Properties

Label 765.2.bh.b.19.5
Level $765$
Weight $2$
Character 765.19
Analytic conductor $6.109$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [765,2,Mod(19,765)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(765, base_ring=CyclotomicField(8))
 
chi = DirichletCharacter(H, H._module([0, 4, 7]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("765.19");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 765 = 3^{2} \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 765.bh (of order \(8\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.10855575463\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(6\) over \(\Q(\zeta_{8})\)
Twist minimal: no (minimal twist has level 85)
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

Embedding invariants

Embedding label 19.5
Character \(\chi\) \(=\) 765.19
Dual form 765.2.bh.b.604.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.672981 - 0.672981i) q^{2} +1.09419i q^{4} +(0.973741 + 2.01292i) q^{5} +(-0.492777 - 0.204115i) q^{7} +(2.08233 + 2.08233i) q^{8} +(2.00996 + 0.699345i) q^{10} +(-4.31906 - 1.78902i) q^{11} +3.92573 q^{13} +(-0.468995 + 0.194264i) q^{14} +0.614355 q^{16} +(4.03088 + 0.867192i) q^{17} +(0.708548 + 0.708548i) q^{19} +(-2.20252 + 1.06546i) q^{20} +(-4.11062 + 1.70268i) q^{22} +(-2.19587 + 5.30129i) q^{23} +(-3.10366 + 3.92012i) q^{25} +(2.64194 - 2.64194i) q^{26} +(0.223341 - 0.539193i) q^{28} +(3.17120 + 7.65596i) q^{29} +(-2.29036 + 0.948699i) q^{31} +(-3.75122 + 3.75122i) q^{32} +(3.29631 - 2.12910i) q^{34} +(-0.0689710 - 1.19067i) q^{35} +(1.56660 + 3.78211i) q^{37} +0.953679 q^{38} +(-2.16391 + 6.21921i) q^{40} +(0.311708 - 0.752530i) q^{41} +(-4.55216 - 4.55216i) q^{43} +(1.95753 - 4.72589i) q^{44} +(2.08989 + 5.04545i) q^{46} +1.70505 q^{47} +(-4.74858 - 4.74858i) q^{49} +(0.549461 + 4.72687i) q^{50} +4.29551i q^{52} +(5.77230 - 5.77230i) q^{53} +(-0.604514 - 10.4359i) q^{55} +(-0.601090 - 1.45116i) q^{56} +(7.28648 + 3.01816i) q^{58} +(4.28304 - 4.28304i) q^{59} +(-0.432837 + 1.04496i) q^{61} +(-0.902914 + 2.17983i) q^{62} +6.27771i q^{64} +(3.82265 + 7.90217i) q^{65} -7.68603i q^{67} +(-0.948875 + 4.41056i) q^{68} +(-0.847716 - 0.754884i) q^{70} +(-6.41424 + 2.65686i) q^{71} +(11.1662 - 4.62521i) q^{73} +(3.59958 + 1.49100i) q^{74} +(-0.775289 + 0.775289i) q^{76} +(1.76317 + 1.76317i) q^{77} +(-1.36830 - 0.566769i) q^{79} +(0.598223 + 1.23664i) q^{80} +(-0.296665 - 0.716212i) q^{82} +(11.4464 - 11.4464i) q^{83} +(2.17945 + 8.95824i) q^{85} -6.12703 q^{86} +(-5.26841 - 12.7191i) q^{88} -12.0717i q^{89} +(-1.93451 - 0.801300i) q^{91} +(-5.80064 - 2.40270i) q^{92} +(1.14747 - 1.14747i) q^{94} +(-0.736305 + 2.11619i) q^{95} +(-0.210684 + 0.0872680i) q^{97} -6.39141 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 16 q^{10} + 24 q^{14} + 8 q^{16} - 24 q^{19} + 8 q^{20} + 16 q^{25} + 16 q^{26} - 24 q^{29} - 24 q^{31} + 8 q^{34} - 8 q^{35} + 16 q^{40} + 48 q^{41} - 72 q^{44} - 16 q^{46} + 48 q^{49} - 16 q^{50}+ \cdots + 88 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/765\mathbb{Z}\right)^\times\).

\(n\) \(307\) \(496\) \(596\)
\(\chi(n)\) \(-1\) \(e\left(\frac{7}{8}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.672981 0.672981i 0.475869 0.475869i −0.427938 0.903808i \(-0.640760\pi\)
0.903808 + 0.427938i \(0.140760\pi\)
\(3\) 0 0
\(4\) 1.09419i 0.547097i
\(5\) 0.973741 + 2.01292i 0.435470 + 0.900203i
\(6\) 0 0
\(7\) −0.492777 0.204115i −0.186252 0.0771481i 0.287608 0.957748i \(-0.407140\pi\)
−0.473860 + 0.880600i \(0.657140\pi\)
\(8\) 2.08233 + 2.08233i 0.736216 + 0.736216i
\(9\) 0 0
\(10\) 2.00996 + 0.699345i 0.635606 + 0.221152i
\(11\) −4.31906 1.78902i −1.30225 0.539408i −0.379634 0.925137i \(-0.623950\pi\)
−0.922612 + 0.385728i \(0.873950\pi\)
\(12\) 0 0
\(13\) 3.92573 1.08880 0.544401 0.838825i \(-0.316757\pi\)
0.544401 + 0.838825i \(0.316757\pi\)
\(14\) −0.468995 + 0.194264i −0.125344 + 0.0519192i
\(15\) 0 0
\(16\) 0.614355 0.153589
\(17\) 4.03088 + 0.867192i 0.977632 + 0.210325i
\(18\) 0 0
\(19\) 0.708548 + 0.708548i 0.162552 + 0.162552i 0.783696 0.621144i \(-0.213332\pi\)
−0.621144 + 0.783696i \(0.713332\pi\)
\(20\) −2.20252 + 1.06546i −0.492498 + 0.238244i
\(21\) 0 0
\(22\) −4.11062 + 1.70268i −0.876387 + 0.363012i
\(23\) −2.19587 + 5.30129i −0.457870 + 1.10540i 0.511388 + 0.859350i \(0.329132\pi\)
−0.969258 + 0.246046i \(0.920868\pi\)
\(24\) 0 0
\(25\) −3.10366 + 3.92012i −0.620731 + 0.784023i
\(26\) 2.64194 2.64194i 0.518128 0.518128i
\(27\) 0 0
\(28\) 0.223341 0.539193i 0.0422075 0.101898i
\(29\) 3.17120 + 7.65596i 0.588878 + 1.42168i 0.884576 + 0.466395i \(0.154448\pi\)
−0.295699 + 0.955281i \(0.595552\pi\)
\(30\) 0 0
\(31\) −2.29036 + 0.948699i −0.411361 + 0.170391i −0.578760 0.815498i \(-0.696463\pi\)
0.167399 + 0.985889i \(0.446463\pi\)
\(32\) −3.75122 + 3.75122i −0.663128 + 0.663128i
\(33\) 0 0
\(34\) 3.29631 2.12910i 0.565312 0.365138i
\(35\) −0.0689710 1.19067i −0.0116582 0.201260i
\(36\) 0 0
\(37\) 1.56660 + 3.78211i 0.257548 + 0.621775i 0.998775 0.0494786i \(-0.0157560\pi\)
−0.741227 + 0.671254i \(0.765756\pi\)
\(38\) 0.953679 0.154707
\(39\) 0 0
\(40\) −2.16391 + 6.21921i −0.342144 + 0.983344i
\(41\) 0.311708 0.752530i 0.0486806 0.117525i −0.897669 0.440671i \(-0.854740\pi\)
0.946349 + 0.323146i \(0.104740\pi\)
\(42\) 0 0
\(43\) −4.55216 4.55216i −0.694197 0.694197i 0.268955 0.963153i \(-0.413322\pi\)
−0.963153 + 0.268955i \(0.913322\pi\)
\(44\) 1.95753 4.72589i 0.295108 0.712455i
\(45\) 0 0
\(46\) 2.08989 + 5.04545i 0.308138 + 0.743911i
\(47\) 1.70505 0.248707 0.124354 0.992238i \(-0.460314\pi\)
0.124354 + 0.992238i \(0.460314\pi\)
\(48\) 0 0
\(49\) −4.74858 4.74858i −0.678369 0.678369i
\(50\) 0.549461 + 4.72687i 0.0777056 + 0.668480i
\(51\) 0 0
\(52\) 4.29551i 0.595680i
\(53\) 5.77230 5.77230i 0.792887 0.792887i −0.189076 0.981962i \(-0.560549\pi\)
0.981962 + 0.189076i \(0.0605492\pi\)
\(54\) 0 0
\(55\) −0.604514 10.4359i −0.0815126 1.40718i
\(56\) −0.601090 1.45116i −0.0803240 0.193919i
\(57\) 0 0
\(58\) 7.28648 + 3.01816i 0.956761 + 0.396304i
\(59\) 4.28304 4.28304i 0.557605 0.557605i −0.371020 0.928625i \(-0.620992\pi\)
0.928625 + 0.371020i \(0.120992\pi\)
\(60\) 0 0
\(61\) −0.432837 + 1.04496i −0.0554192 + 0.133794i −0.949164 0.314782i \(-0.898069\pi\)
0.893745 + 0.448576i \(0.148069\pi\)
