i 0.986169 + 0.165742i \(0.0530020\pi\)
0.165742 + 0.986169i \(0.446998\pi\)
\(984\) 0 0
\(985\) −1.22210 −0.0389394
\(986\) −3.95019 + 0.164052i −0.125800 + 0.00522449i
\(987\) 0 0
\(988\) 6.94514i 0.220954i
\(989\) −7.42685 7.42685i −0.236160 0.236160i
\(990\) 0 0
\(991\) 7.48752 + 7.48752i 0.237849 + 0.237849i 0.815959 0.578110i \(-0.196210\pi\)
−0.578110 + 0.815959i \(0.696210\pi\)
\(992\) 25.9741 25.9741i 0.824679 0.824679i
\(993\) 0 0
\(994\) 33.8390i 1.07331i
\(995\) 21.7349i 0.689043i
\(996\) 0 0
\(997\) −2.43619 + 2.43619i −0.0771550 + 0.0771550i −0.744631 0.667476i \(-0.767375\pi\)
0.667476 + 0.744631i \(0.267375\pi\)
\(998\) 5.11336 + 5.11336i 0.161861 + 0.161861i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 765.2.k.b.676.4 12
3.2 odd 2 85.2.e.a.81.3 yes 12
12.11 even 2 1360.2.bt.d.81.6 12
15.2 even 4 425.2.j.c.149.4 12
15.8 even 4 425.2.j.b.149.3 12
15.14 odd 2 425.2.e.f.251.4 12
17.4 even 4 inner 765.2.k.b.361.3 12
51.2 odd 8 1445.2.a.o.1.4 6
51.8 odd 8 1445.2.d.g.866.6 12
51.26 odd 8 1445.2.d.g.866.5 12
51.32 odd 8 1445.2.a.n.1.4 6
51.38 odd 4 85.2.e.a.21.4 12
204.191 even 4 1360.2.bt.d.1041.6 12
255.38 even 4 425.2.j.c.174.4 12
255.89 odd 4 425.2.e.f.276.3 12
255.104 odd 8 7225.2.a.z.1.3 6
255.134 odd 8 7225.2.a.bb.1.3 6
255.242 even 4 425.2.j.b.174.3 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
85.2.e.a.21.4 12 51.38 odd 4
85.2.e.a.81.3 yes 12 3.2 odd 2
425.2.e.f.251.4 12 15.14 odd 2
425.2.e.f.276.3 12 255.89 odd 4
425.2.j.b.149.3 12 15.8 even 4
425.2.j.b.174.3 12 255.242 even 4
425.2.j.c.149.4 12 15.2 even 4
425.2.j.c.174.4 12 255.38 even 4
765.2.k.b.361.3 12 17.4 even 4 inner
765.2.k.b.676.4 12 1.1 even 1 trivial
1360.2.bt.d.81.6 12 12.11 even 2
1360.2.bt.d.1041.6 12 204.191 even 4
1445.2.a.n.1.4 6 51.32 odd 8
1445.2.a.o.1.4 6 51.2 odd 8
1445.2.d.g.866.5 12 51.26 odd 8
1445.2.d.g.866.6 12 51.8 odd 8
7225.2.a.z.1.3 6 255.104 odd 8
7225.2.a.bb.1.3 6 255.134 odd 8