Properties

Label 425.2.m.e.376.2
Level $425$
Weight $2$
Character 425.376
Analytic conductor $3.394$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [425,2,Mod(26,425)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(425, base_ring=CyclotomicField(8))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("425.26");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 425 = 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 425.m (of order \(8\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.39364208590\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(6\) over \(\Q(\zeta_{8})\)
Twist minimal: no (minimal twist has level 85)
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

Embedding invariants

Embedding label 376.2
Character \(\chi\) \(=\) 425.376
Dual form 425.2.m.e.26.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.672981 - 0.672981i) q^{2} +(2.28645 - 0.947078i) q^{3} -1.09419i q^{4} +(-2.17610 - 0.901371i) q^{6} +(0.204115 - 0.492777i) q^{7} +(-2.08233 + 2.08233i) q^{8} +(2.20957 - 2.20957i) q^{9} +(4.31906 + 1.78902i) q^{11} +(-1.03629 - 2.50182i) q^{12} -3.92573i q^{13} +(-0.468995 + 0.194264i) q^{14} +0.614355 q^{16} +(0.867192 - 4.03088i) q^{17} -2.97399 q^{18} +(-0.708548 - 0.708548i) q^{19} -1.32002i q^{21} +(-1.70268 - 4.11062i) q^{22} +(-5.30129 - 2.19587i) q^{23} +(-2.78902 + 6.73328i) q^{24} +(-2.64194 + 2.64194i) q^{26} +(0.118196 - 0.285350i) q^{27} +(-0.539193 - 0.223341i) q^{28} +(3.17120 + 7.65596i) q^{29} +(-2.29036 + 0.948699i) q^{31} +(3.75122 + 3.75122i) q^{32} +11.5697 q^{33} +(-3.29631 + 2.12910i) q^{34} +(-2.41769 - 2.41769i) q^{36} +(-3.78211 + 1.56660i) q^{37} +0.953679i q^{38} +(-3.71797 - 8.97598i) q^{39} +(-0.311708 + 0.752530i) q^{41} +(-0.888349 + 0.888349i) q^{42} +(-4.55216 + 4.55216i) q^{43} +(1.95753 - 4.72589i) q^{44} +(2.08989 + 5.04545i) q^{46} -1.70505i q^{47} +(1.40469 - 0.581842i) q^{48} +(4.74858 + 4.74858i) q^{49} +(-1.83477 - 10.0377i) q^{51} -4.29551 q^{52} +(5.77230 + 5.77230i) q^{53} +(-0.271578 + 0.112491i) q^{54} +(0.601090 + 1.45116i) q^{56} +(-2.29111 - 0.949008i) q^{57} +(3.01816 - 7.28648i) q^{58} +(4.28304 - 4.28304i) q^{59} +(-0.432837 + 1.04496i) q^{61} +(2.17983 + 0.902914i) q^{62} +(-0.637818 - 1.53983i) q^{63} -6.27771i q^{64} +(-7.78616 - 7.78616i) q^{66} +7.68603 q^{67} +(-4.41056 - 0.948875i) q^{68} -14.2008 q^{69} +(6.41424 - 2.65686i) q^{71} +9.20211i q^{72} +(-4.62521 - 11.1662i) q^{73} +(3.59958 + 1.49100i) q^{74} +(-0.775289 + 0.775289i) q^{76} +(1.76317 - 1.76317i) q^{77} +(-3.53854 + 8.54279i) q^{78} +(1.36830 + 0.566769i) q^{79} +8.61002i q^{81} +(0.716212 - 0.296665i) q^{82} +(11.4464 + 11.4464i) q^{83} -1.44436 q^{84} +6.12703 q^{86} +(14.5016 + 14.5016i) q^{87} +(-12.7191 + 5.26841i) q^{88} -12.0717i q^{89} +(-1.93451 - 0.801300i) q^{91} +(-2.40270 + 5.80064i) q^{92} +(-4.33830 + 4.33830i) q^{93} +(-1.14747 + 1.14747i) q^{94} +(12.1297 + 5.02427i) q^{96} +(-0.0872680 - 0.210684i) q^{97} -6.39141i q^{98} +(13.4962 - 5.59031i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 8 q^{9} + 24 q^{14} + 8 q^{16} + 24 q^{19} - 32 q^{24} - 16 q^{26} - 24 q^{29} - 24 q^{31} - 8 q^{34} + 8 q^{36} + 24 q^{39} - 48 q^{41} - 72 q^{44} - 16 q^{46} - 48 q^{49} - 32 q^{54} + 24 q^{56}+ \cdots + 80 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/425\mathbb{Z}\right)^\times\).

\(n\) \(52\) \(326\)
\(\chi(n)\) \(1\) \(e\left(\frac{7}{8}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.672981 0.672981i −0.475869 0.475869i 0.427938 0.903808i \(-0.359240\pi\)
−0.903808 + 0.427938i \(0.859240\pi\)
\(3\) 2.28645 0.947078i 1.32008 0.546796i 0.392272 0.919849i \(-0.371689\pi\)
0.927810 + 0.373054i \(0.121689\pi\)
\(4\) 1.09419i 0.547097i
\(5\) 0 0
\(6\) −2.17610 0.901371i −0.888390 0.367983i
\(7\) 0.204115 0.492777i 0.0771481 0.186252i −0.880600 0.473860i \(-0.842860\pi\)
0.957748 + 0.287608i \(0.0928601\pi\)
\(8\) −2.08233 + 2.08233i −0.736216 + 0.736216i
\(9\) 2.20957 2.20957i 0.736523 0.736523i
\(10\) 0 0
\(11\) 4.31906 + 1.78902i 1.30225 + 0.539408i 0.922612 0.385728i \(-0.126050\pi\)
0.379634 + 0.925137i \(0.376050\pi\)
\(12\) −1.03629 2.50182i −0.299150 0.722212i
\(13\) 3.92573i 1.08880i −0.838825 0.544401i \(-0.816757\pi\)
0.838825 0.544401i \(-0.183243\pi\)
\(14\) −0.468995 + 0.194264i −0.125344 + 0.0519192i
\(15\) 0 0
\(16\) 0.614355 0.153589
\(17\) 0.867192 4.03088i 0.210325 0.977632i
\(18\) −2.97399 −0.700977
\(19\) −0.708548 0.708548i −0.162552 0.162552i 0.621144 0.783696i \(-0.286668\pi\)
−0.783696 + 0.621144i \(0.786668\pi\)
\(20\) 0 0
\(21\) 1.32002i 0.288052i
\(22\) −1.70268 4.11062i −0.363012 0.876387i
\(23\) −5.30129 2.19587i −1.10540 0.457870i −0.246046 0.969258i \(-0.579132\pi\)
−0.859350 + 0.511388i \(0.829132\pi\)
\(24\) −2.78902 + 6.73328i −0.569305 + 1.37442i
\(25\) 0 0
\(26\) −2.64194 + 2.64194i −0.518128 + 0.518128i
\(27\) 0.118196 0.285350i 0.0227468 0.0549156i
\(28\) −0.539193 0.223341i −0.101898 0.0422075i
\(29\) 3.17120 + 7.65596i 0.588878 + 1.42168i 0.884576 + 0.466395i \(0.154448\pi\)
−0.295699 + 0.955281i \(0.595552\pi\)
\(30\) 0 0
\(31\) −2.29036 + 0.948699i −0.411361 + 0.170391i −0.578760 0.815498i \(-0.696463\pi\)
0.167399 + 0.985889i \(0.446463\pi\)
\(32\) 3.75122 + 3.75122i 0.663128 + 0.663128i
\(33\) 11.5697 2.01402
\(34\) −3.29631 + 2.12910i −0.565312 + 0.365138i
\(35\) 0 0
\(36\) −2.41769 2.41769i −0.402949 0.402949i
\(37\) −3.78211 + 1.56660i −0.621775 + 0.257548i −0.671254 0.741227i \(-0.734244\pi\)
0.0494786 + 0.998775i \(0.484244\pi\)
\(38\) 0.953679i 0.154707i
\(39\) −3.71797 8.97598i −0.595352 1.43731i
\(40\) 0 0
\(41\) −0.311708 + 0.752530i −0.0486806 + 0.117525i −0.946349 0.323146i \(-0.895260\pi\)
0.897669 + 0.440671i \(0.145260\pi\)
\(42\) −0.888349 + 0.888349i −0.137075 + 0.137075i
\(43\) −4.55216 + 4.55216i −0.694197 + 0.694197i −0.963153 0.268955i \(-0.913322\pi\)
0.268955 + 0.963153i \(0.413322\pi\)
\(44\) 1.95753 4.72589i 0.295108 0.712455i
\(45\) 0 0
\(46\) 2.08989 + 5.04545i 0.308138 + 0.743911i
\(47\) 1.70505i 0.248707i −0.992238 0.124354i \(-0.960314\pi\)
0.992238 0.124354i \(-0.0396857\pi\)
\(48\) 1.40469 0.581842i 0.202750 0.0839817i
\(49\) 4.74858 + 4.74858i 0.678369 + 0.678369i
\(50\) 0 0
\(51\) −1.83477 10.0377i −0.256919 1.40556i
\(52\) −4.29551 −0.595680
\(53\) 5.77230 + 5.77230i 0.792887 + 0.792887i 0.981962 0.189076i \(-0.0605492\pi\)
−0.189076 + 0.981962i \(0.560549\pi\)
\(54\) −0.271578 + 0.112491i −0.0369571 + 0.0153081i
\(55\) 0 0
\(56\) 0.601090 + 1.45116i 0.0803240 + 0.193919i
\(57\) −2.29111 0.949008i −0.303465 0.125699i
\(58\) 3.01816 7.28648i 0.396304 0.956761i
\(59\) 4.28304 4.28304i 0.557605 0.557605i −0.371020 0.928625i \(-0.620992\pi\)
0.928625 + 0.371020i \(0.120992\pi\)
\(60\) 0 0
