Properties

Label 1445.2.d.j.866.2
Level 14451445
Weight 22
Character 1445.866
Analytic conductor 11.53811.538
Analytic rank 00
Dimension 2424
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1445,2,Mod(866,1445)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1445, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1445.866");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 1445=5172 1445 = 5 \cdot 17^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 1445.d (of order 22, degree 11, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 11.538383092111.5383830921
Analytic rank: 00
Dimension: 2424
Twist minimal: no (minimal twist has level 85)
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

Embedding invariants

Embedding label 866.2
Character χ\chi == 1445.866
Dual form 1445.2.d.j.866.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q2.35190q21.56935iq3+3.53144q4+1.00000iq5+3.69096iq6+3.58212iq73.60181q8+0.537139q92.35190iq10+2.48259iq115.54207iq121.25948q138.42480iq14+1.56935q15+1.40821q161.26330q18+3.63431q19+3.53144iq20+5.62161q215.83882iq22+8.83293iq23+5.65249iq241.00000q25+2.96218q265.55101iq27+12.6501iq28+8.75919iq293.69096q302.44403iq31+3.89165q32+3.89606q333.58212q35+1.89688q364.60155iq378.54755q38+1.97657iq393.60181iq404.32497iq4113.2215q427.54720q43+8.76714iq44+0.537139iq4520.7742iq4611.3322q472.20997iq485.83161q49+2.35190q504.44779q525.69139q53+13.0554iq542.48259q5512.9021iq565.70351iq5720.6008iq58+4.47000q59+5.54207q600.242871iq61+5.74812iq62+1.92410iq6311.9692q641.25948iq659.16315q667.23278q67+13.8620q69+8.42480q701.83778iq711.93467q72+5.47256iq73+10.8224iq74+1.56935iq75+12.8344q768.89296q774.64870iq789.03570iq79+1.40821iq807.10006q81+10.1719iq827.31575q83+19.8524q84+17.7503q86+13.7462q878.94182iq882.19350q891.26330iq904.51162iq91+31.1930iq923.83554q93+26.6522q94+3.63431iq956.10736iq969.82039iq97+13.7154q98+1.33350iq99+O(q100)q-2.35190 q^{2} -1.56935i q^{3} +3.53144 q^{4} +1.00000i q^{5} +3.69096i q^{6} +3.58212i q^{7} -3.60181 q^{8} +0.537139 q^{9} -2.35190i q^{10} +2.48259i q^{11} -5.54207i q^{12} -1.25948 q^{13} -8.42480i q^{14} +1.56935 q^{15} +1.40821 q^{16} -1.26330 q^{18} +3.63431 q^{19} +3.53144i q^{20} +5.62161 q^{21} -5.83882i q^{22} +8.83293i q^{23} +5.65249i q^{24} -1.00000 q^{25} +2.96218 q^{26} -5.55101i q^{27} +12.6501i q^{28} +8.75919i q^{29} -3.69096 q^{30} -2.44403i q^{31} +3.89165 q^{32} +3.89606 q^{33} -3.58212 q^{35} +1.89688 q^{36} -4.60155i q^{37} -8.54755 q^{38} +1.97657i q^{39} -3.60181i q^{40} -4.32497i q^{41} -13.2215 q^{42} -7.54720 q^{43} +8.76714i q^{44} +0.537139i q^{45} -20.7742i q^{46} -11.3322 q^{47} -2.20997i q^{48} -5.83161 q^{49} +2.35190 q^{50} -4.44779 q^{52} -5.69139 q^{53} +13.0554i q^{54} -2.48259 q^{55} -12.9021i q^{56} -5.70351i q^{57} -20.6008i q^{58} +4.47000 q^{59} +5.54207 q^{60} -0.242871i q^{61} +5.74812i q^{62} +1.92410i q^{63} -11.9692 q^{64} -1.25948i q^{65} -9.16315 q^{66} -7.23278 q^{67} +13.8620 q^{69} +8.42480 q^{70} -1.83778i q^{71} -1.93467 q^{72} +5.47256i q^{73} +10.8224i q^{74} +1.56935i q^{75} +12.8344 q^{76} -8.89296 q^{77} -4.64870i q^{78} -9.03570i q^{79} +1.40821i q^{80} -7.10006 q^{81} +10.1719i q^{82} -7.31575 q^{83} +19.8524 q^{84} +17.7503 q^{86} +13.7462 q^{87} -8.94182i q^{88} -2.19350 q^{89} -1.26330i q^{90} -4.51162i q^{91} +31.1930i q^{92} -3.83554 q^{93} +26.6522 q^{94} +3.63431i q^{95} -6.10736i q^{96} -9.82039i q^{97} +13.7154 q^{98} +1.33350i q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 24q+8q2+24q4+24q824q916q13+16q15+24q16+8q18+32q2124q2532q2616q30+56q3232q3524q3648q38+32q43+120q98+O(q100) 24 q + 8 q^{2} + 24 q^{4} + 24 q^{8} - 24 q^{9} - 16 q^{13} + 16 q^{15} + 24 q^{16} + 8 q^{18} + 32 q^{21} - 24 q^{25} - 32 q^{26} - 16 q^{30} + 56 q^{32} - 32 q^{35} - 24 q^{36} - 48 q^{38} + 32 q^{43}+ \cdots - 120 q^{98}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/1445Z)×\left(\mathbb{Z}/1445\mathbb{Z}\right)^\times.

nn 581581 11571157
χ(n)\chi(n) 1-1 11

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 −2.35190 −1.66305 −0.831523 0.555490i 0.812531π-0.812531\pi
−0.831523 + 0.555490i 0.812531π0.812531\pi
33 − 1.56935i − 0.906065i −0.891494 0.453032i 0.850342π-0.850342\pi
0.891494 0.453032i 0.149658π-0.149658\pi
44 3.53144 1.76572
55 1.00000i 0.447214i
66 3.69096i 1.50683i
77 3.58212i 1.35392i 0.736022 + 0.676958i 0.236702π0.236702\pi
−0.736022 + 0.676958i 0.763298π0.763298\pi
88 −3.60181 −1.27343
99 0.537139 0.179046
1010 − 2.35190i − 0.743737i
1111 2.48259i 0.748530i 0.927322 + 0.374265i 0.122105π0.122105\pi
−0.927322 + 0.374265i 0.877895π0.877895\pi
1212 − 5.54207i − 1.59986i
1313 −1.25948 −0.349317 −0.174659 0.984629i 0.555882π-0.555882\pi
−0.174659 + 0.984629i 0.555882π0.555882\pi
1414 − 8.42480i − 2.25162i
1515 1.56935 0.405205
1616 1.40821 0.352052
1717 0 0
1818 −1.26330 −0.297762
1919 3.63431 0.833768 0.416884 0.908960i 0.363122π-0.363122\pi
0.416884 + 0.908960i 0.363122π0.363122\pi
2020 3.53144i 0.789655i
2121 5.62161 1.22674
2222 − 5.83882i − 1.24484i
2323 8.83293i 1.84179i 0.389808 + 0.920896i 0.372541π0.372541\pi
−0.389808 + 0.920896i 0.627459π0.627459\pi
2424 5.65249i 1.15381i
2525 −1.00000 −0.200000
2626 2.96218 0.580931
2727 − 5.55101i − 1.06829i
2828 12.6501i 2.39064i
2929 8.75919i 1.62654i 0.581885 + 0.813271i 0.302315π0.302315\pi
−0.581885 + 0.813271i 0.697685π0.697685\pi
3030 −3.69096 −0.673874
3131 − 2.44403i − 0.438961i −0.975617 0.219480i 0.929564π-0.929564\pi
0.975617 0.219480i 0.0704362π-0.0704362\pi
3232 3.89165 0.687953
3333 3.89606 0.678217
3434 0 0
3535 −3.58212 −0.605489
3636 1.89688 0.316146
