Properties

Label 425.2.n.c.349.1
Level $425$
Weight $2$
Character 425.349
Analytic conductor $3.394$
Analytic rank $0$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [425,2,Mod(49,425)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(425, base_ring=CyclotomicField(8))
 
chi = DirichletCharacter(H, H._module([4, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("425.49");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 425 = 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 425.n (of order \(8\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.39364208590\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(6\) over \(\Q(\zeta_{8})\)
Twist minimal: no (minimal twist has level 85)
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

Embedding invariants

Embedding label 349.1
Character \(\chi\) \(=\) 425.349
Dual form 425.2.n.c.274.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.66305 - 1.66305i) q^{2} +(0.600564 - 1.44989i) q^{3} +3.53144i q^{4} +(-3.41000 + 1.41247i) q^{6} +(3.30945 - 1.37082i) q^{7} +(2.54686 - 2.54686i) q^{8} +(0.379815 + 0.379815i) q^{9} +(2.29362 - 0.950048i) q^{11} +(5.12021 + 2.12086i) q^{12} +1.25948 q^{13} +(-7.78350 - 3.22403i) q^{14} -1.40821 q^{16} +(1.48772 + 3.84535i) q^{17} -1.26330i q^{18} +(2.56985 - 2.56985i) q^{19} -5.62161i q^{21} +(-5.39437 - 2.23442i) q^{22} +(-3.38021 - 8.16056i) q^{23} +(-2.16312 - 5.22222i) q^{24} +(-2.09458 - 2.09458i) q^{26} +(5.12847 - 2.12428i) q^{27} +(4.84097 + 11.6871i) q^{28} +(-3.35200 + 8.09244i) q^{29} +(2.25799 + 0.935290i) q^{31} +(-2.75181 - 2.75181i) q^{32} -3.89606i q^{33} +(3.92084 - 8.86913i) q^{34} +(-1.34129 + 1.34129i) q^{36} +(-1.76094 + 4.25128i) q^{37} -8.54755 q^{38} +(0.756400 - 1.82611i) q^{39} +(-1.65510 - 3.99575i) q^{41} +(-9.34899 + 9.34899i) q^{42} +(-5.33668 + 5.33668i) q^{43} +(3.35504 + 8.09978i) q^{44} +(-7.94993 + 19.1928i) q^{46} -11.3322 q^{47} +(-0.845719 + 2.04175i) q^{48} +(4.12357 - 4.12357i) q^{49} +(6.46880 + 0.152348i) q^{51} +4.44779i q^{52} +(4.02442 + 4.02442i) q^{53} +(-12.0616 - 4.99610i) q^{54} +(4.93742 - 11.9200i) q^{56} +(-2.18264 - 5.26936i) q^{57} +(19.0326 - 7.88357i) q^{58} +(-3.16077 - 3.16077i) q^{59} +(0.0929426 + 0.224383i) q^{61} +(-2.19971 - 5.31057i) q^{62} +(1.77764 + 0.736321i) q^{63} +11.9692i q^{64} +(-6.47933 + 6.47933i) q^{66} -7.23278i q^{67} +(-13.5796 + 5.25380i) q^{68} -13.8620 q^{69} +(-1.69789 - 0.703290i) q^{71} +1.93467 q^{72} +(-5.05599 - 2.09426i) q^{73} +(9.99859 - 4.14155i) q^{74} +(9.07527 + 9.07527i) q^{76} +(6.28827 - 6.28827i) q^{77} +(-4.29484 + 1.77898i) q^{78} +(8.34789 - 3.45781i) q^{79} -7.10006i q^{81} +(-3.89262 + 9.39762i) q^{82} +(-5.17302 - 5.17302i) q^{83} +19.8524 q^{84} +17.7503 q^{86} +(9.72006 + 9.72006i) q^{87} +(3.42189 - 8.26117i) q^{88} -2.19350i q^{89} +(4.16819 - 1.72652i) q^{91} +(28.8186 - 11.9370i) q^{92} +(2.71214 - 2.71214i) q^{93} +(18.8459 + 18.8459i) q^{94} +(-5.64246 + 2.33718i) q^{96} +(9.07286 + 3.75810i) q^{97} -13.7154 q^{98} +(1.23199 + 0.510308i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 8 q^{3} - 8 q^{6} + 24 q^{9} - 8 q^{11} + 40 q^{12} + 16 q^{13} - 24 q^{16} + 8 q^{19} - 24 q^{22} + 8 q^{23} + 8 q^{24} + 16 q^{26} + 16 q^{27} - 40 q^{28} + 8 q^{29} - 16 q^{34} - 24 q^{36} - 16 q^{37}+ \cdots + 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/425\mathbb{Z}\right)^\times\).