\(62\) −0.902914 + 2.17983i −0.114670 + 0.276838i
\(63\) 0 0
\(64\) 6.27771i 0.784713i
\(65\) 3.82265 + 7.90217i 0.474141 + 0.980143i
\(66\) 0 0
\(67\) 7.68603i 0.938998i −0.882933 0.469499i \(-0.844435\pi\)
0.882933 0.469499i \(-0.155565\pi\)
\(68\) −0.948875 + 4.41056i −0.115068 + 0.534859i
\(69\) 0 0
\(70\) −0.847716 0.754884i −0.101321 0.0902259i
\(71\) −6.41424 + 2.65686i −0.761230 + 0.315312i −0.729314 0.684179i \(-0.760161\pi\)
−0.0319156 + 0.999491i \(0.510161\pi\)
\(72\) 0 0
\(73\) 11.1662 4.62521i 1.30691 0.541340i 0.382929 0.923778i \(-0.374915\pi\)
0.923981 + 0.382438i \(0.124915\pi\)
\(74\) 3.59958 + 1.49100i 0.418443 + 0.173325i
\(75\) 0 0
\(76\) −0.775289 + 0.775289i −0.0889317 + 0.0889317i
\(77\) 1.76317 + 1.76317i 0.200932 + 0.200932i
\(78\) 0 0
\(79\) −1.36830 0.566769i −0.153946 0.0637666i 0.304380 0.952551i \(-0.401551\pi\)
−0.458326 + 0.888784i \(0.651551\pi\)
\(80\) 0.598223 + 1.23664i 0.0668833 + 0.138261i
\(81\) 0 0
\(82\) −0.296665 0.716212i −0.0327611 0.0790924i
\(83\) 11.4464 11.4464i 1.25640 1.25640i 0.303606 0.952798i \(-0.401810\pi\)
0.952798 0.303606i \(-0.0981905\pi\)
\(84\) 0 0
\(85\) 2.17945 + 8.95824i 0.236394 + 0.971657i
\(86\) −6.12703 −0.660694
\(87\) 0 0
\(88\) −5.26841 12.7191i −0.561614 1.35586i
\(89\) 12.0717i 1.27960i −0.768542 0.639800i \(-0.779017\pi\)
0.768542 0.639800i \(-0.220983\pi\)
\(90\) 0 0
\(91\) −1.93451 0.801300i −0.202792 0.0839991i
\(92\) −5.80064 2.40270i −0.604758 0.250499i
\(93\) 0 0
\(94\) 1.14747 1.14747i 0.118352 0.118352i
\(95\) −0.736305 + 2.11619i −0.0755433 + 0.217117i
\(96\) 0 0
\(97\) −0.210684 + 0.0872680i −0.0213917 + 0.00886072i −0.393354 0.919387i \(-0.628685\pi\)
0.371962 + 0.928248i \(0.378685\pi\)
\(98\) −6.39141 −0.645630
\(99\) 0 0
\(100\) −4.28936 3.39600i −0.428936 0.339600i
\(101\) 6.66539 0.663231 0.331616 0.943415i \(-0.392406\pi\)
0.331616 + 0.943415i \(0.392406\pi\)
\(102\) 0 0
\(103\) 0.350456i 0.0345315i −0.999851 0.0172657i \(-0.994504\pi\)
0.999851 0.0172657i \(-0.00549613\pi\)
\(104\) 8.17468 + 8.17468i 0.801594 + 0.801594i
\(105\) 0 0
\(106\) 7.76930i 0.754621i
\(107\) −7.20512 + 2.98446i −0.696545 + 0.288518i −0.702724 0.711463i \(-0.748033\pi\)
0.00617913 + 0.999981i \(0.498033\pi\)
\(108\) 0 0
\(109\) 4.66038 11.2511i 0.446383 1.07766i −0.527284 0.849689i \(-0.676790\pi\)
0.973667 0.227975i \(-0.0732104\pi\)
\(110\) −7.43002 6.61637i −0.708425 0.630846i
\(111\) 0 0
\(112\) −0.302740 0.125399i −0.0286062 0.0118491i
\(113\) 6.84161 16.5171i 0.643604 1.55380i −0.178179 0.983998i \(-0.557020\pi\)
0.821783 0.569800i \(-0.192980\pi\)
\(114\) 0 0
\(115\) −12.8093 + 0.741990i −1.19447 + 0.0691910i
\(116\) −8.37710 + 3.46991i −0.777794 + 0.322173i
\(117\) 0 0
\(118\) 5.76481i 0.530694i
\(119\) −1.80932 1.25009i −0.165860 0.114596i
\(120\) 0 0
\(121\) 7.67557 + 7.67557i 0.697779 + 0.697779i
\(122\) 0.411948 + 0.994531i 0.0372960 + 0.0900406i
\(123\) 0 0
\(124\) −1.03806 2.50610i −0.0932205 0.225054i
\(125\) −10.9130 2.43022i −0.976090 0.217366i
\(126\) 0 0
\(127\) 8.76596 + 8.76596i 0.777853 + 0.777853i 0.979465 0.201612i \(-0.0646181\pi\)
−0.201612 + 0.979465i \(0.564618\pi\)
\(128\) −3.27766 3.27766i −0.289707 0.289707i
\(129\) 0 0
\(130\) 7.89058 + 2.74544i 0.692049 + 0.240791i
\(131\) 3.83884 + 9.26779i 0.335401 + 0.809730i 0.998145 + 0.0608839i \(0.0193919\pi\)
−0.662744 + 0.748846i \(0.730608\pi\)
\(132\) 0 0
\(133\) −0.204531 0.493781i −0.0177351 0.0428163i
\(134\) −5.17255 5.17255i −0.446841 0.446841i
\(135\) 0 0
\(136\) 6.58785 + 10.1994i 0.564903 + 0.874593i
\(137\) 3.06808i 0.262124i −0.991374 0.131062i \(-0.958161\pi\)
0.991374 0.131062i \(-0.0418386\pi\)
\(138\) 0 0
\(139\) 11.3389 4.69672i 0.961753 0.398371i 0.154117 0.988053i \(-0.450747\pi\)
0.807636 + 0.589682i \(0.200747\pi\)
\(140\) 1.30283 0.0754676i 0.110109 0.00637817i
\(141\) 0 0
\(142\) −2.52864 + 6.10468i −0.212199 + 0.512293i
\(143\) −16.9555 7.02320i −1.41789 0.587309i
\(144\) 0 0
\(145\) −12.3229 + 13.8383i −1.02336 + 1.14921i
\(146\) 4.40199 10.6274i 0.364312 0.879526i
\(147\) 0 0
\(148\) −4.13836 + 1.71417i −0.340171 + 0.140904i
\(149\) 5.46544i 0.447747i 0.974618 + 0.223873i \(0.0718702\pi\)
−0.974618 + 0.223873i \(0.928130\pi\)
\(150\) 0 0
\(151\) 3.54105 + 3.54105i 0.288167 + 0.288167i 0.836355 0.548188i \(-0.184682\pi\)
−0.548188 + 0.836355i \(0.684682\pi\)
\(152\) 2.95087i 0.239347i
\(153\) 0 0
\(154\) 2.37316 0.191235
\(155\) −4.13987 3.68652i −0.332522 0.296108i
\(156\) 0 0
\(157\) −10.9442 −0.873443 −0.436721 0.899597i \(-0.643860\pi\)
−0.436721 + 0.899597i \(0.643860\pi\)
\(158\) −1.30227 + 0.539417i −0.103603 + 0.0429137i
\(159\) 0 0
\(160\) −11.2036 3.89817i −0.885722 0.308177i
\(161\) 2.16414 2.16414i 0.170558 0.170558i
\(162\) 0 0
\(163\) 6.82704 + 2.82785i 0.534735 + 0.221495i 0.633676 0.773599i \(-0.281545\pi\)
−0.0989404 + 0.995093i \(0.531545\pi\)
\(164\) 0.823413 + 0.341069i 0.0642978 + 0.0266330i
\(165\) 0 0
\(166\) 15.4064i 1.19577i
\(167\) −7.46152 18.0137i −0.577390 1.39394i −0.895147 0.445770i \(-0.852930\pi\)
0.317758 0.948172i \(-0.397070\pi\)
\(168\) 0 0
\(169\) 2.41138 0.185491
\(170\) 7.49545 + 4.56200i 0.574875 + 0.349889i
\(171\) 0 0
\(172\) 4.98094 4.98094i 0.379793 0.379793i
\(173\) 5.08958 + 12.2873i 0.386954 + 0.934189i 0.990582 + 0.136923i \(0.0437212\pi\)
−0.603628 + 0.797266i \(0.706279\pi\)
\(174\) 0 0
\(175\) 2.32956 1.29824i 0.176098 0.0981377i
\(176\) −2.65344 1.09909i −0.200011 0.0828471i
\(177\) 0 0
\(178\) −8.12404 8.12404i −0.608922 0.608922i
\(179\) −7.18598 + 7.18598i −0.537105 + 0.537105i −0.922678 0.385572i \(-0.874004\pi\)
0.385572 + 0.922678i \(0.374004\pi\)
\(180\) 0 0
\(181\) −18.1259 7.50798i −1.34728 0.558064i −0.411750 0.911297i \(-0.635082\pi\)
−0.935535 + 0.353233i \(0.885082\pi\)
\(182\) −1.84115 + 0.762628i −0.136475 + 0.0565298i
\(183\) 0 0
\(184\) −15.6116 + 6.46653i −1.15090 + 0.476719i
\(185\) −6.08761 + 6.83624i −0.447570 + 0.502610i
\(186\) 0 0
\(187\) −15.8582 10.9568i −1.15967 0.801238i
\(188\) 1.86566i 0.136067i
\(189\) 0 0
\(190\) 0.928636 + 1.91968i 0.0673704 + 0.139268i
\(191\) 8.81287i 0.637677i 0.947809 + 0.318838i \(0.103293\pi\)
−0.947809 + 0.318838i \(0.896707\pi\)
\(192\) 0 0
\(193\) 5.91720 14.2854i 0.425930 1.02829i −0.554636 0.832093i \(-0.687142\pi\)