\(61\) −0.432837 + 1.04496i −0.0554192 + 0.133794i −0.949164 0.314782i \(-0.898069\pi\)
0.893745 + 0.448576i \(0.148069\pi\)
\(62\) 2.17983 + 0.902914i 0.276838 + 0.114670i
\(63\) −0.637818 1.53983i −0.0803575 0.194000i
\(64\) 6.27771i 0.784713i
\(65\) 0 0
\(66\) −7.78616 7.78616i −0.958410 0.958410i
\(67\) 7.68603 0.938998 0.469499 0.882933i \(-0.344435\pi\)
0.469499 + 0.882933i \(0.344435\pi\)
\(68\) −4.41056 0.948875i −0.534859 0.115068i
\(69\) −14.2008 −1.70957
\(70\) 0 0
\(71\) 6.41424 2.65686i 0.761230 0.315312i 0.0319156 0.999491i \(-0.489839\pi\)
0.729314 + 0.684179i \(0.239839\pi\)
\(72\) 9.20211i 1.08448i
\(73\) −4.62521 11.1662i −0.541340 1.30691i −0.923778 0.382929i \(-0.874915\pi\)
0.382438 0.923981i \(-0.375085\pi\)
\(74\) 3.59958 + 1.49100i 0.418443 + 0.173325i
\(75\) 0 0
\(76\) −0.775289 + 0.775289i −0.0889317 + 0.0889317i
\(77\) 1.76317 1.76317i 0.200932 0.200932i
\(78\) −3.53854 + 8.54279i −0.400661 + 0.967281i
\(79\) 1.36830 + 0.566769i 0.153946 + 0.0637666i 0.458326 0.888784i \(-0.348449\pi\)
−0.304380 + 0.952551i \(0.598449\pi\)
\(80\) 0 0
\(81\) 8.61002i 0.956669i
\(82\) 0.716212 0.296665i 0.0790924 0.0327611i
\(83\) 11.4464 + 11.4464i 1.25640 + 1.25640i 0.952798 + 0.303606i \(0.0981905\pi\)
0.303606 + 0.952798i \(0.401810\pi\)
\(84\) −1.44436 −0.157592
\(85\) 0 0
\(86\) 6.12703 0.660694
\(87\) 14.5016 + 14.5016i 1.55473 + 1.55473i
\(88\) −12.7191 + 5.26841i −1.35586 + 0.561614i
\(89\) 12.0717i 1.27960i −0.768542 0.639800i \(-0.779017\pi\)
0.768542 0.639800i \(-0.220983\pi\)
\(90\) 0 0
\(91\) −1.93451 0.801300i −0.202792 0.0839991i
\(92\) −2.40270 + 5.80064i −0.250499 + 0.604758i
\(93\) −4.33830 + 4.33830i −0.449861 + 0.449861i
\(94\) −1.14747 + 1.14747i −0.118352 + 0.118352i
\(95\) 0 0
\(96\) 12.1297 + 5.02427i 1.23798 + 0.512787i
\(97\) −0.0872680 0.210684i −0.00886072 0.0213917i 0.919387 0.393354i \(-0.128685\pi\)
−0.928248 + 0.371962i \(0.878685\pi\)
\(98\) 6.39141i 0.645630i
\(99\) 13.4962 5.59031i 1.35642 0.561848i
\(100\) 0 0
\(101\) −6.66539 −0.663231 −0.331616 0.943415i \(-0.607594\pi\)
−0.331616 + 0.943415i \(0.607594\pi\)
\(102\) −5.52041 + 7.98994i −0.546602 + 0.791122i
\(103\) −0.350456 −0.0345315 −0.0172657 0.999851i \(-0.505496\pi\)
−0.0172657 + 0.999851i \(0.505496\pi\)
\(104\) 8.17468 + 8.17468i 0.801594 + 0.801594i
\(105\) 0 0
\(106\) 7.76930i 0.754621i
\(107\) 2.98446 + 7.20512i 0.288518 + 0.696545i 0.999981 0.00617913i \(-0.00196689\pi\)
−0.711463 + 0.702724i \(0.751967\pi\)
\(108\) −0.312228 0.129329i −0.0300441 0.0124447i
\(109\) −4.66038 + 11.2511i −0.446383 + 1.07766i 0.527284 + 0.849689i \(0.323210\pi\)
−0.973667 + 0.227975i \(0.926790\pi\)
\(110\) 0 0
\(111\) −7.16391 + 7.16391i −0.679968 + 0.679968i
\(112\) 0.125399 0.302740i 0.0118491 0.0286062i
\(113\) 16.5171 + 6.84161i 1.55380 + 0.643604i 0.983998 0.178179i \(-0.0570205\pi\)
0.569800 + 0.821783i \(0.307020\pi\)
\(114\) 0.903208 + 2.18054i 0.0845932 + 0.204226i
\(115\) 0 0
\(116\) 8.37710 3.46991i 0.777794 0.322173i
\(117\) −8.67417 8.67417i −0.801927 0.801927i
\(118\) −5.76481 −0.530694
\(119\) −1.80932 1.25009i −0.165860 0.114596i
\(120\) 0 0
\(121\) 7.67557 + 7.67557i 0.697779 + 0.697779i
\(122\) 0.994531 0.411948i 0.0900406 0.0372960i
\(123\) 2.01583i 0.181762i
\(124\) 1.03806 + 2.50610i 0.0932205 + 0.225054i
\(125\) 0 0
\(126\) −0.607036 + 1.46551i −0.0540791 + 0.130558i
\(127\) −8.76596 + 8.76596i −0.777853 + 0.777853i −0.979465 0.201612i \(-0.935382\pi\)
0.201612 + 0.979465i \(0.435382\pi\)
\(128\) 3.27766 3.27766i 0.289707 0.289707i
\(129\) −6.09702 + 14.7195i −0.536813 + 1.29598i
\(130\) 0 0
\(131\) −3.83884 9.26779i −0.335401 0.809730i −0.998145 0.0608839i \(-0.980608\pi\)
0.662744 0.748846i \(-0.269392\pi\)
\(132\) 12.6594i 1.10186i
\(133\) −0.493781 + 0.204531i −0.0428163 + 0.0177351i
\(134\) −5.17255 5.17255i −0.446841 0.446841i
\(135\) 0 0
\(136\) 6.58785 + 10.1994i 0.564903 + 0.874593i
\(137\) −3.06808 −0.262124 −0.131062 0.991374i \(-0.541839\pi\)
−0.131062 + 0.991374i \(0.541839\pi\)
\(138\) 9.55686 + 9.55686i 0.813534 + 0.813534i
\(139\) −11.3389 + 4.69672i −0.961753 + 0.398371i −0.807636 0.589682i \(-0.799253\pi\)
−0.154117 + 0.988053i \(0.549253\pi\)
\(140\) 0 0
\(141\) −1.61482 3.89851i −0.135992 0.328314i
\(142\) −6.10468 2.52864i −0.512293 0.212199i
\(143\) 7.02320 16.9555i 0.587309 1.41789i
\(144\) 1.35746 1.35746i 0.113122 0.113122i
\(145\) 0 0
\(146\) −4.40199 + 10.6274i −0.364312 + 0.879526i
\(147\) 15.3547 + 6.36011i 1.26643 + 0.524573i
\(148\) 1.71417 + 4.13836i 0.140904 + 0.340171i
\(149\) 5.46544i 0.447747i 0.974618 + 0.223873i \(0.0718702\pi\)
−0.974618 + 0.223873i \(0.928130\pi\)
\(150\) 0 0
\(151\) 3.54105 + 3.54105i 0.288167 + 0.288167i 0.836355 0.548188i \(-0.184682\pi\)
−0.548188 + 0.836355i \(0.684682\pi\)
\(152\) 2.95087 0.239347
\(153\) −6.99038 10.8226i −0.565139 0.874957i
\(154\) −2.37316 −0.191235
\(155\) 0 0
\(156\) −9.82146 + 4.06818i −0.786346 + 0.325715i
\(157\) 10.9442i 0.873443i −0.899597 0.436721i \(-0.856140\pi\)
0.899597 0.436721i \(-0.143860\pi\)
\(158\) −0.539417 1.30227i −0.0429137 0.103603i
\(159\) 18.6649 + 7.73125i 1.48022 + 0.613128i
\(160\) 0 0
\(161\) −2.16414 + 2.16414i −0.170558 + 0.170558i
\(162\) 5.79438 5.79438i 0.455250 0.455250i
\(163\) 2.82785 6.82704i 0.221495 0.534735i −0.773599 0.633676i \(-0.781545\pi\)
0.995093 + 0.0989404i \(0.0315453\pi\)
\(164\) 0.823413 + 0.341069i 0.0642978 + 0.0266330i
\(165\) 0 0
\(166\) 15.4064i 1.19577i
\(167\) −18.0137 + 7.46152i −1.39394 + 0.577390i −0.948172 0.317758i \(-0.897070\pi\)
−0.445770 + 0.895147i \(0.647070\pi\)
\(168\) 2.74872 + 2.74872i 0.212069 + 0.212069i
\(169\) −2.41138 −0.185491
\(170\) 0 0
\(171\) −3.13117 −0.239447
\(172\) 4.98094 + 4.98094i 0.379793 + 0.379793i
\(173\) −12.2873 + 5.08958i −0.934189 + 0.386954i −0.797266 0.603628i \(-0.793721\pi\)
−0.136923 + 0.990582i \(0.543721\pi\)
\(174\) 19.5186i 1.47970i
\(175\) 0 0
\(176\) 2.65344 + 1.09909i 0.200011 + 0.0828471i
\(177\) 5.73658 13.8493i 0.431188 1.04098i
\(178\) −8.12404 + 8.12404i −0.608922 + 0.608922i
\(179\) −7.18598 + 7.18598i −0.537105 + 0.537105i −0.922678 0.385572i \(-0.874004\pi\)
0.385572 + 0.922678i \(0.374004\pi\)
\(180\) 0 0
\(181\) −18.1259 7.50798i −1.34728 0.558064i −0.411750 0.911297i \(-0.635082\pi\)
−0.935535 + 0.353233i \(0.885082\pi\)
\(182\) 0.762628 + 1.84115i 0.0565298 + 0.136475i
\(183\) 2.79918i 0.206921i
\(184\) 15.6116 6.46653i 1.15090 0.476719i
\(185\) 0 0
\(186\) 5.83919 0.428150
\(187\) 10.9568 15.8582i 0.801238 1.15967i
\(188\) −1.86566 −0.136067
\(189\) −0.116488 0.116488i −0.00847327 0.00847327i
\(190\) 0 0
\(191\) 8.81287i 0.637677i −0.947809 0.318838i \(-0.896707\pi\)
0.947809 0.318838i \(-0.103293\pi\)
\(192\) −5.94548 14.3536i −0.429078 1.03589i
