Properties

Label 1445.2.b.i.579.17
Level $1445$
Weight $2$
Character 1445.579
Analytic conductor $11.538$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1445,2,Mod(579,1445)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1445, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1445.579");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1445 = 5 \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1445.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.5383830921\)
Analytic rank: \(0\)
Dimension: \(24\)
Twist minimal: no (minimal twist has level 85)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 579.17
Character \(\chi\) \(=\) 1445.579
Dual form 1445.2.b.i.579.8

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.951739i q^{2} -2.47483i q^{3} +1.09419 q^{4} +(-2.23233 + 0.129310i) q^{5} +2.35540 q^{6} -0.533377i q^{7} +2.94486i q^{8} -3.12480 q^{9} +(-0.123069 - 2.12459i) q^{10} +4.67492 q^{11} -2.70795i q^{12} +3.92573i q^{13} +0.507636 q^{14} +(0.320020 + 5.52463i) q^{15} -0.614355 q^{16} -2.97399i q^{18} +1.00204 q^{19} +(-2.44260 + 0.141490i) q^{20} -1.32002 q^{21} +4.44930i q^{22} +5.73808i q^{23} +7.28805 q^{24} +(4.96656 - 0.577324i) q^{25} -3.73627 q^{26} +0.308860i q^{27} -0.583618i q^{28} +8.28676 q^{29} +(-5.25801 + 0.304576i) q^{30} -2.47907 q^{31} +5.30502i q^{32} -11.5697i q^{33} +(0.0689710 + 1.19067i) q^{35} -3.41914 q^{36} -4.09373i q^{37} +0.953679i q^{38} +9.71553 q^{39} +(-0.380800 - 6.57390i) q^{40} -0.814533 q^{41} -1.25631i q^{42} -6.43772i q^{43} +5.11527 q^{44} +(6.97557 - 0.404068i) q^{45} -5.46115 q^{46} -1.70505i q^{47} +1.52043i q^{48} +6.71551 q^{49} +(0.549461 + 4.72687i) q^{50} +4.29551i q^{52} +8.16327i q^{53} -0.293954 q^{54} +(-10.4359 + 0.604514i) q^{55} +1.57072 q^{56} -2.47988i q^{57} +7.88683i q^{58} +6.05714 q^{59} +(0.350164 + 6.04502i) q^{60} +1.13106 q^{61} -2.35943i q^{62} +1.66670i q^{63} -6.27771 q^{64} +(-0.507636 - 8.76352i) q^{65} +11.0113 q^{66} +7.68603i q^{67} +14.2008 q^{69} +(-1.13321 + 0.0656424i) q^{70} -6.94272 q^{71} -9.20211i q^{72} -12.0863i q^{73} +3.89616 q^{74} +(-1.42878 - 12.2914i) q^{75} +1.09642 q^{76} -2.49350i q^{77} +9.24665i q^{78} -1.48104 q^{79} +(1.37144 - 0.0794422i) q^{80} -8.61002 q^{81} -0.775222i q^{82} -16.1876i q^{83} -1.44436 q^{84} +6.12703 q^{86} -20.5083i q^{87} +13.7670i q^{88} +12.0717 q^{89} +(0.384567 + 6.63892i) q^{90} +2.09390 q^{91} +6.27857i q^{92} +6.13529i q^{93} +1.62276 q^{94} +(-2.23688 + 0.129573i) q^{95} +13.1290 q^{96} -0.228042i q^{97} +6.39141i q^{98} -14.6082 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 8 q^{4} + 8 q^{9} + 8 q^{15} - 8 q^{16} + 16 q^{19} - 32 q^{21} + 8 q^{25} - 48 q^{26} - 56 q^{30} + 8 q^{35} + 8 q^{36} + 56 q^{49} - 16 q^{50} - 24 q^{55} + 64 q^{59} - 88 q^{60} + 104 q^{64} - 16 q^{66}+ \cdots + 128 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1445\mathbb{Z}\right)^\times\).

\(n\) \(581\) \(1157\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.951739i 0.672981i 0.941687 + 0.336491i \(0.109240\pi\)
−0.941687 + 0.336491i \(0.890760\pi\)
\(3\) 2.47483i 1.42885i −0.699714 0.714423i \(-0.746689\pi\)
0.699714 0.714423i \(-0.253311\pi\)
\(4\) 1.09419 0.547097
\(5\) −2.23233 + 0.129310i −0.998326 + 0.0578291i
\(6\) 2.35540 0.961586
\(7\) 0.533377i 0.201598i −0.994907 0.100799i \(-0.967860\pi\)
0.994907 0.100799i \(-0.0321399\pi\)
\(8\) 2.94486i 1.04117i
\(9\) −3.12480 −1.04160
\(10\) −0.123069 2.12459i −0.0389179 0.671855i
\(11\) 4.67492 1.40954 0.704771 0.709435i \(-0.251050\pi\)
0.704771 + 0.709435i \(0.251050\pi\)
\(12\) 2.70795i 0.781717i
\(13\) 3.92573i 1.08880i 0.838825 + 0.544401i \(0.183243\pi\)
−0.838825 + 0.544401i \(0.816757\pi\)
\(14\) 0.507636 0.135671
\(15\) 0.320020 + 5.52463i 0.0826289 + 1.42645i
\(16\) −0.614355 −0.153589
\(17\) 0 0
\(18\) 2.97399i 0.700977i
\(19\) 1.00204 0.229883 0.114942 0.993372i \(-0.463332\pi\)
0.114942 + 0.993372i \(0.463332\pi\)
\(20\) −2.44260 + 0.141490i −0.546181 + 0.0316381i
\(21\) −1.32002 −0.288052
\(22\) 4.44930i 0.948595i
\(23\) 5.73808i 1.19647i 0.801320 + 0.598236i \(0.204132\pi\)
−0.801320 + 0.598236i \(0.795868\pi\)
\(24\) 7.28805 1.48767
\(25\) 4.96656 0.577324i 0.993312 0.115465i
\(26\) −3.73627 −0.732743
\(27\) 0.308860i 0.0594402i
\(28\) 0.583618i 0.110293i
\(29\) 8.28676 1.53881 0.769406 0.638760i \(-0.220552\pi\)
0.769406 + 0.638760i \(0.220552\pi\)
\(30\) −5.25801 + 0.304576i −0.959977 + 0.0556077i
\(31\) −2.47907 −0.445254 −0.222627 0.974904i \(-0.571463\pi\)
−0.222627 + 0.974904i \(0.571463\pi\)
\(32\) 5.30502i 0.937804i
\(33\) 11.5697i 2.01402i
\(34\) 0 0
\(35\) 0.0689710 + 1.19067i 0.0116582 + 0.201260i
\(36\) −3.41914 −0.569856
\(37\) 4.09373i 0.673005i −0.941683 0.336502i \(-0.890756\pi\)
0.941683 0.336502i \(-0.109244\pi\)
\(38\) 0.953679i 0.154707i
\(39\) 9.71553 1.55573
\(40\) −0.380800 6.57390i −0.0602098 1.03942i
\(41\) −0.814533 −0.127209 −0.0636043 0.997975i \(-0.520260\pi\)
−0.0636043 + 0.997975i \(0.520260\pi\)
\(42\) 1.25631i 0.193854i
\(43\) 6.43772i 0.981743i −0.871232 0.490872i \(-0.836678\pi\)
0.871232 0.490872i \(-0.163322\pi\)
\(44\) 5.11527 0.771156
\(45\) 6.97557 0.404068i 1.03986 0.0602348i
\(46\) −5.46115 −0.805203
\(47\) 1.70505i 0.248707i −0.992238 0.124354i \(-0.960314\pi\)
0.992238 0.124354i \(-0.0396857\pi\)
\(48\) 1.52043i 0.219455i
\(49\) 6.71551 0.959358
\(50\) 0.549461 + 4.72687i 0.0777056 + 0.668480i
\(51\) 0 0
\(52\) 4.29551i 0.595680i
\(53\) 8.16327i 1.12131i 0.828049 + 0.560656i \(0.189451\pi\)
−0.828049 + 0.560656i \(0.810549\pi\)
\(54\) −0.293954 −0.0400021
\(55\) −10.4359 + 0.604514i −1.40718 + 0.0815126i
\(56\) 1.57072 0.209897
\(57\) 2.47988i 0.328468i
\(58\) 7.88683i 1.03559i
\(59\) 6.05714 0.788572 0.394286 0.918988i \(-0.370992\pi\)
0.394286 + 0.918988i \(0.370992\pi\)
\(60\) 0.350164 + 6.04502i 0.0452060 + 0.780408i