0.980566 0.196192i \(-0.0628575\pi\)
\(194\) −0.0830564 + 0.200516i −0.00596310 + 0.0143962i
\(195\) 0 0
\(196\) 5.19587 5.19587i 0.371133 0.371133i
\(197\) −0.212628 0.0880736i −0.0151491 0.00627498i 0.375096 0.926986i \(-0.377610\pi\)
−0.390245 + 0.920711i \(0.627610\pi\)
\(198\) 0 0
\(199\) 8.21298 + 19.8279i 0.582203 + 1.40556i 0.890812 + 0.454372i \(0.150136\pi\)
−0.308609 + 0.951189i \(0.599864\pi\)
\(200\) −14.6258 + 1.70014i −1.03420 + 0.120218i
\(201\) 0 0
\(202\) 4.48568 4.48568i 0.315611 0.315611i
\(203\) 4.41997i 0.310221i
\(204\) 0 0
\(205\) 1.81830 0.105327i 0.126996 0.00735637i
\(206\) −0.235850 0.235850i −0.0164325 0.0164325i
\(207\) 0 0
\(208\) 2.41179 0.167228
\(209\) −1.79266 4.32787i −0.124001 0.299365i
\(210\) 0 0
\(211\) −5.94870 + 14.3614i −0.409525 + 0.988682i 0.575738 + 0.817635i \(0.304715\pi\)
−0.985263 + 0.171047i \(0.945285\pi\)
\(212\) 6.31601 + 6.31601i 0.433786 + 0.433786i
\(213\) 0 0
\(214\) −2.84042 + 6.85739i −0.194167 + 0.468761i
\(215\) 4.73048 13.5957i 0.322616 0.927221i
\(216\) 0 0
\(217\) 1.32228 0.0897622
\(218\) −4.43546 10.7081i −0.300407 0.725247i
\(219\) 0 0
\(220\) 11.4189 0.661455i 0.769865 0.0445953i
\(221\) 15.8242 + 3.40436i 1.06445 + 0.229002i
\(222\) 0 0
\(223\) 0.756286 0.756286i 0.0506447 0.0506447i −0.681331 0.731976i \(-0.738599\pi\)
0.731976 + 0.681331i \(0.238599\pi\)
\(224\) 2.61419 1.08283i 0.174668 0.0723498i
\(225\) 0 0
\(226\) −6.51143 15.7200i −0.433134 1.04568i
\(227\) −0.791349 + 1.91049i −0.0525237 + 0.126803i −0.947963 0.318380i \(-0.896861\pi\)
0.895440 + 0.445183i \(0.146861\pi\)
\(228\) 0 0
\(229\) −9.06042 + 9.06042i −0.598730 + 0.598730i −0.939974 0.341245i \(-0.889151\pi\)
0.341245 + 0.939974i \(0.389151\pi\)
\(230\) −8.12105 + 9.11974i −0.535486 + 0.601338i
\(231\) 0 0
\(232\) −9.33876 + 22.5458i −0.613120 + 1.48020i
\(233\) 5.99035 2.48129i 0.392441 0.162554i −0.177732 0.984079i \(-0.556876\pi\)
0.570173 + 0.821524i \(0.306876\pi\)
\(234\) 0 0
\(235\) 1.66028 + 3.43212i 0.108305 + 0.223887i
\(236\) 4.68648 + 4.68648i 0.305064 + 0.305064i
\(237\) 0 0
\(238\) −2.05892 + 0.376346i −0.133460 + 0.0243949i
\(239\) −1.26828 −0.0820381 −0.0410190 0.999158i \(-0.513060\pi\)
−0.0410190 + 0.999158i \(0.513060\pi\)
\(240\) 0 0
\(241\) −2.30585 + 0.955116i −0.148533 + 0.0615244i −0.455712 0.890127i \(-0.650615\pi\)
0.307178 + 0.951652i \(0.400615\pi\)
\(242\) 10.3310 0.664103
\(243\) 0 0
\(244\) −1.14339 0.473608i −0.0731981 0.0303196i
\(245\) 4.93461 14.1824i 0.315260 0.906079i
\(246\) 0 0
\(247\) 2.78157 + 2.78157i 0.176987 + 0.176987i
\(248\) −6.74480 2.79379i −0.428296 0.177406i
\(249\) 0 0
\(250\) −8.97975 + 5.70876i −0.567929 + 0.361054i
\(251\) 17.3565i 1.09553i −0.836632 0.547765i \(-0.815479\pi\)
0.836632 0.547765i \(-0.184521\pi\)
\(252\) 0 0
\(253\) 18.9682 18.9682i 1.19252 1.19252i
\(254\) 11.7987 0.740313
\(255\) 0 0
\(256\) −16.9670 −1.06044
\(257\) 10.9991 10.9991i 0.686105 0.686105i −0.275264 0.961369i \(-0.588765\pi\)
0.961369 + 0.275264i \(0.0887653\pi\)
\(258\) 0 0
\(259\) 2.18350i 0.135676i
\(260\) −8.64650 + 4.18271i −0.536233 + 0.259401i
\(261\) 0 0
\(262\) 8.82051 + 3.65358i 0.544933 + 0.225719i
\(263\) 6.39290 + 6.39290i 0.394203 + 0.394203i 0.876183 0.481979i \(-0.160082\pi\)
−0.481979 + 0.876183i \(0.660082\pi\)
\(264\) 0 0
\(265\) 17.2399 + 5.99843i 1.05904 + 0.368481i
\(266\) −0.469951 0.194660i −0.0288145 0.0119354i
\(267\) 0 0
\(268\) 8.41000 0.513723
\(269\) 2.79002 1.15566i 0.170110 0.0704620i −0.296003 0.955187i \(-0.595654\pi\)
0.466113 + 0.884725i \(0.345654\pi\)
\(270\) 0 0
\(271\) 13.1638 0.799642 0.399821 0.916593i \(-0.369072\pi\)
0.399821 + 0.916593i \(0.369072\pi\)
\(272\) 2.47639 + 0.532764i 0.150153 + 0.0323035i
\(273\) 0 0
\(274\) −2.06476 2.06476i −0.124737 0.124737i
\(275\) 20.4180 11.3787i 1.23125 0.686164i
\(276\) 0 0
\(277\) −3.74298 + 1.55039i −0.224894 + 0.0931540i −0.492285 0.870434i \(-0.663838\pi\)
0.267392 + 0.963588i \(0.413838\pi\)
\(278\) 4.47006 10.7917i 0.268096 0.647241i
\(279\) 0 0
\(280\) 2.33576 2.62300i 0.139588 0.156754i
\(281\) −10.0869 + 10.0869i −0.601731 + 0.601731i −0.940772 0.339041i \(-0.889898\pi\)
0.339041 + 0.940772i \(0.389898\pi\)
\(282\) 0 0
\(283\) 2.13312 5.14980i 0.126801 0.306124i −0.847712 0.530457i \(-0.822020\pi\)
0.974513 + 0.224333i \(0.0720203\pi\)
\(284\) −2.90712 7.01841i −0.172506 0.416466i
\(285\) 0 0
\(286\) −16.1372 + 6.68425i −0.954213 + 0.395248i
\(287\) −0.307205 + 0.307205i −0.0181337 + 0.0181337i
\(288\) 0 0
\(289\) 15.4960 + 6.99109i 0.911527 + 0.411241i
\(290\) 1.01984 + 17.6060i 0.0598873 + 1.03386i
\(291\) 0 0
\(292\) 5.06088 + 12.2180i 0.296165 + 0.715006i
\(293\) 1.97120 0.115159 0.0575795 0.998341i \(-0.481662\pi\)
0.0575795 + 0.998341i \(0.481662\pi\)
\(294\) 0 0
\(295\) 12.7920 + 4.45083i 0.744778 + 0.259137i
\(296\) −4.61343 + 11.1378i −0.268150 + 0.647372i
\(297\) 0 0
\(298\) 3.67814 + 3.67814i 0.213069 + 0.213069i
\(299\) −8.62039 + 20.8115i −0.498530 + 1.20356i
\(300\) 0 0
\(301\) 1.31403 + 3.17236i 0.0757396 + 0.182852i
\(302\) 4.76612 0.274260
\(303\) 0 0
\(304\) 0.435300 + 0.435300i 0.0249662 + 0.0249662i
\(305\) −2.52489 + 0.146257i −0.144575 + 0.00837466i
\(306\) 0 0
\(307\) 1.69613i 0.0968034i 0.998828 + 0.0484017i \(0.0154128\pi\)
−0.998828 + 0.0484017i \(0.984587\pi\)
\(308\) −1.92925 + 1.92925i −0.109929 + 0.109929i
\(309\) 0 0
\(310\) −5.26701 + 0.305097i −0.299146 + 0.0173284i
\(311\) −4.16844 10.0635i −0.236371 0.570649i 0.760531 0.649301i \(-0.224938\pi\)
−0.996902 + 0.0786518i \(0.974938\pi\)
\(312\) 0 0
\(313\) −24.2903 10.0614i −1.37297 0.568702i −0.430377 0.902649i \(-0.641619\pi\)
−0.942592 + 0.333947i \(0.891619\pi\)
\(314\) −7.36524 + 7.36524i −0.415645 + 0.415645i
\(315\) 0 0
\(316\) 0.620155 1.49719i 0.0348865 0.0842234i
\(317\) −9.57139 + 23.1074i −0.537583 + 1.29784i 0.388823 + 0.921313i \(0.372882\pi\)
−0.926406 + 0.376527i \(0.877118\pi\)
\(318\) 0 0
\(319\) 38.7399i 2.16902i
\(320\) −12.6365 + 6.11286i −0.706401 + 0.341719i
\(321\) 0 0
\(322\) 2.91286i 0.162327i
\(323\) 2.24162 + 3.47052i 0.124727 + 0.193105i
\(324\) 0 0
\(325\) −12.1841 + 15.3893i −0.675854 + 0.853646i
\(326\) 6.49756 2.69138i 0.359867 0.149062i
\(327\) 0 0
\(328\) 2.21610 0.917938i 0.122364 0.0506847i
\(329\) −0.840209 0.348026i −0.0463222 0.0191873i
\(330\) 0 0
