Properties

Label 1445.2.d.j.866.2
Level $1445$
Weight $2$
Character 1445.866
Analytic conductor $11.538$
Analytic rank $0$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1445,2,Mod(866,1445)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1445, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1445.866");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1445 = 5 \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1445.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.5383830921\)
Analytic rank: \(0\)
Dimension: \(24\)
Twist minimal: no (minimal twist has level 85)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 866.2
Character \(\chi\) \(=\) 1445.866
Dual form 1445.2.d.j.866.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.35190 q^{2} -1.56935i q^{3} +3.53144 q^{4} +1.00000i q^{5} +3.69096i q^{6} +3.58212i q^{7} -3.60181 q^{8} +0.537139 q^{9} -2.35190i q^{10} +2.48259i q^{11} -5.54207i q^{12} -1.25948 q^{13} -8.42480i q^{14} +1.56935 q^{15} +1.40821 q^{16} -1.26330 q^{18} +3.63431 q^{19} +3.53144i q^{20} +5.62161 q^{21} -5.83882i q^{22} +8.83293i q^{23} +5.65249i q^{24} -1.00000 q^{25} +2.96218 q^{26} -5.55101i q^{27} +12.6501i q^{28} +8.75919i q^{29} -3.69096 q^{30} -2.44403i q^{31} +3.89165 q^{32} +3.89606 q^{33} -3.58212 q^{35} +1.89688 q^{36} -4.60155i q^{37} -8.54755 q^{38} +1.97657i q^{39} -3.60181i q^{40} -4.32497i q^{41} -13.2215 q^{42} -7.54720 q^{43} +8.76714i q^{44} +0.537139i q^{45} -20.7742i q^{46} -11.3322 q^{47} -2.20997i q^{48} -5.83161 q^{49} +2.35190 q^{50} -4.44779 q^{52} -5.69139 q^{53} +13.0554i q^{54} -2.48259 q^{55} -12.9021i q^{56} -5.70351i q^{57} -20.6008i q^{58} +4.47000 q^{59} +5.54207 q^{60} -0.242871i q^{61} +5.74812i q^{62} +1.92410i q^{63} -11.9692 q^{64} -1.25948i q^{65} -9.16315 q^{66} -7.23278 q^{67} +13.8620 q^{69} +8.42480 q^{70} -1.83778i q^{71} -1.93467 q^{72} +5.47256i q^{73} +10.8224i q^{74} +1.56935i q^{75} +12.8344 q^{76} -8.89296 q^{77} -4.64870i q^{78} -9.03570i q^{79} +1.40821i q^{80} -7.10006 q^{81} +10.1719i q^{82} -7.31575 q^{83} +19.8524 q^{84} +17.7503 q^{86} +13.7462 q^{87} -8.94182i q^{88} -2.19350 q^{89} -1.26330i q^{90} -4.51162i q^{91} +31.1930i q^{92} -3.83554 q^{93} +26.6522 q^{94} +3.63431i q^{95} -6.10736i q^{96} -9.82039i q^{97} +13.7154 q^{98} +1.33350i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 8 q^{2} + 24 q^{4} + 24 q^{8} - 24 q^{9} - 16 q^{13} + 16 q^{15} + 24 q^{16} + 8 q^{18} + 32 q^{21} - 24 q^{25} - 32 q^{26} - 16 q^{30} + 56 q^{32} - 32 q^{35} - 24 q^{36} - 48 q^{38} + 32 q^{43}+ \cdots - 120 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1445\mathbb{Z}\right)^\times\).

\(n\) \(581\) \(1157\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.35190 −1.66305 −0.831523 0.555490i \(-0.812531\pi\)
−0.831523 + 0.555490i \(0.812531\pi\)
\(3\) − 1.56935i − 0.906065i −0.891494 0.453032i \(-0.850342\pi\)
0.891494 0.453032i \(-0.149658\pi\)
\(4\) 3.53144 1.76572
\(5\) 1.00000i 0.447214i
\(6\) 3.69096i 1.50683i
\(7\) 3.58212i 1.35392i 0.736022 + 0.676958i \(0.236702\pi\)
−0.736022 + 0.676958i \(0.763298\pi\)
\(8\) −3.60181 −1.27343
\(9\) 0.537139 0.179046
\(10\) − 2.35190i − 0.743737i
\(11\) 2.48259i 0.748530i 0.927322 + 0.374265i \(0.122105\pi\)
−0.927322 + 0.374265i \(0.877895\pi\)
\(12\) − 5.54207i − 1.59986i
\(13\) −1.25948 −0.349317 −0.174659 0.984629i \(-0.555882\pi\)
−0.174659 + 0.984629i \(0.555882\pi\)
\(14\) − 8.42480i − 2.25162i
\(15\) 1.56935 0.405205
\(16\) 1.40821 0.352052
\(17\) 0 0
\(18\) −1.26330 −0.297762
\(19\) 3.63431 0.833768 0.416884 0.908960i \(-0.363122\pi\)
0.416884 + 0.908960i \(0.363122\pi\)
\(20\) 3.53144i 0.789655i
\(21\) 5.62161 1.22674
\(22\) − 5.83882i − 1.24484i
\(23\) 8.83293i 1.84179i 0.389808 + 0.920896i \(0.372541\pi\)
−0.389808 + 0.920896i \(0.627459\pi\)
\(24\) 5.65249i 1.15381i
\(25\) −1.00000 −0.200000
\(26\) 2.96218 0.580931
\(27\) − 5.55101i − 1.06829i
\(28\) 12.6501i 2.39064i
\(29\) 8.75919i 1.62654i 0.581885 + 0.813271i \(0.302315\pi\)
−0.581885 + 0.813271i \(0.697685\pi\)
\(30\) −3.69096 −0.673874
\(31\) − 2.44403i − 0.438961i −0.975617 0.219480i \(-0.929564\pi\)
0.975617 0.219480i \(-0.0704362\pi\)
\(32\) 3.89165 0.687953
\(33\) 3.89606 0.678217
\(34\) 0 0
\(35\) −3.58212 −0.605489
\(36\) 1.89688 0.316146
\(37\) − 4.60155i − 0.756490i −0.925705 0.378245i \(-0.876528\pi\)
0.925705 0.378245i \(-0.123472\pi\)
\(38\) −8.54755 −1.38660
\(39\) 1.97657i 0.316504i
\(40\) − 3.60181i − 0.569495i
\(41\) − 4.32497i − 0.675447i −0.941245 0.337724i \(-0.890343\pi\)
0.941245 0.337724i \(-0.109657\pi\)
\(42\) −13.2215 −2.04012
\(43\) −7.54720 −1.15094 −0.575469 0.817824i \(-0.695180\pi\)
−0.575469 + 0.817824i \(0.695180\pi\)
\(44\) 8.76714i 1.32170i
\(45\) 0.537139i 0.0800720i
\(46\) − 20.7742i − 3.06299i
\(47\) −11.3322 −1.65297 −0.826484 0.562961i \(-0.809662\pi\)
−0.826484 + 0.562961i \(0.809662\pi\)
\(48\) − 2.20997i − 0.318982i
\(49\) −5.83161 −0.833087
\(50\) 2.35190 0.332609
\(51\) 0 0
\(52\) −4.44779 −0.616797
\(53\) −5.69139 −0.781772 −0.390886 0.920439i \(-0.627831\pi\)
−0.390886 + 0.920439i \(0.627831\pi\)
\(54\) 13.0554i 1.77662i
\(55\) −2.48259 −0.334753
\(56\) − 12.9021i − 1.72412i
\(57\) − 5.70351i − 0.755448i
\(58\) − 20.6008i − 2.70501i
\(59\) 4.47000 0.581945 0.290972 0.956731i \(-0.406021\pi\)
0.290972 + 0.956731i \(0.406021\pi\)
\(60\) 5.54207 0.715478