\(61\) 1.13106 0.144817 0.0724086 0.997375i \(-0.476931\pi\)
0.0724086 + 0.997375i \(0.476931\pi\)
\(62\) 2.35943i 0.299648i
\(63\) 1.66670i 0.209984i
\(64\) −6.27771 −0.784713
\(65\) −0.507636 8.76352i −0.0629645 1.08698i
\(66\) 11.0113 1.35540
\(67\) 7.68603i 0.938998i 0.882933 + 0.469499i \(0.155565\pi\)
−0.882933 + 0.469499i \(0.844435\pi\)
\(68\) 0 0
\(69\) 14.2008 1.70957
\(70\) −1.13321 + 0.0656424i −0.135444 + 0.00784576i
\(71\) −6.94272 −0.823949 −0.411975 0.911195i \(-0.635161\pi\)
−0.411975 + 0.911195i \(0.635161\pi\)
\(72\) 9.20211i 1.08448i
\(73\) 12.0863i 1.41459i −0.706919 0.707295i \(-0.749915\pi\)
0.706919 0.707295i \(-0.250085\pi\)
\(74\) 3.89616 0.452920
\(75\) −1.42878 12.2914i −0.164981 1.41929i
\(76\) 1.09642 0.125768
\(77\) 2.49350i 0.284160i
\(78\) 9.24665i 1.04698i
\(79\) −1.48104 −0.166630 −0.0833150 0.996523i \(-0.526551\pi\)
−0.0833150 + 0.996523i \(0.526551\pi\)
\(80\) 1.37144 0.0794422i 0.153332 0.00888191i
\(81\) −8.61002 −0.956669
\(82\) 0.775222i 0.0856090i
\(83\) 16.1876i 1.77682i −0.459048 0.888411i \(-0.651810\pi\)
0.459048 0.888411i \(-0.348190\pi\)
\(84\) −1.44436 −0.157592
\(85\) 0 0
\(86\) 6.12703 0.660694
\(87\) 20.5083i 2.19872i
\(88\) 13.7670i 1.46757i
\(89\) 12.0717 1.27960 0.639800 0.768542i \(-0.279017\pi\)
0.639800 + 0.768542i \(0.279017\pi\)
\(90\) 0.384567 + 6.63892i 0.0405369 + 0.699804i
\(91\) 2.09390 0.219500
\(92\) 6.27857i 0.654586i
\(93\) 6.13529i 0.636199i
\(94\) 1.62276 0.167375
\(95\) −2.23688 + 0.129573i −0.229499 + 0.0132940i
\(96\) 13.1290 1.33998
\(97\) 0.228042i 0.0231542i −0.999933 0.0115771i \(-0.996315\pi\)
0.999933 0.0115771i \(-0.00368519\pi\)
\(98\) 6.39141i 0.645630i
\(99\) −14.6082 −1.46818
\(100\) 5.43437 0.631704i 0.543437 0.0631704i
\(101\) 6.66539 0.663231 0.331616 0.943415i \(-0.392406\pi\)
0.331616 + 0.943415i \(0.392406\pi\)
\(102\) 0 0
\(103\) 0.350456i 0.0345315i −0.999851 0.0172657i \(-0.994504\pi\)
0.999851 0.0172657i \(-0.00549613\pi\)
\(104\) −11.5607 −1.13362
\(105\) 2.94672 0.170692i 0.287570 0.0166578i
\(106\) −7.76930 −0.754621
\(107\) 7.79876i 0.753935i −0.926227 0.376967i \(-0.876967\pi\)
0.926227 0.376967i \(-0.123033\pi\)
\(108\) 0.337953i 0.0325195i
\(109\) 12.1781 1.16646 0.583228 0.812309i \(-0.301790\pi\)
0.583228 + 0.812309i \(0.301790\pi\)
\(110\) −0.575339 9.93230i −0.0548564 0.947007i
\(111\) −10.1313 −0.961620
\(112\) 0.327683i 0.0309632i
\(113\) 17.8780i 1.68182i 0.541175 + 0.840910i \(0.317980\pi\)
−0.541175 + 0.840910i \(0.682020\pi\)
\(114\) 2.36020 0.221053
\(115\) −0.741990 12.8093i −0.0691910 1.19447i
\(116\) 9.06731 0.841879
\(117\) 12.2671i 1.13410i
\(118\) 5.76481i 0.530694i
\(119\) 0 0
\(120\) −16.2693 + 0.942417i −1.48518 + 0.0860305i
\(121\) 10.8549 0.986808
\(122\) 1.07647i 0.0974592i
\(123\) 2.01583i 0.181762i
\(124\) −2.71258 −0.243597
\(125\) −11.0123 + 1.93100i −0.984972 + 0.172714i
\(126\) −1.58626 −0.141315
\(127\) 12.3969i 1.10005i −0.835148 0.550025i \(-0.814618\pi\)
0.835148 0.550025i \(-0.185382\pi\)
\(128\) 4.63531i 0.409707i
\(129\) −15.9323 −1.40276
\(130\) 8.34058 0.483137i 0.731517 0.0423739i
\(131\) 10.0314 0.876446 0.438223 0.898866i \(-0.355608\pi\)
0.438223 + 0.898866i \(0.355608\pi\)
\(132\) 12.6594i 1.10186i
\(133\) 0.534465i 0.0463440i
\(134\) −7.31509 −0.631928
\(135\) −0.0399387 0.689477i −0.00343737 0.0593407i
\(136\) 0 0
\(137\) 3.06808i 0.262124i 0.991374 + 0.131062i \(0.0418386\pi\)
−0.991374 + 0.131062i \(0.958161\pi\)
\(138\) 13.5154i 1.15051i
\(139\) −12.2731 −1.04099 −0.520497 0.853864i \(-0.674253\pi\)
−0.520497 + 0.853864i \(0.674253\pi\)
\(140\) 0.0754676 + 1.30283i 0.00637817 + 0.110109i
\(141\) −4.21972 −0.355364
\(142\) 6.60766i 0.554502i
\(143\) 18.3525i 1.53471i
\(144\) 1.91974 0.159978
\(145\) −18.4987 + 1.07156i −1.53624 + 0.0889882i
\(146\) 11.5030 0.951992
\(147\) 16.6198i 1.37078i
\(148\) 4.47933i 0.368199i
\(149\) 5.46544 0.447747 0.223873 0.974618i \(-0.428130\pi\)
0.223873 + 0.974618i \(0.428130\pi\)
\(150\) 11.6982 1.35983i 0.955155 0.111029i
\(151\) −5.00780 −0.407529 −0.203765 0.979020i \(-0.565318\pi\)
−0.203765 + 0.979020i \(0.565318\pi\)
\(152\) 2.95087i 0.239347i
\(153\) 0 0
\(154\) 2.37316 0.191235
\(155\) 5.53409 0.320568i 0.444509 0.0257487i
\(156\) 10.6307 0.851135
\(157\) 10.9442i 0.873443i 0.899597 + 0.436721i \(0.143860\pi\)
−0.899597 + 0.436721i \(0.856140\pi\)
\(158\) 1.40956i 0.112139i
\(159\) 20.2027 1.60218
\(160\) −0.685992 11.8425i −0.0542324 0.936235i
\(161\) 3.06056 0.241206
\(162\) 8.19449i 0.643820i
\(163\) 7.38954i 0.578793i −0.957209 0.289397i \(-0.906545\pi\)
0.957209 0.289397i \(-0.0934547\pi\)
\(164\) −0.891256 −0.0695954
\(165\) 1.49607 + 25.8272i 0.116469 + 2.01065i
\(166\) 15.4064 1.19577
\(167\) 19.4979i 1.50879i 0.656419 + 0.754396i \(0.272070\pi\)
−0.656419 + 0.754396i \(0.727930\pi\)
\(168\) 3.88728i 0.299910i
\(169\) −2.41138 −0.185491
\(170\) 0 0
\(171\) −3.13117 −0.239447
\(172\) 7.04411i 0.537108i
\(173\) 13.2997i 1.01116i 0.862780 + 0.505579i \(0.168721\pi\)
−0.862780 + 0.505579i \(0.831279\pi\)
\(174\) 19.5186 1.47970
\(175\) −0.307931 2.64905i −0.0232774 0.200249i
\(176\) −2.87206 −0.216490
\(177\) 14.9904i 1.12675i
\(178\) 11.4891i 0.861146i
\(179\) 10.1625 0.759582 0.379791 0.925072i \(-0.375996\pi\)
0.379791 + 0.925072i \(0.375996\pi\)
\(180\) 7.63262 0.442128i 0.568902 0.0329543i
\(181\) −19.6193 −1.45829 −0.729145 0.684359i \(-0.760082\pi\)
−0.729145 + 0.684359i \(0.760082\pi\)
\(182\) 1.99284i 0.147719i
\(183\) 2.79918i 0.206921i
\(184\) −16.8979 −1.24573
\(185\) 0.529360 + 9.13854i 0.0389193 + 0.671879i
\(186\) −5.83919 −0.428150
\(187\) 0 0
\(188\) 1.86566i 0.136067i
\(189\) 0.164739 0.0119830
\(190\) −0.123320 2.12892i −0.00894658 0.154448i
\(191\) −8.81287 −0.637677 −0.318838 0.947809i \(-0.603293\pi\)
−0.318838 + 0.947809i \(0.603293\pi\)
\(192\) 15.5363i 1.12123i