\(193\) −14.2854 5.91720i −1.02829 0.425930i −0.196192 0.980566i \(-0.562858\pi\)
−0.832093 + 0.554636i \(0.812858\pi\)
\(194\) −0.0830564 + 0.200516i −0.00596310 + 0.0143962i
\(195\) 0 0
\(196\) 5.19587 5.19587i 0.371133 0.371133i
\(197\) −0.0880736 + 0.212628i −0.00627498 + 0.0151491i −0.926986 0.375096i \(-0.877610\pi\)
0.920711 + 0.390245i \(0.127610\pi\)
\(198\) −12.8449 5.32052i −0.912845 0.378113i
\(199\) −8.21298 19.8279i −0.582203 1.40556i −0.890812 0.454372i \(-0.849864\pi\)
0.308609 0.951189i \(-0.400136\pi\)
\(200\) 0 0
\(201\) 17.5737 7.27927i 1.23955 0.513440i
\(202\) 4.48568 + 4.48568i 0.315611 + 0.315611i
\(203\) 4.41997 0.310221
\(204\) −10.9832 + 2.00759i −0.768976 + 0.140559i
\(205\) 0 0
\(206\) 0.235850 + 0.235850i 0.0164325 + 0.0164325i
\(207\) −16.5655 + 6.86165i −1.15138 + 0.476918i
\(208\) 2.41179i 0.167228i
\(209\) −1.79266 4.32787i −0.124001 0.299365i
\(210\) 0 0
\(211\) −5.94870 + 14.3614i −0.409525 + 0.988682i 0.575738 + 0.817635i \(0.304715\pi\)
−0.985263 + 0.171047i \(0.945285\pi\)
\(212\) 6.31601 6.31601i 0.433786 0.433786i
\(213\) 12.1496 12.1496i 0.832474 0.832474i
\(214\) 2.84042 6.85739i 0.194167 0.468761i
\(215\) 0 0
\(216\) 0.348070 + 0.840316i 0.0236832 + 0.0571763i
\(217\) 1.32228i 0.0897622i
\(218\) 10.7081 4.43546i 0.725247 0.300407i
\(219\) −21.1506 21.1506i −1.42923 1.42923i
\(220\) 0 0
\(221\) −15.8242 3.40436i −1.06445 0.229002i
\(222\) 9.64235 0.647152
\(223\) −0.756286 0.756286i −0.0506447 0.0506447i 0.681331 0.731976i \(-0.261401\pi\)
−0.731976 + 0.681331i \(0.761401\pi\)
\(224\) 2.61419 1.08283i 0.174668 0.0723498i
\(225\) 0 0
\(226\) −6.51143 15.7200i −0.433134 1.04568i
\(227\) 1.91049 + 0.791349i 0.126803 + 0.0525237i 0.445183 0.895440i \(-0.353139\pi\)
−0.318380 + 0.947963i \(0.603139\pi\)
\(228\) −1.03840 + 2.50692i −0.0687696 + 0.166025i
\(229\) 9.06042 9.06042i 0.598730 0.598730i −0.341245 0.939974i \(-0.610849\pi\)
0.939974 + 0.341245i \(0.110849\pi\)
\(230\) 0 0
\(231\) 2.36154 5.70125i 0.155378 0.375115i
\(232\) −22.5458 9.33876i −1.48020 0.613120i
\(233\) 2.48129 + 5.99035i 0.162554 + 0.392441i 0.984079 0.177732i \(-0.0568761\pi\)
−0.821524 + 0.570173i \(0.806876\pi\)
\(234\) 11.6751i 0.763226i
\(235\) 0 0
\(236\) −4.68648 4.68648i −0.305064 0.305064i
\(237\) 3.66533 0.238089
\(238\) 0.376346 + 2.05892i 0.0243949 + 0.133460i
\(239\) −1.26828 −0.0820381 −0.0410190 0.999158i \(-0.513060\pi\)
−0.0410190 + 0.999158i \(0.513060\pi\)
\(240\) 0 0
\(241\) −2.30585 + 0.955116i −0.148533 + 0.0615244i −0.455712 0.890127i \(-0.650615\pi\)
0.307178 + 0.951652i \(0.400615\pi\)
\(242\) 10.3310i 0.664103i
\(243\) 8.50895 + 20.5424i 0.545849 + 1.31780i
\(244\) 1.14339 + 0.473608i 0.0731981 + 0.0303196i
\(245\) 0 0
\(246\) 1.35662 1.35662i 0.0864947 0.0864947i
\(247\) −2.78157 + 2.78157i −0.176987 + 0.176987i
\(248\) 2.79379 6.74480i 0.177406 0.428296i
\(249\) 37.0122 + 15.3309i 2.34555 + 0.971559i
\(250\) 0 0
\(251\) 17.3565i 1.09553i 0.836632 + 0.547765i \(0.184521\pi\)
−0.836632 + 0.547765i \(0.815479\pi\)
\(252\) −1.68487 + 0.697896i −0.106137 + 0.0439633i
\(253\) −18.9682 18.9682i −1.19252 1.19252i
\(254\) 11.7987 0.740313
\(255\) 0 0
\(256\) −16.9670 −1.06044
\(257\) −10.9991 10.9991i −0.686105 0.686105i 0.275264 0.961369i \(-0.411235\pi\)
−0.961369 + 0.275264i \(0.911235\pi\)
\(258\) 14.0091 5.80277i 0.872170 0.361265i
\(259\) 2.18350i 0.135676i
\(260\) 0 0
\(261\) 23.9234 + 9.90938i 1.48082 + 0.613375i
\(262\) −3.65358 + 8.82051i −0.225719 + 0.544933i
\(263\) −6.39290 + 6.39290i −0.394203 + 0.394203i −0.876183 0.481979i \(-0.839918\pi\)
0.481979 + 0.876183i \(0.339918\pi\)
\(264\) −24.0919 + 24.0919i −1.48275 + 1.48275i
\(265\) 0 0
\(266\) 0.469951 + 0.194660i 0.0288145 + 0.0119354i
\(267\) −11.4329 27.6014i −0.699680 1.68918i
\(268\) 8.41000i 0.513723i
\(269\) 2.79002 1.15566i 0.170110 0.0704620i −0.296003 0.955187i \(-0.595654\pi\)
0.466113 + 0.884725i \(0.345654\pi\)
\(270\) 0 0
\(271\) 13.1638 0.799642 0.399821 0.916593i \(-0.369072\pi\)
0.399821 + 0.916593i \(0.369072\pi\)
\(272\) 0.532764 2.47639i 0.0323035 0.150153i
\(273\) −5.18205 −0.313632
\(274\) 2.06476 + 2.06476i 0.124737 + 0.124737i
\(275\) 0 0
\(276\) 15.5384i 0.935302i
\(277\) −1.55039 3.74298i −0.0931540 0.224894i 0.870434 0.492285i \(-0.163838\pi\)
−0.963588 + 0.267392i \(0.913838\pi\)
\(278\) 10.7917 + 4.47006i 0.647241 + 0.268096i
\(279\) −2.96450 + 7.15692i −0.177480 + 0.428474i
\(280\) 0 0
\(281\) 10.0869 10.0869i 0.601731 0.601731i −0.339041 0.940772i \(-0.610102\pi\)
0.940772 + 0.339041i \(0.110102\pi\)
\(282\) −1.53688 + 3.71037i −0.0915201 + 0.220949i
\(283\) −5.14980 2.13312i −0.306124 0.126801i 0.224333 0.974513i \(-0.427980\pi\)
−0.530457 + 0.847712i \(0.677980\pi\)
\(284\) −2.90712 7.01841i −0.172506 0.416466i
\(285\) 0 0
\(286\) −16.1372 + 6.68425i −0.954213 + 0.395248i
\(287\) 0.307205 + 0.307205i 0.0181337 + 0.0181337i
\(288\) 16.5771 0.976817
\(289\) −15.4960 6.99109i −0.911527 0.411241i
\(290\) 0 0
\(291\) −0.399068 0.399068i −0.0233938 0.0233938i
\(292\) −12.2180 + 5.06088i −0.715006 + 0.296165i
\(293\) 1.97120i 0.115159i 0.998341 + 0.0575795i \(0.0183383\pi\)
−0.998341 + 0.0575795i \(0.981662\pi\)
\(294\) −6.05316 14.6136i −0.353028 0.852284i
\(295\) 0 0
\(296\) 4.61343 11.1378i 0.268150 0.647372i
\(297\) 1.02099 1.02099i 0.0592438 0.0592438i
\(298\) 3.67814 3.67814i 0.213069 0.213069i
\(299\) −8.62039 + 20.8115i −0.498530 + 1.20356i
\(300\) 0 0
\(301\) 1.31403 + 3.17236i 0.0757396 + 0.182852i
\(302\) 4.76612i 0.274260i
\(303\) −15.2401 + 6.31264i −0.875519 + 0.362652i
\(304\) −0.435300 0.435300i −0.0249662 0.0249662i
\(305\) 0 0
\(306\) −2.57902 + 11.9878i −0.147433 + 0.685297i
\(307\) −1.69613 −0.0968034 −0.0484017 0.998828i \(-0.515413\pi\)
−0.0484017 + 0.998828i \(0.515413\pi\)
\(308\) −1.92925 1.92925i −0.109929 0.109929i
\(309\) −0.801300 + 0.331909i −0.0455844 + 0.0188817i
\(310\) 0 0
\(311\) 4.16844 + 10.0635i 0.236371 + 0.570649i 0.996902 0.0786518i \(-0.0250615\pi\)
−0.760531 + 0.649301i \(0.775062\pi\)
\(312\) 26.4331 + 10.9489i 1.49648 + 0.619861i
\(313\) −10.0614 + 24.2903i −0.568702 + 1.37297i 0.333947 + 0.942592i \(0.391619\pi\)
−0.902649 + 0.430377i \(0.858381\pi\)
\(314\) −7.36524 + 7.36524i −0.415645 + 0.415645i
\(315\) 0 0
\(316\) 0.620155 1.49719i 0.0348865 0.0842234i
\(317\) 23.1074 + 9.57139i 1.29784 + 0.537583i 0.921313 0.388823i \(-0.127118\pi\)
0.376527 + 0.926406i \(0.377118\pi\)
\(318\) −7.35813 17.7641i −0.412623 0.996161i
\(319\) 38.7399i 2.16902i
\(320\) 0 0
\(321\) 13.6476 + 13.6476i 0.761735 + 0.761735i
\(322\) 2.91286 0.162327
\(323\) −3.47052 + 2.24162i −0.193105 + 0.124727i
\(324\) 9.42103 0.523390
\(325\) 0 0
\(326\) −6.49756 + 2.69138i −0.359867 + 0.149062i
\(327\) 30.1389i 1.66668i
\(328\) −0.917938 2.21610i −0.0506847 0.122364i