\(n\) \(52\) \(326\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{8}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.66305 1.66305i −1.17595 1.17595i −0.980767 0.195185i \(-0.937469\pi\)
−0.195185 0.980767i \(-0.562531\pi\)
\(3\) 0.600564 1.44989i 0.346736 0.837095i −0.650265 0.759707i \(-0.725342\pi\)
0.997001 0.0773874i \(-0.0246578\pi\)
\(4\) 3.53144i 1.76572i
\(5\) 0 0
\(6\) −3.41000 + 1.41247i −1.39213 + 0.576638i
\(7\) 3.30945 1.37082i 1.25085 0.518121i 0.343764 0.939056i \(-0.388298\pi\)
0.907091 + 0.420935i \(0.138298\pi\)
\(8\) 2.54686 2.54686i 0.900451 0.900451i
\(9\) 0.379815 + 0.379815i 0.126605 + 0.126605i
\(10\) 0 0
\(11\) 2.29362 0.950048i 0.691552 0.286450i −0.00909468 0.999959i \(-0.502895\pi\)
0.700647 + 0.713508i \(0.252895\pi\)
\(12\) 5.12021 + 2.12086i 1.47808 + 0.612239i
\(13\) 1.25948 0.349317 0.174659 0.984629i \(-0.444118\pi\)
0.174659 + 0.984629i \(0.444118\pi\)
\(14\) −7.78350 3.22403i −2.08023 0.861659i
\(15\) 0 0
\(16\) −1.40821 −0.352052
\(17\) 1.48772 + 3.84535i 0.360825 + 0.932634i
\(18\) 1.26330i 0.297762i
\(19\) 2.56985 2.56985i 0.589563 0.589563i −0.347950 0.937513i \(-0.613122\pi\)
0.937513 + 0.347950i \(0.113122\pi\)
\(20\) 0 0
\(21\) 5.62161i 1.22674i
\(22\) −5.39437 2.23442i −1.15008 0.476380i
\(23\) −3.38021 8.16056i −0.704823 1.70159i −0.712547 0.701624i \(-0.752459\pi\)
0.00772401 0.999970i \(-0.497541\pi\)
\(24\) −2.16312 5.22222i −0.441544 1.06598i
\(25\) 0 0
\(26\) −2.09458 2.09458i −0.410780 0.410780i
\(27\) 5.12847 2.12428i 0.986974 0.408818i
\(28\) 4.84097 + 11.6871i 0.914857 + 2.20866i
\(29\) −3.35200 + 8.09244i −0.622451 + 1.50273i 0.226367 + 0.974042i \(0.427315\pi\)
−0.848817 + 0.528686i \(0.822685\pi\)
\(30\) 0 0
\(31\) 2.25799 + 0.935290i 0.405547 + 0.167983i 0.576126 0.817361i \(-0.304564\pi\)
−0.170579 + 0.985344i \(0.554564\pi\)
\(32\) −2.75181 2.75181i −0.486456 0.486456i
\(33\) 3.89606i 0.678217i
\(34\) 3.92084 8.86913i 0.672419 1.52104i
\(35\) 0 0
\(36\) −1.34129 + 1.34129i −0.223549 + 0.223549i
\(37\) −1.76094 + 4.25128i −0.289496 + 0.698906i −0.999988 0.00479925i \(-0.998472\pi\)
0.710492 + 0.703705i \(0.248472\pi\)
\(38\) −8.54755 −1.38660
\(39\) 0.756400 1.82611i 0.121121 0.292412i
\(40\) 0 0
\(41\) −1.65510 3.99575i −0.258483 0.624032i 0.740356 0.672215i \(-0.234657\pi\)
−0.998839 + 0.0481830i \(0.984657\pi\)
\(42\) −9.34899 + 9.34899i −1.44258 + 1.44258i
\(43\) −5.33668 + 5.33668i −0.813836 + 0.813836i −0.985207 0.171371i \(-0.945180\pi\)
0.171371 + 0.985207i \(0.445180\pi\)
\(44\) 3.35504 + 8.09978i 0.505791 + 1.22109i
\(45\) 0 0
\(46\) −7.94993 + 19.1928i −1.17215 + 2.82983i
\(47\) −11.3322 −1.65297 −0.826484 0.562961i \(-0.809662\pi\)
−0.826484 + 0.562961i \(0.809662\pi\)
\(48\) −0.845719 + 2.04175i −0.122069 + 0.294701i
\(49\) 4.12357 4.12357i 0.589081 0.589081i
\(50\) 0 0
\(51\) 6.46880 + 0.152348i 0.905814 + 0.0213330i
\(52\) 4.44779i 0.616797i
\(53\) 4.02442 + 4.02442i 0.552797 + 0.552797i 0.927247 0.374450i \(-0.122169\pi\)
−0.374450 + 0.927247i \(0.622169\pi\)
\(54\) −12.0616 4.99610i −1.64138 0.679883i
\(55\) 0 0
\(56\) 4.93742 11.9200i 0.659791 1.59288i
\(57\) −2.18264 5.26936i −0.289098 0.697943i
\(58\) 19.0326 7.88357i 2.49911 1.03516i
\(59\) −3.16077 3.16077i −0.411497 0.411497i 0.470763 0.882260i \(-0.343979\pi\)
−0.882260 + 0.470763i \(0.843979\pi\)
\(60\) 0 0
\(61\) 0.0929426 + 0.224383i 0.0119001 + 0.0287293i 0.929718 0.368273i \(-0.120051\pi\)
−0.917818 + 0.397002i \(0.870051\pi\)
\(62\) −2.19971 5.31057i −0.279364 0.674443i
\(63\) 1.77764 + 0.736321i 0.223961 + 0.0927677i
\(64\) 11.9692i 1.49615i
\(65\) 0 0
\(66\) −6.47933 + 6.47933i −0.797550 + 0.797550i
\(67\) 7.23278i 0.883625i −0.897108 0.441812i \(-0.854336\pi\)
0.897108 0.441812i \(-0.145664\pi\)
\(68\) −13.5796 + 5.25380i −1.64677 + 0.637116i
\(69\) −13.8620 −1.66878
\(70\) 0 0
\(71\) −1.69789 0.703290i −0.201503 0.0834651i 0.279650 0.960102i \(-0.409782\pi\)
−0.481152 + 0.876637i \(0.659782\pi\)
\(72\) 1.93467 0.228003
\(73\) −5.05599 2.09426i −0.591758 0.245114i 0.0666485 0.997777i \(-0.478769\pi\)
−0.658407 + 0.752662i \(0.728769\pi\)
\(74\) 9.99859 4.14155i 1.16231 0.481446i
\(75\) 0 0
\(76\) 9.07527 + 9.07527i 1.04100 + 1.04100i
\(77\) 6.28827 6.28827i 0.716615 0.716615i
\(78\) −4.29484 + 1.77898i −0.486294 + 0.201430i