3737 − 4.60155i − 0.756490i −0.925705 0.378245i 0.876528π-0.876528\pi
0.925705 0.378245i 0.123472π-0.123472\pi
3838 −8.54755 −1.38660
3939 1.97657i 0.316504i
4040 − 3.60181i − 0.569495i
4141 − 4.32497i − 0.675447i −0.941245 0.337724i 0.890343π-0.890343\pi
0.941245 0.337724i 0.109657π-0.109657\pi
4242 −13.2215 −2.04012
4343 −7.54720 −1.15094 −0.575469 0.817824i 0.695180π-0.695180\pi
−0.575469 + 0.817824i 0.695180π0.695180\pi
4444 8.76714i 1.32170i
4545 0.537139i 0.0800720i
4646 − 20.7742i − 3.06299i
4747 −11.3322 −1.65297 −0.826484 0.562961i 0.809662π-0.809662\pi
−0.826484 + 0.562961i 0.809662π0.809662\pi
4848 − 2.20997i − 0.318982i
4949 −5.83161 −0.833087
5050 2.35190 0.332609
5151 0 0
5252 −4.44779 −0.616797
5353 −5.69139 −0.781772 −0.390886 0.920439i 0.627831π-0.627831\pi
−0.390886 + 0.920439i 0.627831π0.627831\pi
5454 13.0554i 1.77662i
5555 −2.48259 −0.334753
5656 − 12.9021i − 1.72412i
5757 − 5.70351i − 0.755448i
5858 − 20.6008i − 2.70501i
5959 4.47000 0.581945 0.290972 0.956731i 0.406021π-0.406021\pi
0.290972 + 0.956731i 0.406021π0.406021\pi
6060 5.54207 0.715478
6161 − 0.242871i − 0.0310964i −0.999879 0.0155482i 0.995051π-0.995051\pi
0.999879 0.0155482i 0.00494935π-0.00494935\pi
6262 5.74812i 0.730012i
6363 1.92410i 0.242414i
6464 −11.9692 −1.49615
6565 − 1.25948i − 0.156220i
6666 −9.16315 −1.12791
6767 −7.23278 −0.883625 −0.441812 0.897108i 0.645664π-0.645664\pi
−0.441812 + 0.897108i 0.645664π0.645664\pi
6868 0 0
6969 13.8620 1.66878
7070 8.42480 1.00696
7171 − 1.83778i − 0.218105i −0.994036 0.109052i 0.965218π-0.965218\pi
0.994036 0.109052i 0.0347816π-0.0347816\pi
7272 −1.93467 −0.228003
7373 5.47256i 0.640515i 0.947331 + 0.320257i 0.103769π0.103769\pi
−0.947331 + 0.320257i 0.896231π0.896231\pi
7474 10.8224i 1.25808i
7575 1.56935i 0.181213i
7676 12.8344 1.47220
7777 −8.89296 −1.01345
7878 − 4.64870i − 0.526361i
7979 − 9.03570i − 1.01660i −0.861181 0.508298i 0.830275π-0.830275\pi
0.861181 0.508298i 0.169725π-0.169725\pi
8080 1.40821i 0.157442i
8181 −7.10006 −0.788896
8282 10.1719i 1.12330i
8383 −7.31575 −0.803008 −0.401504 0.915857i 0.631512π-0.631512\pi
−0.401504 + 0.915857i 0.631512π0.631512\pi
8484 19.8524 2.16607
8585 0 0
8686 17.7503 1.91406
8787 13.7462 1.47375
8888 − 8.94182i − 0.953201i
8989 −2.19350 −0.232510 −0.116255 0.993219i 0.537089π-0.537089\pi
−0.116255 + 0.993219i 0.537089π0.537089\pi
9090 − 1.26330i − 0.133163i
9191 − 4.51162i − 0.472946i
9292 31.1930i 3.25209i
9393 −3.83554 −0.397727
9494 26.6522 2.74896
9595 3.63431i 0.372873i
9696 − 6.10736i − 0.623330i
9797 − 9.82039i − 0.997110i −0.866858 0.498555i 0.833864π-0.833864\pi
0.866858 0.498555i 0.166136π-0.166136\pi
9898 13.7154 1.38546
9999 1.33350i 0.134022i
100100 −3.53144 −0.353144
101101 −5.46415 −0.543704 −0.271852 0.962339i 0.587636π-0.587636\pi
−0.271852 + 0.962339i 0.587636π0.587636\pi
102102 0 0
103103 7.16074 0.705568 0.352784 0.935705i 0.385235π-0.385235\pi
0.352784 + 0.935705i 0.385235π0.385235\pi
104104 4.53641 0.444832
105105 5.62161i 0.548613i
106106 13.3856 1.30012
107107 0.623156i 0.0602427i 0.999546 + 0.0301214i 0.00958938π0.00958938\pi
−0.999546 + 0.0301214i 0.990411π0.990411\pi
108108 − 19.6031i − 1.88631i
109109 6.18952i 0.592848i 0.955056 + 0.296424i 0.0957942π0.0957942\pi
−0.955056 + 0.296424i 0.904206π0.904206\pi
110110 5.83882 0.556710
111111 −7.22144 −0.685429
112112 5.04437i 0.476648i
113113 16.0596i 1.51076i 0.655287 + 0.755380i 0.272548π0.272548\pi
−0.655287 + 0.755380i 0.727452π0.727452\pi
114114 13.4141i 1.25635i
115115 −8.83293 −0.823675
116116 30.9326i 2.87202i
117117 −0.676517 −0.0625440
118118 −10.5130 −0.967801
119119 0 0
120120 −5.65249 −0.516000
121121 4.83672 0.439702
122122 0.571208i 0.0517147i
123123 −6.78740 −0.611999
124124 − 8.63096i − 0.775083i
125125 − 1.00000i − 0.0894427i
126126 − 4.52529i − 0.403145i
127127 5.91786 0.525125 0.262563 0.964915i 0.415432π-0.415432\pi
0.262563 + 0.964915i 0.415432π0.415432\pi
128128 20.3671 1.80021
129129 11.8442i 1.04282i
130130 2.96218i 0.259800i
131131 16.1207i 1.40848i 0.709964 + 0.704238i 0.248711π0.248711\pi
−0.709964 + 0.704238i 0.751289π0.751289\pi
132132 13.7587 1.19754
133133 13.0186i 1.12885i
134134 17.0108 1.46951
135135 5.55101 0.477755
136136 0 0
137137 −17.1320 −1.46369 −0.731843 0.681473i 0.761339π-0.761339\pi
−0.731843 + 0.681473i 0.761339π0.761339\pi
138138 −32.6020 −2.77526
139139 2.13307i 0.180925i 0.995900 + 0.0904624i 0.0288345π0.0288345\pi
−0.995900 + 0.0904624i 0.971165π0.971165\pi
140140 −12.6501 −1.06913
141141 17.7842i 1.49770i
142142 4.32229i 0.362718i
143143 − 3.12678i − 0.261475i
144144 0.756403 0.0630335
145145 −8.75919 −0.727412
146146 − 12.8709i − 1.06521i
147147 9.15184i 0.754831i
148148 − 16.2501i − 1.33575i
149149 18.5384 1.51872 0.759362 0.650669i 0.225511π-0.225511\pi
0.759362 + 0.650669i 0.225511π0.225511\pi
150150 − 3.69096i − 0.301366i
151151 −8.91261 −0.725298 −0.362649 0.931926i 0.618128π-0.618128\pi
−0.362649 + 0.931926i 0.618128π0.618128\pi
152152 −13.0901 −1.06175
153153 0 0
154154 20.9154 1.68541
155155 2.44403 0.196309
156156 6.98014i 0.558859i
157157 18.2426 1.45592 0.727960 0.685620i 0.240469π-0.240469\pi
0.727960 + 0.685620i 0.240469π0.240469\pi
158158 21.2511i 1.69064i
159159 8.93178i 0.708337i
160160 3.89165i 0.307662i
161161 −31.6406 −2.49363
162162 16.6987 1.31197
163163 9.36510i 0.733531i 0.930313 + 0.366766i 0.119535π0.119535\pi
−0.930313 + 0.366766i 0.880465π0.880465\pi
164164 − 15.2734i − 1.19265i
165165 3.89606i 0.303308i
166166 17.2059 1.33544
167167 9.28133i 0.718211i 0.933297 + 0.359106i 0.116918π0.116918\pi