\(329\) −0.840209 0.348026i −0.0463222 0.0191873i
\(330\) 0 0
\(331\) 22.8306 22.8306i 1.25488 1.25488i 0.301376 0.953505i \(-0.402554\pi\)
0.953505 0.301376i \(-0.0974458\pi\)
\(332\) 12.5245 12.5245i 0.687374 0.687374i
\(333\) −4.89532 + 11.8183i −0.268262 + 0.647641i
\(334\) 17.1443 + 7.10142i 0.938097 + 0.388572i
\(335\) 0 0
\(336\) 0.810961i 0.0442416i
\(337\) 11.8844 4.92267i 0.647383 0.268155i −0.0347353 0.999397i \(-0.511059\pi\)
0.682119 + 0.731242i \(0.261059\pi\)
\(338\) 1.62281 + 1.62281i 0.0882693 + 0.0882693i
\(339\) 44.2450 2.40306
\(340\) 0 0
\(341\) −11.5895 −0.627604
\(342\) 2.10722 + 2.10722i 0.113945 + 0.113945i
\(343\) 6.75868 2.79954i 0.364934 0.151161i
\(344\) 18.9582i 1.02216i
\(345\) 0 0
\(346\) 11.6943 + 4.84395i 0.628691 + 0.260412i
\(347\) −10.3086 + 24.8871i −0.553394 + 1.33601i 0.361521 + 0.932364i \(0.382257\pi\)
−0.914915 + 0.403647i \(0.867743\pi\)
\(348\) 15.8675 15.8675i 0.850589 0.850589i
\(349\) 10.1253 10.1253i 0.541995 0.541995i −0.382119 0.924113i \(-0.624805\pi\)
0.924113 + 0.382119i \(0.124805\pi\)
\(350\) 0 0
\(351\) −1.12021 0.464005i −0.0597922 0.0247667i
\(352\) 9.49076 + 22.9127i 0.505859 + 1.22125i
\(353\) 1.65351i 0.0880076i −0.999031 0.0440038i \(-0.985989\pi\)
0.999031 0.0440038i \(-0.0140114\pi\)
\(354\) −13.1809 + 5.45973i −0.700559 + 0.290181i
\(355\) 0 0
\(356\) −13.2088 −0.700065
\(357\) −5.32084 1.14471i −0.281609 0.0605845i
\(358\) 9.67206 0.511184
\(359\) −12.2781 12.2781i −0.648012 0.648012i 0.304500 0.952512i \(-0.401511\pi\)
−0.952512 + 0.304500i \(0.901511\pi\)
\(360\) 0 0
\(361\) 17.9959i 0.947154i
\(362\) 7.14564 + 17.2511i 0.375566 + 0.906697i
\(363\) 24.8191 + 10.2804i 1.30267 + 0.539582i
\(364\) −0.876777 + 2.11673i −0.0459556 + 0.110947i
\(365\) 0 0
\(366\) 1.88380 1.88380i 0.0984676 0.0984676i
\(367\) 3.66265 8.84242i 0.191189 0.461571i −0.798996 0.601337i \(-0.794635\pi\)
0.990185 + 0.139766i \(0.0446350\pi\)
\(368\) −3.25688 1.34904i −0.169776 0.0703237i
\(369\) 0.974026 + 2.35151i 0.0507058 + 0.122415i
\(370\) 0 0
\(371\) 4.02267 1.66624i 0.208846 0.0865070i
\(372\) 4.74694 + 4.74694i 0.246117 + 0.246117i
\(373\) −14.4236 −0.746828 −0.373414 0.927665i \(-0.621813\pi\)
−0.373414 + 0.927665i \(0.621813\pi\)
\(374\) −18.0460 + 3.29858i −0.933134 + 0.170565i
\(375\) 0 0
\(376\) 3.55049 + 3.55049i 0.183102 + 0.183102i
\(377\) 30.0553 12.4493i 1.54793 0.641172i
\(378\) 0.156789i 0.00806434i
\(379\) −3.64196 8.79246i −0.187075 0.451638i 0.802319 0.596895i \(-0.203599\pi\)
−0.989394 + 0.145257i \(0.953599\pi\)
\(380\) 0 0
\(381\) −11.7409 + 28.3450i −0.601503 + 1.45216i
\(382\) −5.93089 + 5.93089i −0.303451 + 0.303451i
\(383\) −19.6401 + 19.6401i −1.00356 + 1.00356i −0.00356842 + 0.999994i \(0.501136\pi\)
−0.999994 + 0.00356842i \(0.998864\pi\)
\(384\) 4.39000 10.5984i 0.224026 0.540847i
\(385\) 0 0
\(386\) 5.63163 + 13.5960i 0.286643 + 0.692016i
\(387\) 20.1166i 1.02258i
\(388\) −0.230529 + 0.0954881i −0.0117033 + 0.00484767i
\(389\) −14.8835 14.8835i −0.754624 0.754624i 0.220715 0.975338i \(-0.429161\pi\)
−0.975338 + 0.220715i \(0.929161\pi\)
\(390\) 0 0
\(391\) −13.4485 + 19.4646i −0.680121 + 0.984369i
\(392\) −19.7763 −0.998852
\(393\) −17.5546 17.5546i −0.885514 0.885514i
\(394\) 0.202367 0.0838230i 0.0101951 0.00422294i
\(395\) 0 0
\(396\) −6.11688 14.7675i −0.307385 0.742093i
\(397\) −27.3935 11.3468i −1.37484 0.569478i −0.431744 0.901996i \(-0.642102\pi\)
−0.943097 + 0.332518i \(0.892102\pi\)
\(398\) −7.81661 + 18.8710i −0.391811 + 0.945916i
\(399\) −0.935298 + 0.935298i −0.0468235 + 0.0468235i
\(400\) 0 0
\(401\) 6.33937 15.3046i 0.316573 0.764275i −0.682858 0.730551i \(-0.739263\pi\)
0.999431 0.0337238i \(-0.0107366\pi\)
\(402\) −16.7256 6.92796i −0.834196 0.345535i
\(403\) 3.72434 + 8.99135i 0.185523 + 0.447891i
\(404\) 7.29322i 0.362851i
\(405\) 0 0
\(406\) −2.97455 2.97455i −0.147625 0.147625i
\(407\) −19.1379 −0.948629
\(408\) 24.7224 + 17.0812i 1.22394 + 0.845647i
\(409\) −19.3593 −0.957257 −0.478629 0.878017i \(-0.658866\pi\)
−0.478629 + 0.878017i \(0.658866\pi\)
\(410\) 0 0
\(411\) −7.01500 + 2.90571i −0.346024 + 0.143328i
\(412\) 0.383467i 0.0188921i
\(413\) −1.23635 2.98482i −0.0608369 0.146873i
\(414\) 15.7660 + 6.53050i 0.774857 + 0.320956i
\(415\) 0 0
\(416\) 14.7263 14.7263i 0.722015 0.722015i
\(417\) −21.4776 + 21.4776i −1.05176 + 1.05176i
\(418\) −1.70615 + 4.11900i −0.0834503 + 0.201467i
\(419\) 13.3054 + 5.51126i 0.650009 + 0.269243i 0.683228 0.730205i \(-0.260576\pi\)
−0.0332183 + 0.999448i \(0.510576\pi\)
\(420\) 0 0
\(421\) 26.7439i 1.30342i −0.758468 0.651710i \(-0.774052\pi\)
0.758468 0.651710i \(-0.225948\pi\)
\(422\) 13.6683 5.66161i 0.665364 0.275603i
\(423\) −3.76743 3.76743i −0.183179 0.183179i
\(424\) −24.0397 −1.16747
\(425\) 0 0
\(426\) −16.3529 −0.792298
\(427\) 0.426584 + 0.426584i 0.0206439 + 0.0206439i
\(428\) 7.88379 3.26557i 0.381077 0.157847i
\(429\) 45.4194i 2.19287i
\(430\) 0 0
\(431\) −26.4399 10.9518i −1.27356 0.527527i −0.359518 0.933138i \(-0.617059\pi\)
−0.914046 + 0.405611i \(0.867059\pi\)
\(432\) 0.0726141 0.175306i 0.00349365 0.00843442i
\(433\) 25.5919 25.5919i 1.22987 1.22987i 0.265855 0.964013i \(-0.414346\pi\)
0.964013 0.265855i \(-0.0856542\pi\)
\(434\) 0.889869 0.889869i 0.0427151 0.0427151i
\(435\) 0 0
\(436\) 12.3109 + 5.09935i 0.589586 + 0.244215i
\(437\) 2.20034 + 5.31210i 0.105257 + 0.254112i
\(438\) 28.4679i 1.36025i
\(439\) 29.9716 12.4146i 1.43047 0.592519i 0.473000 0.881063i \(-0.343171\pi\)
0.957467 + 0.288544i \(0.0931711\pi\)
\(440\) 0 0
\(441\) 20.9846 0.999268
\(442\) 8.35828 + 12.9404i 0.397563 + 0.615513i
\(443\) 1.88468 0.0895437 0.0447719 0.998997i \(-0.485744\pi\)
0.0447719 + 0.998997i \(0.485744\pi\)
\(444\) 7.83870 + 7.83870i 0.372008 + 0.372008i
\(445\) 0 0
\(446\) 1.01793i 0.0482005i
\(447\) 5.17620 + 12.4965i 0.244826 + 0.591062i
\(448\) −3.09351 1.28137i −0.146154 0.0605391i
\(449\) 0.766010 1.84931i 0.0361503 0.0872745i −0.904773 0.425894i \(-0.859960\pi\)
0.940924 + 0.338619i \(0.109960\pi\)
\(450\) 0 0
\(451\) −2.69258 + 2.69258i −0.126788 + 0.126788i
\(452\) 7.48604 18.0729i 0.352114 0.850078i
\(453\) 11.4501 + 4.74278i 0.537972 + 0.222835i
\(454\) −0.753158 1.81828i −0.0353474 0.0853363i
\(455\) 0 0
\(456\) 6.74700 2.79470i 0.315957 0.130874i
\(457\) −12.4863 12.4863i −0.584086 0.584086i 0.351938 0.936023i \(-0.385523\pi\)
−0.936023 + 0.351938i \(0.885523\pi\)
\(458\) −12.1950 −0.569834
\(459\) −1.04771 0.723885i −0.0489030 0.0337881i
\(460\) 0 0
\(461\) −22.5151 22.5151i −1.04863 1.04863i −0.998755 0.0498792i \(-0.984116\pi\)
−0.0498792 0.998755i \(-0.515884\pi\)
\(462\) −5.42610 + 2.24757i −0.252445 + 0.104566i
\(463\) 15.7977i 0.734179i −0.930186 0.367090i \(-0.880354\pi\)
0.930186 0.367090i \(-0.119646\pi\)