\(61\) − 0.242871i − 0.0310964i −0.999879 0.0155482i \(-0.995051\pi\)
0.999879 0.0155482i \(-0.00494935\pi\)
\(62\) 5.74812i 0.730012i
\(63\) 1.92410i 0.242414i
\(64\) −11.9692 −1.49615
\(65\) − 1.25948i − 0.156220i
\(66\) −9.16315 −1.12791
\(67\) −7.23278 −0.883625 −0.441812 0.897108i \(-0.645664\pi\)
−0.441812 + 0.897108i \(0.645664\pi\)
\(68\) 0 0
\(69\) 13.8620 1.66878
\(70\) 8.42480 1.00696
\(71\) − 1.83778i − 0.218105i −0.994036 0.109052i \(-0.965218\pi\)
0.994036 0.109052i \(-0.0347816\pi\)
\(72\) −1.93467 −0.228003
\(73\) 5.47256i 0.640515i 0.947331 + 0.320257i \(0.103769\pi\)
−0.947331 + 0.320257i \(0.896231\pi\)
\(74\) 10.8224i 1.25808i
\(75\) 1.56935i 0.181213i
\(76\) 12.8344 1.47220
\(77\) −8.89296 −1.01345
\(78\) − 4.64870i − 0.526361i
\(79\) − 9.03570i − 1.01660i −0.861181 0.508298i \(-0.830275\pi\)
0.861181 0.508298i \(-0.169725\pi\)
\(80\) 1.40821i 0.157442i
\(81\) −7.10006 −0.788896
\(82\) 10.1719i 1.12330i
\(83\) −7.31575 −0.803008 −0.401504 0.915857i \(-0.631512\pi\)
−0.401504 + 0.915857i \(0.631512\pi\)
\(84\) 19.8524 2.16607
\(85\) 0 0
\(86\) 17.7503 1.91406
\(87\) 13.7462 1.47375
\(88\) − 8.94182i − 0.953201i
\(89\) −2.19350 −0.232510 −0.116255 0.993219i \(-0.537089\pi\)
−0.116255 + 0.993219i \(0.537089\pi\)
\(90\) − 1.26330i − 0.133163i
\(91\) − 4.51162i − 0.472946i
\(92\) 31.1930i 3.25209i
\(93\) −3.83554 −0.397727
\(94\) 26.6522 2.74896
\(95\) 3.63431i 0.372873i
\(96\) − 6.10736i − 0.623330i
\(97\) − 9.82039i − 0.997110i −0.866858 0.498555i \(-0.833864\pi\)
0.866858 0.498555i \(-0.166136\pi\)
\(98\) 13.7154 1.38546
\(99\) 1.33350i 0.134022i
\(100\) −3.53144 −0.353144
\(101\) −5.46415 −0.543704 −0.271852 0.962339i \(-0.587636\pi\)
−0.271852 + 0.962339i \(0.587636\pi\)
\(102\) 0 0
\(103\) 7.16074 0.705568 0.352784 0.935705i \(-0.385235\pi\)
0.352784 + 0.935705i \(0.385235\pi\)
\(104\) 4.53641 0.444832
\(105\) 5.62161i 0.548613i
\(106\) 13.3856 1.30012
\(107\) 0.623156i 0.0602427i 0.999546 + 0.0301214i \(0.00958938\pi\)
−0.999546 + 0.0301214i \(0.990411\pi\)
\(108\) − 19.6031i − 1.88631i
\(109\) 6.18952i 0.592848i 0.955056 + 0.296424i \(0.0957942\pi\)
−0.955056 + 0.296424i \(0.904206\pi\)
\(110\) 5.83882 0.556710
\(111\) −7.22144 −0.685429
\(112\) 5.04437i 0.476648i
\(113\) 16.0596i 1.51076i 0.655287 + 0.755380i \(0.272548\pi\)
−0.655287 + 0.755380i \(0.727452\pi\)
\(114\) 13.4141i 1.25635i
\(115\) −8.83293 −0.823675
\(116\) 30.9326i 2.87202i
\(117\) −0.676517 −0.0625440
\(118\) −10.5130 −0.967801
\(119\) 0 0
\(120\) −5.65249 −0.516000
\(121\) 4.83672 0.439702
\(122\) 0.571208i 0.0517147i
\(123\) −6.78740 −0.611999
\(124\) − 8.63096i − 0.775083i
\(125\) − 1.00000i − 0.0894427i
\(126\) − 4.52529i − 0.403145i
\(127\) 5.91786 0.525125 0.262563 0.964915i \(-0.415432\pi\)
0.262563 + 0.964915i \(0.415432\pi\)
\(128\) 20.3671 1.80021
\(129\) 11.8442i 1.04282i
\(130\) 2.96218i 0.259800i
\(131\) 16.1207i 1.40848i 0.709964 + 0.704238i \(0.248711\pi\)
−0.709964 + 0.704238i \(0.751289\pi\)
\(132\) 13.7587 1.19754
\(133\) 13.0186i 1.12885i
\(134\) 17.0108 1.46951
\(135\) 5.55101 0.477755
\(136\) 0 0
\(137\) −17.1320 −1.46369 −0.731843 0.681473i \(-0.761339\pi\)
−0.731843 + 0.681473i \(0.761339\pi\)
\(138\) −32.6020 −2.77526
\(139\) 2.13307i 0.180925i 0.995900 + 0.0904624i \(0.0288345\pi\)
−0.995900 + 0.0904624i \(0.971165\pi\)
\(140\) −12.6501 −1.06913
\(141\) 17.7842i 1.49770i
\(142\) 4.32229i 0.362718i
\(143\) − 3.12678i − 0.261475i
\(144\) 0.756403 0.0630335
\(145\) −8.75919 −0.727412
\(146\) − 12.8709i − 1.06521i
\(147\) 9.15184i 0.754831i
\(148\) − 16.2501i − 1.33575i
\(149\) 18.5384 1.51872 0.759362 0.650669i \(-0.225511\pi\)
0.759362 + 0.650669i \(0.225511\pi\)
\(150\) − 3.69096i − 0.301366i
\(151\) −8.91261 −0.725298 −0.362649 0.931926i \(-0.618128\pi\)
−0.362649 + 0.931926i \(0.618128\pi\)
\(152\) −13.0901 −1.06175
\(153\) 0 0
\(154\) 20.9154 1.68541
\(155\) 2.44403 0.196309
\(156\) 6.98014i 0.558859i
\(157\) 18.2426 1.45592 0.727960 0.685620i \(-0.240469\pi\)
0.727960 + 0.685620i \(0.240469\pi\)
\(158\) 21.2511i 1.69064i
\(159\) 8.93178i 0.708337i
\(160\) 3.89165i 0.307662i
\(161\) −31.6406 −2.49363
\(162\) 16.6987 1.31197
\(163\) 9.36510i 0.733531i 0.930313 + 0.366766i \(0.119535\pi\)
−0.930313 + 0.366766i \(0.880465\pi\)
\(164\) − 15.2734i − 1.19265i
\(165\) 3.89606i 0.303308i
\(166\) 17.2059 1.33544
\(167\) 9.28133i 0.718211i 0.933297 + 0.359106i \(0.116918\pi\)
−0.933297 + 0.359106i \(0.883082\pi\)
\(168\) −20.2479 −1.56216
\(169\) −11.4137 −0.877977
\(170\) 0 0
\(171\) 1.95213 0.149283
\(172\) −26.6525 −2.03224
\(173\) − 4.29978i − 0.326906i −0.986551 0.163453i \(-0.947737\pi\)
0.986551 0.163453i \(-0.0522632\pi\)
\(174\) −32.3298 −2.45092
\(175\) − 3.58212i − 0.270783i
\(176\) 3.49601i 0.263521i
\(177\) − 7.01500i − 0.527280i
\(178\) 5.15889 0.386675
\(179\) 0.117678 0.00879567 0.00439783 0.999990i \(-0.498600\pi\)
0.00439783 + 0.999990i \(0.498600\pi\)
\(180\) 1.89688i 0.141385i
\(181\) − 2.32364i − 0.172715i −0.996264 0.0863574i \(-0.972477\pi\)
0.996264 0.0863574i \(-0.0275227\pi\)
\(182\) 10.6109i 0.786531i
\(183\) −0.381149 −0.0281754
\(184\) − 31.8145i − 2.34539i
\(185\) 4.60155 0.338313
\(186\) 9.02082 0.661438
\(187\) 0 0
\(188\) −40.0189 −2.91868
\(189\) 19.8844 1.44638
\(190\) − 8.54755i − 0.620104i
\(191\) −14.6622 −1.06092 −0.530461 0.847710i \(-0.677981\pi\)