\(331\) 22.8306 22.8306i 1.25488 1.25488i 0.301376 0.953505i \(-0.402554\pi\)
0.953505 0.301376i \(-0.0974458\pi\)
\(332\) 12.5245 + 12.5245i 0.687374 + 0.687374i
\(333\) 0 0
\(334\) −17.1443 7.10142i −0.938097 0.388572i
\(335\) 15.4713 7.48420i 0.845289 0.408906i
\(336\) 0 0
\(337\) −4.92267 11.8844i −0.268155 0.647383i 0.731242 0.682119i \(-0.238941\pi\)
−0.999397 + 0.0347353i \(0.988941\pi\)
\(338\) 1.62281 1.62281i 0.0882693 0.0882693i
\(339\) 0 0
\(340\) −9.80204 + 2.38474i −0.531590 + 0.129330i
\(341\) 11.5895 0.627604
\(342\) 0 0
\(343\) 2.79954 + 6.75868i 0.151161 + 0.364934i
\(344\) 18.9582i 1.02216i
\(345\) 0 0
\(346\) 11.6943 + 4.84395i 0.628691 + 0.260412i
\(347\) −24.8871 10.3086i −1.33601 0.553394i −0.403647 0.914915i \(-0.632257\pi\)
−0.932364 + 0.361521i \(0.882257\pi\)
\(348\) 0 0
\(349\) −10.1253 + 10.1253i −0.541995 + 0.541995i −0.924113 0.382119i \(-0.875195\pi\)
0.382119 + 0.924113i \(0.375195\pi\)
\(350\) 0.694061 2.44144i 0.0370991 0.130501i
\(351\) 0 0
\(352\) 22.9127 9.49076i 1.22125 0.505859i
\(353\) −1.65351 −0.0880076 −0.0440038 0.999031i \(-0.514011\pi\)
−0.0440038 + 0.999031i \(0.514011\pi\)
\(354\) 0 0
\(355\) −11.5938 10.3242i −0.615338 0.547953i
\(356\) 13.2088 0.700065
\(357\) 0 0
\(358\) 9.67206i 0.511184i
\(359\) −12.2781 12.2781i −0.648012 0.648012i 0.304500 0.952512i \(-0.401511\pi\)
−0.952512 + 0.304500i \(0.901511\pi\)
\(360\) 0 0
\(361\) 17.9959i 0.947154i
\(362\) −17.2511 + 7.14564i −0.906697 + 0.375566i
\(363\) 0 0
\(364\) 0.876777 2.11673i 0.0459556 0.110947i
\(365\) 20.1832 + 17.9730i 1.05644 + 0.940748i
\(366\) 0 0
\(367\) −8.84242 3.66265i −0.461571 0.191189i 0.139766 0.990185i \(-0.455365\pi\)
−0.601337 + 0.798996i \(0.705365\pi\)
\(368\) −1.34904 + 3.25688i −0.0703237 + 0.169776i
\(369\) 0 0
\(370\) 0.503812 + 8.69750i 0.0261919 + 0.452162i
\(371\) −4.02267 + 1.66624i −0.208846 + 0.0865070i
\(372\) 0 0
\(373\) 14.4236i 0.746828i −0.927665 0.373414i \(-0.878187\pi\)
0.927665 0.373414i \(-0.121813\pi\)
\(374\) −18.0460 + 3.29858i −0.933134 + 0.170565i
\(375\) 0 0
\(376\) 3.55049 + 3.55049i 0.183102 + 0.183102i
\(377\) 12.4493 + 30.0553i 0.641172 + 1.54793i
\(378\) 0 0
\(379\) 3.64196 + 8.79246i 0.187075 + 0.451638i 0.989394 0.145257i \(-0.0464008\pi\)
−0.802319 + 0.596895i \(0.796401\pi\)
\(380\) −2.31552 0.805660i −0.118784 0.0413295i
\(381\) 0 0
\(382\) 5.93089 + 5.93089i 0.303451 + 0.303451i
\(383\) 19.6401 + 19.6401i 1.00356 + 1.00356i 0.999994 + 0.00356842i \(0.00113586\pi\)
0.00356842 + 0.999994i \(0.498864\pi\)
\(384\) 0 0
\(385\) −1.83224 + 5.26598i −0.0933796 + 0.268379i
\(386\) −5.63163 13.5960i −0.286643 0.692016i
\(387\) 0 0
\(388\) −0.0954881 0.230529i −0.00484767 0.0117033i
\(389\) −14.8835 14.8835i −0.754624 0.754624i 0.220715 0.975338i \(-0.429161\pi\)
−0.975338 + 0.220715i \(0.929161\pi\)
\(390\) 0 0
\(391\) −13.4485 + 19.4646i −0.680121 + 0.984369i
\(392\) 19.7763i 0.998852i
\(393\) 0 0
\(394\) −0.202367 + 0.0838230i −0.0101951 + 0.00422294i
\(395\) −0.191513 3.30616i −0.00963607 0.166351i
\(396\) 0 0
\(397\) −11.3468 + 27.3935i −0.569478 + 1.37484i 0.332518 + 0.943097i \(0.392102\pi\)
−0.901996 + 0.431744i \(0.857898\pi\)
\(398\) 18.8710 + 7.81661i 0.945916 + 0.391811i
\(399\) 0 0
\(400\) −1.90675 + 2.40834i −0.0953374 + 0.120417i
\(401\) −6.33937 + 15.3046i −0.316573 + 0.764275i 0.682858 + 0.730551i \(0.260737\pi\)
−0.999431 + 0.0337238i \(0.989263\pi\)
\(402\) 0 0
\(403\) −8.99135 + 3.72434i −0.447891 + 0.185523i
\(404\) 7.29322i 0.362851i
\(405\) 0 0
\(406\) −2.97455 2.97455i −0.147625 0.147625i
\(407\) 19.1379i 0.948629i
\(408\) 0 0
\(409\) 19.3593 0.957257 0.478629 0.878017i \(-0.341134\pi\)
0.478629 + 0.878017i \(0.341134\pi\)
\(410\) 1.15280 1.29457i 0.0569327 0.0639341i
\(411\) 0 0
\(412\) 0.383467 0.0188921
\(413\) −2.98482 + 1.23635i −0.146873 + 0.0608369i
\(414\) 0 0
\(415\) 34.1864 + 11.8948i 1.67814 + 0.583892i
\(416\) −14.7263 + 14.7263i −0.722015 + 0.722015i
\(417\) 0 0
\(418\) −4.11900 1.70615i −0.201467 0.0834503i
\(419\) 13.3054 + 5.51126i 0.650009 + 0.269243i 0.683228 0.730205i \(-0.260576\pi\)
−0.0332183 + 0.999448i \(0.510576\pi\)
\(420\) 0 0
\(421\) 26.7439i 1.30342i −0.758468 0.651710i \(-0.774052\pi\)
0.758468 0.651710i \(-0.225948\pi\)
\(422\) 5.66161 + 13.6683i 0.275603 + 0.665364i
\(423\) 0 0
\(424\) 24.0397 1.16747
\(425\) −15.9100 + 13.1100i −0.771746 + 0.635931i
\(426\) 0 0
\(427\) 0.426584 0.426584i 0.0206439 0.0206439i
\(428\) −3.26557 7.88379i −0.157847 0.381077i
\(429\) 0 0
\(430\) −5.96614 12.3332i −0.287713 0.594759i
\(431\) 26.4399 + 10.9518i 1.27356 + 0.527527i 0.914046 0.405611i \(-0.132941\pi\)
0.359518 + 0.933138i \(0.382941\pi\)
\(432\) 0 0
\(433\) 25.5919 + 25.5919i 1.22987 + 1.22987i 0.964013 + 0.265855i \(0.0856542\pi\)
0.265855 + 0.964013i \(0.414346\pi\)
\(434\) 0.889869 0.889869i 0.0427151 0.0427151i
\(435\) 0 0
\(436\) 12.3109 + 5.09935i 0.589586 + 0.244215i
\(437\) −5.31210 + 2.20034i −0.254112 + 0.105257i
\(438\) 0 0
\(439\) −29.9716 + 12.4146i −1.43047 + 0.592519i −0.957467 0.288544i \(-0.906829\pi\)
−0.473000 + 0.881063i \(0.656829\pi\)
\(440\) 20.4723 22.9899i 0.975980 1.09600i
\(441\) 0 0
\(442\) 12.9404 8.35828i 0.615513 0.397563i
\(443\) 1.88468i 0.0895437i −0.998997 0.0447719i \(-0.985744\pi\)
0.998997 0.0447719i \(-0.0142561\pi\)
\(444\) 0 0
\(445\) 24.2994 11.7547i 1.15190 0.557228i
\(446\) 1.01793i 0.0482005i
\(447\) 0 0
\(448\) 1.28137 3.09351i 0.0605391 0.146154i
\(449\) 0.766010 1.84931i 0.0361503 0.0872745i −0.904773 0.425894i \(-0.859960\pi\)
0.940924 + 0.338619i \(0.109960\pi\)
\(450\) 0 0
\(451\) −2.69258 + 2.69258i −0.126788 + 0.126788i
\(452\) 18.0729 + 7.48604i 0.850078 + 0.352114i
\(453\) 0 0
\(454\) 0.753158 + 1.81828i 0.0353474 + 0.0853363i
\(455\) −0.270762 4.67426i −0.0126935 0.219133i
\(456\) 0 0
\(457\) −12.4863 + 12.4863i −0.584086 + 0.584086i −0.936023 0.351938i \(-0.885523\pi\)
0.351938 + 0.936023i \(0.385523\pi\)
\(458\) 12.1950i 0.569834i
\(459\) 0 0
\(460\) −0.811881 14.0158i −0.0378541 0.653490i
\(461\) 22.5151 + 22.5151i 1.04863 + 1.04863i 0.998755 + 0.0498792i \(0.0158836\pi\)
0.0498792 + 0.998755i \(0.484116\pi\)
\(462\) 0 0
\(463\) 15.7977 0.734179 0.367090 0.930186i \(-0.380354\pi\)
0.367090 + 0.930186i \(0.380354\pi\)
\(464\) 1.94825 + 4.70348i 0.0904450 + 0.218354i