\(464\) 1.94825 + 4.70348i 0.0904450 + 0.218354i
\(465\) 0 0
\(466\) 2.36154 5.70125i 0.109396 0.264105i
\(467\) −6.26872 + 6.26872i −0.290082 + 0.290082i −0.837112 0.547031i \(-0.815758\pi\)
0.547031 + 0.837112i \(0.315758\pi\)
\(468\) −9.49122 + 9.49122i −0.438732 + 0.438732i
\(469\) 1.56883 3.78750i 0.0724419 0.174890i
\(470\) 0 0
\(471\) −10.3650 25.0234i −0.477595 1.15302i
\(472\) 17.8374i 0.821035i
\(473\) −27.8049 + 11.5172i −1.27847 + 0.529560i
\(474\) −2.46670 2.46670i −0.113299 0.113299i
\(475\) 0 0
\(476\) −1.36784 + 1.97974i −0.0626950 + 0.0907413i
\(477\) 25.5086 1.16796
\(478\) 0.853527 + 0.853527i 0.0390394 + 0.0390394i
\(479\) −11.0031 + 4.55765i −0.502746 + 0.208244i −0.619619 0.784903i \(-0.712713\pi\)
0.116873 + 0.993147i \(0.462713\pi\)
\(480\) 0 0
\(481\) 6.15006 + 14.8476i 0.280419 + 0.676991i
\(482\) 2.19457 + 0.909021i 0.0999600 + 0.0414048i
\(483\) −2.89859 + 6.99782i −0.131890 + 0.318412i
\(484\) 8.39855 8.39855i 0.381752 0.381752i
\(485\) 0 0
\(486\) 8.09830 19.5510i 0.367346 0.886852i
\(487\) 24.7378 + 10.2467i 1.12098 + 0.464324i 0.864704 0.502281i \(-0.167506\pi\)
0.256272 + 0.966605i \(0.417506\pi\)
\(488\) −1.27465 3.07727i −0.0577006 0.139302i
\(489\) 18.2879i 0.827006i
\(490\) 0 0
\(491\) 16.3477 + 16.3477i 0.737761 + 0.737761i 0.972144 0.234383i \(-0.0753070\pi\)
−0.234383 + 0.972144i \(0.575307\pi\)
\(492\) 2.20571 0.0994411
\(493\) 33.6103 6.14355i 1.51373 0.276691i
\(494\) 3.74389 0.168446
\(495\) 0 0
\(496\) −1.40710 + 0.582838i −0.0631805 + 0.0261702i
\(497\) 3.70309i 0.166106i
\(498\) −14.5911 35.2259i −0.653841 1.57851i
\(499\) −4.58831 1.90054i −0.205401 0.0850799i 0.277611 0.960694i \(-0.410457\pi\)
−0.483012 + 0.875614i \(0.660457\pi\)
\(500\) 0 0
\(501\) −34.1208 + 34.1208i −1.52440 + 1.52440i
\(502\) 11.6806 11.6806i 0.521330 0.521330i
\(503\) 8.94738 21.6009i 0.398944 0.963136i −0.588973 0.808153i \(-0.700468\pi\)
0.987917 0.154983i \(-0.0495323\pi\)
\(504\) 4.53458 + 1.87829i 0.201986 + 0.0836655i
\(505\) 0 0
\(506\) 25.5305i 1.13497i
\(507\) −5.51349 + 2.28376i −0.244863 + 0.101425i
\(508\) 9.59165 + 9.59165i 0.425561 + 0.425561i
\(509\) −23.9562 −1.06184 −0.530921 0.847422i \(-0.678154\pi\)
−0.530921 + 0.847422i \(0.678154\pi\)
\(510\) 0 0
\(511\) −6.44654 −0.285178
\(512\) 4.86316 + 4.86316i 0.214924 + 0.214924i
\(513\) −0.285931 + 0.118437i −0.0126242 + 0.00522911i
\(514\) 14.8044i 0.652993i
\(515\) 0 0
\(516\) 16.1060 + 6.67132i 0.709027 + 0.293688i
\(517\) 3.05036 7.36423i 0.134155 0.323878i
\(518\) 1.46946 1.46946i 0.0645642 0.0645642i
\(519\) −23.2741 + 23.2741i −1.02162 + 1.02162i
\(520\) 0 0
\(521\) 7.00747 + 2.90259i 0.307003 + 0.127165i 0.530866 0.847456i \(-0.321867\pi\)
−0.223863 + 0.974621i \(0.571867\pi\)
\(522\) −9.43114 22.7688i −0.412790 0.996563i
\(523\) 17.3848i 0.760185i 0.924948 + 0.380093i \(0.124108\pi\)
−0.924948 + 0.380093i \(0.875892\pi\)
\(524\) −10.1407 + 4.20044i −0.443001 + 0.183497i
\(525\) 0 0
\(526\) 8.60461 0.375179
\(527\) 1.83791 + 10.0549i 0.0800605 + 0.437997i
\(528\) 7.10788 0.309331
\(529\) 7.01842 + 7.01842i 0.305149 + 0.305149i
\(530\) 0 0
\(531\) 18.9273i 0.821377i
\(532\) 0.223796 + 0.540292i 0.00970280 + 0.0234246i
\(533\) 2.95423 + 1.22368i 0.127962 + 0.0530036i
\(534\) −10.8811 + 26.2693i −0.470871 + 1.13678i
\(535\) 0 0
\(536\) −16.0049 + 16.0049i −0.691305 + 0.691305i
\(537\) −9.62469 + 23.2361i −0.415336 + 1.00271i
\(538\) −2.65537 1.09989i −0.114481 0.0474196i
\(539\) 12.0141 + 29.0047i 0.517486 + 1.24932i
\(540\) 0 0
\(541\) −20.5428 + 8.50911i −0.883204 + 0.365835i −0.777739 0.628588i \(-0.783633\pi\)
−0.105466 + 0.994423i \(0.533633\pi\)
\(542\) −8.85896 8.85896i −0.380525 0.380525i
\(543\) −48.5545 −2.08367
\(544\) 18.3737 11.8677i 0.787767 0.508822i
\(545\) 0 0
\(546\) 3.48742 + 3.48742i 0.149248 + 0.149248i
\(547\) 37.1299 15.3797i 1.58756 0.657589i 0.597972 0.801517i \(-0.295974\pi\)
0.989588 + 0.143929i \(0.0459736\pi\)
\(548\) 3.35707i 0.143407i
\(549\) 1.35253 + 3.26530i 0.0577246 + 0.139360i
\(550\) 0 0
\(551\) 3.17767 7.67157i 0.135373 0.326820i
\(552\) 29.5708 29.5708i 1.25862 1.25862i
\(553\) 0.558581 0.558581i 0.0237533 0.0237533i
\(554\) −1.47557 + 3.56234i −0.0626909 + 0.151349i
\(555\) 0 0
\(556\) 5.13912 + 12.4069i 0.217947 + 0.526172i
\(557\) 6.44000i 0.272872i −0.990649 0.136436i \(-0.956435\pi\)
0.990649 0.136436i \(-0.0435647\pi\)
\(558\) 6.81152 2.82143i 0.288355 0.119440i
\(559\) 17.8705 + 17.8705i 0.755844 + 0.755844i
\(560\) 0 0
\(561\) 10.0331 46.6359i 0.423598 1.96897i
\(562\) −13.5765 −0.572691
\(563\) −14.0594 14.0594i −0.592532 0.592532i 0.345782 0.938315i \(-0.387614\pi\)
−0.938315 + 0.345782i \(0.887614\pi\)
\(564\) −4.26572 + 1.76692i −0.179619 + 0.0744008i
\(565\) 0 0
\(566\) 2.03017 + 4.90127i 0.0853345 + 0.206016i
\(567\) 4.24282 + 1.75743i 0.178182 + 0.0738052i
\(568\) −7.82410 + 18.8891i −0.328292 + 0.792567i
\(569\) −4.57941 + 4.57941i −0.191979 + 0.191979i −0.796551 0.604572i \(-0.793344\pi\)
0.604572 + 0.796551i \(0.293344\pi\)
\(570\) 0 0
\(571\) −14.0045 + 33.8098i −0.586069 + 1.41490i 0.301164 + 0.953572i \(0.402625\pi\)
−0.887232 + 0.461323i \(0.847375\pi\)
\(572\) −18.5526 7.68473i −0.775723 0.321315i
\(573\) −8.34647 20.1502i −0.348679 0.841785i
\(574\) 0.413486i 0.0172586i
\(575\) 0 0
\(576\) −13.8710 13.8710i −0.577959 0.577959i
\(577\) −19.2887 −0.802999 −0.401500 0.915859i \(-0.631511\pi\)
−0.401500 + 0.915859i \(0.631511\pi\)
\(578\) 5.72361 + 15.1334i 0.238071 + 0.629465i
\(579\) −38.2669 −1.59032
\(580\) 0 0
\(581\) 7.97688 3.30413i 0.330937 0.137079i
\(582\) 0.537130i 0.0222647i
\(583\) 14.6042 + 35.2577i 0.604845 + 1.46022i
\(584\) 32.8831 + 13.6206i 1.36071 + 0.563625i
\(585\) 0 0
\(586\) 1.32658 1.32658i 0.0548006 0.0548006i
\(587\) −12.6487 + 12.6487i −0.522068 + 0.522068i −0.918196 0.396127i \(-0.870354\pi\)
0.396127 + 0.918196i \(0.370354\pi\)
\(588\) 6.95919 16.8010i 0.286992 0.692860i
\(589\) 2.29503 + 0.950633i 0.0945651 + 0.0391702i
\(590\) 0 0
\(591\) 0.569576i 0.0234292i
\(592\) −2.32356 + 0.962450i −0.0954977 + 0.0395565i
\(593\) −15.9962 15.9962i −0.656884 0.656884i 0.297757 0.954642i \(-0.403761\pi\)
−0.954642 + 0.297757i \(0.903761\pi\)
\(594\) −1.37421 −0.0563847
\(595\) 0 0
\(596\) 5.98025 0.244961
\(597\) −37.5571 37.5571i −1.53711 1.53711i
\(598\) 19.8071 8.20436i 0.809972 0.335501i
\(599\) 17.4019i 0.711023i −0.934672 0.355511i \(-0.884307\pi\)
0.934672 0.355511i \(-0.115693\pi\)
\(600\) 0 0
\(601\) 19.9088 + 8.24649i 0.812096 + 0.336381i 0.749790 0.661676i \(-0.230155\pi\)
0.0623060 + 0.998057i \(0.480155\pi\)
\(602\) 1.25062 3.01926i 0.0509713 0.123056i
\(603\) 16.9828 16.9828i 0.691593 0.691593i
\(604\) 3.87460 3.87460i 0.157655 0.157655i
\(605\) 0 0
\(606\) 14.5046 + 6.00799i 0.589208 + 0.244058i