−0.530461 + 0.847710i \(0.677981\pi\)
\(192\) 18.7838i 1.35561i
\(193\) − 8.39606i − 0.604362i −0.953251 0.302181i \(-0.902285\pi\)
0.953251 0.302181i \(-0.0977146\pi\)
\(194\) 23.0966i 1.65824i
\(195\) −1.97657 −0.141545
\(196\) −20.5940 −1.47100
\(197\) 6.68150i 0.476037i 0.971261 + 0.238019i \(0.0764979\pi\)
−0.971261 + 0.238019i \(0.923502\pi\)
\(198\) − 3.13626i − 0.222884i
\(199\) 18.8718i 1.33779i 0.743359 + 0.668893i \(0.233232\pi\)
−0.743359 + 0.668893i \(0.766768\pi\)
\(200\) 3.60181 0.254686
\(201\) 11.3508i 0.800621i
\(202\) 12.8512 0.904204
\(203\) −31.3765 −2.20220
\(204\) 0 0
\(205\) 4.32497 0.302069
\(206\) −16.8414 −1.17339
\(207\) 4.74451i 0.329766i
\(208\) −1.77361 −0.122978
\(209\) 9.02252i 0.624101i
\(210\) − 13.2215i − 0.912368i
\(211\) 6.61973i 0.455721i 0.973694 + 0.227860i \(0.0731730\pi\)
−0.973694 + 0.227860i \(0.926827\pi\)
\(212\) −20.0988 −1.38039
\(213\) −2.88413 −0.197617
\(214\) − 1.46560i − 0.100186i
\(215\) − 7.54720i − 0.514715i
\(216\) 19.9937i 1.36040i
\(217\) 8.75482 0.594316
\(218\) − 14.5571i − 0.985934i
\(219\) 8.58836 0.580348
\(220\) −8.76714 −0.591081
\(221\) 0 0
\(222\) 16.9841 1.13990
\(223\) −2.94266 −0.197055 −0.0985275 0.995134i \(-0.531413\pi\)
−0.0985275 + 0.995134i \(0.531413\pi\)
\(224\) 13.9404i 0.931429i
\(225\) −0.537139 −0.0358093
\(226\) − 37.7706i − 2.51246i
\(227\) 21.5256i 1.42871i 0.699786 + 0.714353i \(0.253279\pi\)
−0.699786 + 0.714353i \(0.746721\pi\)
\(228\) − 20.1416i − 1.33391i
\(229\) 11.9409 0.789075 0.394537 0.918880i \(-0.370905\pi\)
0.394537 + 0.918880i \(0.370905\pi\)
\(230\) 20.7742 1.36981
\(231\) 13.9562i 0.918249i
\(232\) − 31.5489i − 2.07129i
\(233\) − 10.0687i − 0.659623i −0.944047 0.329812i \(-0.893015\pi\)
0.944047 0.329812i \(-0.106985\pi\)
\(234\) 1.59110 0.104014
\(235\) − 11.3322i − 0.739230i
\(236\) 15.7856 1.02755
\(237\) −14.1802 −0.921101
\(238\) 0 0
\(239\) −16.6253 −1.07540 −0.537701 0.843135i \(-0.680707\pi\)
−0.537701 + 0.843135i \(0.680707\pi\)
\(240\) 2.20997 0.142653
\(241\) 5.92200i 0.381470i 0.981642 + 0.190735i \(0.0610871\pi\)
−0.981642 + 0.190735i \(0.938913\pi\)
\(242\) −11.3755 −0.731245
\(243\) − 5.51054i − 0.353502i
\(244\) − 0.857684i − 0.0549076i
\(245\) − 5.83161i − 0.372568i
\(246\) 15.9633 1.01778
\(247\) −4.57735 −0.291250
\(248\) 8.80292i 0.558986i
\(249\) 11.4810i 0.727577i
\(250\) 2.35190i 0.148747i
\(251\) 7.77270 0.490608 0.245304 0.969446i \(-0.421112\pi\)
0.245304 + 0.969446i \(0.421112\pi\)
\(252\) 6.79484i 0.428035i
\(253\) −21.9286 −1.37864
\(254\) −13.9182 −0.873307
\(255\) 0 0
\(256\) −23.9630 −1.49768
\(257\) 8.06588 0.503135 0.251568 0.967840i \(-0.419054\pi\)
0.251568 + 0.967840i \(0.419054\pi\)
\(258\) − 27.8564i − 1.73426i
\(259\) 16.4833 1.02422
\(260\) − 4.44779i − 0.275840i
\(261\) 4.70491i 0.291226i
\(262\) − 37.9144i − 2.34236i
\(263\) 21.3252 1.31497 0.657483 0.753469i \(-0.271621\pi\)
0.657483 + 0.753469i \(0.271621\pi\)
\(264\) −14.0329 −0.863662
\(265\) − 5.69139i − 0.349619i
\(266\) − 30.6184i − 1.87733i
\(267\) 3.44237i 0.210670i
\(268\) −25.5422 −1.56024
\(269\) − 4.20185i − 0.256191i −0.991762 0.128096i \(-0.959114\pi\)
0.991762 0.128096i \(-0.0408864\pi\)
\(270\) −13.0554 −0.794528
\(271\) 24.7136 1.50124 0.750621 0.660733i \(-0.229755\pi\)
0.750621 + 0.660733i \(0.229755\pi\)
\(272\) 0 0
\(273\) −7.08031 −0.428520
\(274\) 40.2928 2.43418
\(275\) − 2.48259i − 0.149706i
\(276\) 48.9527 2.94661
\(277\) − 20.0627i − 1.20545i −0.797949 0.602725i \(-0.794082\pi\)
0.797949 0.602725i \(-0.205918\pi\)
\(278\) − 5.01678i − 0.300886i
\(279\) − 1.31278i − 0.0785943i
\(280\) 12.9021 0.771049
\(281\) −25.1805 −1.50215 −0.751073 0.660219i \(-0.770463\pi\)
−0.751073 + 0.660219i \(0.770463\pi\)
\(282\) − 41.8266i − 2.49074i
\(283\) 8.48659i 0.504476i 0.967665 + 0.252238i \(0.0811665\pi\)
−0.967665 + 0.252238i \(0.918833\pi\)
\(284\) − 6.49003i − 0.385112i
\(285\) 5.70351 0.337847
\(286\) 7.35389i 0.434845i
\(287\) 15.4926 0.914499
\(288\) 2.09036 0.123175
\(289\) 0 0
\(290\) 20.6008 1.20972
\(291\) −15.4116 −0.903446
\(292\) 19.3260i 1.13097i
\(293\) 25.9873 1.51820 0.759098 0.650977i \(-0.225640\pi\)
0.759098 + 0.650977i \(0.225640\pi\)
\(294\) − 21.5242i − 1.25532i
\(295\) 4.47000i 0.260254i
\(296\) 16.5739i 0.963338i
\(297\) 13.7809 0.799649
\(298\) −43.6005 −2.52571
\(299\) − 11.1249i − 0.643370i
\(300\) 5.54207i 0.319972i
\(301\) − 27.0350i − 1.55827i
\(302\) 20.9616 1.20620
\(303\) 8.57517i 0.492631i
\(304\) 5.11786 0.293529
\(305\) 0.242871 0.0139067
\(306\) 0 0
\(307\) 16.9475 0.967245 0.483622 0.875277i \(-0.339321\pi\)
0.483622 + 0.875277i \(0.339321\pi\)
\(308\) −31.4050 −1.78947
\(309\) − 11.2377i − 0.639291i
\(310\) −5.74812 −0.326471
\(311\) 17.1905i 0.974782i 0.873184 + 0.487391i \(0.162051\pi\)
−0.873184 + 0.487391i \(0.837949\pi\)
\(312\) − 7.11922i − 0.403046i
\(313\) − 5.91487i − 0.334328i −0.985929 0.167164i \(-0.946539\pi\)
0.985929 0.167164i \(-0.0534610\pi\)
\(314\) −42.9049 −2.42126
\(315\) −1.92410 −0.108411
\(316\) − 31.9090i − 1.79502i
\(317\) − 0.640574i − 0.0359782i −0.999838 0.0179891i \(-0.994274\pi\)
0.999838 0.0179891i \(-0.00572642\pi\)
\(318\) − 21.0067i − 1.17800i
\(319\) −21.7455 −1.21752
\(320\) − 11.9692i − 0.669098i
\(321\) 0.977950 0.0545838
\(322\) 74.4157 4.14702
\(323\) 0 0
\(324\) −25.0735 −1.39297
\(325\) 1.25948 0.0698635
\(326\) − 22.0258i − 1.21990i