\(465\) 0 0
\(466\) 2.36154 5.70125i 0.109396 0.264105i
\(467\) −6.26872 6.26872i −0.290082 0.290082i 0.547031 0.837112i \(-0.315758\pi\)
−0.837112 + 0.547031i \(0.815758\pi\)
\(468\) 0 0
\(469\) −1.56883 + 3.78750i −0.0724419 + 0.174890i
\(470\) 3.42709 + 1.19242i 0.158080 + 0.0550022i
\(471\) 0 0
\(472\) 17.8374 0.821035
\(473\) 11.5172 + 27.8049i 0.529560 + 1.27847i
\(474\) 0 0
\(475\) −4.97668 + 0.578501i −0.228346 + 0.0265434i
\(476\) 1.36784 1.97974i 0.0626950 0.0907413i
\(477\) 0 0
\(478\) −0.853527 + 0.853527i −0.0390394 + 0.0390394i
\(479\) −11.0031 + 4.55765i −0.502746 + 0.208244i −0.619619 0.784903i \(-0.712713\pi\)
0.116873 + 0.993147i \(0.462713\pi\)
\(480\) 0 0
\(481\) 6.15006 + 14.8476i 0.280419 + 0.676991i
\(482\) −0.909021 + 2.19457i −0.0414048 + 0.0999600i
\(483\) 0 0
\(484\) −8.39855 + 8.39855i −0.381752 + 0.381752i
\(485\) −0.380814 0.339112i −0.0172919 0.0153983i
\(486\) 0 0
\(487\) 10.2467 24.7378i 0.464324 1.12098i −0.502281 0.864704i \(-0.667506\pi\)
0.966605 0.256272i \(-0.0824942\pi\)
\(488\) −3.07727 + 1.27465i −0.139302 + 0.0577006i
\(489\) 0 0
\(490\) −6.22358 12.8654i −0.281153 0.581198i
\(491\) −16.3477 16.3477i −0.737761 0.737761i 0.234383 0.972144i \(-0.424693\pi\)
−0.972144 + 0.234383i \(0.924693\pi\)
\(492\) 0 0
\(493\) 6.14355 + 33.6103i 0.276691 + 1.51373i
\(494\) 3.74389 0.168446
\(495\) 0 0
\(496\) −1.40710 + 0.582838i −0.0631805 + 0.0261702i
\(497\) 3.70309 0.166106
\(498\) 0 0
\(499\) 4.58831 + 1.90054i 0.205401 + 0.0850799i 0.483012 0.875614i \(-0.339543\pi\)
−0.277611 + 0.960694i \(0.589543\pi\)
\(500\) 2.65913 11.9410i 0.118920 0.534016i
\(501\) 0 0
\(502\) −11.6806 11.6806i −0.521330 0.521330i
\(503\) −21.6009 8.94738i −0.963136 0.398944i −0.154983 0.987917i \(-0.549532\pi\)
−0.808153 + 0.588973i \(0.799532\pi\)
\(504\) 0 0
\(505\) 6.49036 + 13.4169i 0.288817 + 0.597043i
\(506\) 25.5305i 1.13497i
\(507\) 0 0
\(508\) −9.59165 + 9.59165i −0.425561 + 0.425561i
\(509\) −23.9562 −1.06184 −0.530921 0.847422i \(-0.678154\pi\)
−0.530921 + 0.847422i \(0.678154\pi\)
\(510\) 0 0
\(511\) −6.44654 −0.285178
\(512\) −4.86316 + 4.86316i −0.214924 + 0.214924i
\(513\) 0 0
\(514\) 14.8044i 0.652993i
\(515\) 0.705439 0.341254i 0.0310853 0.0150374i
\(516\) 0 0
\(517\) −7.36423 3.05036i −0.323878 0.134155i
\(518\) −1.46946 1.46946i −0.0645642 0.0645642i
\(519\) 0 0
\(520\) −8.49492 + 24.4150i −0.372527 + 1.07067i
\(521\) −7.00747 2.90259i −0.307003 0.127165i 0.223863 0.974621i \(-0.428133\pi\)
−0.530866 + 0.847456i \(0.678133\pi\)
\(522\) 0 0
\(523\) −17.3848 −0.760185 −0.380093 0.924948i \(-0.624108\pi\)
−0.380093 + 0.924948i \(0.624108\pi\)
\(524\) −10.1407 + 4.20044i −0.443001 + 0.183497i
\(525\) 0 0
\(526\) 8.60461 0.375179
\(527\) −10.0549 + 1.83791i −0.437997 + 0.0800605i
\(528\) 0 0
\(529\) −7.01842 7.01842i −0.305149 0.305149i
\(530\) 15.6389 7.56528i 0.679312 0.328615i
\(531\) 0 0
\(532\) 0.540292 0.223796i 0.0234246 0.00970280i
\(533\) 1.22368 2.95423i 0.0530036 0.127962i
\(534\) 0 0
\(535\) −13.0234 11.5972i −0.563050 0.501391i
\(536\) 16.0049 16.0049i 0.691305 0.691305i
\(537\) 0 0
\(538\) 1.09989 2.65537i 0.0474196 0.114481i
\(539\) 12.0141 + 29.0047i 0.517486 + 1.24932i
\(540\) 0 0
\(541\) −20.5428 + 8.50911i −0.883204 + 0.365835i −0.777739 0.628588i \(-0.783633\pi\)
−0.105466 + 0.994423i \(0.533633\pi\)
\(542\) 8.85896 8.85896i 0.380525 0.380525i
\(543\) 0 0
\(544\) −18.3737 + 11.8677i −0.787767 + 0.508822i
\(545\) 27.1856 1.57475i 1.16450 0.0674551i
\(546\) 0 0
\(547\) −15.3797 37.1299i −0.657589 1.58756i −0.801517 0.597972i \(-0.795974\pi\)
0.143929 0.989588i \(-0.454026\pi\)
\(548\) 3.35707 0.143407
\(549\) 0 0
\(550\) 6.08328 21.3986i 0.259392 0.912441i
\(551\) −3.17767 + 7.67157i −0.135373 + 0.326820i
\(552\) 0 0
\(553\) 0.558581 + 0.558581i 0.0237533 + 0.0237533i
\(554\) −1.47557 + 3.56234i −0.0626909 + 0.151349i
\(555\) 0 0
\(556\) 5.13912 + 12.4069i 0.217947 + 0.526172i
\(557\) 6.44000 0.272872 0.136436 0.990649i \(-0.456435\pi\)
0.136436 + 0.990649i \(0.456435\pi\)
\(558\) 0 0
\(559\) −17.8705 17.8705i −0.755844 0.755844i
\(560\) −0.0423727 0.731496i −0.00179057 0.0309113i
\(561\) 0 0
\(562\) 13.5765i 0.572691i
\(563\) −14.0594 + 14.0594i −0.592532 + 0.592532i −0.938315 0.345782i \(-0.887614\pi\)
0.345782 + 0.938315i \(0.387614\pi\)
\(564\) 0 0
\(565\) 39.9095 2.31180i 1.67900 0.0972582i
\(566\) −2.03017 4.90127i −0.0853345 0.206016i
\(567\) 0 0
\(568\) −18.8891 7.82410i −0.792567 0.328292i
\(569\) −4.57941 + 4.57941i −0.191979 + 0.191979i −0.796551 0.604572i \(-0.793344\pi\)
0.604572 + 0.796551i \(0.293344\pi\)
\(570\) 0 0
\(571\) −14.0045 + 33.8098i −0.586069 + 1.41490i 0.301164 + 0.953572i \(0.402625\pi\)
−0.887232 + 0.461323i \(0.847375\pi\)
\(572\) 7.68473 18.5526i 0.321315 0.775723i
\(573\) 0 0
\(574\) 0.413486i 0.0172586i
\(575\) −13.9665 25.0615i −0.582442 1.04513i
\(576\) 0 0
\(577\) 19.2887i 0.802999i 0.915859 + 0.401500i \(0.131511\pi\)
−0.915859 + 0.401500i \(0.868489\pi\)
\(578\) 15.1334 5.72361i 0.629465 0.238071i
\(579\) 0 0
\(580\) −15.1418 13.4836i −0.628727 0.559876i
\(581\) −7.97688 + 3.30413i −0.330937 + 0.137079i
\(582\) 0 0
\(583\) −35.2577 + 14.6042i −1.46022 + 0.604845i
\(584\) 32.8831 + 13.6206i 1.36071 + 0.563625i
\(585\) 0 0
\(586\) 1.32658 1.32658i 0.0548006 0.0548006i
\(587\) −12.6487 12.6487i −0.522068 0.522068i 0.396127 0.918196i \(-0.370354\pi\)
−0.918196 + 0.396127i \(0.870354\pi\)
\(588\) 0 0
\(589\) −2.29503 0.950633i −0.0945651 0.0391702i
\(590\) 11.6041 5.61343i 0.477732 0.231101i
\(591\) 0 0
\(592\) 0.962450 + 2.32356i 0.0395565 + 0.0954977i
\(593\) −15.9962 + 15.9962i −0.656884 + 0.656884i −0.954642 0.297757i \(-0.903761\pi\)
0.297757 + 0.954642i \(0.403761\pi\)
\(594\) 0 0
\(595\) 0.754528 4.85927i 0.0309326 0.199210i
\(596\) −5.98025 −0.244961
\(597\) 0 0
\(598\) 8.20436 + 19.8071i 0.335501 + 0.809972i
\(599\) 17.4019i 0.711023i −0.934672 0.355511i \(-0.884307\pi\)
0.934672 0.355511i \(-0.115693\pi\)
\(600\) 0 0
\(601\) 19.9088 + 8.24649i 0.812096 + 0.336381i 0.749790 0.661676i \(-0.230155\pi\)
0.0623060 + 0.998057i \(0.480155\pi\)
\(602\) 3.01926 + 1.25062i 0.123056 + 0.0509713i
\(603\) 0 0
\(604\) −3.87460 + 3.87460i −0.157655 + 0.157655i
\(605\) −7.97625 + 22.9243i −0.324281 + 0.932005i
\(606\) 0 0