\(193\) 15.4624i 1.11301i 0.830845 + 0.556504i \(0.187858\pi\)
−0.830845 + 0.556504i \(0.812142\pi\)
\(194\) 0.217037 0.0155823
\(195\) −21.6882 + 1.25631i −1.55313 + 0.0899666i
\(196\) 7.34806 0.524862
\(197\) 0.230147i 0.0163973i −0.999966 0.00819866i \(-0.997390\pi\)
0.999966 0.00819866i \(-0.00260974\pi\)
\(198\) 13.9032i 0.988057i
\(199\) −21.4615 −1.52137 −0.760684 0.649122i \(-0.775136\pi\)
−0.760684 + 0.649122i \(0.775136\pi\)
\(200\) 1.70014 + 14.6258i 0.120218 + 1.03420i
\(201\) 19.0216 1.34168
\(202\) 6.34371i 0.446342i
\(203\) 4.41997i 0.310221i
\(204\) 0 0
\(205\) 1.81830 0.105327i 0.126996 0.00735637i
\(206\) 0.333543 0.0232390
\(207\) 17.9304i 1.24625i
\(208\) 2.41179i 0.167228i
\(209\) 4.68445 0.324030
\(210\) 0.162454 + 2.80450i 0.0112104 + 0.193529i
\(211\) −15.5447 −1.07014 −0.535071 0.844807i \(-0.679715\pi\)
−0.535071 + 0.844807i \(0.679715\pi\)
\(212\) 8.93219i 0.613465i
\(213\) 17.1821i 1.17730i
\(214\) 7.42238 0.507384
\(215\) 0.832461 + 14.3711i 0.0567734 + 0.980100i
\(216\) −0.909551 −0.0618871
\(217\) 1.32228i 0.0897622i
\(218\) 11.5904i 0.785002i
\(219\) −29.9115 −2.02123
\(220\) −11.4189 + 0.661455i −0.769865 + 0.0445953i
\(221\) 0 0
\(222\) 9.64235i 0.647152i
\(223\) 1.06955i 0.0716224i −0.999359 0.0358112i \(-0.988599\pi\)
0.999359 0.0358112i \(-0.0114015\pi\)
\(224\) 2.82958 0.189059
\(225\) −15.5195 + 1.80402i −1.03463 + 0.120268i
\(226\) −17.0152 −1.13183
\(227\) 2.06789i 0.137251i 0.997642 + 0.0686255i \(0.0218614\pi\)
−0.997642 + 0.0686255i \(0.978139\pi\)
\(228\) 2.71347i 0.179704i
\(229\) 12.8134 0.846732 0.423366 0.905959i \(-0.360849\pi\)
0.423366 + 0.905959i \(0.360849\pi\)
\(230\) 12.1911 0.706181i 0.803856 0.0465642i
\(231\) −6.17099 −0.406021
\(232\) 24.4034i 1.60216i
\(233\) 6.48391i 0.424775i −0.977185 0.212388i \(-0.931876\pi\)
0.977185 0.212388i \(-0.0681239\pi\)
\(234\) 11.6751 0.763226
\(235\) 0.220480 + 3.80623i 0.0143825 + 0.248291i
\(236\) 6.62768 0.431425
\(237\) 3.66533i 0.238089i
\(238\) 0 0
\(239\) 1.26828 0.0820381 0.0410190 0.999158i \(-0.486940\pi\)
0.0410190 + 0.999158i \(0.486940\pi\)
\(240\) −0.196606 3.39409i −0.0126909 0.219087i
\(241\) 2.49584 0.160771 0.0803856 0.996764i \(-0.474385\pi\)
0.0803856 + 0.996764i \(0.474385\pi\)
\(242\) 10.3310i 0.664103i
\(243\) 22.2350i 1.42637i
\(244\) 1.23760 0.0792290
\(245\) −14.9912 + 0.868382i −0.957753 + 0.0554789i
\(246\) −1.91855 −0.122322
\(247\) 3.93374i 0.250298i
\(248\) 7.30052i 0.463584i
\(249\) −40.0617 −2.53881
\(250\) −1.83781 10.4809i −0.116233 0.662867i
\(251\) −17.3565 −1.09553 −0.547765 0.836632i \(-0.684521\pi\)
−0.547765 + 0.836632i \(0.684521\pi\)
\(252\) 1.82369i 0.114882i
\(253\) 26.8251i 1.68648i
\(254\) 11.7987 0.740313
\(255\) 0 0
\(256\) −16.9670 −1.06044
\(257\) 15.5551i 0.970299i 0.874431 + 0.485149i \(0.161235\pi\)
−0.874431 + 0.485149i \(0.838765\pi\)
\(258\) 15.1634i 0.944030i
\(259\) −2.18350 −0.135676
\(260\) −0.555452 9.58898i −0.0344477 0.594683i
\(261\) −25.8945 −1.60283
\(262\) 9.54726i 0.589831i
\(263\) 9.04093i 0.557488i 0.960365 + 0.278744i \(0.0899181\pi\)
−0.960365 + 0.278744i \(0.910082\pi\)
\(264\) 34.0711 2.09693
\(265\) −1.05559 18.2231i −0.0648445 1.11943i
\(266\) 0.508671 0.0311886
\(267\) 29.8755i 1.82835i
\(268\) 8.41000i 0.513723i
\(269\) −3.01989 −0.184126 −0.0920630 0.995753i \(-0.529346\pi\)
−0.0920630 + 0.995753i \(0.529346\pi\)
\(270\) 0.656202 0.0380112i 0.0399352 0.00231329i
\(271\) −13.1638 −0.799642 −0.399821 0.916593i \(-0.630928\pi\)
−0.399821 + 0.916593i \(0.630928\pi\)
\(272\) 0 0
\(273\) 5.18205i 0.313632i
\(274\) −2.92001 −0.176404
\(275\) 23.2183 2.69894i 1.40011 0.162752i
\(276\) 15.5384 0.935302
\(277\) 4.05137i 0.243423i 0.992566 + 0.121712i \(0.0388383\pi\)
−0.992566 + 0.121712i \(0.961162\pi\)
\(278\) 11.6808i 0.700569i
\(279\) 7.74660 0.463777
\(280\) −3.50637 + 0.203110i −0.209546 + 0.0121382i
\(281\) 14.2650 0.850976 0.425488 0.904964i \(-0.360102\pi\)
0.425488 + 0.904964i \(0.360102\pi\)
\(282\) 4.01607i 0.239154i
\(283\) 5.57411i 0.331346i −0.986181 0.165673i \(-0.947020\pi\)
0.986181 0.165673i \(-0.0529797\pi\)
\(284\) −7.59668 −0.450780
\(285\) 0.320673 + 5.53590i 0.0189950 + 0.327918i
\(286\) −17.4668 −1.03283
\(287\) 0.434453i 0.0256450i
\(288\) 16.5771i 0.976817i
\(289\) 0 0
\(290\) −1.01984 17.6060i −0.0598873 1.03386i
\(291\) −0.564367 −0.0330838
\(292\) 13.2247i 0.773917i
\(293\) 1.97120i 0.115159i 0.998341 + 0.0575795i \(0.0183383\pi\)
−0.998341 + 0.0575795i \(0.981662\pi\)
\(294\) 15.8177 0.922506
\(295\) −13.5215 + 0.783248i −0.787252 + 0.0456024i
\(296\) 12.0555 0.700710
\(297\) 1.44390i 0.0837834i
\(298\) 5.20168i 0.301325i
\(299\) −22.5262 −1.30272
\(300\) −1.56336 13.4492i −0.0902607 0.776488i
\(301\) −3.43373 −0.197917
\(302\) 4.76612i 0.274260i
\(303\) 16.4957i 0.947655i
\(304\) −0.615608 −0.0353075
\(305\) −2.52489 + 0.146257i −0.144575 + 0.00837466i
\(306\) 0 0
\(307\) 1.69613i 0.0968034i 0.998828 + 0.0484017i \(0.0154128\pi\)
−0.998828 + 0.0484017i \(0.984587\pi\)
\(308\) 2.72837i 0.155463i
\(309\) −0.867321 −0.0493402
\(310\) 0.305097 + 5.26701i 0.0173284 + 0.299146i
\(311\) 10.8927 0.617666 0.308833 0.951116i \(-0.400062\pi\)
0.308833 + 0.951116i \(0.400062\pi\)
\(312\) 28.6109i 1.61977i
\(313\) 26.2916i 1.48609i −0.669241 0.743045i \(-0.733381\pi\)
0.669241 0.743045i \(-0.266619\pi\)
\(314\) −10.4160 −0.587811
\(315\) −0.215521 3.72061i −0.0121432 0.209633i
\(316\) −1.62054 −0.0911627
\(317\) 25.0112i 1.40477i −0.711797 0.702386i \(-0.752118\pi\)
0.711797 0.702386i \(-0.247882\pi\)
\(318\) 19.2277i 1.07824i
\(319\) 38.7399 2.16902
\(320\) 14.0139 0.811769i 0.783400 0.0453793i
\(321\) −19.3006 −1.07726
\(322\) 2.91286i 0.162327i
\(323\) 0 0
\(324\) −9.42103 −0.523390
\(325\) 2.26642 + 19.4974i 0.125718 + 1.08152i
\(326\) 7.03291 0.389517
\(327\) 30.1389i 1.66668i
\(328\) 2.39869i 0.132445i
\(329\) −0.909436 −0.0501388