\(327\) 9.71352 0.537159
\(328\) 15.5777i 0.860135i
\(329\) − 40.5932i − 2.23798i
\(330\) − 9.16315i − 0.504415i
\(331\) −11.6609 −0.640939 −0.320469 0.947259i \(-0.603841\pi\)
−0.320469 + 0.947259i \(0.603841\pi\)
\(332\) −25.8352 −1.41789
\(333\) − 2.47167i − 0.135447i
\(334\) − 21.8288i − 1.19442i
\(335\) − 7.23278i − 0.395169i
\(336\) 7.91638 0.431874
\(337\) − 30.8806i − 1.68217i −0.540900 0.841087i \(-0.681916\pi\)
0.540900 0.841087i \(-0.318084\pi\)
\(338\) 26.8439 1.46012
\(339\) 25.2031 1.36885
\(340\) 0 0
\(341\) 6.06754 0.328576
\(342\) −4.59122 −0.248265
\(343\) 4.18533i 0.225986i
\(344\) 27.1836 1.46564
\(345\) 13.8620i 0.746303i
\(346\) 10.1127i 0.543660i
\(347\) − 0.0149992i 0 0.000805197i −1.00000 0.000402598i \(-0.999872\pi\)
1.00000 0.000402598i \(-0.000128151\pi\)
\(348\) 48.5441 2.60224
\(349\) 3.65491 0.195643 0.0978215 0.995204i \(-0.468813\pi\)
0.0978215 + 0.995204i \(0.468813\pi\)
\(350\) 8.42480i 0.450325i
\(351\) 6.99140i 0.373173i
\(352\) 9.66138i 0.514953i
\(353\) 3.82333 0.203495 0.101748 0.994810i \(-0.467557\pi\)
0.101748 + 0.994810i \(0.467557\pi\)
\(354\) 16.4986i 0.876891i
\(355\) 1.83778 0.0975395
\(356\) −7.74622 −0.410549
\(357\) 0 0
\(358\) −0.276767 −0.0146276
\(359\) 6.69675 0.353441 0.176721 0.984261i \(-0.443451\pi\)
0.176721 + 0.984261i \(0.443451\pi\)
\(360\) − 1.93467i − 0.101966i
\(361\) −5.79178 −0.304830
\(362\) 5.46497i 0.287232i
\(363\) − 7.59052i − 0.398399i
\(364\) − 15.9325i − 0.835092i
\(365\) −5.47256 −0.286447
\(366\) 0.896426 0.0468569
\(367\) 23.0276i 1.20203i 0.799238 + 0.601015i \(0.205237\pi\)
−0.799238 + 0.601015i \(0.794763\pi\)
\(368\) 12.4386i 0.648406i
\(369\) − 2.32311i − 0.120936i
\(370\) −10.8224 −0.562630
\(371\) − 20.3873i − 1.05845i
\(372\) −13.5450 −0.702275
\(373\) 23.7303 1.22871 0.614355 0.789030i \(-0.289416\pi\)
0.614355 + 0.789030i \(0.289416\pi\)
\(374\) 0 0
\(375\) −1.56935 −0.0810409
\(376\) 40.8163 2.10494
\(377\) − 11.0320i − 0.568179i
\(378\) −46.7662 −2.40539
\(379\) − 2.97819i − 0.152979i −0.997070 0.0764897i \(-0.975629\pi\)
0.997070 0.0764897i \(-0.0243712\pi\)
\(380\) 12.8344i 0.658389i
\(381\) − 9.28720i − 0.475798i
\(382\) 34.4841 1.76436
\(383\) 24.4222 1.24791 0.623957 0.781459i \(-0.285524\pi\)
0.623957 + 0.781459i \(0.285524\pi\)
\(384\) − 31.9631i − 1.63111i
\(385\) − 8.89296i − 0.453227i
\(386\) 19.7467i 1.00508i
\(387\) −4.05390 −0.206071
\(388\) − 34.6802i − 1.76062i
\(389\) −1.68867 −0.0856191 −0.0428095 0.999083i \(-0.513631\pi\)
−0.0428095 + 0.999083i \(0.513631\pi\)
\(390\) 4.64870 0.235396
\(391\) 0 0
\(392\) 21.0043 1.06088
\(393\) 25.2991 1.27617
\(394\) − 15.7142i − 0.791671i
\(395\) 9.03570 0.454635
\(396\) 4.70917i 0.236645i
\(397\) 31.5256i 1.58222i 0.611671 + 0.791112i \(0.290498\pi\)
−0.611671 + 0.791112i \(0.709502\pi\)
\(398\) − 44.3846i − 2.22480i
\(399\) 20.4307 1.02281
\(400\) −1.40821 −0.0704103
\(401\) − 5.06607i − 0.252987i −0.991967 0.126494i \(-0.959628\pi\)
0.991967 0.126494i \(-0.0403724\pi\)
\(402\) − 26.6959i − 1.33147i
\(403\) 3.07821i 0.153337i
\(404\) −19.2964 −0.960029
\(405\) − 7.10006i − 0.352805i
\(406\) 73.7945 3.66236
\(407\) 11.4238 0.566256
\(408\) 0 0
\(409\) −26.1178 −1.29144 −0.645722 0.763573i \(-0.723443\pi\)
−0.645722 + 0.763573i \(0.723443\pi\)
\(410\) −10.1719 −0.502355
\(411\) 26.8861i 1.32619i
\(412\) 25.2877 1.24584
\(413\) 16.0121i 0.787904i
\(414\) − 11.1586i − 0.548416i
\(415\) − 7.31575i − 0.359116i
\(416\) −4.90146 −0.240314
\(417\) 3.34754 0.163930
\(418\) − 21.2201i − 1.03791i
\(419\) 7.29855i 0.356557i 0.983980 + 0.178279i \(0.0570529\pi\)
−0.983980 + 0.178279i \(0.942947\pi\)
\(420\) 19.8524i 0.968697i
\(421\) −21.0644 −1.02662 −0.513309 0.858204i \(-0.671580\pi\)
−0.513309 + 0.858204i \(0.671580\pi\)
\(422\) − 15.5690i − 0.757885i
\(423\) −6.08695 −0.295958
\(424\) 20.4993 0.995533
\(425\) 0 0
\(426\) 6.78319 0.328646
\(427\) 0.869993 0.0421019
\(428\) 2.20064i 0.106372i
\(429\) −4.90702 −0.236913
\(430\) 17.7503i 0.855995i
\(431\) 21.0432i 1.01362i 0.862059 + 0.506809i \(0.169175\pi\)
−0.862059 + 0.506809i \(0.830825\pi\)
\(432\) − 7.81697i − 0.376094i
\(433\) −37.1262 −1.78417 −0.892084 0.451869i \(-0.850758\pi\)
−0.892084 + 0.451869i \(0.850758\pi\)
\(434\) −20.5905 −0.988375
\(435\) 13.7462i 0.659082i
\(436\) 21.8579i 1.04680i
\(437\) 32.1016i 1.53563i
\(438\) −20.1990 −0.965145
\(439\) − 0.471326i − 0.0224952i −0.999937 0.0112476i \(-0.996420\pi\)
0.999937 0.0112476i \(-0.00358029\pi\)
\(440\) 8.94182 0.426285
\(441\) −3.13238 −0.149161
\(442\) 0 0
\(443\) −11.0249 −0.523808 −0.261904 0.965094i \(-0.584350\pi\)
−0.261904 + 0.965094i \(0.584350\pi\)
\(444\) −25.5021 −1.21028
\(445\) − 2.19350i − 0.103982i
\(446\) 6.92084 0.327711
\(447\) − 29.0932i − 1.37606i
\(448\) − 42.8751i − 2.02566i
\(449\) 17.2633i 0.814703i 0.913271 + 0.407352i \(0.133548\pi\)
−0.913271 + 0.407352i \(0.866452\pi\)
\(450\) 1.26330 0.0595525
\(451\) 10.7372 0.505593
\(452\) 56.7136i 2.66758i
\(453\) 13.9870i 0.657167i
\(454\) − 50.6262i − 2.37600i
\(455\) 4.51162 0.211508
\(456\) 20.5429i 0.962011i
\(457\) −11.2676 −0.527078 −0.263539 0.964649i \(-0.584890\pi\)
−0.263539 + 0.964649i \(0.584890\pi\)
\(458\) −28.0837 −1.31227
\(459\) 0 0
\(460\) −31.1930 −1.45438
\(461\) −30.0075 −1.39759 −0.698794 0.715323i \(-0.746280\pi\)
−0.698794 + 0.715323i \(0.746280\pi\)
\(462\) − 32.8235i − 1.52709i