\(607\) 14.8391 6.14655i 0.602300 0.249481i −0.0606323 0.998160i \(-0.519312\pi\)
0.662932 + 0.748679i \(0.269312\pi\)
\(608\) −5.31584 −0.215586
\(609\) 0 0
\(610\) −1.60078 + 1.79763i −0.0648135 + 0.0727840i
\(611\) 6.69358 0.270793
\(612\) 0 0
\(613\) 15.6440i 0.631855i 0.948783 + 0.315928i \(0.102316\pi\)
−0.948783 + 0.315928i \(0.897684\pi\)
\(614\) 1.14147 + 1.14147i 0.0460658 + 0.0460658i
\(615\) 0 0
\(616\) 7.34301i 0.295858i
\(617\) 21.6389 8.96313i 0.871150 0.360842i 0.0980919 0.995177i \(-0.468726\pi\)
0.773058 + 0.634335i \(0.218726\pi\)
\(618\) 0 0
\(619\) 11.0559 26.6912i 0.444372 1.07281i −0.530026 0.847981i \(-0.677818\pi\)
0.974398 0.224828i \(-0.0721821\pi\)
\(620\) 4.03376 4.52982i 0.162000 0.181922i
\(621\) 0 0
\(622\) −9.57783 3.96727i −0.384036 0.159073i
\(623\) −2.46402 + 5.94866i −0.0987187 + 0.238328i
\(624\) 0 0
\(625\) −5.73462 24.3334i −0.229385 0.973336i
\(626\) −23.1180 + 9.57580i −0.923982 + 0.382726i
\(627\) 0 0
\(628\) 11.9751i 0.477858i
\(629\) 3.03497 + 16.6038i 0.121012 + 0.662036i
\(630\) 0 0
\(631\) 29.7914 + 29.7914i 1.18598 + 1.18598i 0.978169 + 0.207809i \(0.0666332\pi\)
0.207809 + 0.978169i \(0.433367\pi\)
\(632\) −1.66906 4.02946i −0.0663916 0.160284i
\(633\) 0 0
\(634\) 9.10946 + 21.9922i 0.361783 + 0.873421i
\(635\) −9.10936 + 26.1809i −0.361494 + 1.03896i
\(636\) 0 0
\(637\) −18.6417 18.6417i −0.738610 0.738610i
\(638\) −26.0712 26.0712i −1.03217 1.03217i
\(639\) 0 0
\(640\) 3.40606 9.78924i 0.134636 0.386954i
\(641\) −7.27533 17.5642i −0.287358 0.693744i 0.712611 0.701559i \(-0.247512\pi\)
−0.999969 + 0.00781522i \(0.997512\pi\)
\(642\) 0 0
\(643\) 7.78340 + 18.7908i 0.306947 + 0.741036i 0.999801 + 0.0199581i \(0.00635327\pi\)
−0.692853 + 0.721078i \(0.743647\pi\)
\(644\) 2.36799 + 2.36799i 0.0933119 + 0.0933119i
\(645\) 0 0
\(646\) 3.84416 + 0.827023i 0.151247 + 0.0325388i
\(647\) 16.7736i 0.659440i 0.944079 + 0.329720i \(0.106954\pi\)
−0.944079 + 0.329720i \(0.893046\pi\)
\(648\) 0 0
\(649\) −26.1612 + 10.8363i −1.02692 + 0.425362i
\(650\) 2.15704 + 18.5564i 0.0846060 + 0.727842i
\(651\) 0 0
\(652\) −3.09422 + 7.47010i −0.121179 + 0.292552i
\(653\) −6.18810 2.56320i −0.242159 0.100306i 0.258303 0.966064i \(-0.416837\pi\)
−0.500462 + 0.865758i \(0.666837\pi\)
\(654\) 0 0
\(655\) −14.9172 + 16.7517i −0.582865 + 0.654543i
\(656\) 0.191500 0.462321i 0.00747680 0.0180506i
\(657\) 0 0
\(658\) −0.799660 + 0.331230i −0.0311740 + 0.0129127i
\(659\) 36.0525i 1.40440i −0.711978 0.702202i \(-0.752200\pi\)
0.711978 0.702202i \(-0.247800\pi\)
\(660\) 0 0
\(661\) −31.6304 31.6304i −1.23028 1.23028i −0.963855 0.266427i \(-0.914157\pi\)
−0.266427 0.963855i \(-0.585843\pi\)
\(662\) 30.7291i 1.19432i
\(663\) 0 0
\(664\) 47.6704 1.84997
\(665\) 0.794780 0.892518i 0.0308202 0.0346104i
\(666\) 0 0
\(667\) −47.5501 −1.84115
\(668\) 19.7105 8.16434i 0.762621 0.315888i
\(669\) 0 0
\(670\) 5.37519 15.4486i 0.207662 0.596833i
\(671\) 3.73891 3.73891i 0.144339 0.144339i
\(672\) 0 0
\(673\) −4.56264 1.88991i −0.175877 0.0728506i 0.293007 0.956110i \(-0.405344\pi\)
−0.468884 + 0.883260i \(0.655344\pi\)
\(674\) −11.3108 4.68510i −0.435677 0.180463i
\(675\) 0 0
\(676\) 2.63851i 0.101481i
\(677\) −10.8899 26.2906i −0.418534 1.01043i −0.982773 0.184819i \(-0.940830\pi\)
0.564238 0.825612i \(-0.309170\pi\)
\(678\) 0 0
\(679\) 0.121633 0.00466783
\(680\) −14.1157 + 23.1924i −0.541312 + 0.889387i
\(681\) 0 0
\(682\) 7.79949 7.79949i 0.298658 0.298658i
\(683\) −12.5401 30.2745i −0.479835 1.15842i −0.959686 0.281073i \(-0.909310\pi\)
0.479852 0.877350i \(-0.340690\pi\)
\(684\) 0 0
\(685\) 6.17578 2.98751i 0.235964 0.114147i
\(686\) 6.43250 + 2.66443i 0.245594 + 0.101728i
\(687\) 0 0
\(688\) −2.79664 2.79664i −0.106621 0.106621i
\(689\) 22.6605 22.6605i 0.863297 0.863297i
\(690\) 0 0
\(691\) 6.13856 + 2.54268i 0.233522 + 0.0967279i 0.496376 0.868108i \(-0.334664\pi\)
−0.262854 + 0.964836i \(0.584664\pi\)
\(692\) −13.4447 + 5.56898i −0.511091 + 0.211701i
\(693\) 0 0
\(694\) −23.6860 + 9.81108i −0.899110 + 0.372423i
\(695\) 20.4953 + 18.2508i 0.777429 + 0.692294i
\(696\) 0 0
\(697\) 1.90905 2.76305i 0.0723103 0.104658i
\(698\) 13.6283i 0.515837i
\(699\) 0 0
\(700\) 1.42052 + 2.54899i 0.0536908 + 0.0963428i
\(701\) 24.2220i 0.914852i 0.889248 + 0.457426i \(0.151228\pi\)
−0.889248 + 0.457426i \(0.848772\pi\)
\(702\) 0 0
\(703\) −1.56980 + 3.78982i −0.0592060 + 0.142936i
\(704\) 11.2309 27.1138i 0.423281 1.02189i
\(705\) 0 0
\(706\) −1.11278 + 1.11278i −0.0418801 + 0.0418801i
\(707\) −3.28455 1.36050i −0.123528 0.0511670i
\(708\) 0 0
\(709\) 0.466820 + 1.12700i 0.0175318 + 0.0423255i 0.932403 0.361420i \(-0.117708\pi\)
−0.914871 + 0.403746i \(0.867708\pi\)
\(710\) −14.7504 + 0.854435i −0.553574 + 0.0320664i
\(711\) 0 0
\(712\) 25.1373 25.1373i 0.942062 0.942062i
\(713\) 14.2251i 0.532734i
\(714\) 0 0
\(715\) −2.37316 40.9687i −0.0887511 1.53214i
\(716\) −7.86285 7.86285i −0.293849 0.293849i
\(717\) 0 0
\(718\) −16.5258 −0.616738
\(719\) 6.74904 + 16.2936i 0.251697 + 0.607650i 0.998341 0.0575735i \(-0.0183364\pi\)
−0.746645 + 0.665223i \(0.768336\pi\)
\(720\) 0 0
\(721\) −0.0715333 + 0.172697i −0.00266404 + 0.00643156i
\(722\) −12.1109 12.1109i −0.450721 0.450721i
\(723\) 0 0
\(724\) 8.21518 19.8332i 0.305315 0.737095i
\(725\) −39.8546 11.3300i −1.48016 0.420786i
\(726\) 0 0
\(727\) 11.3177 0.419751 0.209876 0.977728i \(-0.432694\pi\)
0.209876 + 0.977728i \(0.432694\pi\)
\(728\) −2.35972 5.69687i −0.0874570 0.211140i
\(729\) 0 0
\(730\) 25.6784 1.48745i 0.950399 0.0550529i
\(731\) −14.4016 22.2968i −0.532662 0.824676i
\(732\) 0 0
\(733\) 1.79642 1.79642i 0.0663522 0.0663522i −0.673152 0.739504i \(-0.735060\pi\)
0.739504 + 0.673152i \(0.235060\pi\)
\(734\) −8.41568 + 3.48589i −0.310628 + 0.128666i
\(735\) 0 0
\(736\) −11.6491 28.1235i −0.429393 1.03665i
\(737\) −13.7504 + 33.1965i −0.506503 + 1.22281i
\(738\) 0 0
\(739\) 12.6407 12.6407i 0.464997 0.464997i −0.435292 0.900289i \(-0.643355\pi\)
0.900289 + 0.435292i \(0.143355\pi\)
\(740\) −7.48016 6.66102i −0.274976 0.244864i
\(741\) 0 0
\(742\) −1.58583 + 3.82853i −0.0582176 + 0.140550i
\(743\) −11.0414 + 4.57351i −0.405071 + 0.167786i −0.575910 0.817513i \(-0.695352\pi\)
0.170839 + 0.985299i \(0.445352\pi\)
\(744\) 0 0
\(745\) −11.0015 + 5.32193i −0.403063 + 0.194980i