\(330\) −24.5808 + 1.42387i −1.35313 + 0.0783814i
\(331\) −32.2873 −1.77467 −0.887335 0.461125i \(-0.847446\pi\)
−0.887335 + 0.461125i \(0.847446\pi\)
\(332\) 17.7124i 0.972094i
\(333\) 12.7921i 0.701002i
\(334\) −18.5569 −1.01539
\(335\) −0.993880 17.1577i −0.0543015 0.937427i
\(336\) 0.810961 0.0442416
\(337\) 12.8636i 0.700723i −0.936615 0.350361i \(-0.886059\pi\)
0.936615 0.350361i \(-0.113941\pi\)
\(338\) 2.29500i 0.124832i
\(339\) 44.2450 2.40306
\(340\) 0 0
\(341\) −11.5895 −0.627604
\(342\) 2.98006i 0.161143i
\(343\) 7.31554i 0.395002i
\(344\) 18.9582 1.02216
\(345\) −31.7008 + 1.83630i −1.70671 + 0.0988632i
\(346\) −12.6579 −0.680490
\(347\) 26.9376i 1.44609i 0.690802 + 0.723044i \(0.257257\pi\)
−0.690802 + 0.723044i \(0.742743\pi\)
\(348\) 22.4401i 1.20291i
\(349\) −14.3193 −0.766496 −0.383248 0.923645i \(-0.625195\pi\)
−0.383248 + 0.923645i \(0.625195\pi\)
\(350\) 2.52120 0.293070i 0.134764 0.0156653i
\(351\) −1.21250 −0.0647186
\(352\) 24.8006i 1.32187i
\(353\) 1.65351i 0.0880076i 0.999031 + 0.0440038i \(0.0140114\pi\)
−0.999031 + 0.0440038i \(0.985989\pi\)
\(354\) 14.2670 0.758280
\(355\) 15.4984 0.897762i 0.822570 0.0476483i
\(356\) 13.2088 0.700065
\(357\) 0 0
\(358\) 9.67206i 0.511184i
\(359\) 17.3638 0.916427 0.458214 0.888842i \(-0.348489\pi\)
0.458214 + 0.888842i \(0.348489\pi\)
\(360\) 1.18992 + 20.5421i 0.0627145 + 1.08266i
\(361\) −17.9959 −0.947154
\(362\) 18.6724i 0.981402i
\(363\) 26.8640i 1.41000i
\(364\) 2.29113 0.120088
\(365\) 1.56287 + 26.9805i 0.0818045 + 1.41222i
\(366\) 2.66409 0.139254
\(367\) 9.57097i 0.499601i 0.968297 + 0.249800i \(0.0803650\pi\)
−0.968297 + 0.249800i \(0.919635\pi\)
\(368\) 3.52522i 0.183765i
\(369\) 2.54525 0.132501
\(370\) −8.69750 + 0.503812i −0.452162 + 0.0261919i
\(371\) 4.35410 0.226054
\(372\) 6.71319i 0.348063i
\(373\) 14.4236i 0.746828i 0.927665 + 0.373414i \(0.121813\pi\)
−0.927665 + 0.373414i \(0.878187\pi\)
\(374\) 0 0
\(375\) 4.77890 + 27.2537i 0.246781 + 1.40737i
\(376\) 5.02114 0.258946
\(377\) 32.5316i 1.67546i
\(378\) 0.156789i 0.00806434i
\(379\) 9.51689 0.488850 0.244425 0.969668i \(-0.421401\pi\)
0.244425 + 0.969668i \(0.421401\pi\)
\(380\) −2.44758 + 0.141778i −0.125558 + 0.00727308i
\(381\) −30.6804 −1.57180
\(382\) 8.38755i 0.429144i
\(383\) 27.7753i 1.41925i −0.704579 0.709626i \(-0.748864\pi\)
0.704579 0.709626i \(-0.251136\pi\)
\(384\) 11.4716 0.585408
\(385\) 0.322434 + 5.56630i 0.0164328 + 0.283685i
\(386\) −14.7162 −0.749033
\(387\) 20.1166i 1.02258i
\(388\) 0.249522i 0.0126676i
\(389\) −21.0485 −1.06720 −0.533599 0.845737i \(-0.679161\pi\)
−0.533599 + 0.845737i \(0.679161\pi\)
\(390\) −1.19568 20.6415i −0.0605458 1.04523i
\(391\) 0 0
\(392\) 19.7763i 0.998852i
\(393\) 24.8260i 1.25231i
\(394\) 0.219040 0.0110351
\(395\) 3.30616 0.191513i 0.166351 0.00963607i
\(396\) −15.9842 −0.803236
\(397\) 29.6505i 1.48812i −0.668114 0.744059i \(-0.732898\pi\)
0.668114 0.744059i \(-0.267102\pi\)
\(398\) 20.4258i 1.02385i
\(399\) −1.32271 −0.0662184
\(400\) −3.05123 + 0.354682i −0.152562 + 0.0177341i
\(401\) −16.5656 −0.827245 −0.413622 0.910448i \(-0.635737\pi\)
−0.413622 + 0.910448i \(0.635737\pi\)
\(402\) 18.1036i 0.902928i
\(403\) 9.73217i 0.484794i
\(404\) 7.29322 0.362851
\(405\) 19.2204 1.11336i 0.955068 0.0553234i
\(406\) 4.20666 0.208773
\(407\) 19.1379i 0.948629i
\(408\) 0 0
\(409\) 19.3593 0.957257 0.478629 0.878017i \(-0.341134\pi\)
0.478629 + 0.878017i \(0.341134\pi\)
\(410\) 0.100244 + 1.73055i 0.00495069 + 0.0854657i
\(411\) 7.59298 0.374534
\(412\) 0.383467i 0.0188921i
\(413\) 3.23074i 0.158974i
\(414\) 17.0650 0.838700
\(415\) 2.09322 + 36.1361i 0.102752 + 1.77385i
\(416\) −20.8261 −1.02108
\(417\) 30.3740i 1.48742i
\(418\) 4.45837i 0.218066i
\(419\) −14.4016 −0.703565 −0.351783 0.936082i \(-0.614424\pi\)
−0.351783 + 0.936082i \(0.614424\pi\)
\(420\) 3.22428 0.186770i 0.157329 0.00911343i
\(421\) 26.7439 1.30342 0.651710 0.758468i \(-0.274052\pi\)
0.651710 + 0.758468i \(0.274052\pi\)
\(422\) 14.7945i 0.720185i
\(423\) 5.32795i 0.259054i
\(424\) −24.0397 −1.16747
\(425\) 0 0
\(426\) −16.3529 −0.792298
\(427\) 0.603281i 0.0291948i
\(428\) 8.53335i 0.412475i
\(429\) 45.4194 2.19287
\(430\) −13.6775 + 0.792285i −0.659589 + 0.0382074i
\(431\) 28.6183 1.37850 0.689248 0.724526i \(-0.257941\pi\)
0.689248 + 0.724526i \(0.257941\pi\)
\(432\) 0.189750i 0.00912935i
\(433\) 36.1924i 1.73930i −0.493672 0.869648i \(-0.664346\pi\)
0.493672 0.869648i \(-0.335654\pi\)
\(434\) −1.25847 −0.0604083
\(435\) 2.65193 + 45.7813i 0.127150 + 2.19505i
\(436\) 13.3252 0.638164
\(437\) 5.74978i 0.275049i
\(438\) 28.4679i 1.36025i
\(439\) −32.4410 −1.54833 −0.774163 0.632986i \(-0.781829\pi\)
−0.774163 + 0.632986i \(0.781829\pi\)
\(440\) −1.78021 30.7324i −0.0848682 1.46511i
\(441\) −20.9846 −0.999268
\(442\) 0 0
\(443\) 1.88468i 0.0895437i 0.998997 + 0.0447719i \(0.0142561\pi\)
−0.998997 + 0.0447719i \(0.985744\pi\)
\(444\) −11.0856 −0.526099
\(445\) −26.9480 + 1.56099i −1.27746 + 0.0739982i
\(446\) 1.01793 0.0482005
\(447\) 13.5261i 0.639761i
\(448\) 3.34839i 0.158196i
\(449\) −2.00168 −0.0944652 −0.0472326 0.998884i \(-0.515040\pi\)
−0.0472326 + 0.998884i \(0.515040\pi\)
\(450\) −1.71696 14.7705i −0.0809381 0.696289i
\(451\) −3.80788 −0.179306
\(452\) 19.5620i 0.920118i
\(453\) 12.3935i 0.582297i
\(454\) −1.96810 −0.0923673
\(455\) −4.67426 + 0.270762i −0.219133 + 0.0126935i
\(456\) 7.30290 0.341990
\(457\) 17.6583i 0.826022i −0.910726 0.413011i \(-0.864477\pi\)
0.910726 0.413011i \(-0.135523\pi\)
\(458\) 12.1950i 0.569834i
\(459\) 0 0
\(460\) −0.811881 14.0158i −0.0378541 0.653490i
\(461\) −31.8412 −1.48299 −0.741497 0.670957i \(-0.765884\pi\)
−0.741497 + 0.670957i \(0.765884\pi\)
\(462\) 5.87317i 0.273245i
\(463\) 15.7977i 0.734179i −0.930186 0.367090i \(-0.880354\pi\)
0.930186 0.367090i \(-0.119646\pi\)
\(464\) −5.09101 −0.236344