\(607\) 6.14655 + 14.8391i 0.249481 + 0.602300i 0.998160 0.0606323i \(-0.0193117\pi\)
−0.748679 + 0.662932i \(0.769312\pi\)
\(608\) 5.31584i 0.215586i
\(609\) 10.1060 4.18605i 0.409517 0.169627i
\(610\) 0 0
\(611\) −6.69358 −0.270793
\(612\) −11.8420 + 7.64882i −0.478686 + 0.309185i
\(613\) 15.6440 0.631855 0.315928 0.948783i \(-0.397684\pi\)
0.315928 + 0.948783i \(0.397684\pi\)
\(614\) 1.14147 + 1.14147i 0.0460658 + 0.0460658i
\(615\) 0 0
\(616\) 7.34301i 0.295858i
\(617\) −8.96313 21.6389i −0.360842 0.871150i −0.995177 0.0980919i \(-0.968726\pi\)
0.634335 0.773058i \(-0.281274\pi\)
\(618\) 0.762628 + 0.315891i 0.0306774 + 0.0127070i
\(619\) −11.0559 + 26.6912i −0.444372 + 1.07281i 0.530026 + 0.847981i \(0.322182\pi\)
−0.974398 + 0.224828i \(0.927818\pi\)
\(620\) 0 0
\(621\) −1.25318 + 1.25318i −0.0502884 + 0.0502884i
\(622\) 3.96727 9.57783i 0.159073 0.384036i
\(623\) −5.94866 2.46402i −0.238328 0.0987187i
\(624\) −2.28416 5.51444i −0.0914394 0.220754i
\(625\) 0 0
\(626\) 23.1180 9.57580i 0.923982 0.382726i
\(627\) −8.19766 8.19766i −0.327383 0.327383i
\(628\) −11.9751 −0.477858
\(629\) 3.03497 + 16.6038i 0.121012 + 0.662036i
\(630\) 0 0
\(631\) 29.7914 + 29.7914i 1.18598 + 1.18598i 0.978169 + 0.207809i \(0.0666332\pi\)
0.207809 + 0.978169i \(0.433367\pi\)
\(632\) −4.02946 + 1.66906i −0.160284 + 0.0663916i
\(633\) 38.4705i 1.52907i
\(634\) −9.10946 21.9922i −0.361783 0.873421i
\(635\) 0 0
\(636\) 8.45948 20.4230i 0.335440 0.809824i
\(637\) 18.6417 18.6417i 0.738610 0.738610i
\(638\) 26.0712 26.0712i 1.03217 1.03217i
\(639\) 8.30217 20.0432i 0.328429 0.792897i
\(640\) 0 0
\(641\) 7.27533 + 17.5642i 0.287358 + 0.693744i 0.999969 0.00781522i \(-0.00248769\pi\)
−0.712611 + 0.701559i \(0.752488\pi\)
\(642\) 18.3692i 0.724973i
\(643\) 18.7908 7.78340i 0.741036 0.306947i 0.0199581 0.999801i \(-0.493647\pi\)
0.721078 + 0.692853i \(0.243647\pi\)
\(644\) 2.36799 + 2.36799i 0.0933119 + 0.0933119i
\(645\) 0 0
\(646\) 3.84416 + 0.827023i 0.151247 + 0.0325388i
\(647\) 16.7736 0.659440 0.329720 0.944079i \(-0.393046\pi\)
0.329720 + 0.944079i \(0.393046\pi\)
\(648\) −17.9289 17.9289i −0.704315 0.704315i
\(649\) 26.1612 10.8363i 1.02692 0.425362i
\(650\) 0 0
\(651\) 1.25230 + 3.02332i 0.0490816 + 0.118493i
\(652\) −7.47010 3.09422i −0.292552 0.121179i
\(653\) 2.56320 6.18810i 0.100306 0.242159i −0.865758 0.500462i \(-0.833163\pi\)
0.966064 + 0.258303i \(0.0831633\pi\)
\(654\) 20.2829 20.2829i 0.793124 0.793124i
\(655\) 0 0
\(656\) −0.191500 + 0.462321i −0.00747680 + 0.0180506i
\(657\) −34.8923 14.4529i −1.36128 0.563860i
\(658\) 0.331230 + 0.799660i 0.0129127 + 0.0311740i
\(659\) 36.0525i 1.40440i −0.711978 0.702202i \(-0.752200\pi\)
0.711978 0.702202i \(-0.247800\pi\)
\(660\) 0 0
\(661\) −31.6304 31.6304i −1.23028 1.23028i −0.963855 0.266427i \(-0.914157\pi\)
−0.266427 0.963855i \(-0.585843\pi\)
\(662\) −30.7291 −1.19432
\(663\) −39.4053 + 7.20280i −1.53037 + 0.279734i
\(664\) −47.6704 −1.84997
\(665\) 0 0
\(666\) 11.2480 4.65907i 0.435850 0.180535i
\(667\) 47.5501i 1.84115i
\(668\) 8.16434 + 19.7105i 0.315888 + 0.762621i
\(669\) −2.44547 1.01295i −0.0945474 0.0391628i
\(670\) 0 0
\(671\) −3.73891 + 3.73891i −0.144339 + 0.144339i
\(672\) 4.95168 4.95168i 0.191015 0.191015i
\(673\) −1.88991 + 4.56264i −0.0728506 + 0.175877i −0.956110 0.293007i \(-0.905344\pi\)
0.883260 + 0.468884i \(0.155344\pi\)
\(674\) −11.3108 4.68510i −0.435677 0.180463i
\(675\) 0 0
\(676\) 2.63851i 0.101481i
\(677\) −26.2906 + 10.8899i −1.01043 + 0.418534i −0.825612 0.564238i \(-0.809170\pi\)
−0.184819 + 0.982773i \(0.559170\pi\)
\(678\) −29.7761 29.7761i −1.14354 1.14354i
\(679\) −0.121633 −0.00466783
\(680\) 0 0
\(681\) 5.11770 0.196111
\(682\) 7.79949 + 7.79949i 0.298658 + 0.298658i
\(683\) 30.2745 12.5401i 1.15842 0.479835i 0.281073 0.959686i \(-0.409310\pi\)
0.877350 + 0.479852i \(0.159310\pi\)
\(684\) 3.42611i 0.131000i
\(685\) 0 0
\(686\) −6.43250 2.66443i −0.245594 0.101728i
\(687\) 12.1353 29.2971i 0.462989 1.11775i
\(688\) −2.79664 + 2.79664i −0.106621 + 0.106621i
\(689\) 22.6605 22.6605i 0.863297 0.863297i
\(690\) 0 0
\(691\) 6.13856 + 2.54268i 0.233522 + 0.0967279i 0.496376 0.868108i \(-0.334664\pi\)
−0.262854 + 0.964836i \(0.584664\pi\)
\(692\) 5.56898 + 13.4447i 0.211701 + 0.511091i
\(693\) 7.79168i 0.295982i
\(694\) 23.6860 9.81108i 0.899110 0.372423i
\(695\) 0 0
\(696\) −60.3943 −2.28924
\(697\) 2.76305 + 1.90905i 0.104658 + 0.0723103i
\(698\) −13.6283 −0.515837
\(699\) 11.3467 + 11.3467i 0.429170 + 0.429170i
\(700\) 0 0
\(701\) 24.2220i 0.914852i −0.889248 0.457426i \(-0.848772\pi\)
0.889248 0.457426i \(-0.151228\pi\)
\(702\) 0.441611 + 1.06614i 0.0166675 + 0.0402390i
\(703\) 3.78982 + 1.56980i 0.142936 + 0.0592060i
\(704\) 11.2309 27.1138i 0.423281 1.02189i
\(705\) 0 0
\(706\) −1.11278 + 1.11278i −0.0418801 + 0.0418801i
\(707\) −1.36050 + 3.28455i −0.0511670 + 0.123528i
\(708\) −15.1538 6.27693i −0.569516 0.235901i
\(709\) −0.466820 1.12700i −0.0175318 0.0423255i 0.914871 0.403746i \(-0.132292\pi\)
−0.932403 + 0.361420i \(0.882292\pi\)
\(710\) 0 0
\(711\) 4.27567 1.77104i 0.160350 0.0664192i
\(712\) 25.1373 + 25.1373i 0.942062 + 0.942062i
\(713\) 14.2251 0.532734
\(714\) 2.81046 + 4.35119i 0.105179 + 0.162839i
\(715\) 0 0
\(716\) 7.86285 + 7.86285i 0.293849 + 0.293849i
\(717\) −2.89985 + 1.20116i −0.108297 + 0.0448581i
\(718\) 16.5258i 0.616738i
\(719\) 6.74904 + 16.2936i 0.251697 + 0.607650i 0.998341 0.0575735i \(-0.0183364\pi\)
−0.746645 + 0.665223i \(0.768336\pi\)
\(720\) 0 0
\(721\) −0.0715333 + 0.172697i −0.00266404 + 0.00643156i
\(722\) −12.1109 + 12.1109i −0.450721 + 0.450721i
\(723\) −4.36765 + 4.36765i −0.162435 + 0.162435i
\(724\) −8.21518 + 19.8332i −0.305315 + 0.737095i
\(725\) 0 0
\(726\) −9.78428 23.6213i −0.363129 0.876670i
\(727\) 11.3177i 0.419751i 0.977728 + 0.209876i \(0.0673059\pi\)
−0.977728 + 0.209876i \(0.932694\pi\)
\(728\) 5.69687 2.35972i 0.211140 0.0874570i
\(729\) 20.6459 + 20.6459i 0.764664 + 0.764664i
\(730\) 0 0
\(731\) 14.4016 + 22.2968i 0.532662 + 0.824676i
\(732\) 3.06285 0.113206
\(733\) −1.79642 1.79642i −0.0663522 0.0663522i 0.673152 0.739504i \(-0.264940\pi\)
−0.739504 + 0.673152i \(0.764940\pi\)
\(734\) −8.41568 + 3.48589i −0.310628 + 0.128666i
\(735\) 0 0
\(736\) −11.6491 28.1235i −0.429393 1.03665i
\(737\) 33.1965 + 13.7504i 1.22281 + 0.506503i
\(738\) 0.927018 2.23802i 0.0341240 0.0823827i
\(739\) −12.6407 + 12.6407i −0.464997 + 0.464997i −0.900289 0.435292i \(-0.856645\pi\)
0.435292 + 0.900289i \(0.356645\pi\)
\(740\) 0 0
\(741\) −3.72555 + 8.99428i −0.136862 + 0.330413i
\(742\) −3.82853 1.58583i −0.140550 0.0582176i
\(743\) −4.57351 11.0414i −0.167786 0.405071i 0.817513 0.575910i \(-0.195352\pi\)
−0.985299 + 0.170839i \(0.945352\pi\)
\(744\) 18.0676i 0.662390i
\(745\) 0 0