\(463\) −17.1592 −0.797457 −0.398728 0.917069i \(-0.630548\pi\)
−0.398728 + 0.917069i \(0.630548\pi\)
\(464\) 12.3348i 0.572627i
\(465\) − 3.83554i − 0.177869i
\(466\) 23.6806i 1.09698i
\(467\) 26.5914 1.23051 0.615253 0.788330i \(-0.289054\pi\)
0.615253 + 0.788330i \(0.289054\pi\)
\(468\) −2.38908 −0.110435
\(469\) − 25.9087i − 1.19635i
\(470\) 26.6522i 1.22937i
\(471\) − 28.6291i − 1.31916i
\(472\) −16.1001 −0.741066
\(473\) − 18.7366i − 0.861512i
\(474\) 33.3504 1.53183
\(475\) −3.63431 −0.166754
\(476\) 0 0
\(477\) −3.05707 −0.139974
\(478\) 39.1011 1.78844
\(479\) − 22.9101i − 1.04679i −0.852090 0.523395i \(-0.824665\pi\)
0.852090 0.523395i \(-0.175335\pi\)
\(480\) 6.10736 0.278761
\(481\) 5.79557i 0.264255i
\(482\) − 13.9280i − 0.634402i
\(483\) 49.6552i 2.25939i
\(484\) 17.0806 0.776392
\(485\) 9.82039 0.445921
\(486\) 12.9603i 0.587889i
\(487\) 15.7135i 0.712048i 0.934477 + 0.356024i \(0.115868\pi\)
−0.934477 + 0.356024i \(0.884132\pi\)
\(488\) 0.874773i 0.0395991i
\(489\) 14.6971 0.664627
\(490\) 13.7154i 0.619597i
\(491\) 0.859183 0.0387744 0.0193872 0.999812i \(-0.493828\pi\)
0.0193872 + 0.999812i \(0.493828\pi\)
\(492\) −23.9693 −1.08062
\(493\) 0 0
\(494\) 10.7655 0.484362
\(495\) −1.33350 −0.0599363
\(496\) − 3.44170i − 0.154537i
\(497\) 6.58317 0.295296
\(498\) − 27.0021i − 1.20999i
\(499\) 22.6396i 1.01349i 0.862097 + 0.506744i \(0.169151\pi\)
−0.862097 + 0.506744i \(0.830849\pi\)
\(500\) − 3.53144i − 0.157931i
\(501\) 14.5657 0.650746
\(502\) −18.2806 −0.815904
\(503\) − 17.1150i − 0.763121i −0.924344 0.381560i \(-0.875387\pi\)
0.924344 0.381560i \(-0.124613\pi\)
\(504\) − 6.93023i − 0.308697i
\(505\) − 5.46415i − 0.243152i
\(506\) 51.5739 2.29274
\(507\) 17.9121i 0.795504i
\(508\) 20.8986 0.927225
\(509\) −29.7081 −1.31679 −0.658393 0.752674i \(-0.728764\pi\)
−0.658393 + 0.752674i \(0.728764\pi\)
\(510\) 0 0
\(511\) −19.6034 −0.867203
\(512\) 15.6244 0.690508
\(513\) − 20.1741i − 0.890709i
\(514\) −18.9701 −0.836737
\(515\) 7.16074i 0.315540i
\(516\) 41.8271i 1.84134i
\(517\) − 28.1332i − 1.23730i
\(518\) −38.7672 −1.70333
\(519\) −6.74786 −0.296198
\(520\) 4.53641i 0.198935i
\(521\) − 38.6564i − 1.69357i −0.531936 0.846784i \(-0.678535\pi\)
0.531936 0.846784i \(-0.321465\pi\)
\(522\) − 11.0655i − 0.484323i
\(523\) 0.599508 0.0262147 0.0131073 0.999914i \(-0.495828\pi\)
0.0131073 + 0.999914i \(0.495828\pi\)
\(524\) 56.9295i 2.48698i
\(525\) −5.62161 −0.245347
\(526\) −50.1547 −2.18685
\(527\) 0 0
\(528\) 5.48646 0.238767
\(529\) −55.0206 −2.39220
\(530\) 13.3856i 0.581433i
\(531\) 2.40101 0.104195
\(532\) 45.9743i 1.99324i
\(533\) 5.44723i 0.235946i
\(534\) − 8.09611i − 0.350353i
\(535\) −0.623156 −0.0269414
\(536\) 26.0511 1.12523
\(537\) − 0.184678i − 0.00796945i
\(538\) 9.88234i 0.426058i
\(539\) − 14.4775i − 0.623591i
\(540\) 19.6031 0.843582
\(541\) − 39.7072i − 1.70715i −0.520973 0.853573i \(-0.674431\pi\)
0.520973 0.853573i \(-0.325569\pi\)
\(542\) −58.1239 −2.49663
\(543\) −3.64660 −0.156491
\(544\) 0 0
\(545\) −6.18952 −0.265130
\(546\) 16.6522 0.712649
\(547\) − 4.03770i − 0.172639i −0.996267 0.0863197i \(-0.972489\pi\)
0.996267 0.0863197i \(-0.0275107\pi\)
\(548\) −60.5007 −2.58446
\(549\) − 0.130455i − 0.00556770i
\(550\) 5.83882i 0.248968i
\(551\) 31.8336i 1.35616i
\(552\) −49.9281 −2.12508
\(553\) 32.3670 1.37638
\(554\) 47.1854i 2.00472i
\(555\) − 7.22144i − 0.306533i
\(556\) 7.53283i 0.319463i
\(557\) 5.42781 0.229984 0.114992 0.993366i \(-0.463316\pi\)
0.114992 + 0.993366i \(0.463316\pi\)
\(558\) 3.08754i 0.130706i
\(559\) 9.50557 0.402043
\(560\) −5.04437 −0.213163
\(561\) 0 0
\(562\) 59.2222 2.49814
\(563\) 5.18858 0.218673 0.109336 0.994005i \(-0.465127\pi\)
0.109336 + 0.994005i \(0.465127\pi\)
\(564\) 62.8037i 2.64451i
\(565\) −16.0596 −0.675632
\(566\) − 19.9596i − 0.838966i
\(567\) − 25.4333i − 1.06810i
\(568\) 6.61934i 0.277741i
\(569\) 11.9963 0.502911 0.251455 0.967869i \(-0.419091\pi\)
0.251455 + 0.967869i \(0.419091\pi\)
\(570\) −13.4141 −0.561855
\(571\) 43.5118i 1.82091i 0.413606 + 0.910456i \(0.364269\pi\)
−0.413606 + 0.910456i \(0.635731\pi\)
\(572\) − 11.0421i − 0.461692i
\(573\) 23.0102i 0.961263i
\(574\) −36.4371 −1.52085
\(575\) − 8.83293i − 0.368358i
\(576\) −6.42912 −0.267880
\(577\) −27.7097 −1.15357 −0.576784 0.816897i \(-0.695693\pi\)
−0.576784 + 0.816897i \(0.695693\pi\)
\(578\) 0 0
\(579\) −13.1764 −0.547591
\(580\) −30.9326 −1.28441
\(581\) − 26.2059i − 1.08720i
\(582\) 36.2467 1.50247
\(583\) − 14.1294i − 0.585180i
\(584\) − 19.7111i − 0.815651i
\(585\) − 0.676517i − 0.0279705i
\(586\) −61.1196 −2.52483
\(587\) −4.37916 −0.180747 −0.0903736 0.995908i \(-0.528806\pi\)
−0.0903736 + 0.995908i \(0.528806\pi\)
\(588\) 32.3192i 1.33282i
\(589\) − 8.88237i − 0.365992i
\(590\) − 10.5130i − 0.432814i
\(591\) 10.4856 0.431320
\(592\) − 6.47993i − 0.266324i
\(593\) 35.8783 1.47335 0.736673 0.676250i \(-0.236396\pi\)
0.736673 + 0.676250i \(0.236396\pi\)
\(594\) −32.4114 −1.32985
\(595\) 0 0
\(596\) 65.4673 2.68164
\(597\) 29.6165 1.21212
\(598\) 26.1647i 1.06995i
\(599\) 11.1415 0.455230 0.227615 0.973751i \(-0.426907\pi\)
0.227615 + 0.973751i \(0.426907\pi\)
\(600\) − 5.65249i − 0.230762i
\(601\) − 20.4505i − 0.834193i −0.908862 0.417096i \(-0.863048\pi\)
0.908862 0.417096i \(-0.136952\pi\)
\(602\) 63.5837i 2.59148i
\(603\) −3.88501 −0.158210