\(465\) −0.793353 13.6960i −0.0367909 0.635135i
\(466\) 6.17099 0.285866
\(467\) 8.86530i 0.410237i −0.978737 0.205119i \(-0.934242\pi\)
0.978737 0.205119i \(-0.0657580\pi\)
\(468\) 13.4226i 0.620460i
\(469\) 4.09956 0.189300
\(470\) −3.62254 + 0.209839i −0.167095 + 0.00967917i
\(471\) 27.0851 1.24802
\(472\) 17.8374i 0.821035i
\(473\) 30.0958i 1.38381i
\(474\) −3.48843 −0.160229
\(475\) 4.97668 0.578501i 0.228346 0.0265434i
\(476\) 0 0
\(477\) 25.5086i 1.16796i
\(478\) 1.20707i 0.0552101i
\(479\) −11.9097 −0.544169 −0.272084 0.962273i \(-0.587713\pi\)
−0.272084 + 0.962273i \(0.587713\pi\)
\(480\) −29.3083 + 1.69772i −1.33774 + 0.0774898i
\(481\) 16.0709 0.732769
\(482\) 2.37539i 0.108196i
\(483\) 7.57438i 0.344646i
\(484\) 11.8773 0.539879
\(485\) 0.0294881 + 0.509065i 0.00133899 + 0.0231154i
\(486\) −21.1619 −0.959922
\(487\) 26.7760i 1.21334i −0.794955 0.606668i \(-0.792506\pi\)
0.794955 0.606668i \(-0.207494\pi\)
\(488\) 3.33081i 0.150779i
\(489\) −18.2879 −0.827006
\(490\) −0.826473 14.2677i −0.0373362 0.644549i
\(491\) −23.1191 −1.04335 −0.521676 0.853144i \(-0.674693\pi\)
−0.521676 + 0.853144i \(0.674693\pi\)
\(492\) 2.20571i 0.0994411i
\(493\) 0 0
\(494\) −3.74389 −0.168446
\(495\) 32.6103 1.88898i 1.46572 0.0849035i
\(496\) 1.52303 0.0683860
\(497\) 3.70309i 0.166106i
\(498\) 38.1283i 1.70857i
\(499\) −4.96635 −0.222324 −0.111162 0.993802i \(-0.535457\pi\)
−0.111162 + 0.993802i \(0.535457\pi\)
\(500\) −12.0496 + 2.11289i −0.538875 + 0.0944912i
\(501\) 48.2540 2.15583
\(502\) 16.5188i 0.737271i
\(503\) 23.3806i 1.04249i −0.853407 0.521245i \(-0.825468\pi\)
0.853407 0.521245i \(-0.174532\pi\)
\(504\) −4.90820 −0.218629
\(505\) −14.8793 + 0.861901i −0.662121 + 0.0383541i
\(506\) −25.5305 −1.13497
\(507\) 5.96776i 0.265038i
\(508\) 13.5646i 0.601834i
\(509\) −23.9562 −1.06184 −0.530921 0.847422i \(-0.678154\pi\)
−0.530921 + 0.847422i \(0.678154\pi\)
\(510\) 0 0
\(511\) −6.44654 −0.285178
\(512\) 6.87755i 0.303948i
\(513\) 0.309490i 0.0136643i
\(514\) −14.8044 −0.652993
\(515\) 0.0453175 + 0.782333i 0.00199693 + 0.0344737i
\(516\) −17.4330 −0.767445
\(517\) 7.97098i 0.350563i
\(518\) 2.07812i 0.0913075i
\(519\) 32.9146 1.44479
\(520\) 25.8074 1.49492i 1.13173 0.0655565i
\(521\) 7.58483 0.332297 0.166149 0.986101i \(-0.446867\pi\)
0.166149 + 0.986101i \(0.446867\pi\)
\(522\) 24.6448i 1.07867i
\(523\) 17.3848i 0.760185i −0.924948 0.380093i \(-0.875892\pi\)
0.924948 0.380093i \(-0.124108\pi\)
\(524\) 10.9763 0.479500
\(525\) −6.55596 + 0.762079i −0.286125 + 0.0332599i
\(526\) −8.60461 −0.375179
\(527\) 0 0
\(528\) 7.10788i 0.309331i
\(529\) −9.92555 −0.431546
\(530\) 17.3436 1.00465i 0.753358 0.0436391i
\(531\) −18.9273 −0.821377
\(532\) 0.584808i 0.0253546i
\(533\) 3.19764i 0.138505i
\(534\) 28.4337 1.23045
\(535\) 1.00846 + 17.4094i 0.0435994 + 0.752673i
\(536\) −22.6343 −0.977654
\(537\) 25.1505i 1.08533i
\(538\) 2.87415i 0.123913i
\(539\) 31.3945 1.35226
\(540\) −0.0437006 0.754421i −0.00188058 0.0324651i
\(541\) −22.2354 −0.955974 −0.477987 0.878367i \(-0.658633\pi\)
−0.477987 + 0.878367i \(0.658633\pi\)
\(542\) 12.5285i 0.538144i
\(543\) 48.5545i 2.08367i
\(544\) 0 0
\(545\) −27.1856 + 1.57475i −1.16450 + 0.0674551i
\(546\) 4.93196 0.211068
\(547\) 40.1891i 1.71836i 0.511672 + 0.859181i \(0.329026\pi\)
−0.511672 + 0.859181i \(0.670974\pi\)
\(548\) 3.35707i 0.143407i
\(549\) −3.53433 −0.150842
\(550\) 2.56869 + 22.0977i 0.109529 + 0.942250i
\(551\) 8.30365 0.353747
\(552\) 41.8194i 1.77995i
\(553\) 0.789953i 0.0335922i
\(554\) −3.85585 −0.163819
\(555\) 22.6164 1.31008i 0.960011 0.0556097i
\(556\) −13.4292 −0.569524
\(557\) 6.44000i 0.272872i −0.990649 0.136436i \(-0.956435\pi\)
0.990649 0.136436i \(-0.0435647\pi\)
\(558\) 7.37274i 0.312113i
\(559\) 25.2728 1.06892
\(560\) −0.0423727 0.731496i −0.00179057 0.0309113i
\(561\) 0 0
\(562\) 13.5765i 0.572691i
\(563\) 19.8830i 0.837967i −0.907994 0.418984i \(-0.862386\pi\)
0.907994 0.418984i \(-0.137614\pi\)
\(564\) −4.61719 −0.194419
\(565\) −2.31180 39.9095i −0.0972582 1.67900i
\(566\) 5.30510 0.222990
\(567\) 4.59239i 0.192862i
\(568\) 20.4454i 0.857869i
\(569\) −6.47627 −0.271499 −0.135750 0.990743i \(-0.543344\pi\)
−0.135750 + 0.990743i \(0.543344\pi\)
\(570\) −5.26873 + 0.305197i −0.220683 + 0.0127833i
\(571\) 36.5954 1.53147 0.765736 0.643155i \(-0.222375\pi\)
0.765736 + 0.643155i \(0.222375\pi\)
\(572\) 20.0812i 0.839636i
\(573\) 21.8104i 0.911142i
\(574\) −0.413486 −0.0172586
\(575\) 3.31273 + 28.4985i 0.138150 + 1.18847i
\(576\) 19.6166 0.817357
\(577\) 19.2887i 0.802999i −0.915859 0.401500i \(-0.868489\pi\)
0.915859 0.401500i \(-0.131511\pi\)
\(578\) 0 0
\(579\) 38.2669 1.59032
\(580\) −20.2412 + 1.17249i −0.840470 + 0.0486851i
\(581\) −8.63411 −0.358203
\(582\) 0.537130i 0.0222647i
\(583\) 38.1626i 1.58053i
\(584\) 35.5924 1.47282
\(585\) 1.58626 + 27.3842i 0.0655838 + 1.13220i
\(586\) −1.87607 −0.0774998
\(587\) 17.8880i 0.738316i 0.929367 + 0.369158i \(0.120354\pi\)
−0.929367 + 0.369158i \(0.879646\pi\)
\(588\) 18.1852i 0.749946i
\(589\) −2.48412 −0.102357
\(590\) −0.745447 12.8689i −0.0306896 0.529806i
\(591\) −0.569576 −0.0234292
\(592\) 2.51500i 0.103366i
\(593\) 22.6220i 0.928975i 0.885580 + 0.464487i \(0.153761\pi\)
−0.885580 + 0.464487i \(0.846239\pi\)
\(594\) −1.37421 −0.0563847
\(595\) 0 0
\(596\) 5.98025 0.244961
\(597\) 53.1137i 2.17380i
\(598\) 21.4390i 0.876707i
\(599\) 17.4019 0.711023 0.355511 0.934672i \(-0.384307\pi\)
0.355511 + 0.934672i \(0.384307\pi\)
\(600\) 36.1965 4.20756i 1.47772 0.171773i
\(601\) −21.5491 −0.879006 −0.439503 0.898241i \(-0.644845\pi\)
−0.439503 + 0.898241i \(0.644845\pi\)
\(602\) 3.26802i 0.133194i
\(603\) 24.0173i 0.978061i
\(604\) −5.47951 −0.222958
\(605\) −24.2317 + 1.40364i −0.985157 + 0.0570663i
\(606\) 15.6996 0.637754
\(607\) 16.0617i 0.651925i 0.945383 + 0.325962i \(0.105688\pi\)