\(79\) 8.34789 3.45781i 0.939211 0.389034i 0.140046 0.990145i \(-0.455275\pi\)
0.799166 + 0.601111i \(0.205275\pi\)
\(80\) 0 0
\(81\) 7.10006i 0.788896i
\(82\) −3.89262 + 9.39762i −0.429868 + 1.03779i
\(83\) −5.17302 5.17302i −0.567812 0.567812i 0.363703 0.931515i \(-0.381512\pi\)
−0.931515 + 0.363703i \(0.881512\pi\)
\(84\) 19.8524 2.16607
\(85\) 0 0
\(86\) 17.7503 1.91406
\(87\) 9.72006 + 9.72006i 1.04210 + 1.04210i
\(88\) 3.42189 8.26117i 0.364774 0.880643i
\(89\) 2.19350i 0.232510i −0.993219 0.116255i \(-0.962911\pi\)
0.993219 0.116255i \(-0.0370890\pi\)
\(90\) 0 0
\(91\) 4.16819 1.72652i 0.436945 0.180989i
\(92\) 28.8186 11.9370i 3.00454 1.24452i
\(93\) 2.71214 2.71214i 0.281235 0.281235i
\(94\) 18.8459 + 18.8459i 1.94381 + 1.94381i
\(95\) 0 0
\(96\) −5.64246 + 2.33718i −0.575882 + 0.238538i
\(97\) 9.07286 + 3.75810i 0.921209 + 0.381577i 0.792337 0.610084i \(-0.208864\pi\)
0.128872 + 0.991661i \(0.458864\pi\)
\(98\) −13.7154 −1.38546
\(99\) 1.23199 + 0.510308i 0.123820 + 0.0512879i
\(100\) 0 0
\(101\) 5.46415 0.543704 0.271852 0.962339i \(-0.412364\pi\)
0.271852 + 0.962339i \(0.412364\pi\)
\(102\) −10.5046 11.0113i −1.04011 1.09028i
\(103\) 7.16074i 0.705568i 0.935705 + 0.352784i \(0.114765\pi\)
−0.935705 + 0.352784i \(0.885235\pi\)
\(104\) 3.20773 3.20773i 0.314543 0.314543i
\(105\) 0 0
\(106\) 13.3856i 1.30012i
\(107\) 0.575721 + 0.238471i 0.0556570 + 0.0230539i 0.410338 0.911933i \(-0.365411\pi\)
−0.354681 + 0.934987i \(0.615411\pi\)
\(108\) 7.50177 + 18.1109i 0.721859 + 1.74272i
\(109\) −2.36863 5.71837i −0.226873 0.547720i 0.768921 0.639344i \(-0.220794\pi\)
−0.995794 + 0.0916242i \(0.970794\pi\)
\(110\) 0 0
\(111\) 5.10633 + 5.10633i 0.484672 + 0.484672i
\(112\) −4.66039 + 1.93040i −0.440365 + 0.182405i
\(113\) 6.14574 + 14.8371i 0.578143 + 1.39576i 0.894478 + 0.447113i \(0.147548\pi\)
−0.316335 + 0.948648i \(0.602452\pi\)
\(114\) −5.13335 + 12.3930i −0.480782 + 1.16071i
\(115\) 0 0
\(116\) −28.5780 11.8374i −2.65340 1.09907i
\(117\) 0.478370 + 0.478370i 0.0442253 + 0.0442253i
\(118\) 10.5130i 0.967801i
\(119\) 10.1948 + 10.6866i 0.934557 + 0.979638i
\(120\) 0 0
\(121\) −3.42008 + 3.42008i −0.310916 + 0.310916i
\(122\) 0.218592 0.527727i 0.0197904 0.0477782i
\(123\) −6.78740 −0.611999
\(124\) −3.30292 + 7.97396i −0.296611 + 0.716083i
\(125\) 0 0
\(126\) −1.73175 4.18082i −0.154277 0.372457i
\(127\) 4.18456 4.18456i 0.371320 0.371320i −0.496638 0.867958i \(-0.665432\pi\)
0.867958 + 0.496638i \(0.165432\pi\)
\(128\) 14.4017 14.4017i 1.27294 1.27294i
\(129\) 4.53258 + 10.9426i 0.399072 + 0.963444i
\(130\) 0 0
\(131\) 6.16914 14.8936i 0.539000 1.30126i −0.386421 0.922322i \(-0.626289\pi\)
0.925422 0.378939i \(-0.123711\pi\)
\(132\) 13.7587 1.19754
\(133\) 4.98198 12.0276i 0.431993 1.04292i
\(134\) −12.0284 + 12.0284i −1.03910 + 1.03910i
\(135\) 0 0
\(136\) 13.5826 + 6.00455i 1.16470 + 0.514886i
\(137\) 17.1320i 1.46369i 0.681473 + 0.731843i \(0.261339\pi\)
−0.681473 + 0.731843i \(0.738661\pi\)
\(138\) 23.0531 + 23.0531i 1.96241 + 1.96241i
\(139\) −1.97070 0.816292i −0.167153 0.0692369i 0.297538 0.954710i \(-0.403835\pi\)
−0.464691 + 0.885473i \(0.653835\pi\)
\(140\) 0 0
\(141\) −6.80570 + 16.4304i −0.573143 + 1.38369i
\(142\) 1.65407 + 3.99327i 0.138806 + 0.335108i
\(143\) 2.88877 1.19657i 0.241571 0.100062i
\(144\) −0.534857 0.534857i −0.0445715 0.0445715i
\(145\) 0 0
\(146\) 4.92549 + 11.8912i 0.407636 + 0.984121i
\(147\) −3.50226 8.45519i −0.288861 0.697373i
\(148\) −15.0131 6.21865i −1.23407 0.511170i
\(149\) 18.5384i 1.51872i −0.650669 0.759362i \(-0.725511\pi\)
0.650669 0.759362i \(-0.274489\pi\)
\(150\) 0 0
\(151\) −6.30217 + 6.30217i −0.512863 + 0.512863i −0.915403 0.402539i \(-0.868128\pi\)
0.402539 + 0.915403i \(0.368128\pi\)
\(152\) 13.0901i 1.06175i
\(153\) −0.895462 + 2.02558i −0.0723938 + 0.163758i
\(154\) −20.9154 −1.68541
\(155\) 0 0
\(156\) 6.44881 + 2.67118i 0.516318 + 0.213866i
\(157\) −18.2426 −1.45592 −0.727960 0.685620i \(-0.759531\pi\)
−0.727960 + 0.685620i \(0.759531\pi\)
\(158\) −19.6334 8.13243i −1.56195 0.646982i
\(159\) 8.25189 3.41805i 0.654418 0.271069i
\(160\) 0 0
\(161\) −22.3733 22.3733i −1.76326 1.76326i
\(162\) −11.8077 + 11.8077i −0.927703 + 0.927703i
\(163\) 8.65222 3.58387i 0.677694 0.280710i −0.0171684 0.999853i \(-0.505465\pi\)