\(604\) −31.4744 −1.28067
\(605\) 4.83672i 0.196641i
\(606\) − 20.1680i − 0.819268i
\(607\) 1.57554i 0.0639492i 0.999489 + 0.0319746i \(0.0101796\pi\)
−0.999489 + 0.0319746i \(0.989820\pi\)
\(608\) 14.1435 0.573593
\(609\) 49.2407i 1.99534i
\(610\) −0.571208 −0.0231275
\(611\) 14.2727 0.577410
\(612\) 0 0
\(613\) −22.4800 −0.907959 −0.453980 0.891012i \(-0.649996\pi\)
−0.453980 + 0.891012i \(0.649996\pi\)
\(614\) −39.8589 −1.60857
\(615\) − 6.78740i − 0.273694i
\(616\) 32.0307 1.29055
\(617\) − 27.1976i − 1.09493i −0.836827 0.547467i \(-0.815592\pi\)
0.836827 0.547467i \(-0.184408\pi\)
\(618\) 26.4300i 1.06317i
\(619\) 14.3702i 0.577588i 0.957391 + 0.288794i \(0.0932542\pi\)
−0.957391 + 0.288794i \(0.906746\pi\)
\(620\) 8.63096 0.346628
\(621\) 49.0317 1.96757
\(622\) − 40.4303i − 1.62111i
\(623\) − 7.85738i − 0.314799i
\(624\) 2.78342i 0.111426i
\(625\) 1.00000 0.0400000
\(626\) 13.9112i 0.556003i
\(627\) 14.1595 0.565476
\(628\) 64.4228 2.57075
\(629\) 0 0
\(630\) 4.52529 0.180292
\(631\) 23.2691 0.926330 0.463165 0.886272i \(-0.346714\pi\)
0.463165 + 0.886272i \(0.346714\pi\)
\(632\) 32.5448i 1.29456i
\(633\) 10.3887 0.412913
\(634\) 1.50657i 0.0598334i
\(635\) 5.91786i 0.234843i
\(636\) 31.5421i 1.25073i
\(637\) 7.34480 0.291012
\(638\) 51.1434 2.02478
\(639\) − 0.987146i − 0.0390509i
\(640\) 20.3671i 0.805079i
\(641\) − 5.38403i − 0.212656i −0.994331 0.106328i \(-0.966091\pi\)
0.994331 0.106328i \(-0.0339094\pi\)
\(642\) −2.30004 −0.0907754
\(643\) − 16.1891i − 0.638438i −0.947681 0.319219i \(-0.896580\pi\)
0.947681 0.319219i \(-0.103420\pi\)
\(644\) −111.737 −4.40306
\(645\) −11.8442 −0.466365
\(646\) 0 0
\(647\) −25.8383 −1.01581 −0.507904 0.861413i \(-0.669580\pi\)
−0.507904 + 0.861413i \(0.669580\pi\)
\(648\) 25.5730 1.00460
\(649\) 11.0972i 0.435604i
\(650\) −2.96218 −0.116186
\(651\) − 13.7394i − 0.538489i
\(652\) 33.0723i 1.29521i
\(653\) − 12.4784i − 0.488319i −0.969735 0.244159i \(-0.921488\pi\)
0.969735 0.244159i \(-0.0785120\pi\)
\(654\) −22.8452 −0.893320
\(655\) −16.1207 −0.629889
\(656\) − 6.09045i − 0.237792i
\(657\) 2.93953i 0.114682i
\(658\) 95.4713i 3.72186i
\(659\) 41.7109 1.62483 0.812413 0.583082i \(-0.198153\pi\)
0.812413 + 0.583082i \(0.198153\pi\)
\(660\) 13.7587i 0.535557i
\(661\) −18.1720 −0.706808 −0.353404 0.935471i \(-0.614976\pi\)
−0.353404 + 0.935471i \(0.614976\pi\)
\(662\) 27.4252 1.06591
\(663\) 0 0
\(664\) 26.3499 1.02257
\(665\) −13.0186 −0.504838
\(666\) 5.81313i 0.225254i
\(667\) −77.3693 −2.99575
\(668\) 32.7765i 1.26816i
\(669\) 4.61806i 0.178545i
\(670\) 17.0108i 0.657184i
\(671\) 0.602949 0.0232766
\(672\) 21.8773 0.843936
\(673\) − 6.39677i − 0.246577i −0.992371 0.123289i \(-0.960656\pi\)
0.992371 0.123289i \(-0.0393441\pi\)
\(674\) 72.6282i 2.79753i
\(675\) 5.55101i 0.213659i
\(676\) −40.3069 −1.55026
\(677\) 41.8887i 1.60991i 0.593334 + 0.804957i \(0.297811\pi\)
−0.593334 + 0.804957i \(0.702189\pi\)
\(678\) −59.2753 −2.27645
\(679\) 35.1779 1.35000
\(680\) 0 0
\(681\) 33.7812 1.29450
\(682\) −14.2703 −0.546436
\(683\) 30.3064i 1.15964i 0.814744 + 0.579820i \(0.196877\pi\)
−0.814744 + 0.579820i \(0.803123\pi\)
\(684\) 6.89384 0.263593
\(685\) − 17.1320i − 0.654580i
\(686\) − 9.84348i − 0.375826i
\(687\) − 18.7394i − 0.714953i
\(688\) −10.6280 −0.405189
\(689\) 7.16820 0.273087
\(690\) − 32.6020i − 1.24114i
\(691\) 5.79281i 0.220369i 0.993911 + 0.110184i \(0.0351441\pi\)
−0.993911 + 0.110184i \(0.964856\pi\)
\(692\) − 15.1844i − 0.577225i
\(693\) −4.77676 −0.181454
\(694\) 0.0352765i 0.00133908i
\(695\) −2.13307 −0.0809121
\(696\) −49.5113 −1.87672
\(697\) 0 0
\(698\) −8.59600 −0.325363
\(699\) −15.8013 −0.597662
\(700\) − 12.6501i − 0.478128i
\(701\) 5.24783 0.198208 0.0991039 0.995077i \(-0.468402\pi\)
0.0991039 + 0.995077i \(0.468402\pi\)
\(702\) − 16.4431i − 0.620604i
\(703\) − 16.7235i − 0.630738i
\(704\) − 29.7146i − 1.11991i
\(705\) −17.7842 −0.669790
\(706\) −8.99209 −0.338422
\(707\) − 19.5733i − 0.736129i
\(708\) − 24.7731i − 0.931030i
\(709\) 41.7572i 1.56823i 0.620618 + 0.784113i \(0.286882\pi\)
−0.620618 + 0.784113i \(0.713118\pi\)
\(710\) −4.32229 −0.162213
\(711\) − 4.85343i − 0.182018i
\(712\) 7.90055 0.296086
\(713\) 21.5879 0.808475
\(714\) 0 0
\(715\) 3.12678 0.116935
\(716\) 0.415573 0.0155307
\(717\) 26.0910i 0.974385i
\(718\) −15.7501 −0.587789
\(719\) − 10.1819i − 0.379719i −0.981811 0.189860i \(-0.939197\pi\)
0.981811 0.189860i \(-0.0608033\pi\)
\(720\) 0.756403i 0.0281895i
\(721\) 25.6506i 0.955280i
\(722\) 13.6217 0.506947
\(723\) 9.29370 0.345636
\(724\) − 8.20580i − 0.304966i
\(725\) − 8.75919i − 0.325308i
\(726\) 17.8521i 0.662555i
\(727\) 46.0182 1.70672 0.853361 0.521321i \(-0.174561\pi\)
0.853361 + 0.521321i \(0.174561\pi\)
\(728\) 16.2500i 0.602264i
\(729\) −29.9482 −1.10919
\(730\) 12.8709 0.476374
\(731\) 0 0
\(732\) −1.34601 −0.0497498
\(733\) 2.55919 0.0945257 0.0472629 0.998882i \(-0.484950\pi\)
0.0472629 + 0.998882i \(0.484950\pi\)
\(734\) − 54.1586i − 1.99903i
\(735\) −9.15184 −0.337571
\(736\) 34.3746i 1.26707i
\(737\) − 17.9561i − 0.661420i
\(738\) 5.46373i 0.201123i
\(739\) 2.47667 0.0911057 0.0455528 0.998962i \(-0.485495\pi\)
0.0455528 + 0.998962i \(0.485495\pi\)
\(740\) 16.2501 0.597366
\(741\) 7.18347i 0.263891i
\(742\) 47.9488i 1.76026i
\(743\) 1.59477i 0.0585064i 0.999572 + 0.0292532i \(0.00931291\pi\)