−0.945383 + 0.325962i \(0.894312\pi\)
\(608\) 5.31584i 0.215586i
\(609\) −10.9387 −0.443258
\(610\) −0.139199 2.40304i −0.00563598 0.0972961i
\(611\) 6.69358 0.270793
\(612\) 0 0
\(613\) 15.6440i 0.631855i 0.948783 + 0.315928i \(0.102316\pi\)
−0.948783 + 0.315928i \(0.897684\pi\)
\(614\) −1.61428 −0.0651469
\(615\) −0.260667 4.50000i −0.0105111 0.181457i
\(616\) 7.34301 0.295858
\(617\) 23.4218i 0.942926i 0.881886 + 0.471463i \(0.156274\pi\)
−0.881886 + 0.471463i \(0.843726\pi\)
\(618\) 0.825463i 0.0332050i
\(619\) 28.8903 1.16120 0.580600 0.814189i \(-0.302818\pi\)
0.580600 + 0.814189i \(0.302818\pi\)
\(620\) 6.05537 0.350764i 0.243189 0.0140870i
\(621\) −1.77226 −0.0711185
\(622\) 10.3670i 0.415678i
\(623\) 6.43878i 0.257964i
\(624\) −5.96879 −0.238943
\(625\) 24.3334 5.73462i 0.973336 0.229385i
\(626\) 25.0228 1.00011
\(627\) 11.5932i 0.462989i
\(628\) 11.9751i 0.477858i
\(629\) 0 0
\(630\) 3.54105 0.205119i 0.141079 0.00817215i
\(631\) 42.1314 1.67723 0.838613 0.544727i \(-0.183367\pi\)
0.838613 + 0.544727i \(0.183367\pi\)
\(632\) 4.36146i 0.173490i
\(633\) 38.4705i 1.52907i
\(634\) 23.8042 0.945384
\(635\) 1.60305 + 27.6740i 0.0636150 + 1.09821i
\(636\) 22.1057 0.876547
\(637\) 26.3633i 1.04455i
\(638\) 36.8703i 1.45971i
\(639\) 21.6946 0.858226
\(640\) −0.599391 10.3475i −0.0236930 0.409022i
\(641\) −19.0113 −0.750903 −0.375451 0.926842i \(-0.622512\pi\)
−0.375451 + 0.926842i \(0.622512\pi\)
\(642\) 18.3692i 0.724973i
\(643\) 20.3390i 0.802092i 0.916058 + 0.401046i \(0.131353\pi\)
−0.916058 + 0.401046i \(0.868647\pi\)
\(644\) 3.34885 0.131963
\(645\) 35.5660 2.06020i 1.40041 0.0811204i
\(646\) 0 0
\(647\) 16.7736i 0.659440i −0.944079 0.329720i \(-0.893046\pi\)
0.944079 0.329720i \(-0.106954\pi\)
\(648\) 25.3553i 0.996052i
\(649\) 28.3166 1.11153
\(650\) −18.5564 + 2.15704i −0.727842 + 0.0846060i
\(651\) 3.27242 0.128256
\(652\) 8.08558i 0.316656i
\(653\) 6.69796i 0.262111i 0.991375 + 0.131056i \(0.0418367\pi\)
−0.991375 + 0.131056i \(0.958163\pi\)
\(654\) 28.6844 1.12165
\(655\) −22.3933 + 1.29716i −0.874979 + 0.0506841i
\(656\) 0.500412 0.0195378
\(657\) 37.7672i 1.47344i
\(658\) 0.865546i 0.0337425i
\(659\) −36.0525 −1.40440 −0.702202 0.711978i \(-0.747800\pi\)
−0.702202 + 0.711978i \(0.747800\pi\)
\(660\) 1.63699 + 28.2600i 0.0637197 + 1.10002i
\(661\) 44.7322 1.73988 0.869941 0.493156i \(-0.164157\pi\)
0.869941 + 0.493156i \(0.164157\pi\)
\(662\) 30.7291i 1.19432i
\(663\) 0 0
\(664\) 47.6704 1.84997
\(665\) 0.0691116 + 1.19310i 0.00268003 + 0.0462664i
\(666\) −12.1747 −0.471761
\(667\) 47.5501i 1.84115i
\(668\) 21.3345i 0.825455i
\(669\) −2.64696 −0.102337
\(670\) 16.3297 0.945914i 0.630870 0.0365438i
\(671\) 5.28761 0.204126
\(672\) 7.00274i 0.270136i
\(673\) 4.93857i 0.190368i 0.995460 + 0.0951839i \(0.0303439\pi\)
−0.995460 + 0.0951839i \(0.969656\pi\)
\(674\) 12.2427 0.471573
\(675\) 0.178312 + 1.53397i 0.00686325 + 0.0590426i
\(676\) −2.63851 −0.101481
\(677\) 28.4568i 1.09368i 0.837236 + 0.546841i \(0.184170\pi\)
−0.837236 + 0.546841i \(0.815830\pi\)
\(678\) 42.1097i 1.61721i
\(679\) −0.121633 −0.00466783
\(680\) 0 0
\(681\) 5.11770 0.196111
\(682\) 11.0301i 0.422366i
\(683\) 32.7689i 1.25387i −0.779072 0.626934i \(-0.784310\pi\)
0.779072 0.626934i \(-0.215690\pi\)
\(684\) −3.42611 −0.131000
\(685\) −0.396733 6.84895i −0.0151584 0.261685i
\(686\) 6.96249 0.265829
\(687\) 31.7110i 1.20985i
\(688\) 3.95505i 0.150785i
\(689\) −32.0468 −1.22089
\(690\) −1.74768 30.1709i −0.0665331 1.14859i
\(691\) 6.64433 0.252762 0.126381 0.991982i \(-0.459664\pi\)
0.126381 + 0.991982i \(0.459664\pi\)
\(692\) 14.5525i 0.553201i
\(693\) 7.79168i 0.295982i
\(694\) −25.6376 −0.973189
\(695\) 27.3976 1.58704i 1.03925 0.0601998i
\(696\) 60.3943 2.28924
\(697\) 0 0
\(698\) 13.6283i 0.515837i
\(699\) −16.0466 −0.606938
\(700\) −0.336936 2.89857i −0.0127350 0.109556i
\(701\) −24.2220 −0.914852 −0.457426 0.889248i \(-0.651228\pi\)
−0.457426 + 0.889248i \(0.651228\pi\)
\(702\) 1.15399i 0.0435544i
\(703\) 4.10207i 0.154713i
\(704\) −29.3478 −1.10609
\(705\) 9.41979 0.545651i 0.354770 0.0205504i
\(706\) −1.57371 −0.0592274
\(707\) 3.55517i 0.133706i
\(708\) 16.4024i 0.616440i
\(709\) −1.21986 −0.0458128 −0.0229064 0.999738i \(-0.507292\pi\)
−0.0229064 + 0.999738i \(0.507292\pi\)
\(710\) 0.854435 + 14.7504i 0.0320664 + 0.553574i
\(711\) 4.62795 0.173562
\(712\) 35.5496i 1.33228i
\(713\) 14.2251i 0.532734i
\(714\) 0 0
\(715\) −2.37316 40.9687i −0.0887511 1.53214i
\(716\) 11.1198 0.415565
\(717\) 3.13878i 0.117220i
\(718\) 16.5258i 0.616738i
\(719\) −17.6361 −0.657715 −0.328858 0.944380i \(-0.606664\pi\)
−0.328858 + 0.944380i \(0.606664\pi\)
\(720\) −4.28548 + 0.248241i −0.159710 + 0.00925140i
\(721\) −0.186925 −0.00696147
\(722\) 17.1274i 0.637416i
\(723\) 6.17679i 0.229717i
\(724\) −21.4673 −0.797826
\(725\) 41.1566 4.78414i 1.52852 0.177678i
\(726\) 25.5676 0.948901
\(727\) 11.3177i 0.419751i 0.977728 + 0.209876i \(0.0673059\pi\)
−0.977728 + 0.209876i \(0.932694\pi\)
\(728\) 6.16624i 0.228536i
\(729\) 29.1977 1.08140
\(730\) −25.6784 + 1.48745i −0.950399 + 0.0550529i
\(731\) 0 0
\(732\) 3.06285i 0.113206i
\(733\) 2.54052i 0.0938362i −0.998899 0.0469181i \(-0.985060\pi\)
0.998899 0.0469181i \(-0.0149400\pi\)
\(734\) −9.10906 −0.336222
\(735\) 2.14910 + 37.1007i 0.0792707 + 1.36848i
\(736\) −30.4406 −1.12206
\(737\) 35.9316i 1.32356i
\(738\) 2.42242i 0.0891703i
\(739\) −17.8767 −0.657606 −0.328803 0.944399i \(-0.606645\pi\)
−0.328803 + 0.944399i \(0.606645\pi\)
\(740\) 0.579222 + 9.99932i 0.0212926 + 0.367582i
\(741\) 9.73534 0.357637
\(742\) 4.14397i 0.152130i
\(743\) 11.9511i 0.438445i 0.975675 + 0.219223i \(0.0703521\pi\)
−0.975675 + 0.219223i \(0.929648\pi\)
\(744\) −18.0676 −0.662390
\(745\) −12.2007 + 0.706736i −0.446997 + 0.0258928i
\(746\) −13.7275 −0.502601
\(747\) 50.5831i 1.85074i