\(746\) −9.70683 9.70683i −0.355392 0.355392i
\(747\) 0 0
\(748\) 11.9888 17.3519i 0.438354 0.634450i
\(749\) 4.15968 0.151992
\(750\) 0 0
\(751\) 24.7061 10.2336i 0.901537 0.373429i 0.116726 0.993164i \(-0.462760\pi\)
0.784811 + 0.619735i \(0.212760\pi\)
\(752\) 1.04751 0.0381987
\(753\) 0 0
\(754\) 28.6048 + 11.8485i 1.04172 + 0.431496i
\(755\) −3.67977 + 10.5759i −0.133921 + 0.384897i
\(756\) 0 0
\(757\) 0.179229 + 0.179229i 0.00651419 + 0.00651419i 0.710356 0.703842i \(-0.248534\pi\)
−0.703842 + 0.710356i \(0.748534\pi\)
\(758\) 8.36813 + 3.46619i 0.303944 + 0.125898i
\(759\) 0 0
\(760\) −5.93985 + 2.87338i −0.215461 + 0.104228i
\(761\) 32.3234i 1.17172i −0.810412 0.585860i \(-0.800757\pi\)
0.810412 0.585860i \(-0.199243\pi\)
\(762\) 0 0
\(763\) −4.59305 + 4.59305i −0.166279 + 0.166279i
\(764\) −9.64298 −0.348871
\(765\) 0 0
\(766\) 26.4348 0.955129
\(767\) 16.8141 16.8141i 0.607121 0.607121i
\(768\) 0 0
\(769\) 7.23844i 0.261025i 0.991447 + 0.130512i \(0.0416622\pi\)
−0.991447 + 0.130512i \(0.958338\pi\)
\(770\) 2.31084 + 4.77697i 0.0832770 + 0.172150i
\(771\) 0 0
\(772\) 15.6310 + 6.47456i 0.562571 + 0.233025i
\(773\) 5.84658 + 5.84658i 0.210287 + 0.210287i 0.804389 0.594102i \(-0.202493\pi\)
−0.594102 + 0.804389i \(0.702493\pi\)
\(774\) 0 0
\(775\) 3.38949 11.9229i 0.121754 0.428284i
\(776\) −0.620435 0.256992i −0.0222723 0.00922549i
\(777\) 0 0
\(778\) −20.0326 −0.718205
\(779\) 0.754064 0.312344i 0.0270172 0.0111909i
\(780\) 0 0
\(781\) 32.4567 1.16139
\(782\) 4.04873 + 22.1499i 0.144782 + 0.792080i
\(783\) 0 0
\(784\) −2.91732 2.91732i −0.104190 0.104190i
\(785\) −10.6568 22.0298i −0.380358 0.786276i
\(786\) 0 0
\(787\) 9.85358 4.08149i 0.351242 0.145489i −0.200085 0.979779i \(-0.564122\pi\)
0.551327 + 0.834289i \(0.314122\pi\)
\(788\) 0.0963695 0.232657i 0.00343302 0.00828805i
\(789\) 0 0
\(790\) −2.35387 2.09610i −0.0837469 0.0745759i
\(791\) −6.74277 + 6.74277i −0.239745 + 0.239745i
\(792\) 0 0
\(793\) −1.69920 + 4.10224i −0.0603405 + 0.145675i
\(794\) 10.7992 + 26.0715i 0.383248 + 0.925242i
\(795\) 0 0
\(796\) −21.6955 + 8.98658i −0.768978 + 0.318521i
\(797\) −16.0429 + 16.0429i −0.568269 + 0.568269i −0.931643 0.363374i \(-0.881625\pi\)
0.363374 + 0.931643i \(0.381625\pi\)
\(798\) 0 0
\(799\) 6.87286 + 1.47861i 0.243144 + 0.0523093i
\(800\) −3.06271 26.3477i −0.108283 0.931532i
\(801\) 0 0
\(802\) 6.03342 + 14.5660i 0.213048 + 0.514342i
\(803\) −56.5023 −1.99392
\(804\) 0 0
\(805\) 6.46356 + 2.24892i 0.227810 + 0.0792641i
\(806\) −3.54460 + 8.55742i −0.124853 + 0.301422i
\(807\) 0 0
\(808\) 13.8796 + 13.8796i 0.488281 + 0.488281i
\(809\) −7.24370 + 17.4878i −0.254675 + 0.614840i −0.998570 0.0534567i \(-0.982976\pi\)
0.743895 + 0.668296i \(0.232976\pi\)
\(810\) 0 0
\(811\) −10.8154 26.1106i −0.379779 0.916867i −0.992007 0.126186i \(-0.959726\pi\)
0.612228 0.790681i \(-0.290274\pi\)
\(812\) 4.83630 0.169721
\(813\) 0 0
\(814\) −12.8794 12.8794i −0.451423 0.451423i
\(815\) 0.955541 + 16.4959i 0.0334711 + 0.577825i
\(816\) 0 0
\(817\) 6.45084i 0.225686i
\(818\) 13.0285 13.0285i 0.455530 0.455530i
\(819\) 0 0
\(820\) 0.115248 + 1.98957i 0.00402464 + 0.0694789i
\(821\) −5.59227 13.5009i −0.195172 0.471186i 0.795750 0.605625i \(-0.207077\pi\)
−0.990922 + 0.134439i \(0.957077\pi\)
\(822\) 0 0
\(823\) −17.9968 7.45453i −0.627330 0.259848i 0.0462883 0.998928i \(-0.485261\pi\)
−0.673618 + 0.739080i \(0.735261\pi\)
\(824\) 0.729767 0.729767i 0.0254226 0.0254226i
\(825\) 0 0
\(826\) −1.17668 + 2.84076i −0.0409420 + 0.0988428i
\(827\) 3.73464 9.01621i 0.129866 0.313524i −0.845550 0.533896i \(-0.820727\pi\)
0.975416 + 0.220372i \(0.0707272\pi\)
\(828\) 0 0
\(829\) 5.96301i 0.207104i −0.994624 0.103552i \(-0.966979\pi\)
0.994624 0.103552i \(-0.0330208\pi\)
\(830\) 31.0118 15.0018i 1.07643 0.520721i
\(831\) 0 0
\(832\) 24.6446i 0.854398i
\(833\) −15.0230 23.2589i −0.520517 0.805873i
\(834\) 0 0
\(835\) 28.9945 32.5601i 1.00340 1.12679i
\(836\) 4.73552 1.96152i 0.163782 0.0678405i
\(837\) 0 0
\(838\) 12.6632 5.24528i 0.437444 0.181195i
\(839\) 20.9048 + 8.65906i 0.721715 + 0.298944i 0.713142 0.701019i \(-0.247271\pi\)
0.00857233 + 0.999963i \(0.497271\pi\)
\(840\) 0 0
\(841\) −28.0511 + 28.0511i −0.967281 + 0.967281i
\(842\) −17.9982 17.9982i −0.620258 0.620258i
\(843\) 0 0
\(844\) −15.7142 6.50903i −0.540904 0.224050i
\(845\) 2.34806 + 4.85390i 0.0807757 + 0.166979i
\(846\) 0 0
\(847\) −2.21564 5.34904i −0.0761304 0.183795i
\(848\) 3.54624 3.54624i 0.121779 0.121779i
\(849\) 0 0
\(850\) −1.88429 + 19.5299i −0.0646305 + 0.669870i
\(851\) −23.4901 −0.805232
\(852\) 0 0
\(853\) 2.53060 + 6.10940i 0.0866459 + 0.209182i 0.961263 0.275632i \(-0.0888872\pi\)
−0.874617 + 0.484814i \(0.838887\pi\)
\(854\) 0.574166i 0.0196476i
\(855\) 0 0
\(856\) −21.2181 8.78882i −0.725219 0.300396i
\(857\) 25.2501 + 10.4589i 0.862526 + 0.357270i 0.769695 0.638412i \(-0.220408\pi\)
0.0928314 + 0.995682i \(0.470408\pi\)
\(858\) 0 0
\(859\) −10.0721 + 10.0721i −0.343654 + 0.343654i −0.857739 0.514085i \(-0.828132\pi\)
0.514085 + 0.857739i \(0.328132\pi\)
\(860\) 14.8763 + 5.17606i 0.507279 + 0.176502i
\(861\) 0 0
\(862\) 25.1639 10.4232i 0.857084 0.355016i
\(863\) 31.4670 1.07115 0.535574 0.844488i \(-0.320095\pi\)
0.535574 + 0.844488i \(0.320095\pi\)
\(864\) 0 0
\(865\) −19.7774 + 22.2096i −0.672453 + 0.755148i
\(866\) 34.4457 1.17051
\(867\) 0 0
\(868\) 1.44683i 0.0491086i
\(869\) 4.89583 + 4.89583i 0.166080 + 0.166080i
\(870\) 0 0
\(871\) 30.1733i 1.02238i
\(872\) 33.1331 13.7242i 1.12203 0.464759i
\(873\) 0 0
\(874\) −2.09415 + 5.05573i −0.0708358 + 0.171013i
\(875\) 4.88164 + 3.42506i 0.165029 + 0.115788i
\(876\) 0 0
\(877\) −5.14819 2.13245i −0.173842 0.0720078i 0.294065 0.955785i \(-0.404992\pi\)
−0.467907 + 0.883778i \(0.654992\pi\)
\(878\) −11.8155 + 28.5251i −0.398754 + 0.962677i
\(879\) 0 0
\(880\) −0.371386 6.41138i −0.0125194 0.216128i
\(881\) −29.7926 + 12.3405i −1.00374 + 0.415762i −0.823167 0.567800i \(-0.807795\pi\)
−0.180572 + 0.983562i \(0.557795\pi\)
\(882\) 0 0
\(883\) 38.2240i 1.28634i 0.765724 + 0.643169i \(0.222381\pi\)
−0.765724 + 0.643169i \(0.777619\pi\)
\(884\) −3.72503 + 17.3147i −0.125286 + 0.582356i
\(885\) 0 0
\(886\) −1.26835 1.26835i −0.0426111 0.0426111i
\(887\) −2.37088 5.72381i −0.0796063 0.192187i 0.879065 0.476701i \(-0.158168\pi\)