−0.933297 + 0.359106i 0.883082π0.883082\pi
168168 −20.2479 −1.56216
169169 −11.4137 −0.877977
170170 0 0
171171 1.95213 0.149283
172172 −26.6525 −2.03224
173173 − 4.29978i − 0.326906i −0.986551 0.163453i 0.947737π-0.947737\pi
0.986551 0.163453i 0.0522632π-0.0522632\pi
174174 −32.3298 −2.45092
175175 − 3.58212i − 0.270783i
176176 3.49601i 0.263521i
177177 − 7.01500i − 0.527280i
178178 5.15889 0.386675
179179 0.117678 0.00879567 0.00439783 0.999990i 0.498600π-0.498600\pi
0.00439783 + 0.999990i 0.498600π0.498600\pi
180180 1.89688i 0.141385i
181181 − 2.32364i − 0.172715i −0.996264 0.0863574i 0.972477π-0.972477\pi
0.996264 0.0863574i 0.0275227π-0.0275227\pi
182182 10.6109i 0.786531i
183183 −0.381149 −0.0281754
184184 − 31.8145i − 2.34539i
185185 4.60155 0.338313
186186 9.02082 0.661438
187187 0 0
188188 −40.0189 −2.91868
189189 19.8844 1.44638
190190 − 8.54755i − 0.620104i
191191 −14.6622 −1.06092 −0.530461 0.847710i 0.677981π-0.677981\pi
−0.530461 + 0.847710i 0.677981π0.677981\pi
192192 18.7838i 1.35561i
193193 − 8.39606i − 0.604362i −0.953251 0.302181i 0.902285π-0.902285\pi
0.953251 0.302181i 0.0977146π-0.0977146\pi
194194 23.0966i 1.65824i
195195 −1.97657 −0.141545
196196 −20.5940 −1.47100
197197 6.68150i 0.476037i 0.971261 + 0.238019i 0.0764979π0.0764979\pi
−0.971261 + 0.238019i 0.923502π0.923502\pi
198198 − 3.13626i − 0.222884i
199199 18.8718i 1.33779i 0.743359 + 0.668893i 0.233232π0.233232\pi
−0.743359 + 0.668893i 0.766768π0.766768\pi
200200 3.60181 0.254686
201201 11.3508i 0.800621i
202202 12.8512 0.904204
203203 −31.3765 −2.20220
204204 0 0
205205 4.32497 0.302069
206206 −16.8414 −1.17339
207207 4.74451i 0.329766i
208208 −1.77361 −0.122978
209209 9.02252i 0.624101i
210210 − 13.2215i − 0.912368i
211211 6.61973i 0.455721i 0.973694 + 0.227860i 0.0731730π0.0731730\pi
−0.973694 + 0.227860i 0.926827π0.926827\pi
212212 −20.0988 −1.38039
213213 −2.88413 −0.197617
214214 − 1.46560i − 0.100186i
215215 − 7.54720i − 0.514715i
216216 19.9937i 1.36040i
217217 8.75482 0.594316
218218 − 14.5571i − 0.985934i
219219 8.58836 0.580348
220220 −8.76714 −0.591081
221221 0 0
222222 16.9841 1.13990
223223 −2.94266 −0.197055 −0.0985275 0.995134i 0.531413π-0.531413\pi
−0.0985275 + 0.995134i 0.531413π0.531413\pi
224224 13.9404i 0.931429i
225225 −0.537139 −0.0358093
226226 − 37.7706i − 2.51246i
227227 21.5256i 1.42871i 0.699786 + 0.714353i 0.253279π0.253279\pi
−0.699786 + 0.714353i 0.746721π0.746721\pi
228228 − 20.1416i − 1.33391i
229229 11.9409 0.789075 0.394537 0.918880i 0.370905π-0.370905\pi
0.394537 + 0.918880i 0.370905π0.370905\pi
230230 20.7742 1.36981
231231 13.9562i 0.918249i
232232 − 31.5489i − 2.07129i
233233 − 10.0687i − 0.659623i −0.944047 0.329812i 0.893015π-0.893015\pi
0.944047 0.329812i 0.106985π-0.106985\pi
234234 1.59110 0.104014
235235 − 11.3322i − 0.739230i
236236 15.7856 1.02755
237237 −14.1802 −0.921101
238238 0 0
239239 −16.6253 −1.07540 −0.537701 0.843135i 0.680707π-0.680707\pi
−0.537701 + 0.843135i 0.680707π0.680707\pi
240240 2.20997 0.142653
241241 5.92200i 0.381470i 0.981642 + 0.190735i 0.0610871π0.0610871\pi
−0.981642 + 0.190735i 0.938913π0.938913\pi
242242 −11.3755 −0.731245
243243 − 5.51054i − 0.353502i
244244 − 0.857684i − 0.0549076i
245245 − 5.83161i − 0.372568i
246246 15.9633 1.01778
247247 −4.57735 −0.291250
248248 8.80292i 0.558986i
249249 11.4810i 0.727577i
250250 2.35190i 0.148747i
251251 7.77270 0.490608 0.245304 0.969446i 0.421112π-0.421112\pi
0.245304 + 0.969446i 0.421112π0.421112\pi
252252 6.79484i 0.428035i
253253 −21.9286 −1.37864
254254 −13.9182 −0.873307
255255 0 0
256256 −23.9630 −1.49768
257257 8.06588 0.503135 0.251568 0.967840i 0.419054π-0.419054\pi
0.251568 + 0.967840i 0.419054π0.419054\pi
258258 − 27.8564i − 1.73426i
259259 16.4833 1.02422
260260 − 4.44779i − 0.275840i
261261 4.70491i 0.291226i
262262 − 37.9144i − 2.34236i
263263 21.3252 1.31497 0.657483 0.753469i 0.271621π-0.271621\pi
0.657483 + 0.753469i 0.271621π0.271621\pi
264264 −14.0329 −0.863662
265265 − 5.69139i − 0.349619i
266266 − 30.6184i − 1.87733i
267267 3.44237i 0.210670i
268268 −25.5422 −1.56024
269269 − 4.20185i − 0.256191i −0.991762 0.128096i 0.959114π-0.959114\pi
0.991762 0.128096i 0.0408864π-0.0408864\pi
270270 −13.0554 −0.794528
271271 24.7136 1.50124 0.750621 0.660733i 0.229755π-0.229755\pi
0.750621 + 0.660733i 0.229755π0.229755\pi
272272 0 0
273273 −7.08031 −0.428520
274274 40.2928 2.43418
275275 − 2.48259i − 0.149706i
276276 48.9527 2.94661
277277 − 20.0627i − 1.20545i −0.797949 0.602725i 0.794082π-0.794082\pi
0.797949 0.602725i 0.205918π-0.205918\pi
278278 − 5.01678i − 0.300886i
279279 − 1.31278i − 0.0785943i
280280 12.9021 0.771049
281281 −25.1805 −1.50215 −0.751073 0.660219i 0.770463π-0.770463\pi
−0.751073 + 0.660219i 0.770463π0.770463\pi
282282 − 41.8266i − 2.49074i
283283 8.48659i 0.504476i 0.967665 + 0.252238i 0.0811665π0.0811665\pi
−0.967665 + 0.252238i 0.918833π0.918833\pi
284284 − 6.49003i − 0.385112i
285285 5.70351 0.337847
286286 7.35389i 0.434845i
287287 15.4926 0.914499
288288 2.09036 0.123175
289289 0 0
290290 20.6008 1.20972
291291 −15.4116 −0.903446
292292 19.3260i 1.13097i
293293 25.9873 1.51820 0.759098 0.650977i 0.225640π-0.225640\pi
0.759098 + 0.650977i 0.225640π0.225640\pi
294294 − 21.5242i − 1.25532i
295295 4.47000i 0.260254i
296296 16.5739i 0.963338i
297297 13.7809 0.799649
298298 −43.6005 −2.52571
299299 − 11.1249i − 0.643370i
300300 5.54207i 0.319972i
301301 − 27.0350i − 1.55827i
302302 20.9616 1.20620
303303 8.57517i 0.492631i
304304 5.11786 0.293529
305305 0.242871 0.0139067
306306 0 0
307307 16.9475 0.967245 0.483622 0.875277i 0.339321π-0.339321\pi