\(748\) 0 0
\(749\) −4.15968 −0.151992
\(750\) −25.9384 + 4.54827i −0.947135 + 0.166079i
\(751\) −26.7416 −0.975816 −0.487908 0.872895i \(-0.662240\pi\)
−0.487908 + 0.872895i \(0.662240\pi\)
\(752\) 1.04751i 0.0381987i
\(753\) 42.9544i 1.56534i
\(754\) −30.9616 −1.12755
\(755\) 11.1791 0.647559i 0.406847 0.0235671i
\(756\) 0.180256 0.00655586
\(757\) 0.253468i 0.00921245i 0.999989 + 0.00460623i \(0.00146621\pi\)
−0.999989 + 0.00460623i \(0.998534\pi\)
\(758\) 9.05760i 0.328987i
\(759\) 66.3876 2.40972
\(760\) −0.381576 6.58730i −0.0138412 0.238946i
\(761\) −32.3234 −1.17172 −0.585860 0.810412i \(-0.699243\pi\)
−0.585860 + 0.810412i \(0.699243\pi\)
\(762\) 29.1997i 1.05779i
\(763\) 6.49555i 0.235155i
\(764\) −9.64298 −0.348871
\(765\) 0 0
\(766\) 26.4348 0.955129
\(767\) 23.7787i 0.858599i
\(768\) 41.9905i 1.51520i
\(769\) 7.23844 0.261025 0.130512 0.991447i \(-0.458338\pi\)
0.130512 + 0.991447i \(0.458338\pi\)
\(770\) −5.29766 + 0.306873i −0.190915 + 0.0110589i
\(771\) 38.4962 1.38641
\(772\) 16.9188i 0.608923i
\(773\) 8.26832i 0.297391i 0.988883 + 0.148695i \(0.0475074\pi\)
−0.988883 + 0.148695i \(0.952493\pi\)
\(774\) −19.1457 −0.688179
\(775\) −12.3124 + 1.43123i −0.442276 + 0.0514111i
\(776\) 0.671554 0.0241074
\(777\) 5.40381i 0.193860i
\(778\) 20.0326i 0.718205i
\(779\) −0.816193 −0.0292432
\(780\) −23.7311 + 1.37465i −0.849711 + 0.0492204i
\(781\) −32.4567 −1.16139
\(782\) 0 0
\(783\) 2.55945i 0.0914673i
\(784\) −4.12571 −0.147347
\(785\) −1.41519 24.4310i −0.0505105 0.871981i
\(786\) 23.6279 0.842778
\(787\) 10.6654i 0.380182i −0.981766 0.190091i \(-0.939122\pi\)
0.981766 0.190091i \(-0.0608783\pi\)
\(788\) 0.251826i 0.00897092i
\(789\) 22.3748 0.796564
\(790\) 0.182270 + 3.14660i 0.00648489 + 0.111951i
\(791\) 9.53572 0.339051
\(792\) 43.0192i 1.52862i
\(793\) 4.44023i 0.157677i
\(794\) 28.2196 1.00147
\(795\) −45.0991 + 2.61241i −1.59950 + 0.0926527i
\(796\) −23.4831 −0.832335
\(797\) 22.6881i 0.803654i 0.915716 + 0.401827i \(0.131625\pi\)
−0.915716 + 0.401827i \(0.868375\pi\)
\(798\) 1.25888i 0.0445637i
\(799\) 0 0
\(800\) 3.06271 + 26.3477i 0.108283 + 0.931532i
\(801\) −37.7217 −1.33283
\(802\) 15.7661i 0.556720i
\(803\) 56.5023i 1.99392i
\(804\) 20.8134 0.734030
\(805\) −6.83217 + 0.395761i −0.240802 + 0.0139487i
\(806\) 9.26248 0.326257
\(807\) 7.47373i 0.263088i
\(808\) 19.6287i 0.690534i
\(809\) −18.9287 −0.665497 −0.332749 0.943016i \(-0.607976\pi\)
−0.332749 + 0.943016i \(0.607976\pi\)
\(810\) 1.05963 + 18.2928i 0.0372316 + 0.642743i
\(811\) 28.2619 0.992410 0.496205 0.868205i \(-0.334726\pi\)
0.496205 + 0.868205i \(0.334726\pi\)
\(812\) 4.83630i 0.169721i
\(813\) 32.5781i 1.14256i
\(814\) 18.2142 0.638409
\(815\) 0.955541 + 16.4959i 0.0334711 + 0.577825i
\(816\) 0 0
\(817\) 6.45084i 0.225686i
\(818\) 18.4250i 0.644216i
\(819\) −6.54301 −0.228631
\(820\) 1.98957 0.115248i 0.0694789 0.00402464i
\(821\) 14.6133 0.510008 0.255004 0.966940i \(-0.417923\pi\)
0.255004 + 0.966940i \(0.417923\pi\)
\(822\) 7.22654i 0.252054i
\(823\) 19.4796i 0.679017i −0.940603 0.339508i \(-0.889739\pi\)
0.940603 0.339508i \(-0.110261\pi\)
\(824\) 1.03205 0.0359530
\(825\) −6.67943 57.4613i −0.232548 2.00055i
\(826\) 3.07482 0.106987
\(827\) 9.75907i 0.339356i 0.985500 + 0.169678i \(0.0542728\pi\)
−0.985500 + 0.169678i \(0.945727\pi\)
\(828\) 19.6193i 0.681817i
\(829\) 5.96301 0.207104 0.103552 0.994624i \(-0.466979\pi\)
0.103552 + 0.994624i \(0.466979\pi\)
\(830\) −34.3921 + 1.99220i −1.19377 + 0.0691502i
\(831\) 10.0265 0.347814
\(832\) 24.6446i 0.854398i
\(833\) 0 0
\(834\) −28.9081 −1.00100
\(835\) −2.52127 43.5256i −0.0872522 1.50627i
\(836\) 5.12569 0.177276
\(837\) 0.765686i 0.0264660i
\(838\) 13.7066i 0.473486i
\(839\) 22.6272 0.781178 0.390589 0.920565i \(-0.372271\pi\)
0.390589 + 0.920565i \(0.372271\pi\)
\(840\) 0.502664 + 8.67768i 0.0173435 + 0.299408i
\(841\) 39.6703 1.36794
\(842\) 25.4532i 0.877177i
\(843\) 35.3034i 1.21591i
\(844\) −17.0089 −0.585471
\(845\) 5.38298 0.311815i 0.185180 0.0107268i
\(846\) −5.07081 −0.174338
\(847\) 5.78975i 0.198938i
\(848\) 5.01515i 0.172221i
\(849\) −13.7950 −0.473443
\(850\) 0 0
\(851\) 23.4901 0.805232
\(852\) 18.8005i 0.644095i
\(853\) 6.61276i 0.226417i −0.993571 0.113208i \(-0.963887\pi\)
0.993571 0.113208i \(-0.0361128\pi\)
\(854\) 0.574166 0.0196476
\(855\) 6.98979 0.404891i 0.239046 0.0138470i
\(856\) 22.9663 0.784972
\(857\) 27.3305i 0.933592i −0.884365 0.466796i \(-0.845408\pi\)
0.884365 0.466796i \(-0.154592\pi\)
\(858\) 43.2274i 1.47576i
\(859\) −14.2440 −0.486000 −0.243000 0.970026i \(-0.578132\pi\)
−0.243000 + 0.970026i \(0.578132\pi\)
\(860\) 0.910873 + 15.7247i 0.0310605 + 0.536209i
\(861\) 1.07520 0.0366427
\(862\) 27.2372i 0.927701i
\(863\) 31.4670i 1.07115i −0.844488 0.535574i \(-0.820095\pi\)
0.844488 0.535574i \(-0.179905\pi\)
\(864\) −1.63851 −0.0557433
\(865\) −1.71978 29.6893i −0.0584744 1.00947i
\(866\) 34.4457 1.17051
\(867\) 0 0
\(868\) 1.44683i 0.0491086i
\(869\) −6.92375 −0.234872
\(870\) −43.5718 + 2.52395i −1.47722 + 0.0855698i
\(871\) −30.1733 −1.02238
\(872\) 35.8630i 1.21447i
\(873\) 0.712587i 0.0241174i
\(874\) −5.47229 −0.185103
\(875\) 1.02995 + 5.87372i 0.0348187 + 0.198568i
\(876\) −32.7289 −1.10581
\(877\) 5.57236i 0.188165i 0.995564 + 0.0940827i \(0.0299918\pi\)
−0.995564 + 0.0940827i \(0.970008\pi\)
\(878\) 30.8754i 1.04199i
\(879\) 4.87840 0.164544
\(880\) 6.41138 0.371386i 0.216128 0.0125194i
\(881\) 32.2473 1.08644 0.543219 0.839591i \(-0.317205\pi\)
0.543219 + 0.839591i \(0.317205\pi\)
\(882\) 19.9719i 0.672488i
\(883\) 38.2240i 1.28634i −0.765724 0.643169i \(-0.777619\pi\)
0.765724 0.643169i \(-0.222381\pi\)
\(884\) 0 0
\(885\) 1.93841 + 33.4635i 0.0651589 + 1.12486i
\(886\) −1.79372 −0.0602612
\(887\) 6.19540i 0.208021i −0.994576 0.104011i \(-0.966832\pi\)
0.994576 0.104011i \(-0.0331676\pi\)