−0.958672 + 0.284515i \(0.908168\pi\)
\(888\) 0 0
\(889\) −2.53040 6.10892i −0.0848668 0.204887i
\(890\) 8.44229 24.2637i 0.282986 0.813321i
\(891\) 0 0
\(892\) 0.827523 + 0.827523i 0.0277075 + 0.0277075i
\(893\) 1.20811 + 1.20811i 0.0404279 + 0.0404279i
\(894\) 0 0
\(895\) −21.4621 7.46749i −0.717397 0.249611i
\(896\) 0.946134 + 2.28417i 0.0316081 + 0.0763088i
\(897\) 0 0
\(898\) −0.729042 1.76006i −0.0243284 0.0587340i
\(899\) −14.5264 14.5264i −0.484483 0.484483i
\(900\) 0 0
\(901\) 28.2731 18.2618i 0.941915 0.608387i
\(902\) 3.62410i 0.120669i
\(903\) 0 0
\(904\) 48.6406 20.1476i 1.61776 0.670099i
\(905\) −2.53697 43.7967i −0.0843317 1.45585i
\(906\) 0 0
\(907\) 4.14501 10.0069i 0.137633 0.332275i −0.840002 0.542583i \(-0.817447\pi\)
0.977635 + 0.210307i \(0.0674465\pi\)
\(908\) −2.09044 0.865889i −0.0693737 0.0287355i
\(909\) 0 0
\(910\) −3.32791 2.96347i −0.110319 0.0982381i
\(911\) 15.0373 36.3032i 0.498207 1.20278i −0.452241 0.891896i \(-0.649375\pi\)
0.950448 0.310882i \(-0.100625\pi\)
\(912\) 0 0
\(913\) −69.9154 + 28.9599i −2.31386 + 0.958433i
\(914\) 16.8061i 0.555897i
\(915\) 0 0
\(916\) −9.91385 9.91385i −0.327563 0.327563i
\(917\) 5.35051i 0.176689i
\(918\) 0 0
\(919\) −48.2620 −1.59202 −0.796008 0.605286i \(-0.793059\pi\)
−0.796008 + 0.605286i \(0.793059\pi\)
\(920\) −28.2182 25.1281i −0.930327 0.828448i
\(921\) 0 0
\(922\) 30.3045 0.998026
\(923\) −25.1806 + 10.4301i −0.828829 + 0.343312i
\(924\) 0 0
\(925\) −19.6885 5.59712i −0.647354 0.184032i
\(926\) 10.6315 10.6315i 0.349374 0.349374i
\(927\) 0 0
\(928\) −40.6151 16.8233i −1.33325 0.552252i
\(929\) −21.5317 8.91871i −0.706431 0.292613i 0.000395678 1.00000i \(-0.499874\pi\)
−0.706827 + 0.707387i \(0.749874\pi\)
\(930\) 0 0
\(931\) 6.72920i 0.220541i
\(932\) 2.71501 + 6.55460i 0.0889330 + 0.214703i
\(933\) 0 0
\(934\) −8.43745 −0.276082
\(935\) 6.61325 42.5903i 0.216276 1.39285i
\(936\) 0 0
\(937\) 6.87594 6.87594i 0.224627 0.224627i −0.585816 0.810444i \(-0.699226\pi\)
0.810444 + 0.585816i \(0.199226\pi\)
\(938\) 1.49312 + 3.60471i 0.0487520 + 0.117698i
\(939\) 0 0
\(940\) −3.75541 + 1.81667i −0.122488 + 0.0592531i
\(941\) −13.0919 5.42286i −0.426785 0.176780i 0.158943 0.987288i \(-0.449191\pi\)
−0.585728 + 0.810508i \(0.699191\pi\)
\(942\) 0 0
\(943\) 3.30491 + 3.30491i 0.107623 + 0.107623i
\(944\) 2.63131 2.63131i 0.0856418 0.0856418i
\(945\) 0 0
\(946\) 26.4630 + 10.9613i 0.860387 + 0.356384i
\(947\) −35.5574 + 14.7284i −1.15546 + 0.478607i −0.876361 0.481655i \(-0.840036\pi\)
−0.279099 + 0.960262i \(0.590036\pi\)
\(948\) 0 0
\(949\) 43.8357 18.1573i 1.42297 0.589412i
\(950\) −2.95989 + 3.73853i −0.0960316 + 0.121294i
\(951\) 0 0
\(952\) −1.16449 6.37071i −0.0377412 0.206476i
\(953\) 37.7984i 1.22441i 0.790698 + 0.612206i \(0.209718\pi\)
−0.790698 + 0.612206i \(0.790282\pi\)
\(954\) 0 0
\(955\) −17.7396 + 8.58145i −0.574039 + 0.277689i
\(956\) 1.38774i 0.0448828i
\(957\) 0 0
\(958\) −4.33769 + 10.4721i −0.140145 + 0.338339i
\(959\) −0.626240 + 1.51188i −0.0202223 + 0.0488210i
\(960\) 0 0
\(961\) −17.5746 + 17.5746i −0.566922 + 0.566922i
\(962\) 14.1310 + 5.85325i 0.455602 + 0.188716i
\(963\) 0 0
\(964\) −1.04508 2.52305i −0.0336598 0.0812620i
\(965\) 34.5171 1.99944i 1.11115 0.0643643i
\(966\) 0 0
\(967\) 3.39288 3.39288i 0.109108 0.109108i −0.650445 0.759553i \(-0.725418\pi\)
0.759553 + 0.650445i \(0.225418\pi\)
\(968\) 31.9662i 1.02743i
\(969\) 0 0
\(970\) −0.484497 + 0.0280650i −0.0155563 + 0.000901113i
\(971\) 25.8080 + 25.8080i 0.828217 + 0.828217i 0.987270 0.159053i \(-0.0508442\pi\)
−0.159053 + 0.987270i \(0.550844\pi\)
\(972\) 0 0
\(973\) −6.54621 −0.209862
\(974\) −9.75221 23.5439i −0.312481 0.754396i
\(975\) 0 0
\(976\) −0.265916 + 0.641978i −0.00851176 + 0.0205492i
\(977\) −44.0684 44.0684i −1.40987 1.40987i −0.760303 0.649569i \(-0.774949\pi\)
−0.649569 0.760303i \(-0.725051\pi\)
\(978\) 0 0
\(979\) −21.5965 + 52.1385i −0.690227 + 1.66635i
\(980\) 15.5183 + 5.39941i 0.495713 + 0.172478i
\(981\) 0 0
\(982\) −22.0034 −0.702156
\(983\) 15.3732 + 37.1141i 0.490328 + 1.18376i 0.954553 + 0.298040i \(0.0963329\pi\)
−0.464225 + 0.885717i \(0.653667\pi\)
\(984\) 0 0
\(985\) −0.0297603 0.513764i −0.000948243 0.0163699i
\(986\) 26.7536 + 18.4846i 0.852008 + 0.588670i
\(987\) 0 0
\(988\) −3.04358 + 3.04358i −0.0968291 + 0.0968291i
\(989\) 34.1282 14.1364i 1.08521 0.449511i
\(990\) 0 0
\(991\) 9.59778 + 23.1711i 0.304883 + 0.736054i 0.999855 + 0.0170168i \(0.00541686\pi\)
−0.694972 + 0.719037i \(0.744583\pi\)
\(992\) 5.03287 12.1504i 0.159794 0.385776i
\(993\) 0 0
\(994\) 2.49211 2.49211i 0.0790449 0.0790449i
\(995\) −31.9145 + 35.8392i −1.01176 + 1.13618i
\(996\) 0 0
\(997\) 14.2988 34.5204i 0.452848 1.09327i −0.518387 0.855146i \(-0.673467\pi\)
0.971235 0.238125i \(-0.0765327\pi\)
\(998\) 4.36687 1.80882i 0.138231 0.0572571i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 765.2.bh.b.19.5 24
3.2 odd 2 85.2.m.a.19.2 yes 24
5.4 even 2 inner 765.2.bh.b.19.2 24
15.2 even 4 425.2.m.e.376.2 24
15.8 even 4 425.2.m.e.376.5 24
15.14 odd 2 85.2.m.a.19.5 yes 24
17.9 even 8 inner 765.2.bh.b.604.2 24
51.14 even 16 1445.2.b.i.579.17 24
51.20 even 16 1445.2.b.i.579.18 24
51.26 odd 8 85.2.m.a.9.5 yes 24
85.9 even 8 inner 765.2.bh.b.604.5 24
255.14 even 16 1445.2.b.i.579.8 24
255.77 even 8 425.2.m.e.26.2 24
255.122 odd 16 7225.2.a.by.1.8 24
255.128 even 8 425.2.m.e.26.5 24
255.167 odd 16 7225.2.a.by.1.7 24
255.173 odd 16 7225.2.a.by.1.17 24
255.179 odd 8 85.2.m.a.9.2 24
255.218 odd 16 7225.2.a.by.1.18 24
255.224 even 16 1445.2.b.i.579.7 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
85.2.m.a.9.2 24 255.179 odd 8
85.2.m.a.9.5 yes 24 51.26 odd 8
85.2.m.a.19.2 yes 24 3.2 odd 2
85.2.m.a.19.5 yes 24 15.14 odd 2
425.2.m.e.26.2 24 255.77 even 8
425.2.m.e.26.5 24 255.128 even 8
425.2.m.e.376.2 24 15.2 even 4
425.2.m.e.376.5 24 15.8 even 4
765.2.bh.b.19.2 24 5.4 even 2 inner
765.2.bh.b.19.5 24 1.1 even 1 trivial
765.2.bh.b.604.2 24 17.9 even 8 inner
765.2.bh.b.604.5 24 85.9 even 8 inner
1445.2.b.i.579.7 24 255.224 even 16
1445.2.b.i.579.8 24 255.14 even 16
1445.2.b.i.579.17 24 51.14 even 16
1445.2.b.i.579.18 24 51.20 even 16
7225.2.a.by.1.7 24 255.167 odd 16
7225.2.a.by.1.8 24 255.122 odd 16
7225.2.a.by.1.17 24 255.173 odd 16
7225.2.a.by.1.18 24 255.218 odd 16