0.483622 + 0.875277i 0.339321π0.339321\pi
308308 −31.4050 −1.78947
309309 − 11.2377i − 0.639291i
310310 −5.74812 −0.326471
311311 17.1905i 0.974782i 0.873184 + 0.487391i 0.162051π0.162051\pi
−0.873184 + 0.487391i 0.837949π0.837949\pi
312312 − 7.11922i − 0.403046i
313313 − 5.91487i − 0.334328i −0.985929 0.167164i 0.946539π-0.946539\pi
0.985929 0.167164i 0.0534610π-0.0534610\pi
314314 −42.9049 −2.42126
315315 −1.92410 −0.108411
316316 − 31.9090i − 1.79502i
317317 − 0.640574i − 0.0359782i −0.999838 0.0179891i 0.994274π-0.994274\pi
0.999838 0.0179891i 0.00572642π-0.00572642\pi
318318 − 21.0067i − 1.17800i
319319 −21.7455 −1.21752
320320 − 11.9692i − 0.669098i
321321 0.977950 0.0545838
322322 74.4157 4.14702
323323 0 0
324324 −25.0735 −1.39297
325325 1.25948 0.0698635
326326 − 22.0258i − 1.21990i
327327 9.71352 0.537159
328328 15.5777i 0.860135i
329329 − 40.5932i − 2.23798i
330330 − 9.16315i − 0.504415i
331331 −11.6609 −0.640939 −0.320469 0.947259i 0.603841π-0.603841\pi
−0.320469 + 0.947259i 0.603841π0.603841\pi
332332 −25.8352 −1.41789
333333 − 2.47167i − 0.135447i
334334 − 21.8288i − 1.19442i
335335 − 7.23278i − 0.395169i
336336 7.91638 0.431874
337337 − 30.8806i − 1.68217i −0.540900 0.841087i 0.681916π-0.681916\pi
0.540900 0.841087i 0.318084π-0.318084\pi
338338 26.8439 1.46012
339339 25.2031 1.36885
340340 0 0
341341 6.06754 0.328576
342342 −4.59122 −0.248265
343343 4.18533i 0.225986i
344344 27.1836 1.46564
345345 13.8620i 0.746303i
346346 10.1127i 0.543660i
347347 − 0.0149992i 0 0.000805197i −1.00000 0.000402598i 0.999872π-0.999872\pi
1.00000 0.000402598i 0.000128151π-0.000128151\pi
348348 48.5441 2.60224
349349 3.65491 0.195643 0.0978215 0.995204i 0.468813π-0.468813\pi
0.0978215 + 0.995204i 0.468813π0.468813\pi
350350 8.42480i 0.450325i
351351 6.99140i 0.373173i
352352 9.66138i 0.514953i
353353 3.82333 0.203495 0.101748 0.994810i 0.467557π-0.467557\pi
0.101748 + 0.994810i 0.467557π0.467557\pi
354354 16.4986i 0.876891i
355355 1.83778 0.0975395
356356 −7.74622 −0.410549
357357 0 0
358358 −0.276767 −0.0146276
359359 6.69675 0.353441 0.176721 0.984261i 0.443451π-0.443451\pi
0.176721 + 0.984261i 0.443451π0.443451\pi
360360 − 1.93467i − 0.101966i
361361 −5.79178 −0.304830
362362 5.46497i 0.287232i
363363 − 7.59052i − 0.398399i
364364 − 15.9325i − 0.835092i
365365 −5.47256 −0.286447
366366 0.896426 0.0468569
367367 23.0276i 1.20203i 0.799238 + 0.601015i 0.205237π0.205237\pi
−0.799238 + 0.601015i 0.794763π0.794763\pi
368368 12.4386i 0.648406i
369369 − 2.32311i − 0.120936i
370370 −10.8224 −0.562630
371371 − 20.3873i − 1.05845i
372372 −13.5450 −0.702275
373373 23.7303 1.22871 0.614355 0.789030i 0.289416π-0.289416\pi
0.614355 + 0.789030i 0.289416π0.289416\pi
374374 0 0
375375 −1.56935 −0.0810409
376376 40.8163 2.10494
377377 − 11.0320i − 0.568179i
378378 −46.7662 −2.40539
379379 − 2.97819i − 0.152979i −0.997070 0.0764897i 0.975629π-0.975629\pi
0.997070 0.0764897i 0.0243712π-0.0243712\pi
380380 12.8344i 0.658389i
381381 − 9.28720i − 0.475798i
382382 34.4841 1.76436
383383 24.4222 1.24791 0.623957 0.781459i 0.285524π-0.285524\pi
0.623957 + 0.781459i 0.285524π0.285524\pi
384384 − 31.9631i − 1.63111i
385385 − 8.89296i − 0.453227i
386386 19.7467i 1.00508i
387387 −4.05390 −0.206071
388388 − 34.6802i − 1.76062i
389389 −1.68867 −0.0856191 −0.0428095 0.999083i 0.513631π-0.513631\pi
−0.0428095 + 0.999083i 0.513631π0.513631\pi
390390 4.64870 0.235396
391391 0 0
392392 21.0043 1.06088
393393 25.2991 1.27617
394394 − 15.7142i − 0.791671i
395395 9.03570 0.454635
396396 4.70917i 0.236645i
397397 31.5256i 1.58222i 0.611671 + 0.791112i 0.290498π0.290498\pi
−0.611671 + 0.791112i 0.709502π0.709502\pi
398398 − 44.3846i − 2.22480i
399399 20.4307 1.02281
400400 −1.40821 −0.0704103
401401 − 5.06607i − 0.252987i −0.991967 0.126494i 0.959628π-0.959628\pi
0.991967 0.126494i 0.0403724π-0.0403724\pi
402402 − 26.6959i − 1.33147i
403403 3.07821i 0.153337i
404404 −19.2964 −0.960029
405405 − 7.10006i − 0.352805i
406406 73.7945 3.66236
407407 11.4238 0.566256
408408 0 0
409409 −26.1178 −1.29144 −0.645722 0.763573i 0.723443π-0.723443\pi
−0.645722 + 0.763573i 0.723443π0.723443\pi
410410 −10.1719 −0.502355
411411 26.8861i 1.32619i
412412 25.2877 1.24584
413413 16.0121i 0.787904i
414414 − 11.1586i − 0.548416i
415415 − 7.31575i − 0.359116i
416416 −4.90146 −0.240314
417417 3.34754 0.163930
418418 − 21.2201i − 1.03791i
419419 7.29855i 0.356557i 0.983980 + 0.178279i 0.0570529π0.0570529\pi
−0.983980 + 0.178279i 0.942947π0.942947\pi
420420 19.8524i 0.968697i
421421 −21.0644 −1.02662 −0.513309 0.858204i 0.671580π-0.671580\pi
−0.513309 + 0.858204i 0.671580π0.671580\pi
422422 − 15.5690i − 0.757885i
423423 −6.08695 −0.295958
424424 20.4993 0.995533
425425 0 0
426426 6.78319 0.328646
427427 0.869993 0.0421019
428428 2.20064i 0.106372i
429429 −4.90702 −0.236913
430430 17.7503i 0.855995i
431431 21.0432i 1.01362i 0.862059 + 0.506809i 0.169175π0.169175\pi
−0.862059 + 0.506809i 0.830825π0.830825\pi
432432 − 7.81697i − 0.376094i
433433 −37.1262 −1.78417 −0.892084 0.451869i 0.850758π-0.850758\pi
−0.892084 + 0.451869i 0.850758π0.850758\pi
434434 −20.5905 −0.988375
435435 13.7462i 0.659082i
436436 21.8579i 1.04680i
437437 32.1016i 1.53563i
438438 −20.1990 −0.965145
439439 − 0.471326i − 0.0224952i −0.999937 0.0112476i 0.996420π-0.996420\pi
0.999937 0.0112476i 0.00358029π-0.00358029\pi
440440 8.94182 0.426285
441441 −3.13238 −0.149161
442442 0 0
443443 −11.0249 −0.523808 −0.261904 0.965094i 0.584350π-0.584350\pi
−0.261904 + 0.965094i 0.584350π0.584350\pi
444444 −25.5021 −1.21028
445445 − 2.19350i − 0.103982i