−0.999572 + 0.0292532i \(0.990687\pi\)
\(744\) 13.8149 0.506478
\(745\) 18.5384i 0.679194i
\(746\) −55.8114 −2.04340
\(747\) −3.92957 −0.143776
\(748\) 0 0
\(749\) −2.23222 −0.0815636
\(750\) 3.69096 0.134775
\(751\) 12.7441i 0.465041i 0.972592 + 0.232520i \(0.0746972\pi\)
−0.972592 + 0.232520i \(0.925303\pi\)
\(752\) −15.9580 −0.581930
\(753\) − 12.1981i − 0.444523i
\(754\) 25.9463i 0.944908i
\(755\) − 8.91261i − 0.324363i
\(756\) 70.2207 2.55390
\(757\) 46.0573 1.67398 0.836991 0.547217i \(-0.184313\pi\)
0.836991 + 0.547217i \(0.184313\pi\)
\(758\) 7.00441i 0.254412i
\(759\) 34.4136i 1.24914i
\(760\) − 13.0901i − 0.474827i
\(761\) −29.7003 −1.07664 −0.538318 0.842742i \(-0.680940\pi\)
−0.538318 + 0.842742i \(0.680940\pi\)
\(762\) 21.8426i 0.791273i
\(763\) −22.1716 −0.802666
\(764\) −51.7788 −1.87329
\(765\) 0 0
\(766\) −57.4385 −2.07534
\(767\) −5.62989 −0.203284
\(768\) 37.6063i 1.35700i
\(769\) 43.8299 1.58055 0.790273 0.612755i \(-0.209939\pi\)
0.790273 + 0.612755i \(0.209939\pi\)
\(770\) 20.9154i 0.753738i
\(771\) − 12.6582i − 0.455873i
\(772\) − 29.6502i − 1.06713i
\(773\) 27.9122 1.00393 0.501966 0.864887i \(-0.332610\pi\)
0.501966 + 0.864887i \(0.332610\pi\)
\(774\) 9.53437 0.342706
\(775\) 2.44403i 0.0877922i
\(776\) 35.3711i 1.26975i
\(777\) − 25.8681i − 0.928013i
\(778\) 3.97159 0.142388
\(779\) − 15.7183i − 0.563167i
\(780\) −6.98014 −0.249929
\(781\) 4.56247 0.163258
\(782\) 0 0
\(783\) 48.6224 1.73762
\(784\) −8.21211 −0.293289
\(785\) 18.2426i 0.651107i
\(786\) −59.5010 −2.12233
\(787\) − 30.0226i − 1.07019i −0.844792 0.535096i \(-0.820276\pi\)
0.844792 0.535096i \(-0.179724\pi\)
\(788\) 23.5953i 0.840549i
\(789\) − 33.4667i − 1.19144i
\(790\) −21.2511 −0.756079
\(791\) −57.5275 −2.04544
\(792\) − 4.80300i − 0.170667i
\(793\) 0.305891i 0.0108625i
\(794\) − 74.1451i − 2.63131i
\(795\) −8.93178 −0.316778
\(796\) 66.6447i 2.36216i
\(797\) 5.16206 0.182850 0.0914249 0.995812i \(-0.470858\pi\)
0.0914249 + 0.995812i \(0.470858\pi\)
\(798\) −48.0509 −1.70099
\(799\) 0 0
\(800\) −3.89165 −0.137591
\(801\) −1.17821 −0.0416301
\(802\) 11.9149i 0.420730i
\(803\) −13.5861 −0.479445
\(804\) 40.0846i 1.41367i
\(805\) − 31.6406i − 1.11519i
\(806\) − 7.23966i − 0.255006i
\(807\) −6.59417 −0.232126
\(808\) 19.6808 0.692369
\(809\) − 22.2343i − 0.781717i −0.920451 0.390859i \(-0.872178\pi\)
0.920451 0.390859i \(-0.127822\pi\)
\(810\) 16.6987i 0.586731i
\(811\) − 15.6644i − 0.550051i −0.961437 0.275026i \(-0.911314\pi\)
0.961437 0.275026i \(-0.0886863\pi\)
\(812\) −110.804 −3.88847
\(813\) − 38.7842i − 1.36022i
\(814\) −26.8676 −0.941710
\(815\) −9.36510 −0.328045
\(816\) 0 0
\(817\) −27.4289 −0.959615
\(818\) 61.4266 2.14773
\(819\) − 2.42337i − 0.0846793i
\(820\) 15.2734 0.533370
\(821\) − 34.9393i − 1.21939i −0.792637 0.609694i \(-0.791292\pi\)
0.792637 0.609694i \(-0.208708\pi\)
\(822\) − 63.2335i − 2.20552i
\(823\) 2.44416i 0.0851980i 0.999092 + 0.0425990i \(0.0135638\pi\)
−0.999092 + 0.0425990i \(0.986436\pi\)
\(824\) −25.7916 −0.898492
\(825\) −3.89606 −0.135643
\(826\) − 37.6589i − 1.31032i
\(827\) − 50.8219i − 1.76725i −0.468194 0.883626i \(-0.655095\pi\)
0.468194 0.883626i \(-0.344905\pi\)
\(828\) 16.7550i 0.582275i
\(829\) 41.5846 1.44429 0.722147 0.691740i \(-0.243156\pi\)
0.722147 + 0.691740i \(0.243156\pi\)
\(830\) 17.2059i 0.597226i
\(831\) −31.4854 −1.09222
\(832\) 15.0750 0.522631
\(833\) 0 0
\(834\) −7.87308 −0.272623
\(835\) −9.28133 −0.321194
\(836\) 31.8625i 1.10199i
\(837\) −13.5668 −0.468939
\(838\) − 17.1655i − 0.592971i
\(839\) − 4.44768i − 0.153551i −0.997048 0.0767755i \(-0.975538\pi\)
0.997048 0.0767755i \(-0.0244625\pi\)
\(840\) − 20.2479i − 0.698620i
\(841\) −47.7235 −1.64564
\(842\) 49.5415 1.70731
\(843\) 39.5171i 1.36104i
\(844\) 23.3772i 0.804676i
\(845\) − 11.4137i − 0.392643i
\(846\) 14.3159 0.492191
\(847\) 17.3257i 0.595320i
\(848\) −8.01465 −0.275224
\(849\) 13.3184 0.457088
\(850\) 0 0
\(851\) 40.6451 1.39330
\(852\) −10.1851 −0.348937
\(853\) 17.8866i 0.612426i 0.951963 + 0.306213i \(0.0990619\pi\)
−0.951963 + 0.306213i \(0.900938\pi\)
\(854\) −2.04614 −0.0700174
\(855\) 1.95213i 0.0667615i
\(856\) − 2.24449i − 0.0767150i
\(857\) 38.5585i 1.31713i 0.752523 + 0.658566i \(0.228837\pi\)
−0.752523 + 0.658566i \(0.771163\pi\)
\(858\) 11.5408 0.393997
\(859\) −3.50985 −0.119755 −0.0598773 0.998206i \(-0.519071\pi\)
−0.0598773 + 0.998206i \(0.519071\pi\)
\(860\) − 26.6525i − 0.908843i
\(861\) − 24.3133i − 0.828595i
\(862\) − 49.4916i − 1.68569i
\(863\) −21.9552 −0.747365 −0.373683 0.927557i \(-0.621905\pi\)
−0.373683 + 0.927557i \(0.621905\pi\)
\(864\) − 21.6026i − 0.734935i
\(865\) 4.29978 0.146197
\(866\) 87.3171 2.96715
\(867\) 0 0
\(868\) 30.9171 1.04940
\(869\) 22.4320 0.760952
\(870\) − 32.3298i − 1.09608i
\(871\) 9.10956 0.308666
\(872\) − 22.2934i − 0.754951i
\(873\) − 5.27492i − 0.178529i
\(874\) − 75.4998i − 2.55382i
\(875\) 3.58212 0.121098
\(876\) 30.3293 1.02473
\(877\) − 5.65595i − 0.190988i −0.995430 0.0954939i \(-0.969557\pi\)
0.995430 0.0954939i \(-0.0304431\pi\)
\(878\) 1.10851i 0.0374105i
\(879\) − 40.7832i − 1.37558i
\(880\) −3.49601 −0.117850
\(881\) − 34.3915i − 1.15868i −0.815086 0.579340i \(-0.803311\pi\)
0.815086 0.579340i \(-0.196689\pi\)
\(882\) 7.36706 0.248062
\(883\) 58.3115 1.96234 0.981170 0.193148i \(-0.0618697\pi\)
0.981170 + 0.193148i \(0.0618697\pi\)