\(888\) 29.8353i 1.00121i
\(889\) −6.61225 −0.221768
\(890\) −1.48566 25.6475i −0.0497994 0.859705i
\(891\) −40.2512 −1.34847
\(892\) 1.17029i 0.0391844i
\(893\) 1.70853i 0.0571737i
\(894\) 12.8733 0.430547
\(895\) −22.6860 + 1.31411i −0.758311 + 0.0439260i
\(896\) 2.47237 0.0825960
\(897\) 55.7485i 1.86139i
\(898\) 1.90508i 0.0635733i
\(899\) −20.5434 −0.685162
\(900\) −16.9813 + 1.97395i −0.566044 + 0.0657983i
\(901\) 0 0
\(902\) 3.62410i 0.120669i
\(903\) 8.49792i 0.282793i
\(904\) −52.6482 −1.75105
\(905\) 43.7967 2.53697i 1.45585 0.0843317i
\(906\) −11.7954 −0.391875
\(907\) 10.8314i 0.359652i 0.983698 + 0.179826i \(0.0575535\pi\)
−0.983698 + 0.179826i \(0.942447\pi\)
\(908\) 2.26268i 0.0750895i
\(909\) −20.8280 −0.690822
\(910\) −0.257694 4.44868i −0.00854249 0.147472i
\(911\) 39.2943 1.30188 0.650939 0.759130i \(-0.274375\pi\)
0.650939 + 0.759130i \(0.274375\pi\)
\(912\) 1.52353i 0.0504490i
\(913\) 75.6759i 2.50451i
\(914\) 16.8061 0.555897
\(915\) 0.361962 + 6.24869i 0.0119661 + 0.206575i
\(916\) 14.0203 0.463244
\(917\) 5.35051i 0.176689i
\(918\) 0 0
\(919\) −48.2620 −1.59202 −0.796008 0.605286i \(-0.793059\pi\)
−0.796008 + 0.605286i \(0.793059\pi\)
\(920\) 37.7215 2.18506i 1.24364 0.0720393i
\(921\) 4.19765 0.138317
\(922\) 30.3045i 0.998026i
\(923\) 27.2553i 0.897118i
\(924\) −6.75226 −0.222133
\(925\) −2.36341 20.3317i −0.0777083 0.668504i
\(926\) 15.0352 0.494089
\(927\) 1.09511i 0.0359680i
\(928\) 43.9614i 1.44310i
\(929\) 23.3057 0.764636 0.382318 0.924031i \(-0.375126\pi\)
0.382318 + 0.924031i \(0.375126\pi\)
\(930\) 13.0350 0.755065i 0.427434 0.0247596i
\(931\) 6.72920 0.220541
\(932\) 7.09465i 0.232393i
\(933\) 26.9575i 0.882550i
\(934\) 8.43745 0.276082
\(935\) 0 0
\(936\) 36.1250 1.18078
\(937\) 9.72405i 0.317671i −0.987305 0.158835i \(-0.949226\pi\)
0.987305 0.158835i \(-0.0507739\pi\)
\(938\) 3.90171i 0.127395i
\(939\) −65.0674 −2.12339
\(940\) 0.241248 + 4.16475i 0.00786863 + 0.135839i
\(941\) −14.1706 −0.461949 −0.230975 0.972960i \(-0.574191\pi\)
−0.230975 + 0.972960i \(0.574191\pi\)
\(942\) 25.7779i 0.839891i
\(943\) 4.67385i 0.152202i
\(944\) −3.72123 −0.121116
\(945\) −0.367751 + 0.0213024i −0.0119630 + 0.000692967i
\(946\) 28.6434 0.931276
\(947\) 38.4870i 1.25066i 0.780360 + 0.625330i \(0.215036\pi\)
−0.780360 + 0.625330i \(0.784964\pi\)
\(948\) 4.01058i 0.130257i
\(949\) 47.4474 1.54021
\(950\) 0.550581 + 4.73650i 0.0178632 + 0.153672i
\(951\) −61.8987 −2.00720
\(952\) 0 0
\(953\) 37.7984i 1.22441i −0.790698 0.612206i \(-0.790282\pi\)
0.790698 0.612206i \(-0.209718\pi\)
\(954\) 24.2775 0.786013
\(955\) 19.6732 1.13959i 0.636609 0.0368763i
\(956\) 1.38774 0.0448828
\(957\) 95.8749i 3.09919i
\(958\) 11.3349i 0.366215i
\(959\) 1.63644 0.0528435
\(960\) −2.00899 34.6820i −0.0648400 1.11936i
\(961\) −24.8542 −0.801749
\(962\) 15.2953i 0.493140i
\(963\) 24.3696i 0.785299i
\(964\) 2.73093 0.0879573
\(965\) −1.99944 34.5171i −0.0643643 1.11115i
\(966\) 7.20883 0.231940
\(967\) 4.79826i 0.154302i 0.997019 + 0.0771509i \(0.0245823\pi\)
−0.997019 + 0.0771509i \(0.975418\pi\)
\(968\) 31.9662i 1.02743i
\(969\) 0 0
\(970\) −0.484497 + 0.0280650i −0.0155563 + 0.000901113i
\(971\) −36.4980 −1.17128 −0.585638 0.810573i \(-0.699156\pi\)
−0.585638 + 0.810573i \(0.699156\pi\)
\(972\) 24.3293i 0.780364i
\(973\) 6.54621i 0.209862i
\(974\) 25.4838 0.816552
\(975\) 48.2528 5.60901i 1.54533 0.179632i
\(976\) −0.694872 −0.0222423
\(977\) 62.3221i 1.99386i −0.0783005 0.996930i \(-0.524949\pi\)
0.0783005 0.996930i \(-0.475051\pi\)
\(978\) 17.4053i 0.556560i
\(979\) 56.4343 1.80365
\(980\) −16.4033 + 0.950177i −0.523983 + 0.0303523i
\(981\) −38.0543 −1.21498
\(982\) 22.0034i 0.702156i
\(983\) 40.1721i 1.28129i −0.767837 0.640645i \(-0.778667\pi\)
0.767837 0.640645i \(-0.221333\pi\)
\(984\) −5.93635 −0.189244
\(985\) 0.0297603 + 0.513764i 0.000948243 + 0.0163699i
\(986\) 0 0
\(987\) 2.25070i 0.0716407i
\(988\) 4.30427i 0.136937i
\(989\) 36.9401 1.17463
\(990\) 1.79782 + 31.0364i 0.0571385 + 0.986403i
\(991\) 25.0802 0.796699 0.398349 0.917234i \(-0.369583\pi\)
0.398349 + 0.917234i \(0.369583\pi\)
\(992\) 13.1515i 0.417561i
\(993\) 79.9057i 2.53573i
\(994\) −3.52438 −0.111786
\(995\) 47.9092 2.77519i 1.51882 0.0879794i
\(996\) −43.8352 −1.38897
\(997\) 37.3646i 1.18335i −0.806177 0.591674i \(-0.798467\pi\)
0.806177 0.591674i \(-0.201533\pi\)
\(998\) 4.72667i 0.149620i
\(999\) 1.26439 0.0400035
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1445.2.b.i.579.17 24
5.2 odd 4 7225.2.a.by.1.7 24
5.3 odd 4 7225.2.a.by.1.18 24
5.4 even 2 inner 1445.2.b.i.579.8 24
17.11 odd 16 85.2.m.a.19.2 yes 24
17.14 odd 16 85.2.m.a.9.5 yes 24
17.16 even 2 inner 1445.2.b.i.579.18 24
51.11 even 16 765.2.bh.b.19.5 24
51.14 even 16 765.2.bh.b.604.2 24
85.14 odd 16 85.2.m.a.9.2 24
85.28 even 16 425.2.m.e.376.5 24
85.33 odd 4 7225.2.a.by.1.17 24
85.48 even 16 425.2.m.e.26.5 24
85.62 even 16 425.2.m.e.376.2 24
85.67 odd 4 7225.2.a.by.1.8 24
85.79 odd 16 85.2.m.a.19.5 yes 24
85.82 even 16 425.2.m.e.26.2 24
85.84 even 2 inner 1445.2.b.i.579.7 24
255.14 even 16 765.2.bh.b.604.5 24
255.164 even 16 765.2.bh.b.19.2 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
85.2.m.a.9.2 24 85.14 odd 16
85.2.m.a.9.5 yes 24 17.14 odd 16
85.2.m.a.19.2 yes 24 17.11 odd 16
85.2.m.a.19.5 yes 24 85.79 odd 16
425.2.m.e.26.2 24 85.82 even 16
425.2.m.e.26.5 24 85.48 even 16
425.2.m.e.376.2 24 85.62 even 16
425.2.m.e.376.5 24 85.28 even 16
765.2.bh.b.19.2 24 255.164 even 16
765.2.bh.b.19.5 24 51.11 even 16
765.2.bh.b.604.2 24 51.14 even 16
765.2.bh.b.604.5 24 255.14 even 16
1445.2.b.i.579.7 24 85.84 even 2 inner
1445.2.b.i.579.8 24 5.4 even 2 inner
1445.2.b.i.579.17 24 1.1 even 1 trivial
1445.2.b.i.579.18 24 17.16 even 2 inner
7225.2.a.by.1.7 24 5.2 odd 4
7225.2.a.by.1.8 24 85.67 odd 4
7225.2.a.by.1.17 24 85.33 odd 4
7225.2.a.by.1.18 24 5.3 odd 4