0.694863 + 0.719142i \(0.255465\pi\)
\(164\) 14.1108 5.84488i 1.10187 0.456408i
\(165\) 0 0
\(166\) 17.2059i 1.33544i
\(167\) −3.55181 + 8.57484i −0.274848 + 0.663541i −0.999678 0.0253869i \(-0.991918\pi\)
0.724830 + 0.688928i \(0.241918\pi\)
\(168\) −14.3175 14.3175i −1.10462 1.10462i
\(169\) −11.4137 −0.877977
\(170\) 0 0
\(171\) 1.95213 0.149283
\(172\) −18.8462 18.8462i −1.43701 1.43701i
\(173\) 1.64545 3.97248i 0.125102 0.302022i −0.848904 0.528548i \(-0.822737\pi\)
0.974005 + 0.226526i \(0.0727368\pi\)
\(174\) 32.3298i 2.45092i
\(175\) 0 0
\(176\) −3.22989 + 1.33786i −0.243462 + 0.100845i
\(177\) −6.48102 + 2.68453i −0.487143 + 0.201781i
\(178\) −3.64789 + 3.64789i −0.273421 + 0.273421i
\(179\) 0.0832109 + 0.0832109i 0.00621948 + 0.00621948i 0.710210 0.703990i \(-0.248600\pi\)
−0.703990 + 0.710210i \(0.748600\pi\)
\(180\) 0 0
\(181\) −2.14676 + 0.889218i −0.159568 + 0.0660951i −0.461038 0.887381i \(-0.652523\pi\)
0.301470 + 0.953476i \(0.402523\pi\)
\(182\) −9.80318 4.06061i −0.726660 0.300993i
\(183\) 0.381149 0.0281754
\(184\) −29.3927 12.1749i −2.16686 0.897544i
\(185\) 0 0
\(186\) −9.02082 −0.661438
\(187\) 7.06552 + 7.40635i 0.516682 + 0.541606i
\(188\) 40.0189i 2.91868i
\(189\) 14.0604 14.0604i 1.02274 1.02274i
\(190\) 0 0
\(191\) 14.6622i 1.06092i 0.847710 + 0.530461i \(0.177981\pi\)
−0.847710 + 0.530461i \(0.822019\pi\)
\(192\) 17.3540 + 7.18827i 1.25242 + 0.518768i
\(193\) 3.21303 + 7.75695i 0.231279 + 0.558357i 0.996328 0.0856146i \(-0.0272854\pi\)
−0.765049 + 0.643972i \(0.777285\pi\)
\(194\) −8.83869 21.3385i −0.634581 1.53201i
\(195\) 0 0
\(196\) 14.5622 + 14.5622i 1.04015 + 1.04015i
\(197\) −6.17290 + 2.55690i −0.439801 + 0.182171i −0.591586 0.806242i \(-0.701498\pi\)
0.151785 + 0.988414i \(0.451498\pi\)
\(198\) −1.20019 2.89752i −0.0852941 0.205918i
\(199\) −7.22192 + 17.4353i −0.511949 + 1.23595i 0.430800 + 0.902448i \(0.358232\pi\)
−0.942748 + 0.333506i \(0.891768\pi\)
\(200\) 0 0
\(201\) −10.4867 4.34375i −0.739678 0.306384i
\(202\) −9.08714 9.08714i −0.639369 0.639369i
\(203\) 31.3765i 2.20220i
\(204\) −0.538009 + 22.8442i −0.0376681 + 1.59942i
\(205\) 0 0
\(206\) 11.9086 11.9086i 0.829714 0.829714i
\(207\) 1.81565 4.38336i 0.126196 0.304664i
\(208\) −1.77361 −0.122978
\(209\) 3.45277 8.33572i 0.238833 0.576594i
\(210\) 0 0
\(211\) 2.53326 + 6.11583i 0.174397 + 0.421031i 0.986774 0.162101i \(-0.0518270\pi\)
−0.812377 + 0.583132i \(0.801827\pi\)
\(212\) −14.2120 + 14.2120i −0.976085 + 0.976085i
\(213\) −2.03939 + 2.03939i −0.139736 + 0.139736i
\(214\) −0.560861 1.35404i −0.0383397 0.0925602i
\(215\) 0 0
\(216\) 7.65124 18.4717i 0.520601 1.25684i
\(217\) 8.75482 0.594316
\(218\) −5.57077 + 13.4490i −0.377300 + 0.910884i
\(219\) −6.07289 + 6.07289i −0.410368 + 0.410368i
\(220\) 0 0
\(221\) 1.87376 + 4.84315i 0.126042 + 0.325785i
\(222\) 16.9841i 1.13990i
\(223\) 2.08077 + 2.08077i 0.139339 + 0.139339i 0.773336 0.633997i \(-0.218587\pi\)
−0.633997 + 0.773336i \(0.718587\pi\)
\(224\) −12.8792 5.33474i −0.860529 0.356443i
\(225\) 0 0
\(226\) 14.4542 34.8955i 0.961478 2.32121i
\(227\) 8.23750 + 19.8871i 0.546742 + 1.31995i 0.919889 + 0.392180i \(0.128279\pi\)
−0.373147 + 0.927772i \(0.621721\pi\)
\(228\) 18.6084 7.70786i 1.23237 0.510466i
\(229\) −8.44347 8.44347i −0.557960 0.557960i 0.370766 0.928726i \(-0.379095\pi\)
−0.928726 + 0.370766i \(0.879095\pi\)
\(230\) 0 0
\(231\) −5.34080 12.8938i −0.351399 0.848351i
\(232\) 12.0732 + 29.1474i 0.792647 + 1.91362i
\(233\) −9.30228 3.85313i −0.609412 0.252427i 0.0565648 0.998399i \(-0.481985\pi\)
−0.665977 + 0.745972i \(0.731985\pi\)
\(234\) 1.59110i 0.104014i
\(235\) 0 0
\(236\) 11.1621 11.1621i 0.726590 0.726590i
\(237\) 14.1802i 0.921101i
\(238\) 0.817856 34.7267i 0.0530137 2.25100i
\(239\) 16.6253 1.07540 0.537701 0.843135i \(-0.319293\pi\)
0.537701 + 0.843135i \(0.319293\pi\)
\(240\) 0 0
\(241\) 5.47122 + 2.26625i 0.352432 + 0.145982i 0.551874 0.833928i \(-0.313913\pi\)
−0.199442 + 0.979910i \(0.563913\pi\)
\(242\) 11.3755 0.731245
\(243\) 5.09108 + 2.10879i 0.326593 + 0.135279i
\(244\) −0.792397 + 0.328221i −0.0507280 + 0.0210122i
\(245\) 0 0
\(246\) 11.2878 + 11.2878i 0.719681 + 0.719681i
\(247\) 3.23668 3.23668i 0.205945 0.205945i
\(248\) 8.13284 3.36873i 0.516436 0.213915i
\(249\) −10.6070 + 4.39358i −0.672194 + 0.278432i