446446 6.92084 0.327711
447447 − 29.0932i − 1.37606i
448448 − 42.8751i − 2.02566i
449449 17.2633i 0.814703i 0.913271 + 0.407352i 0.133548π0.133548\pi
−0.913271 + 0.407352i 0.866452π0.866452\pi
450450 1.26330 0.0595525
451451 10.7372 0.505593
452452 56.7136i 2.66758i
453453 13.9870i 0.657167i
454454 − 50.6262i − 2.37600i
455455 4.51162 0.211508
456456 20.5429i 0.962011i
457457 −11.2676 −0.527078 −0.263539 0.964649i 0.584890π-0.584890\pi
−0.263539 + 0.964649i 0.584890π0.584890\pi
458458 −28.0837 −1.31227
459459 0 0
460460 −31.1930 −1.45438
461461 −30.0075 −1.39759 −0.698794 0.715323i 0.746280π-0.746280\pi
−0.698794 + 0.715323i 0.746280π0.746280\pi
462462 − 32.8235i − 1.52709i
463463 −17.1592 −0.797457 −0.398728 0.917069i 0.630548π-0.630548\pi
−0.398728 + 0.917069i 0.630548π0.630548\pi
464464 12.3348i 0.572627i
465465 − 3.83554i − 0.177869i
466466 23.6806i 1.09698i
467467 26.5914 1.23051 0.615253 0.788330i 0.289054π-0.289054\pi
0.615253 + 0.788330i 0.289054π0.289054\pi
468468 −2.38908 −0.110435
469469 − 25.9087i − 1.19635i
470470 26.6522i 1.22937i
471471 − 28.6291i − 1.31916i
472472 −16.1001 −0.741066
473473 − 18.7366i − 0.861512i
474474 33.3504 1.53183
475475 −3.63431 −0.166754
476476 0 0
477477 −3.05707 −0.139974
478478 39.1011 1.78844
479479 − 22.9101i − 1.04679i −0.852090 0.523395i 0.824665π-0.824665\pi
0.852090 0.523395i 0.175335π-0.175335\pi
480480 6.10736 0.278761
481481 5.79557i 0.264255i
482482 − 13.9280i − 0.634402i
483483 49.6552i 2.25939i
484484 17.0806 0.776392
485485 9.82039 0.445921
486486 12.9603i 0.587889i
487487 15.7135i 0.712048i 0.934477 + 0.356024i 0.115868π0.115868\pi
−0.934477 + 0.356024i 0.884132π0.884132\pi
488488 0.874773i 0.0395991i
489489 14.6971 0.664627
490490 13.7154i 0.619597i
491491 0.859183 0.0387744 0.0193872 0.999812i 0.493828π-0.493828\pi
0.0193872 + 0.999812i 0.493828π0.493828\pi
492492 −23.9693 −1.08062
493493 0 0
494494 10.7655 0.484362
495495 −1.33350 −0.0599363
496496 − 3.44170i − 0.154537i
497497 6.58317 0.295296
498498 − 27.0021i − 1.20999i
499499 22.6396i 1.01349i 0.862097 + 0.506744i 0.169151π0.169151\pi
−0.862097 + 0.506744i 0.830849π0.830849\pi
500500 − 3.53144i − 0.157931i
501501 14.5657 0.650746
502502 −18.2806 −0.815904
503503 − 17.1150i − 0.763121i −0.924344 0.381560i 0.875387π-0.875387\pi
0.924344 0.381560i 0.124613π-0.124613\pi
504504 − 6.93023i − 0.308697i
505505 − 5.46415i − 0.243152i
506506 51.5739 2.29274
507507 17.9121i 0.795504i
508508 20.8986 0.927225
509509 −29.7081 −1.31679 −0.658393 0.752674i 0.728764π-0.728764\pi
−0.658393 + 0.752674i 0.728764π0.728764\pi
510510 0 0
511511 −19.6034 −0.867203
512512 15.6244 0.690508
513513 − 20.1741i − 0.890709i
514514 −18.9701 −0.836737
515515 7.16074i 0.315540i
516516 41.8271i 1.84134i
517517 − 28.1332i − 1.23730i
518518 −38.7672 −1.70333
519519 −6.74786 −0.296198
520520 4.53641i 0.198935i
521521 − 38.6564i − 1.69357i −0.531936 0.846784i 0.678535π-0.678535\pi
0.531936 0.846784i 0.321465π-0.321465\pi
522522 − 11.0655i − 0.484323i
523523 0.599508 0.0262147 0.0131073 0.999914i 0.495828π-0.495828\pi
0.0131073 + 0.999914i 0.495828π0.495828\pi
524524 56.9295i 2.48698i
525525 −5.62161 −0.245347
526526 −50.1547 −2.18685
527527 0 0
528528 5.48646 0.238767
529529 −55.0206 −2.39220
530530 13.3856i 0.581433i
531531 2.40101 0.104195
532532 45.9743i 1.99324i
533533 5.44723i 0.235946i
534534 − 8.09611i − 0.350353i
535535 −0.623156 −0.0269414
536536 26.0511 1.12523
537537 − 0.184678i − 0.00796945i
538538 9.88234i 0.426058i
539539 − 14.4775i − 0.623591i
540540 19.6031 0.843582
541541 − 39.7072i − 1.70715i −0.520973 0.853573i 0.674431π-0.674431\pi
0.520973 0.853573i 0.325569π-0.325569\pi
542542 −58.1239 −2.49663
543543 −3.64660 −0.156491
544544 0 0
545545 −6.18952 −0.265130
546546 16.6522 0.712649
547547 − 4.03770i − 0.172639i −0.996267 0.0863197i 0.972489π-0.972489\pi
0.996267 0.0863197i 0.0275107π-0.0275107\pi
548548 −60.5007 −2.58446
549549 − 0.130455i − 0.00556770i
550550 5.83882i 0.248968i
551551 31.8336i 1.35616i
552552 −49.9281 −2.12508
553553 32.3670 1.37638
554554 47.1854i 2.00472i
555555 − 7.22144i − 0.306533i
556556 7.53283i 0.319463i
557557 5.42781 0.229984 0.114992 0.993366i 0.463316π-0.463316\pi
0.114992 + 0.993366i 0.463316π0.463316\pi
558558 3.08754i 0.130706i
559559 9.50557 0.402043
560560 −5.04437 −0.213163
561561 0 0
562562 59.2222 2.49814
563563 5.18858 0.218673 0.109336 0.994005i 0.465127π-0.465127\pi
0.109336 + 0.994005i 0.465127π0.465127\pi
564564 62.8037i 2.64451i
565565 −16.0596 −0.675632
566566 − 19.9596i − 0.838966i
567567 − 25.4333i − 1.06810i
568568 6.61934i 0.277741i
569569 11.9963 0.502911 0.251455 0.967869i 0.419091π-0.419091\pi
0.251455 + 0.967869i 0.419091π0.419091\pi
570570 −13.4141 −0.561855
571571 43.5118i 1.82091i 0.413606 + 0.910456i 0.364269π0.364269\pi
−0.413606 + 0.910456i 0.635731π0.635731\pi
572572 − 11.0421i − 0.461692i
573573 23.0102i 0.961263i
574574 −36.4371 −1.52085
575575 − 8.83293i − 0.368358i
576576 −6.42912 −0.267880
577577 −27.7097 −1.15357 −0.576784 0.816897i 0.695693π-0.695693\pi
−0.576784 + 0.816897i 0.695693π0.695693\pi
578578 0 0
579579 −13.1764 −0.547591
580580 −30.9326 −1.28441
581581 − 26.2059i − 1.08720i
582582 36.2467 1.50247
583583 − 14.1294i − 0.585180i
584584 − 19.7111i − 0.815651i
585585 − 0.676517i − 0.0279705i
586586 −61.1196 −2.52483
587587 −4.37916 −0.180747 −0.0903736 0.995908i 0.528806π-0.528806\pi
−0.0903736 + 0.995908i 0.528806π0.528806\pi
588588 32.3192i 1.33282i
589589 − 8.88237i − 0.365992i
590590 − 10.5130i − 0.432814i
591591 10.4856 0.431320
592592 − 6.47993i − 0.266324i