\(746\) 9.70683 + 9.70683i 0.355392 + 0.355392i
\(747\) 50.5831 1.85074
\(748\) −17.3519 11.9888i −0.634450 0.438354i
\(749\) 4.15968 0.151992
\(750\) 0 0
\(751\) 24.7061 10.2336i 0.901537 0.373429i 0.116726 0.993164i \(-0.462760\pi\)
0.784811 + 0.619735i \(0.212760\pi\)
\(752\) 1.04751i 0.0381987i
\(753\) 16.4379 + 39.6847i 0.599031 + 1.44619i
\(754\) −28.6048 11.8485i −1.04172 0.431496i
\(755\) 0 0
\(756\) −0.127461 + 0.127461i −0.00463569 + 0.00463569i
\(757\) −0.179229 + 0.179229i −0.00651419 + 0.00651419i −0.710356 0.703842i \(-0.751466\pi\)
0.703842 + 0.710356i \(0.251466\pi\)
\(758\) −3.46619 + 8.36813i −0.125898 + 0.303944i
\(759\) −61.3341 25.4054i −2.22629 0.922159i
\(760\) 0 0
\(761\) 32.3234i 1.17172i 0.810412 + 0.585860i \(0.199243\pi\)
−0.810412 + 0.585860i \(0.800757\pi\)
\(762\) 26.9770 11.1742i 0.977274 0.404800i
\(763\) 4.59305 + 4.59305i 0.166279 + 0.166279i
\(764\) −9.64298 −0.348871
\(765\) 0 0
\(766\) 26.4348 0.955129
\(767\) −16.8141 16.8141i −0.607121 0.607121i
\(768\) −38.7942 + 16.0691i −1.39986 + 0.579843i
\(769\) 7.23844i 0.261025i −0.991447 0.130512i \(-0.958338\pi\)
0.991447 0.130512i \(-0.0416622\pi\)
\(770\) 0 0
\(771\) −35.5659 14.7319i −1.28087 0.530555i
\(772\) −6.47456 + 15.6310i −0.233025 + 0.562571i
\(773\) −5.84658 + 5.84658i −0.210287 + 0.210287i −0.804389 0.594102i \(-0.797507\pi\)
0.594102 + 0.804389i \(0.297507\pi\)
\(774\) 13.5381 13.5381i 0.486616 0.486616i
\(775\) 0 0
\(776\) 0.620435 + 0.256992i 0.0222723 + 0.00922549i
\(777\) 2.06795 + 4.99247i 0.0741872 + 0.179104i
\(778\) 20.0326i 0.718205i
\(779\) 0.754064 0.312344i 0.0270172 0.0111909i
\(780\) 0 0
\(781\) 32.4567 1.16139
\(782\) 22.1499 4.04873i 0.792080 0.144782i
\(783\) 2.55945 0.0914673
\(784\) 2.91732 + 2.91732i 0.104190 + 0.104190i
\(785\) 0 0
\(786\) 23.6279i 0.842778i
\(787\) 4.08149 + 9.85358i 0.145489 + 0.351242i 0.979779 0.200085i \(-0.0641217\pi\)
−0.834289 + 0.551327i \(0.814122\pi\)
\(788\) 0.232657 + 0.0963695i 0.00828805 + 0.00343302i
\(789\) −8.56247 + 20.6716i −0.304832 + 0.735929i
\(790\) 0 0
\(791\) 6.74277 6.74277i 0.239745 0.239745i
\(792\) −16.4627 + 39.7445i −0.584977 + 1.41226i
\(793\) 4.10224 + 1.69920i 0.145675 + 0.0603405i
\(794\) 10.7992 + 26.0715i 0.383248 + 0.925242i
\(795\) 0 0
\(796\) −21.6955 + 8.98658i −0.768978 + 0.318521i
\(797\) 16.0429 + 16.0429i 0.568269 + 0.568269i 0.931643 0.363374i \(-0.118375\pi\)
−0.363374 + 0.931643i \(0.618375\pi\)
\(798\) 1.25888 0.0445637
\(799\) −6.87286 1.47861i −0.243144 0.0523093i
\(800\) 0 0
\(801\) −26.6733 26.6733i −0.942454 0.942454i
\(802\) −14.5660 + 6.03342i −0.514342 + 0.213048i
\(803\) 56.5023i 1.99392i
\(804\) −7.96493 19.2290i −0.280901 0.678156i
\(805\) 0 0
\(806\) 3.54460 8.55742i 0.124853 0.301422i
\(807\) 5.28472 5.28472i 0.186031 0.186031i
\(808\) 13.8796 13.8796i 0.488281 0.488281i
\(809\) −7.24370 + 17.4878i −0.254675 + 0.614840i −0.998570 0.0534567i \(-0.982976\pi\)
0.743895 + 0.668296i \(0.232976\pi\)
\(810\) 0 0
\(811\) −10.8154 26.1106i −0.379779 0.916867i −0.992007 0.126186i \(-0.959726\pi\)
0.612228 0.790681i \(-0.290274\pi\)
\(812\) 4.83630i 0.169721i
\(813\) 30.0983 12.4671i 1.05559 0.437241i
\(814\) 12.8794 + 12.8794i 0.451423 + 0.451423i
\(815\) 0 0
\(816\) −1.12720 6.16671i −0.0394598 0.215878i
\(817\) 6.45084 0.225686
\(818\) 13.0285 + 13.0285i 0.455530 + 0.455530i
\(819\) −6.04495 + 2.50390i −0.211228 + 0.0874934i
\(820\) 0 0
\(821\) 5.59227 + 13.5009i 0.195172 + 0.471186i 0.990922 0.134439i \(-0.0429232\pi\)
−0.795750 + 0.605625i \(0.792923\pi\)
\(822\) 6.67645 + 2.76548i 0.232868 + 0.0964570i
\(823\) −7.45453 + 17.9968i −0.259848 + 0.627330i −0.998928 0.0462883i \(-0.985261\pi\)
0.739080 + 0.673618i \(0.235261\pi\)
\(824\) 0.729767 0.729767i 0.0254226 0.0254226i
\(825\) 0 0
\(826\) −1.17668 + 2.84076i −0.0409420 + 0.0988428i
\(827\) −9.01621 3.73464i −0.313524 0.129866i 0.220372 0.975416i \(-0.429273\pi\)
−0.533896 + 0.845550i \(0.679273\pi\)
\(828\) 7.50797 + 18.1258i 0.260920 + 0.629916i
\(829\) 5.96301i 0.207104i 0.994624 + 0.103552i \(0.0330208\pi\)
−0.994624 + 0.103552i \(0.966979\pi\)
\(830\) 0 0
\(831\) −7.08978 7.08978i −0.245942 0.245942i
\(832\) −24.6446 −0.854398
\(833\) 23.2589 15.0230i 0.805873 0.520517i
\(834\) 28.9081 1.00100
\(835\) 0 0
\(836\) −4.73552 + 1.96152i −0.163782 + 0.0678405i
\(837\) 0.765686i 0.0264660i
\(838\) −5.24528 12.6632i −0.181195 0.437444i
\(839\) 20.9048 + 8.65906i 0.721715 + 0.298944i 0.713142 0.701019i \(-0.247271\pi\)
0.00857233 + 0.999963i \(0.497271\pi\)
\(840\) 0 0
\(841\) −28.0511 + 28.0511i −0.967281 + 0.967281i
\(842\) −17.9982 + 17.9982i −0.620258 + 0.620258i
\(843\) 13.5100 32.6161i 0.465310 1.12336i
\(844\) 15.7142 + 6.50903i 0.540904 + 0.224050i
\(845\) 0 0
\(846\) 5.07081i 0.174338i
\(847\) 5.34904 2.21564i 0.183795 0.0761304i
\(848\) 3.54624 + 3.54624i 0.121779 + 0.121779i
\(849\) −13.7950 −0.473443
\(850\) 0 0
\(851\) 23.4901 0.805232
\(852\) −13.2940 13.2940i −0.455444 0.455444i
\(853\) 6.10940 2.53060i 0.209182 0.0866459i −0.275632 0.961263i \(-0.588887\pi\)
0.484814 + 0.874617i \(0.338887\pi\)
\(854\) 0.574166i 0.0196476i
\(855\) 0 0
\(856\) −21.2181 8.78882i −0.725219 0.300396i
\(857\) 10.4589 25.2501i 0.357270 0.862526i −0.638412 0.769695i \(-0.720408\pi\)
0.995682 0.0928314i \(-0.0295918\pi\)
\(858\) −30.5664 + 30.5664i −1.04352 + 1.04352i
\(859\) 10.0721 10.0721i 0.343654 0.343654i −0.514085 0.857739i \(-0.671868\pi\)
0.857739 + 0.514085i \(0.171868\pi\)
\(860\) 0 0
\(861\) 0.993355 + 0.411461i 0.0338534 + 0.0140226i
\(862\) 10.4232 + 25.1639i 0.355016 + 0.857084i
\(863\) 31.4670i 1.07115i 0.844488 + 0.535574i \(0.179905\pi\)
−0.844488 + 0.535574i \(0.820095\pi\)
\(864\) 1.51379 0.627031i 0.0515001 0.0213320i
\(865\) 0 0
\(866\) −34.4457 −1.17051
\(867\) −42.0518 1.30888i −1.42815 0.0444521i
\(868\) 1.44683 0.0491086
\(869\) 4.89583 + 4.89583i 0.166080 + 0.166080i
\(870\) 0 0
\(871\) 30.1733i 1.02238i
\(872\) −13.7242 33.1331i −0.464759 1.12203i
\(873\) −0.658344 0.272695i −0.0222816 0.00922933i
\(874\) 2.09415 5.05573i 0.0708358 0.171013i
\(875\) 0 0
\(876\) −23.1429 + 23.1429i −0.781925 + 0.781925i
\(877\) 2.13245 5.14819i 0.0720078 0.173842i −0.883778 0.467907i \(-0.845008\pi\)
0.955785 + 0.294065i \(0.0950082\pi\)
\(878\) −28.5251 11.8155i −0.962677 0.398754i
\(879\) 1.86688 + 4.50705i 0.0629684 + 0.152019i
\(880\) 0 0
\(881\) 29.7926 12.3405i 1.00374 0.415762i 0.180572 0.983562i \(-0.442205\pi\)
0.823167 + 0.567800i \(0.192205\pi\)
\(882\) −14.1223 14.1223i −0.475521 0.475521i
\(883\) 38.2240 1.28634 0.643169 0.765724i \(-0.277619\pi\)
0.643169 + 0.765724i \(0.277619\pi\)
\(884\) −3.72503 + 17.3147i −0.125286 + 0.582356i
\(885\) 0 0
\(886\) −1.26835 1.26835i −0.0426111 0.0426111i