\(250\) 0 0
\(251\) 7.77270i 0.490608i 0.969446 + 0.245304i \(0.0788878\pi\)
−0.969446 + 0.245304i \(0.921112\pi\)
\(252\) −2.60027 + 6.27762i −0.163802 + 0.395453i
\(253\) −15.5058 15.5058i −0.974844 0.974844i
\(254\) −13.9182 −0.873307
\(255\) 0 0
\(256\) −23.9630 −1.49768
\(257\) 5.70344 + 5.70344i 0.355771 + 0.355771i 0.862251 0.506481i \(-0.169054\pi\)
−0.506481 + 0.862251i \(0.669054\pi\)
\(258\) 10.6602 25.7360i 0.663674 1.60225i
\(259\) 16.4833i 1.02422i
\(260\) 0 0
\(261\) −4.34677 + 1.80049i −0.269058 + 0.111448i
\(262\) −35.0283 + 14.5092i −2.16406 + 0.896382i
\(263\) −15.0792 + 15.0792i −0.929822 + 0.929822i −0.997694 0.0678724i \(-0.978379\pi\)
0.0678724 + 0.997694i \(0.478379\pi\)
\(264\) −9.92273 9.92273i −0.610702 0.610702i
\(265\) 0 0
\(266\) −28.2877 + 11.7171i −1.73443 + 0.718424i
\(267\) −3.18033 1.31734i −0.194633 0.0806197i
\(268\) 25.5422 1.56024
\(269\) −3.88200 1.60798i −0.236690 0.0980401i 0.261186 0.965289i \(-0.415886\pi\)
−0.497876 + 0.867248i \(0.665886\pi\)
\(270\) 0 0
\(271\) −24.7136 −1.50124 −0.750621 0.660733i \(-0.770245\pi\)
−0.750621 + 0.660733i \(0.770245\pi\)
\(272\) −2.09502 5.41504i −0.127029 0.328335i
\(273\) 7.08031i 0.428520i
\(274\) 28.4913 28.4913i 1.72122 1.72122i
\(275\) 0 0
\(276\) 48.9527i 2.94661i
\(277\) −18.5355 7.67765i −1.11369 0.461305i −0.251483 0.967862i \(-0.580918\pi\)
−0.862207 + 0.506556i \(0.830918\pi\)
\(278\) 1.91984 + 4.63490i 0.115144 + 0.277983i
\(279\) 0.502381 + 1.21285i 0.0300768 + 0.0726117i
\(280\) 0 0
\(281\) 17.8053 + 17.8053i 1.06218 + 1.06218i 0.997934 + 0.0642430i \(0.0204633\pi\)
0.0642430 + 0.997934i \(0.479537\pi\)
\(282\) 38.6427 16.0063i 2.30114 0.953164i
\(283\) 3.24768 + 7.84059i 0.193054 + 0.466075i 0.990533 0.137272i \(-0.0438335\pi\)
−0.797479 + 0.603347i \(0.793833\pi\)
\(284\) 2.48363 5.99601i 0.147376 0.355798i
\(285\) 0 0
\(286\) −6.79411 2.81421i −0.401744 0.166408i
\(287\) −10.9549 10.9549i −0.646648 0.646648i
\(288\) 2.09036i 0.123175i
\(289\) −12.5734 + 11.4416i −0.739611 + 0.673035i
\(290\) 0 0
\(291\) 10.8977 10.8977i 0.638833 0.638833i
\(292\) 7.39575 17.8549i 0.432804 1.04488i
\(293\) 25.9873 1.51820 0.759098 0.650977i \(-0.225640\pi\)
0.759098 + 0.650977i \(0.225640\pi\)
\(294\) −8.23696 + 19.8858i −0.480389 + 1.15976i
\(295\) 0 0
\(296\) 6.34255 + 15.3123i 0.368653 + 0.890008i
\(297\) 9.74457 9.74457i 0.565438 0.565438i
\(298\) −30.8302 + 30.8302i −1.78594 + 1.78594i
\(299\) −4.25732 10.2781i −0.246207 0.594397i
\(300\) 0 0
\(301\) −10.3458 + 24.9771i −0.596325 + 1.43966i
\(302\) 20.9616 1.20620
\(303\) 3.28158 7.92243i 0.188522 0.455132i
\(304\) −3.61887 + 3.61887i −0.207557 + 0.207557i
\(305\) 0 0
\(306\) 4.85782 1.87943i 0.277703 0.107440i
\(307\) 16.9475i 0.967245i −0.875277 0.483622i \(-0.839321\pi\)
0.875277 0.483622i \(-0.160679\pi\)
\(308\) 22.2067 + 22.2067i 1.26534 + 1.26534i
\(309\) 10.3823 + 4.30048i 0.590628 + 0.244646i
\(310\) 0 0
\(311\) −6.57851 + 15.8819i −0.373033 + 0.900581i 0.620200 + 0.784444i \(0.287051\pi\)
−0.993233 + 0.116138i \(0.962949\pi\)
\(312\) −2.72441 6.57730i −0.154239 0.372366i
\(313\) 5.46463 2.26352i 0.308879 0.127942i −0.222859 0.974851i \(-0.571539\pi\)
0.531738 + 0.846909i \(0.321539\pi\)
\(314\) 30.3383 + 30.3383i 1.71209 + 1.71209i
\(315\) 0 0
\(316\) 12.2111 + 29.4801i 0.686926 + 1.65839i
\(317\) 0.245137 + 0.591813i 0.0137683 + 0.0332395i 0.930614 0.366002i \(-0.119274\pi\)
−0.916846 + 0.399241i \(0.869274\pi\)
\(318\) −19.4076 8.03891i −1.08833 0.450800i
\(319\) 21.7455i 1.21752i
\(320\) 0 0
\(321\) 0.691515 0.691515i 0.0385966 0.0385966i
\(322\) 74.4157i 4.14702i
\(323\) 13.7052 + 6.05874i 0.762576 + 0.337117i
\(324\) 25.0735 1.39297
\(325\) 0 0
\(326\) −20.3492 8.42891i −1.12704 0.466834i
\(327\) −9.71352 −0.537159
\(328\) −14.3919 5.96133i −0.794661 0.329160i
\(329\) −37.5033 + 15.5344i −2.06762 + 0.856437i
\(330\) 0 0
\(331\) −8.24547 8.24547i −0.453212 0.453212i 0.443207 0.896419i \(-0.353841\pi\)
−0.896419 + 0.443207i \(0.853841\pi\)
\(332\) 18.2682 18.2682i 1.00260 1.00260i
\(333\) −2.28353 + 0.945868i −0.125137 + 0.0518333i
\(334\) 20.1672 8.35352i 1.10350 0.457084i
\(335\) 0 0
\(336\) 7.91638i 0.431874i
\(337\) 11.8175 28.5300i 0.643740 1.55413i −0.177856 0.984056i \(-0.556916\pi\)
0.821596 0.570070i \(-0.193084\pi\)