593593 35.8783 1.47335 0.736673 0.676250i 0.236396π-0.236396\pi
0.736673 + 0.676250i 0.236396π0.236396\pi
594594 −32.4114 −1.32985
595595 0 0
596596 65.4673 2.68164
597597 29.6165 1.21212
598598 26.1647i 1.06995i
599599 11.1415 0.455230 0.227615 0.973751i 0.426907π-0.426907\pi
0.227615 + 0.973751i 0.426907π0.426907\pi
600600 − 5.65249i − 0.230762i
601601 − 20.4505i − 0.834193i −0.908862 0.417096i 0.863048π-0.863048\pi
0.908862 0.417096i 0.136952π-0.136952\pi
602602 63.5837i 2.59148i
603603 −3.88501 −0.158210
604604 −31.4744 −1.28067
605605 4.83672i 0.196641i
606606 − 20.1680i − 0.819268i
607607 1.57554i 0.0639492i 0.999489 + 0.0319746i 0.0101796π0.0101796\pi
−0.999489 + 0.0319746i 0.989820π0.989820\pi
608608 14.1435 0.573593
609609 49.2407i 1.99534i
610610 −0.571208 −0.0231275
611611 14.2727 0.577410
612612 0 0
613613 −22.4800 −0.907959 −0.453980 0.891012i 0.649996π-0.649996\pi
−0.453980 + 0.891012i 0.649996π0.649996\pi
614614 −39.8589 −1.60857
615615 − 6.78740i − 0.273694i
616616 32.0307 1.29055
617617 − 27.1976i − 1.09493i −0.836827 0.547467i 0.815592π-0.815592\pi
0.836827 0.547467i 0.184408π-0.184408\pi
618618 26.4300i 1.06317i
619619 14.3702i 0.577588i 0.957391 + 0.288794i 0.0932542π0.0932542\pi
−0.957391 + 0.288794i 0.906746π0.906746\pi
620620 8.63096 0.346628
621621 49.0317 1.96757
622622 − 40.4303i − 1.62111i
623623 − 7.85738i − 0.314799i
624624 2.78342i 0.111426i
625625 1.00000 0.0400000
626626 13.9112i 0.556003i
627627 14.1595 0.565476
628628 64.4228 2.57075
629629 0 0
630630 4.52529 0.180292
631631 23.2691 0.926330 0.463165 0.886272i 0.346714π-0.346714\pi
0.463165 + 0.886272i 0.346714π0.346714\pi
632632 32.5448i 1.29456i
633633 10.3887 0.412913
634634 1.50657i 0.0598334i
635635 5.91786i 0.234843i
636636 31.5421i 1.25073i
637637 7.34480 0.291012
638638 51.1434 2.02478
639639 − 0.987146i − 0.0390509i
640640 20.3671i 0.805079i
641641 − 5.38403i − 0.212656i −0.994331 0.106328i 0.966091π-0.966091\pi
0.994331 0.106328i 0.0339094π-0.0339094\pi
642642 −2.30004 −0.0907754
643643 − 16.1891i − 0.638438i −0.947681 0.319219i 0.896580π-0.896580\pi
0.947681 0.319219i 0.103420π-0.103420\pi
644644 −111.737 −4.40306
645645 −11.8442 −0.466365
646646 0 0
647647 −25.8383 −1.01581 −0.507904 0.861413i 0.669580π-0.669580\pi
−0.507904 + 0.861413i 0.669580π0.669580\pi
648648 25.5730 1.00460
649649 11.0972i 0.435604i
650650 −2.96218 −0.116186
651651 − 13.7394i − 0.538489i
652652 33.0723i 1.29521i
653653 − 12.4784i − 0.488319i −0.969735 0.244159i 0.921488π-0.921488\pi
0.969735 0.244159i 0.0785120π-0.0785120\pi
654654 −22.8452 −0.893320
655655 −16.1207 −0.629889
656656 − 6.09045i − 0.237792i
657657 2.93953i 0.114682i
658658 95.4713i 3.72186i
659659 41.7109 1.62483 0.812413 0.583082i 0.198153π-0.198153\pi
0.812413 + 0.583082i 0.198153π0.198153\pi
660660 13.7587i 0.535557i
661661 −18.1720 −0.706808 −0.353404 0.935471i 0.614976π-0.614976\pi
−0.353404 + 0.935471i 0.614976π0.614976\pi
662662 27.4252 1.06591
663663 0 0
664664 26.3499 1.02257
665665 −13.0186 −0.504838
666666 5.81313i 0.225254i
667667 −77.3693 −2.99575
668668 32.7765i 1.26816i
669669 4.61806i 0.178545i
670670 17.0108i 0.657184i
671671 0.602949 0.0232766
672672 21.8773 0.843936
673673 − 6.39677i − 0.246577i −0.992371 0.123289i 0.960656π-0.960656\pi
0.992371 0.123289i 0.0393441π-0.0393441\pi
674674 72.6282i 2.79753i
675675 5.55101i 0.213659i
676676 −40.3069 −1.55026
677677 41.8887i 1.60991i 0.593334 + 0.804957i 0.297811π0.297811\pi
−0.593334 + 0.804957i 0.702189π0.702189\pi
678678 −59.2753 −2.27645
679679 35.1779 1.35000
680680 0 0
681681 33.7812 1.29450
682682 −14.2703 −0.546436
683683 30.3064i 1.15964i 0.814744 + 0.579820i 0.196877π0.196877\pi
−0.814744 + 0.579820i 0.803123π0.803123\pi
684684 6.89384 0.263593
685685 − 17.1320i − 0.654580i
686686 − 9.84348i − 0.375826i
687687 − 18.7394i − 0.714953i
688688 −10.6280 −0.405189
689689 7.16820 0.273087
690690 − 32.6020i − 1.24114i
691691 5.79281i 0.220369i 0.993911 + 0.110184i 0.0351441π0.0351441\pi
−0.993911 + 0.110184i 0.964856π0.964856\pi
692692 − 15.1844i − 0.577225i
693693 −4.77676 −0.181454
694694 0.0352765i 0.00133908i
695695 −2.13307 −0.0809121
696696 −49.5113 −1.87672
697697 0 0
698698 −8.59600 −0.325363
699699 −15.8013 −0.597662
700700 − 12.6501i − 0.478128i
701701 5.24783 0.198208 0.0991039 0.995077i 0.468402π-0.468402\pi
0.0991039 + 0.995077i 0.468402π0.468402\pi
702702 − 16.4431i − 0.620604i
703703 − 16.7235i − 0.630738i
704704 − 29.7146i − 1.11991i
705705 −17.7842 −0.669790
706706 −8.99209 −0.338422
707707 − 19.5733i − 0.736129i
708708 − 24.7731i − 0.931030i
709709 41.7572i 1.56823i 0.620618 + 0.784113i 0.286882π0.286882\pi
−0.620618 + 0.784113i 0.713118π0.713118\pi
710710 −4.32229 −0.162213
711711 − 4.85343i − 0.182018i
712712 7.90055 0.296086
713713 21.5879 0.808475
714714 0 0
715715 3.12678 0.116935
716716 0.415573 0.0155307
717717 26.0910i 0.974385i
718718 −15.7501 −0.587789
719719 − 10.1819i − 0.379719i −0.981811 0.189860i 0.939197π-0.939197\pi
0.981811 0.189860i 0.0608033π-0.0608033\pi
720720 0.756403i 0.0281895i
721721 25.6506i 0.955280i
722722 13.6217 0.506947
723723 9.29370 0.345636
724724 − 8.20580i − 0.304966i
725725 − 8.75919i − 0.325308i
726726 17.8521i 0.662555i
727727 46.0182 1.70672 0.853361 0.521321i 0.174561π-0.174561\pi
0.853361 + 0.521321i 0.174561π0.174561\pi
728728 16.2500i 0.602264i
729729 −29.9482 −1.10919
730730 12.8709 0.476374
731731 0 0
732732 −1.34601 −0.0497498
733733 2.55919 0.0945257 0.0472629 0.998882i 0.484950π-0.484950\pi
0.0472629 + 0.998882i 0.484950π0.484950\pi
734734 − 54.1586i − 1.99903i
735735 −9.15184 −0.337571