\(887\) −5.72381 + 2.37088i −0.192187 + 0.0796063i −0.476701 0.879065i \(-0.658168\pi\)
0.284515 + 0.958672i \(0.408168\pi\)
\(888\) 29.8353i 1.00121i
\(889\) 2.53040 + 6.10892i 0.0848668 + 0.204887i
\(890\) 0 0
\(891\) −15.4035 + 37.1872i −0.516035 + 1.24582i
\(892\) −0.827523 + 0.827523i −0.0277075 + 0.0277075i
\(893\) −1.20811 + 1.20811i −0.0404279 + 0.0404279i
\(894\) 4.92639 11.8934i 0.164763 0.397773i
\(895\) 0 0
\(896\) −0.946134 2.28417i −0.0316081 0.0763088i
\(897\) 55.7485i 1.86139i
\(898\) −1.76006 + 0.729042i −0.0587340 + 0.0243284i
\(899\) −14.5264 14.5264i −0.484483 0.484483i
\(900\) 0 0
\(901\) 28.2731 18.2618i 0.941915 0.608387i
\(902\) 3.62410 0.120669
\(903\) 6.00894 + 6.00894i 0.199965 + 0.199965i
\(904\) −48.6406 + 20.1476i −1.61776 + 0.670099i
\(905\) 0 0
\(906\) −4.51389 10.8975i −0.149964 0.362045i
\(907\) 10.0069 + 4.14501i 0.332275 + 0.137633i 0.542583 0.840002i \(-0.317447\pi\)
−0.210307 + 0.977635i \(0.567447\pi\)
\(908\) 0.865889 2.09044i 0.0287355 0.0693737i
\(909\) −14.7276 + 14.7276i −0.488485 + 0.488485i
\(910\) 0 0
\(911\) −15.0373 + 36.3032i −0.498207 + 1.20278i 0.452241 + 0.891896i \(0.350625\pi\)
−0.950448 + 0.310882i \(0.899375\pi\)
\(912\) −1.40755 0.583028i −0.0466088 0.0193060i
\(913\) 28.9599 + 69.9154i 0.958433 + 2.31386i
\(914\) 16.8061i 0.555897i
\(915\) 0 0
\(916\) −9.91385 9.91385i −0.327563 0.327563i
\(917\) −5.35051 −0.176689
\(918\) 0.217929 + 1.19225i 0.00719272 + 0.0393501i
\(919\) 48.2620 1.59202 0.796008 0.605286i \(-0.206941\pi\)
0.796008 + 0.605286i \(0.206941\pi\)
\(920\) 0 0
\(921\) −3.87812 + 1.60637i −0.127788 + 0.0529317i
\(922\) 30.3045i 0.998026i
\(923\) −10.4301 25.1806i −0.343312 0.828829i
\(924\) −6.23827 2.58398i −0.205224 0.0850066i
\(925\) 0 0
\(926\) −10.6315 + 10.6315i −0.349374 + 0.349374i
\(927\) −0.774357 + 0.774357i −0.0254332 + 0.0254332i
\(928\) −16.8233 + 40.6151i −0.552252 + 1.33325i
\(929\) −21.5317 8.91871i −0.706431 0.292613i 0.000395678 1.00000i \(-0.499874\pi\)
−0.706827 + 0.707387i \(0.749874\pi\)
\(930\) 0 0
\(931\) 6.72920i 0.220541i
\(932\) 6.55460 2.71501i 0.214703 0.0889330i
\(933\) 19.0619 + 19.0619i 0.624057 + 0.624057i
\(934\) 8.43745 0.276082
\(935\) 0 0
\(936\) 36.1250 1.18078
\(937\) 6.87594 + 6.87594i 0.224627 + 0.224627i 0.810444 0.585816i \(-0.199226\pi\)
−0.585816 + 0.810444i \(0.699226\pi\)
\(938\) −3.60471 + 1.49312i −0.117698 + 0.0487520i
\(939\) 65.0674i 2.12339i
\(940\) 0 0
\(941\) 13.0919 + 5.42286i 0.426785 + 0.176780i 0.585728 0.810508i \(-0.300809\pi\)
−0.158943 + 0.987288i \(0.550809\pi\)
\(942\) −9.86479 + 23.8157i −0.321412 + 0.775958i
\(943\) 3.30491 3.30491i 0.107623 0.107623i
\(944\) 2.63131 2.63131i 0.0856418 0.0856418i
\(945\) 0 0
\(946\) 26.4630 + 10.9613i 0.860387 + 0.356384i
\(947\) 14.7284 + 35.5574i 0.478607 + 1.15546i 0.960262 + 0.279099i \(0.0900358\pi\)
−0.481655 + 0.876361i \(0.659964\pi\)
\(948\) 4.01058i 0.130257i
\(949\) −43.8357 + 18.1573i −1.42297 + 0.589412i
\(950\) 0 0
\(951\) 61.8987 2.00720
\(952\) 6.37071 1.16449i 0.206476 0.0377412i
\(953\) −37.7984 −1.22441 −0.612206 0.790698i \(-0.709718\pi\)
−0.612206 + 0.790698i \(0.709718\pi\)
\(954\) −17.1668 17.1668i −0.555795 0.555795i
\(955\) 0 0
\(956\) 1.38774i 0.0448828i
\(957\) 36.6897 + 88.5768i 1.18601 + 2.86328i
\(958\) 10.4721 + 4.33769i 0.338339 + 0.140145i
\(959\) −0.626240 + 1.51188i −0.0202223 + 0.0488210i
\(960\) 0 0
\(961\) −17.5746 + 17.5746i −0.566922 + 0.566922i
\(962\) 5.85325 14.1310i 0.188716 0.455602i
\(963\) 22.5145 + 9.32583i 0.725521 + 0.300521i
\(964\) 1.04508 + 2.52305i 0.0336598 + 0.0812620i
\(965\) 0 0
\(966\) 6.66009 2.75870i 0.214285 0.0887598i
\(967\) 3.39288 + 3.39288i 0.109108 + 0.109108i 0.759553 0.650445i \(-0.225418\pi\)
−0.650445 + 0.759553i \(0.725418\pi\)
\(968\) −31.9662 −1.02743
\(969\) −5.81217 + 8.41221i −0.186714 + 0.270239i
\(970\) 0 0
\(971\) −25.8080 25.8080i −0.828217 0.828217i 0.159053 0.987270i \(-0.449156\pi\)
−0.987270 + 0.159053i \(0.949156\pi\)
\(972\) 22.4774 9.31043i 0.720962 0.298632i
\(973\) 6.54621i 0.209862i
\(974\) −9.75221 23.5439i −0.312481 0.754396i
\(975\) 0 0
\(976\) −0.265916 + 0.641978i −0.00851176 + 0.0205492i
\(977\) −44.0684 + 44.0684i −1.40987 + 1.40987i −0.649569 + 0.760303i \(0.725051\pi\)
−0.760303 + 0.649569i \(0.774949\pi\)
\(978\) −12.3074 + 12.3074i −0.393547 + 0.393547i
\(979\) 21.5965 52.1385i 0.690227 1.66635i
\(980\) 0 0
\(981\) 14.5627 + 35.1576i 0.464953 + 1.12249i
\(982\) 22.0034i 0.702156i
\(983\) −37.1141 + 15.3732i −1.18376 + 0.490328i −0.885717 0.464225i \(-0.846333\pi\)
−0.298040 + 0.954553i \(0.596333\pi\)
\(984\) −4.19764 4.19764i −0.133816 0.133816i
\(985\) 0 0
\(986\) −26.7536 18.4846i −0.852008 0.588670i
\(987\) −2.25070 −0.0716407
\(988\) 3.04358 + 3.04358i 0.0968291 + 0.0968291i
\(989\) 34.1282 14.1364i 1.08521 0.449511i
\(990\) 0 0
\(991\) 9.59778 + 23.1711i 0.304883 + 0.736054i 0.999855 + 0.0170168i \(0.00541686\pi\)
−0.694972 + 0.719037i \(0.744583\pi\)
\(992\) −12.1504 5.03287i −0.385776 0.159794i
\(993\) 30.5786 73.8232i 0.970382 2.34271i
\(994\) −2.49211 + 2.49211i −0.0790449 + 0.0790449i
\(995\) 0 0
\(996\) 16.7750 40.4985i 0.531536 1.28324i
\(997\) 34.5204 + 14.2988i 1.09327 + 0.452848i 0.855146 0.518387i \(-0.173467\pi\)
0.238125 + 0.971235i \(0.423467\pi\)
\(998\) 1.80882 + 4.36687i 0.0572571 + 0.138231i
\(999\) 1.26439i 0.0400035i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 425.2.m.e.376.2 24
5.2 odd 4 85.2.m.a.19.5 yes 24
5.3 odd 4 85.2.m.a.19.2 yes 24
5.4 even 2 inner 425.2.m.e.376.5 24
15.2 even 4 765.2.bh.b.19.2 24
15.8 even 4 765.2.bh.b.19.5 24
17.3 odd 16 7225.2.a.by.1.8 24
17.9 even 8 inner 425.2.m.e.26.2 24
17.14 odd 16 7225.2.a.by.1.7 24
85.3 even 16 1445.2.b.i.579.18 24
85.9 even 8 inner 425.2.m.e.26.5 24
85.14 odd 16 7225.2.a.by.1.18 24
85.37 even 16 1445.2.b.i.579.7 24
85.43 odd 8 85.2.m.a.9.5 yes 24
85.48 even 16 1445.2.b.i.579.17 24
85.54 odd 16 7225.2.a.by.1.17 24
85.77 odd 8 85.2.m.a.9.2 24
85.82 even 16 1445.2.b.i.579.8 24
255.77 even 8 765.2.bh.b.604.5 24
255.128 even 8 765.2.bh.b.604.2 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
85.2.m.a.9.2 24 85.77 odd 8
85.2.m.a.9.5 yes 24 85.43 odd 8
85.2.m.a.19.2 yes 24 5.3 odd 4
85.2.m.a.19.5 yes 24 5.2 odd 4
425.2.m.e.26.2 24 17.9 even 8 inner
425.2.m.e.26.5 24 85.9 even 8 inner
425.2.m.e.376.2 24 1.1 even 1 trivial
425.2.m.e.376.5 24 5.4 even 2 inner
765.2.bh.b.19.2 24 15.2 even 4
765.2.bh.b.19.5 24 15.8 even 4
765.2.bh.b.604.2 24 255.128 even 8
765.2.bh.b.604.5 24 255.77 even 8
1445.2.b.i.579.7 24 85.37 even 16
1445.2.b.i.579.8 24 85.82 even 16
1445.2.b.i.579.17 24 85.48 even 16
1445.2.b.i.579.18 24 85.3 even 16
7225.2.a.by.1.7 24 17.14 odd 16
7225.2.a.by.1.8 24 17.3 odd 16
7225.2.a.by.1.17 24 85.54 odd 16
7225.2.a.by.1.18 24 85.14 odd 16