\(338\) 18.9815 + 18.9815i 1.03246 + 1.03246i
\(339\) 25.2031 1.36885
\(340\) 0 0
\(341\) 6.06754 0.328576
\(342\) −3.24648 3.24648i −0.175550 0.175550i
\(343\) −1.60166 + 3.86674i −0.0864813 + 0.208784i
\(344\) 27.1836i 1.46564i
\(345\) 0 0
\(346\) −9.34288 + 3.86995i −0.502276 + 0.208050i
\(347\) −0.0138574 + 0.00573993i −0.000743905 + 0.000308135i −0.383055 0.923725i \(-0.625128\pi\)
0.382311 + 0.924034i \(0.375128\pi\)
\(348\) −34.3259 + 34.3259i −1.84006 + 1.84006i
\(349\) 2.58441 + 2.58441i 0.138340 + 0.138340i 0.772886 0.634545i \(-0.218813\pi\)
−0.634545 + 0.772886i \(0.718813\pi\)
\(350\) 0 0
\(351\) 6.45921 2.67549i 0.344767 0.142807i
\(352\) −8.92595 3.69725i −0.475755 0.197064i
\(353\) −3.82333 −0.203495 −0.101748 0.994810i \(-0.532443\pi\)
−0.101748 + 0.994810i \(0.532443\pi\)
\(354\) 15.2427 + 6.31374i 0.810141 + 0.335572i
\(355\) 0 0
\(356\) 7.74622 0.410549
\(357\) 21.6170 8.36337i 1.14409 0.442637i
\(358\) 0.276767i 0.0146276i
\(359\) 4.73532 4.73532i 0.249921 0.249921i −0.571017 0.820938i \(-0.693451\pi\)
0.820938 + 0.571017i \(0.193451\pi\)
\(360\) 0 0
\(361\) 5.79178i 0.304830i
\(362\) 5.04897 + 2.09135i 0.265368 + 0.109919i
\(363\) 2.90476 + 7.01272i 0.152461 + 0.368072i
\(364\) 6.09712 + 14.7197i 0.319576 + 0.771524i
\(365\) 0 0
\(366\) −0.633869 0.633869i −0.0331328 0.0331328i
\(367\) −21.2747 + 8.81227i −1.11053 + 0.459997i −0.861120 0.508401i \(-0.830237\pi\)
−0.249410 + 0.968398i \(0.580237\pi\)
\(368\) 4.76004 + 11.4917i 0.248134 + 0.599049i
\(369\) 0.889017 2.14628i 0.0462804 0.111731i
\(370\) 0 0
\(371\) 18.8354 + 7.80187i 0.977884 + 0.405053i
\(372\) 9.57776 + 9.57776i 0.496584 + 0.496584i
\(373\) 23.7303i 1.22871i −0.789030 0.614355i \(-0.789416\pi\)
0.789030 0.614355i \(-0.210584\pi\)
\(374\) 0.566816 24.0674i 0.0293094 1.24450i
\(375\) 0 0
\(376\) −28.8615 + 28.8615i −1.48842 + 1.48842i
\(377\) −4.22178 + 10.1923i −0.217433 + 0.524929i
\(378\) −46.7662 −2.40539
\(379\) −1.13970 + 2.75149i −0.0585427 + 0.141335i −0.950444 0.310895i \(-0.899371\pi\)
0.891902 + 0.452230i \(0.149371\pi\)
\(380\) 0 0
\(381\) −3.55406 8.58025i −0.182080 0.439580i
\(382\) 24.3839 24.3839i 1.24759 1.24759i
\(383\) 17.2691 17.2691i 0.882408 0.882408i −0.111371 0.993779i \(-0.535524\pi\)
0.993779 + 0.111371i \(0.0355241\pi\)
\(384\) −12.2317 29.5300i −0.624198 1.50695i
\(385\) 0 0
\(386\) 7.55674 18.2436i 0.384628 0.928574i
\(387\) −4.05390 −0.206071
\(388\) −13.2715 + 32.0403i −0.673759 + 1.62660i
\(389\) 1.19407 1.19407i 0.0605418 0.0605418i −0.676188 0.736729i \(-0.736369\pi\)
0.736729 + 0.676188i \(0.236369\pi\)
\(390\) 0 0
\(391\) 26.3514 25.1387i 1.33265 1.27132i
\(392\) 21.0043i 1.06088i
\(393\) −17.8892 17.8892i −0.902389 0.902389i
\(394\) 14.5181 + 6.01357i 0.731409 + 0.302960i
\(395\) 0 0
\(396\) −1.80212 + 4.35071i −0.0905601 + 0.218631i
\(397\) 12.0643 + 29.1259i 0.605491 + 1.46178i 0.867856 + 0.496816i \(0.165498\pi\)
−0.262365 + 0.964969i \(0.584502\pi\)
\(398\) 41.0060 16.9853i 2.05545 0.851394i
\(399\) −14.4467 14.4467i −0.723238 0.723238i
\(400\) 0 0
\(401\) 1.93870 + 4.68044i 0.0968141 + 0.233730i 0.964865 0.262745i \(-0.0846276\pi\)
−0.868051 + 0.496474i \(0.834628\pi\)
\(402\) 10.2161 + 24.6638i 0.509531 + 1.23012i
\(403\) 2.84390 + 1.17798i 0.141665 + 0.0586794i
\(404\) 19.2964i 0.960029i
\(405\) 0 0
\(406\) 52.1806 52.1806i 2.58968 2.58968i
\(407\) 11.4238i 0.566256i
\(408\) 16.8632 16.0871i 0.834850 0.796432i
\(409\) 26.1178 1.29144 0.645722 0.763573i \(-0.276557\pi\)
0.645722 + 0.763573i \(0.276557\pi\)
\(410\) 0 0
\(411\) 24.8395 + 10.2889i 1.22524 + 0.507513i
\(412\) −25.2877 −1.24584
\(413\) −14.7933 6.12757i −0.727929 0.301518i
\(414\) −10.3092 + 4.27022i −0.506671 + 0.209870i
\(415\) 0 0
\(416\) −3.46586 3.46586i −0.169928 0.169928i
\(417\) −2.36707 + 2.36707i −0.115916 + 0.115916i
\(418\) −19.6048 + 8.12058i −0.958903 + 0.397190i
\(419\) −6.74298 + 2.79303i −0.329416 + 0.136449i −0.541261 0.840855i \(-0.682053\pi\)
0.211845 + 0.977303i \(0.432053\pi\)
\(420\) 0 0
\(421\) 21.0644i 1.02662i −0.858204 0.513309i \(-0.828420\pi\)
0.858204 0.513309i \(-0.171580\pi\)
\(422\) 5.95798 14.3838i 0.290030 0.700194i
\(423\) −4.30413 4.30413i −0.209274 0.209274i
\(424\) 20.4993 0.995533
\(425\) 0 0
\(426\) 6.78319 0.328646