736736 34.3746i 1.26707i
737737 − 17.9561i − 0.661420i
738738 5.46373i 0.201123i
739739 2.47667 0.0911057 0.0455528 0.998962i 0.485495π-0.485495\pi
0.0455528 + 0.998962i 0.485495π0.485495\pi
740740 16.2501 0.597366
741741 7.18347i 0.263891i
742742 47.9488i 1.76026i
743743 1.59477i 0.0585064i 0.999572 + 0.0292532i 0.00931291π0.00931291\pi
−0.999572 + 0.0292532i 0.990687π0.990687\pi
744744 13.8149 0.506478
745745 18.5384i 0.679194i
746746 −55.8114 −2.04340
747747 −3.92957 −0.143776
748748 0 0
749749 −2.23222 −0.0815636
750750 3.69096 0.134775
751751 12.7441i 0.465041i 0.972592 + 0.232520i 0.0746972π0.0746972\pi
−0.972592 + 0.232520i 0.925303π0.925303\pi
752752 −15.9580 −0.581930
753753 − 12.1981i − 0.444523i
754754 25.9463i 0.944908i
755755 − 8.91261i − 0.324363i
756756 70.2207 2.55390
757757 46.0573 1.67398 0.836991 0.547217i 0.184313π-0.184313\pi
0.836991 + 0.547217i 0.184313π0.184313\pi
758758 7.00441i 0.254412i
759759 34.4136i 1.24914i
760760 − 13.0901i − 0.474827i
761761 −29.7003 −1.07664 −0.538318 0.842742i 0.680940π-0.680940\pi
−0.538318 + 0.842742i 0.680940π0.680940\pi
762762 21.8426i 0.791273i
763763 −22.1716 −0.802666
764764 −51.7788 −1.87329
765765 0 0
766766 −57.4385 −2.07534
767767 −5.62989 −0.203284
768768 37.6063i 1.35700i
769769 43.8299 1.58055 0.790273 0.612755i 0.209939π-0.209939\pi
0.790273 + 0.612755i 0.209939π0.209939\pi
770770 20.9154i 0.753738i
771771 − 12.6582i − 0.455873i
772772 − 29.6502i − 1.06713i
773773 27.9122 1.00393 0.501966 0.864887i 0.332610π-0.332610\pi
0.501966 + 0.864887i 0.332610π0.332610\pi
774774 9.53437 0.342706
775775 2.44403i 0.0877922i
776776 35.3711i 1.26975i
777777 − 25.8681i − 0.928013i
778778 3.97159 0.142388
779779 − 15.7183i − 0.563167i
780780 −6.98014 −0.249929
781781 4.56247 0.163258
782782 0 0
783783 48.6224 1.73762
784784 −8.21211 −0.293289
785785 18.2426i 0.651107i
786786 −59.5010 −2.12233
787787 − 30.0226i − 1.07019i −0.844792 0.535096i 0.820276π-0.820276\pi
0.844792 0.535096i 0.179724π-0.179724\pi
788788 23.5953i 0.840549i
789789 − 33.4667i − 1.19144i
790790 −21.2511 −0.756079
791791 −57.5275 −2.04544
792792 − 4.80300i − 0.170667i
793793 0.305891i 0.0108625i
794794 − 74.1451i − 2.63131i
795795 −8.93178 −0.316778
796796 66.6447i 2.36216i
797797 5.16206 0.182850 0.0914249 0.995812i 0.470858π-0.470858\pi
0.0914249 + 0.995812i 0.470858π0.470858\pi
798798 −48.0509 −1.70099
799799 0 0
800800 −3.89165 −0.137591
801801 −1.17821 −0.0416301
802802 11.9149i 0.420730i
803803 −13.5861 −0.479445
804804 40.0846i 1.41367i
805805 − 31.6406i − 1.11519i
806806 − 7.23966i − 0.255006i
807807 −6.59417 −0.232126
808808 19.6808 0.692369
809809 − 22.2343i − 0.781717i −0.920451 0.390859i 0.872178π-0.872178\pi
0.920451 0.390859i 0.127822π-0.127822\pi
810810 16.6987i 0.586731i
811811 − 15.6644i − 0.550051i −0.961437 0.275026i 0.911314π-0.911314\pi
0.961437 0.275026i 0.0886863π-0.0886863\pi
812812 −110.804 −3.88847
813813 − 38.7842i − 1.36022i
814814 −26.8676 −0.941710
815815 −9.36510 −0.328045
816816 0 0
817817 −27.4289 −0.959615
818818 61.4266 2.14773
819819 − 2.42337i − 0.0846793i
820820 15.2734 0.533370
821821 − 34.9393i − 1.21939i −0.792637 0.609694i 0.791292π-0.791292\pi
0.792637 0.609694i 0.208708π-0.208708\pi
822822 − 63.2335i − 2.20552i
823823 2.44416i 0.0851980i 0.999092 + 0.0425990i 0.0135638π0.0135638\pi
−0.999092 + 0.0425990i 0.986436π0.986436\pi
824824 −25.7916 −0.898492
825825 −3.89606 −0.135643
826826 − 37.6589i − 1.31032i
827827 − 50.8219i − 1.76725i −0.468194 0.883626i 0.655095π-0.655095\pi
0.468194 0.883626i 0.344905π-0.344905\pi
828828 16.7550i 0.582275i
829829 41.5846 1.44429 0.722147 0.691740i 0.243156π-0.243156\pi
0.722147 + 0.691740i 0.243156π0.243156\pi
830830 17.2059i 0.597226i
831831 −31.4854 −1.09222
832832 15.0750 0.522631
833833 0 0
834834 −7.87308 −0.272623
835835 −9.28133 −0.321194
836836 31.8625i 1.10199i
837837 −13.5668 −0.468939
838838 − 17.1655i − 0.592971i
839839 − 4.44768i − 0.153551i −0.997048 0.0767755i 0.975538π-0.975538\pi
0.997048 0.0767755i 0.0244625π-0.0244625\pi
840840 − 20.2479i − 0.698620i
841841 −47.7235 −1.64564
842842 49.5415 1.70731
843843 39.5171i 1.36104i
844844 23.3772i 0.804676i
845845 − 11.4137i − 0.392643i
846846 14.3159 0.492191
847847 17.3257i 0.595320i
848848 −8.01465 −0.275224
849849 13.3184 0.457088
850850 0 0
851851 40.6451 1.39330
852852 −10.1851 −0.348937
853853 17.8866i 0.612426i 0.951963 + 0.306213i 0.0990619π0.0990619\pi
−0.951963 + 0.306213i 0.900938π0.900938\pi
854854 −2.04614 −0.0700174
855855 1.95213i 0.0667615i
856856 − 2.24449i − 0.0767150i
857857 38.5585i 1.31713i 0.752523 + 0.658566i 0.228837π0.228837\pi
−0.752523 + 0.658566i 0.771163π0.771163\pi
858858 11.5408 0.393997
859859 −3.50985 −0.119755 −0.0598773 0.998206i 0.519071π-0.519071\pi
−0.0598773 + 0.998206i 0.519071π0.519071\pi
860860 − 26.6525i − 0.908843i
861861 − 24.3133i − 0.828595i
862862 − 49.4916i − 1.68569i
863863 −21.9552 −0.747365 −0.373683 0.927557i 0.621905π-0.621905\pi
−0.373683 + 0.927557i 0.621905π0.621905\pi
864864 − 21.6026i − 0.734935i
865865 4.29978 0.146197
866866 87.3171 2.96715
867867 0 0
868868 30.9171 1.04940
869869 22.4320 0.760952
870870 − 32.3298i − 1.09608i
871871 9.10956 0.308666
872872 − 22.2934i − 0.754951i
873873 − 5.27492i − 0.178529i
874874 − 75.4998i − 2.55382i
875875 3.58212 0.121098
876876 30.3293 1.02473
877877 − 5.65595i − 0.190988i −0.995430 0.0954939i 0.969557π-0.969557\pi
0.995430 0.0954939i 0.0304431π-0.0304431\pi
878878 1.10851i 0.0374105i
879879 − 40.7832i − 1.37558i
880880 −3.49601 −0.117850
881881 − 34.3915i − 1.15868i −0.815086 0.579340i 0.803311π-0.803311\pi