\(884\) 0 0
\(885\) 7.01500 0.235807
\(886\) 25.9295 0.871117
\(887\) 44.5012i 1.49420i 0.664710 + 0.747102i \(0.268555\pi\)
−0.664710 + 0.747102i \(0.731445\pi\)
\(888\) 26.0102 0.872846
\(889\) 21.1985i 0.710975i
\(890\) 5.15889i 0.172927i
\(891\) − 17.6266i − 0.590513i
\(892\) −10.3918 −0.347944
\(893\) −41.1847 −1.37819
\(894\) 68.4244i 2.28845i
\(895\) 0.117678i 0.00393354i
\(896\) 72.9573i 2.43733i
\(897\) −17.4589 −0.582935
\(898\) − 40.6015i − 1.35489i
\(899\) 21.4077 0.713988
\(900\) −1.89688 −0.0632292
\(901\) 0 0
\(902\) −25.2527 −0.840824
\(903\) −42.4274 −1.41190
\(904\) − 57.8436i − 1.92385i
\(905\) 2.32364 0.0772404
\(906\) − 32.8961i − 1.09290i
\(907\) 35.3726i 1.17453i 0.809396 + 0.587264i \(0.199795\pi\)
−0.809396 + 0.587264i \(0.800205\pi\)
\(908\) 76.0165i 2.52270i
\(909\) −2.93501 −0.0973482
\(910\) −10.6109 −0.351748
\(911\) 49.1810i 1.62944i 0.579856 + 0.814719i \(0.303109\pi\)
−0.579856 + 0.814719i \(0.696891\pi\)
\(912\) − 8.03172i − 0.265957i
\(913\) − 18.1620i − 0.601076i
\(914\) 26.5004 0.876554
\(915\) − 0.381149i − 0.0126004i
\(916\) 42.1685 1.39329
\(917\) −57.7465 −1.90696
\(918\) 0 0
\(919\) 49.6635 1.63825 0.819123 0.573618i \(-0.194460\pi\)
0.819123 + 0.573618i \(0.194460\pi\)
\(920\) 31.8145 1.04889
\(921\) − 26.5966i − 0.876387i
\(922\) 70.5747 2.32425
\(923\) 2.31466i 0.0761878i
\(924\) 49.2854i 1.62137i
\(925\) 4.60155i 0.151298i
\(926\) 40.3568 1.32621
\(927\) 3.84631 0.126329
\(928\) 34.0877i 1.11898i
\(929\) − 34.1165i − 1.11933i −0.828720 0.559664i \(-0.810930\pi\)
0.828720 0.559664i \(-0.189070\pi\)
\(930\) 9.02082i 0.295804i
\(931\) −21.1939 −0.694601
\(932\) − 35.5571i − 1.16471i
\(933\) 26.9779 0.883216
\(934\) −62.5405 −2.04639
\(935\) 0 0
\(936\) 2.43668 0.0796455
\(937\) 38.5275 1.25864 0.629319 0.777147i \(-0.283334\pi\)
0.629319 + 0.777147i \(0.283334\pi\)
\(938\) 60.9347i 1.98959i
\(939\) −9.28250 −0.302923
\(940\) − 40.0189i − 1.30527i
\(941\) − 37.1363i − 1.21061i −0.795994 0.605305i \(-0.793051\pi\)
0.795994 0.605305i \(-0.206949\pi\)
\(942\) 67.3328i 2.19382i
\(943\) 38.2022 1.24403
\(944\) 6.29469 0.204875
\(945\) 19.8844i 0.646840i
\(946\) 44.0667i 1.43273i
\(947\) − 2.23113i − 0.0725021i −0.999343 0.0362510i \(-0.988458\pi\)
0.999343 0.0362510i \(-0.0115416\pi\)
\(948\) −50.0765 −1.62641
\(949\) − 6.89259i − 0.223743i
\(950\) 8.54755 0.277319
\(951\) −1.00528 −0.0325986
\(952\) 0 0
\(953\) 25.8280 0.836651 0.418326 0.908297i \(-0.362617\pi\)
0.418326 + 0.908297i \(0.362617\pi\)
\(954\) 7.18992 0.232782
\(955\) − 14.6622i − 0.474458i
\(956\) −58.7114 −1.89886
\(957\) 34.1264i 1.10315i
\(958\) 53.8823i 1.74086i
\(959\) − 61.3689i − 1.98171i
\(960\) −18.7838 −0.606246
\(961\) 25.0267 0.807313
\(962\) − 13.6306i − 0.439469i
\(963\) 0.334721i 0.0107862i
\(964\) 20.9132i 0.673569i
\(965\) 8.39606 0.270279
\(966\) − 116.784i − 3.75747i
\(967\) 31.4013 1.00980 0.504899 0.863178i \(-0.331530\pi\)
0.504899 + 0.863178i \(0.331530\pi\)
\(968\) −17.4209 −0.559930
\(969\) 0 0
\(970\) −23.0966 −0.741587
\(971\) −41.1265 −1.31981 −0.659906 0.751348i \(-0.729404\pi\)
−0.659906 + 0.751348i \(0.729404\pi\)
\(972\) − 19.4602i − 0.624185i
\(973\) −7.64093 −0.244957
\(974\) − 36.9567i − 1.18417i
\(975\) − 1.97657i − 0.0633009i
\(976\) − 0.342012i − 0.0109475i
\(977\) −27.8890 −0.892250 −0.446125 0.894971i \(-0.647196\pi\)
−0.446125 + 0.894971i \(0.647196\pi\)
\(978\) −34.5662 −1.10530
\(979\) − 5.44557i − 0.174041i
\(980\) − 20.5940i − 0.657851i
\(981\) 3.32463i 0.106147i
\(982\) −2.02071 −0.0644836
\(983\) 56.6933i 1.80824i 0.427283 + 0.904118i \(0.359471\pi\)
−0.427283 + 0.904118i \(0.640529\pi\)
\(984\) 24.4469 0.779338
\(985\) −6.68150 −0.212890
\(986\) 0 0
\(987\) −63.7050 −2.02775
\(988\) −16.1647 −0.514266
\(989\) − 66.6639i − 2.11979i
\(990\) 3.13626 0.0996768
\(991\) 35.8868i 1.13998i 0.821651 + 0.569991i \(0.193053\pi\)
−0.821651 + 0.569991i \(0.806947\pi\)
\(992\) − 9.51130i − 0.301984i
\(993\) 18.3000i 0.580732i
\(994\) −15.4830 −0.491090
\(995\) −18.8718 −0.598276
\(996\) 40.5444i 1.28470i
\(997\) 32.9550i 1.04370i 0.853038 + 0.521848i \(0.174757\pi\)
−0.853038 + 0.521848i \(0.825243\pi\)
\(998\) − 53.2461i − 1.68548i
\(999\) −25.5433 −0.808153
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1445.2.d.j.866.2 24
17.4 even 4 1445.2.a.p.1.12 12
17.7 odd 16 85.2.l.a.36.6 yes 24
17.12 odd 16 85.2.l.a.26.6 24
17.13 even 4 1445.2.a.q.1.12 12
17.16 even 2 inner 1445.2.d.j.866.1 24
51.29 even 16 765.2.be.b.451.1 24
51.41 even 16 765.2.be.b.631.1 24
85.4 even 4 7225.2.a.bs.1.1 12
85.7 even 16 425.2.n.c.274.1 24
85.12 even 16 425.2.n.f.349.6 24
85.24 odd 16 425.2.m.b.376.1 24
85.29 odd 16 425.2.m.b.26.1 24
85.58 even 16 425.2.n.f.274.6 24
85.63 even 16 425.2.n.c.349.1 24
85.64 even 4 7225.2.a.bq.1.1 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
85.2.l.a.26.6 24 17.12 odd 16
85.2.l.a.36.6 yes 24 17.7 odd 16
425.2.m.b.26.1 24 85.29 odd 16
425.2.m.b.376.1 24 85.24 odd 16
425.2.n.c.274.1 24 85.7 even 16
425.2.n.c.349.1 24 85.63 even 16
425.2.n.f.274.6 24 85.58 even 16
425.2.n.f.349.6 24 85.12 even 16
765.2.be.b.451.1 24 51.29 even 16
765.2.be.b.631.1 24 51.41 even 16
1445.2.a.p.1.12 12 17.4 even 4
1445.2.a.q.1.12 12 17.13 even 4
1445.2.d.j.866.1 24 17.16 even 2 inner
1445.2.d.j.866.2 24 1.1 even 1 trivial
7225.2.a.bq.1.1 12 85.64 even 4
7225.2.a.bs.1.1 12 85.4 even 4