\(427\) 0.615178 + 0.615178i 0.0297705 + 0.0297705i
\(428\) −0.842148 + 2.03313i −0.0407068 + 0.0982749i
\(429\) 4.90702i 0.236913i
\(430\) 0 0
\(431\) −19.4414 + 8.05290i −0.936460 + 0.387894i −0.798126 0.602491i \(-0.794175\pi\)
−0.138334 + 0.990386i \(0.544175\pi\)
\(432\) −7.22194 + 2.99142i −0.347466 + 0.143925i
\(433\) 26.2522 26.2522i 1.26160 1.26160i 0.311280 0.950318i \(-0.399242\pi\)
0.950318 0.311280i \(-0.100758\pi\)
\(434\) −14.5597 14.5597i −0.698886 0.698886i
\(435\) 0 0
\(436\) 20.1941 8.36467i 0.967121 0.400595i
\(437\) −29.6580 12.2848i −1.41874 0.587659i
\(438\) 20.1990 0.965145
\(439\) −0.435448 0.180369i −0.0207828 0.00860852i 0.372268 0.928125i \(-0.378580\pi\)
−0.393051 + 0.919517i \(0.628580\pi\)
\(440\) 0 0
\(441\) 3.13238 0.149161
\(442\) 4.93823 11.1705i 0.234888 0.531327i
\(443\) 11.0249i 0.523808i −0.965094 0.261904i \(-0.915650\pi\)
0.965094 0.261904i \(-0.0843504\pi\)
\(444\) −18.0327 + 18.0327i −0.855795 + 0.855795i
\(445\) 0 0
\(446\) 6.92084i 0.327711i
\(447\) −26.8786 11.1335i −1.27132 0.526596i
\(448\) 16.4076 + 39.6114i 0.775186 + 1.87146i
\(449\) −6.60636 15.9492i −0.311773 0.752688i −0.999639 0.0268500i \(-0.991452\pi\)
0.687866 0.725838i \(-0.258548\pi\)
\(450\) 0 0
\(451\) −7.59232 7.59232i −0.357508 0.357508i
\(452\) −52.3965 + 21.7033i −2.46452 + 1.02084i
\(453\) 5.35260 + 12.9223i 0.251487 + 0.607143i
\(454\) 19.3738 46.7725i 0.909257 2.19514i
\(455\) 0 0
\(456\) −18.9792 7.86144i −0.888782 0.368146i
\(457\) 7.96742 + 7.96742i 0.372700 + 0.372700i 0.868460 0.495760i \(-0.165110\pi\)
−0.495760 + 0.868460i \(0.665110\pi\)
\(458\) 28.0837i 1.31227i
\(459\) 15.7983 + 16.5604i 0.737402 + 0.772973i
\(460\) 0 0
\(461\) 21.2185 21.2185i 0.988244 0.988244i −0.0116873 0.999932i \(-0.503720\pi\)
0.999932 + 0.0116873i \(0.00372025\pi\)
\(462\) −12.5610 + 30.3250i −0.584392 + 1.41085i
\(463\) −17.1592 −0.797457 −0.398728 0.917069i \(-0.630548\pi\)
−0.398728 + 0.917069i \(0.630548\pi\)
\(464\) 4.72031 11.3958i 0.219135 0.529038i
\(465\) 0 0
\(466\) 9.06218 + 21.8780i 0.419798 + 1.01348i
\(467\) 18.8030 18.8030i 0.870099 0.870099i −0.122384 0.992483i \(-0.539054\pi\)
0.992483 + 0.122384i \(0.0390540\pi\)
\(468\) −1.68934 + 1.68934i −0.0780896 + 0.0780896i
\(469\) −9.91483 23.9365i −0.457824 1.10529i
\(470\) 0 0
\(471\) −10.9559 + 26.4498i −0.504820 + 1.21874i
\(472\) −16.1001 −0.741066
\(473\) −7.17020 + 17.3104i −0.329686 + 0.795933i
\(474\) −23.5823 + 23.5823i −1.08317 + 1.08317i
\(475\) 0 0
\(476\) −37.7391 + 36.0024i −1.72977 + 1.65017i
\(477\) 3.05707i 0.139974i
\(478\) −27.6487 27.6487i −1.26462 1.26462i
\(479\) 21.1662 + 8.76732i 0.967107 + 0.400589i 0.809635 0.586934i \(-0.199665\pi\)
0.157473 + 0.987523i \(0.449665\pi\)
\(480\) 0 0
\(481\) −2.21787 + 5.35441i −0.101126 + 0.244140i
\(482\) −5.33000 12.8678i −0.242775 0.586111i
\(483\) −45.8755 + 19.0022i −2.08741 + 0.864632i
\(484\) −12.0778 12.0778i −0.548992 0.548992i
\(485\) 0 0
\(486\) −4.95968 11.9737i −0.224975 0.543139i
\(487\) −6.01330 14.5174i −0.272489 0.657846i 0.727100 0.686532i \(-0.240868\pi\)
−0.999588 + 0.0286857i \(0.990868\pi\)
\(488\) 0.808185 + 0.334761i 0.0365848 + 0.0151539i
\(489\) 14.6971i 0.664627i
\(490\) 0 0
\(491\) 0.607534 0.607534i 0.0274176 0.0274176i −0.693265 0.720683i \(-0.743828\pi\)
0.720683 + 0.693265i \(0.243828\pi\)
\(492\) 23.9693i 1.08062i
\(493\) −36.1051 0.850318i −1.62609 0.0382964i
\(494\) −10.7655 −0.484362
\(495\) 0 0
\(496\) −3.17972 1.31708i −0.142773 0.0591387i
\(497\) −6.58317 −0.295296
\(498\) 24.9467 + 10.3333i 1.11789 + 0.463045i
\(499\) 20.9163 8.66380i 0.936340 0.387845i 0.138260 0.990396i \(-0.455849\pi\)
0.798080 + 0.602551i \(0.205849\pi\)
\(500\) 0 0
\(501\) 10.2995 + 10.2995i 0.460147 + 0.460147i
\(502\) 12.9264 12.9264i 0.576931 0.576931i
\(503\) −15.8122 + 6.54963i −0.705032 + 0.292034i −0.706247 0.707966i \(-0.749613\pi\)
0.00121517 + 0.999999i \(0.499613\pi\)
\(504\) 6.40270 2.65208i 0.285199 0.118133i
\(505\) 0 0
\(506\) 51.5739i 2.29274i
\(507\) −6.85467 + 16.5486i −0.304426 + 0.734950i
\(508\) 14.7775 + 14.7775i 0.655647 + 0.655647i
\(509\) −29.7081 −1.31679 −0.658393 0.752674i \(-0.728764\pi\)
−0.658393 + 0.752674i \(0.728764\pi\)
\(510\) 0 0
\(511\) −19.6034 −0.867203
\(512\) 11.0481 + 11.0481i 0.488263 + 0.488263i
\(513\) 7.72030 18.6384i 0.340859 0.822907i