0.815086 0.579340i 0.196689π-0.196689\pi
882882 7.36706 0.248062
883883 58.3115 1.96234 0.981170 0.193148i 0.0618697π-0.0618697\pi
0.981170 + 0.193148i 0.0618697π0.0618697\pi
884884 0 0
885885 7.01500 0.235807
886886 25.9295 0.871117
887887 44.5012i 1.49420i 0.664710 + 0.747102i 0.268555π0.268555\pi
−0.664710 + 0.747102i 0.731445π0.731445\pi
888888 26.0102 0.872846
889889 21.1985i 0.710975i
890890 5.15889i 0.172927i
891891 − 17.6266i − 0.590513i
892892 −10.3918 −0.347944
893893 −41.1847 −1.37819
894894 68.4244i 2.28845i
895895 0.117678i 0.00393354i
896896 72.9573i 2.43733i
897897 −17.4589 −0.582935
898898 − 40.6015i − 1.35489i
899899 21.4077 0.713988
900900 −1.89688 −0.0632292
901901 0 0
902902 −25.2527 −0.840824
903903 −42.4274 −1.41190
904904 − 57.8436i − 1.92385i
905905 2.32364 0.0772404
906906 − 32.8961i − 1.09290i
907907 35.3726i 1.17453i 0.809396 + 0.587264i 0.199795π0.199795\pi
−0.809396 + 0.587264i 0.800205π0.800205\pi
908908 76.0165i 2.52270i
909909 −2.93501 −0.0973482
910910 −10.6109 −0.351748
911911 49.1810i 1.62944i 0.579856 + 0.814719i 0.303109π0.303109\pi
−0.579856 + 0.814719i 0.696891π0.696891\pi
912912 − 8.03172i − 0.265957i
913913 − 18.1620i − 0.601076i
914914 26.5004 0.876554
915915 − 0.381149i − 0.0126004i
916916 42.1685 1.39329
917917 −57.7465 −1.90696
918918 0 0
919919 49.6635 1.63825 0.819123 0.573618i 0.194460π-0.194460\pi
0.819123 + 0.573618i 0.194460π0.194460\pi
920920 31.8145 1.04889
921921 − 26.5966i − 0.876387i
922922 70.5747 2.32425
923923 2.31466i 0.0761878i
924924 49.2854i 1.62137i
925925 4.60155i 0.151298i
926926 40.3568 1.32621
927927 3.84631 0.126329
928928 34.0877i 1.11898i
929929 − 34.1165i − 1.11933i −0.828720 0.559664i 0.810930π-0.810930\pi
0.828720 0.559664i 0.189070π-0.189070\pi
930930 9.02082i 0.295804i
931931 −21.1939 −0.694601
932932 − 35.5571i − 1.16471i
933933 26.9779 0.883216
934934 −62.5405 −2.04639
935935 0 0
936936 2.43668 0.0796455
937937 38.5275 1.25864 0.629319 0.777147i 0.283334π-0.283334\pi
0.629319 + 0.777147i 0.283334π0.283334\pi
938938 60.9347i 1.98959i
939939 −9.28250 −0.302923
940940 − 40.0189i − 1.30527i
941941 − 37.1363i − 1.21061i −0.795994 0.605305i 0.793051π-0.793051\pi
0.795994 0.605305i 0.206949π-0.206949\pi
942942 67.3328i 2.19382i
943943 38.2022 1.24403
944944 6.29469 0.204875
945945 19.8844i 0.646840i
946946 44.0667i 1.43273i
947947 − 2.23113i − 0.0725021i −0.999343 0.0362510i 0.988458π-0.988458\pi
0.999343 0.0362510i 0.0115416π-0.0115416\pi
948948 −50.0765 −1.62641
949949 − 6.89259i − 0.223743i
950950 8.54755 0.277319
951951 −1.00528 −0.0325986
952952 0 0
953953 25.8280 0.836651 0.418326 0.908297i 0.362617π-0.362617\pi
0.418326 + 0.908297i 0.362617π0.362617\pi
954954 7.18992 0.232782
955955 − 14.6622i − 0.474458i
956956 −58.7114 −1.89886
957957 34.1264i 1.10315i
958958 53.8823i 1.74086i
959959 − 61.3689i − 1.98171i
960960 −18.7838 −0.606246
961961 25.0267 0.807313
962962 − 13.6306i − 0.439469i
963963 0.334721i 0.0107862i
964964 20.9132i 0.673569i
965965 8.39606 0.270279
966966 − 116.784i − 3.75747i
967967 31.4013 1.00980 0.504899 0.863178i 0.331530π-0.331530\pi
0.504899 + 0.863178i 0.331530π0.331530\pi
968968 −17.4209 −0.559930
969969 0 0
970970 −23.0966 −0.741587
971971 −41.1265 −1.31981 −0.659906 0.751348i 0.729404π-0.729404\pi
−0.659906 + 0.751348i 0.729404π0.729404\pi
972972 − 19.4602i − 0.624185i
973973 −7.64093 −0.244957
974974 − 36.9567i − 1.18417i
975975 − 1.97657i − 0.0633009i
976976 − 0.342012i − 0.0109475i
977977 −27.8890 −0.892250 −0.446125 0.894971i 0.647196π-0.647196\pi
−0.446125 + 0.894971i 0.647196π0.647196\pi
978978 −34.5662 −1.10530
979979 − 5.44557i − 0.174041i
980980 − 20.5940i − 0.657851i
981981 3.32463i 0.106147i
982982 −2.02071 −0.0644836
983983 56.6933i 1.80824i 0.427283 + 0.904118i 0.359471π0.359471\pi
−0.427283 + 0.904118i 0.640529π0.640529\pi
984984 24.4469 0.779338
985985 −6.68150 −0.212890
986986 0 0
987987 −63.7050 −2.02775
988988 −16.1647 −0.514266
989989 − 66.6639i − 2.11979i
990990 3.13626 0.0996768
991991 35.8868i 1.13998i 0.821651 + 0.569991i 0.193053π0.193053\pi
−0.821651 + 0.569991i 0.806947π0.806947\pi
992992 − 9.51130i − 0.301984i
993993 18.3000i 0.580732i
994994 −15.4830 −0.491090
995995 −18.8718 −0.598276
996996 40.5444i 1.28470i
997997 32.9550i 1.04370i 0.853038 + 0.521848i 0.174757π0.174757\pi
−0.853038 + 0.521848i 0.825243π0.825243\pi
998998 − 53.2461i − 1.68548i
999999 −25.5433 −0.808153
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1445.2.d.j.866.2 24
17.4 even 4 1445.2.a.p.1.12 12
17.7 odd 16 85.2.l.a.36.6 yes 24
17.12 odd 16 85.2.l.a.26.6 24
17.13 even 4 1445.2.a.q.1.12 12
17.16 even 2 inner 1445.2.d.j.866.1 24
51.29 even 16 765.2.be.b.451.1 24
51.41 even 16 765.2.be.b.631.1 24
85.4 even 4 7225.2.a.bs.1.1 12
85.7 even 16 425.2.n.c.274.1 24
85.12 even 16 425.2.n.f.349.6 24
85.24 odd 16 425.2.m.b.376.1 24
85.29 odd 16 425.2.m.b.26.1 24
85.58 even 16 425.2.n.f.274.6 24
85.63 even 16 425.2.n.c.349.1 24
85.64 even 4 7225.2.a.bq.1.1 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
85.2.l.a.26.6 24 17.12 odd 16
85.2.l.a.36.6 yes 24 17.7 odd 16
425.2.m.b.26.1 24 85.29 odd 16
425.2.m.b.376.1 24 85.24 odd 16
425.2.n.c.274.1 24 85.7 even 16
425.2.n.c.349.1 24 85.63 even 16
425.2.n.f.274.6 24 85.58 even 16
425.2.n.f.349.6 24 85.12 even 16
765.2.be.b.451.1 24 51.29 even 16
765.2.be.b.631.1 24 51.41 even 16
1445.2.a.p.1.12 12 17.4 even 4
1445.2.a.q.1.12 12 17.13 even 4
1445.2.d.j.866.1 24 17.16 even 2 inner
1445.2.d.j.866.2 24 1.1 even 1 trivial
7225.2.a.bq.1.1 12 85.64 even 4
7225.2.a.bs.1.1 12 85.4 even 4