\(514\) 18.9701i 0.836737i
\(515\) 0 0
\(516\) −38.6432 + 16.0066i −1.70117 + 0.704649i
\(517\) −25.9917 + 10.7661i −1.14311 + 0.473493i
\(518\) 27.4125 27.4125i 1.20444 1.20444i
\(519\) −4.77146 4.77146i −0.209444 0.209444i
\(520\) 0 0
\(521\) −35.7139 + 14.7932i −1.56465 + 0.648101i −0.985890 0.167395i \(-0.946465\pi\)
−0.578764 + 0.815495i \(0.696465\pi\)
\(522\) 10.2232 + 4.23458i 0.447456 + 0.185342i
\(523\) −0.599508 −0.0262147 −0.0131073 0.999914i \(-0.504172\pi\)
−0.0131073 + 0.999914i \(0.504172\pi\)
\(524\) 52.5960 + 21.7860i 2.29767 + 0.951724i
\(525\) 0 0
\(526\) 50.1547 2.18685
\(527\) −0.237259 + 10.0742i −0.0103352 + 0.438839i
\(528\) 5.48646i 0.238767i
\(529\) −38.9054 + 38.9054i −1.69154 + 1.69154i
\(530\) 0 0
\(531\) 2.40101i 0.104195i
\(532\) 42.4747 + 17.5936i 1.84151 + 0.762779i
\(533\) −2.08456 5.03258i −0.0902925 0.217985i
\(534\) 3.09825 + 7.47983i 0.134074 + 0.323684i
\(535\) 0 0
\(536\) −18.4209 18.4209i −0.795661 0.795661i
\(537\) 0.170620 0.0706732i 0.00736281 0.00304977i
\(538\) 3.78181 + 9.13009i 0.163045 + 0.393626i
\(539\) 5.54031 13.3755i 0.238638 0.576123i
\(540\) 0 0
\(541\) 36.6847 + 15.1953i 1.57720 + 0.653297i 0.987966 0.154668i \(-0.0494308\pi\)
0.589231 + 0.807965i \(0.299431\pi\)
\(542\) 41.0998 + 41.0998i 1.76539 + 1.76539i
\(543\) 3.64660i 0.156491i
\(544\) 6.48774 14.6756i 0.278160 0.629211i
\(545\) 0 0
\(546\) −11.7749 + 11.7749i −0.503919 + 0.503919i
\(547\) −1.54516 + 3.73035i −0.0660663 + 0.159498i −0.953464 0.301506i \(-0.902511\pi\)
0.887398 + 0.461004i \(0.152511\pi\)
\(548\) −60.5007 −2.58446
\(549\) −0.0499231 + 0.120525i −0.00213067 + 0.00514388i
\(550\) 0 0
\(551\) 12.1822 + 29.4105i 0.518980 + 1.25293i
\(552\) −35.3045 + 35.3045i −1.50266 + 1.50266i
\(553\) 22.8869 22.8869i 0.973250 0.973250i
\(554\) 18.0571 + 43.5937i 0.767172 + 1.85212i
\(555\) 0 0
\(556\) 2.88269 6.95942i 0.122253 0.295145i
\(557\) 5.42781 0.229984 0.114992 0.993366i \(-0.463316\pi\)
0.114992 + 0.993366i \(0.463316\pi\)
\(558\) 1.18155 2.85252i 0.0500190 0.120757i
\(559\) −6.72145 + 6.72145i −0.284287 + 0.284287i
\(560\) 0 0
\(561\) 14.9817 5.79624i 0.632528 0.244718i
\(562\) 59.2222i 2.49814i
\(563\) −3.66888 3.66888i −0.154625 0.154625i 0.625555 0.780180i \(-0.284873\pi\)
−0.780180 + 0.625555i \(0.784873\pi\)
\(564\) −58.0231 24.0339i −2.44321 1.01201i
\(565\) 0 0
\(566\) 7.63822 18.4403i 0.321058 0.775104i
\(567\) −9.73290 23.4973i −0.408744 0.986794i
\(568\) −6.11547 + 2.53311i −0.256600 + 0.106287i
\(569\) −8.48266 8.48266i −0.355611 0.355611i 0.506581 0.862192i \(-0.330909\pi\)
−0.862192 + 0.506581i \(0.830909\pi\)
\(570\) 0 0
\(571\) −16.6512 40.1996i −0.696833 1.68230i −0.730539 0.682871i \(-0.760731\pi\)
0.0337061 0.999432i \(-0.489269\pi\)
\(572\) 4.22561 + 10.2015i 0.176682 + 0.426548i
\(573\) 21.2586 + 8.80561i 0.888092 + 0.367860i
\(574\) 36.4371i 1.52085i
\(575\) 0 0
\(576\) −4.54607 + 4.54607i −0.189420 + 0.189420i
\(577\) 27.7097i 1.15357i −0.816897 0.576784i \(-0.804307\pi\)
0.816897 0.576784i \(-0.195693\pi\)
\(578\) 39.9380 + 1.88222i 1.66120 + 0.0782900i
\(579\) 13.1764 0.547591
\(580\) 0 0
\(581\) −24.2111 10.0286i −1.00445 0.416055i
\(582\) −36.2467 −1.50247
\(583\) 13.0539 + 5.40709i 0.540636 + 0.223939i
\(584\) −18.2107 + 7.54311i −0.753563 + 0.312136i
\(585\) 0 0
\(586\) −43.2181 43.2181i −1.78532 1.78532i
\(587\) 3.09653 3.09653i 0.127808 0.127808i −0.640309 0.768117i \(-0.721194\pi\)
0.768117 + 0.640309i \(0.221194\pi\)
\(588\) 29.8590 12.3680i 1.23137 0.510048i
\(589\) 8.20624 3.39914i 0.338132 0.140059i
\(590\) 0 0
\(591\) 10.4856i 0.431320i
\(592\) 2.47976 5.98668i 0.101918 0.246051i
\(593\) 25.3698 + 25.3698i 1.04181 + 1.04181i 0.999087 + 0.0427255i \(0.0136041\pi\)
0.0427255 + 0.999087i \(0.486396\pi\)
\(594\) −32.4114 −1.32985
\(595\) 0 0
\(596\) 65.4673 2.68164
\(597\) 20.9420 + 20.9420i 0.857099 + 0.857099i
\(598\) −10.0128 + 24.1730i −0.409454 + 0.988509i
\(599\) 11.1415i 0.455230i 0.973751 + 0.227615i \(0.0730928\pi\)
−0.973751 + 0.227615i \(0.926907\pi\)
\(600\) 0 0
\(601\) 18.8938 7.82606i 0.770693 0.319232i 0.0375402 0.999295i \(-0.488048\pi\)
0.733153 + 0.680063i \(0.238048\pi\)
\(602\) 58.7437 24.3324i 2.39421 0.991716i
\(603\) 2.74712 2.74712i 0.111871 0.111871i
\(604\) −22.2558 22.2558i −0.905574 0.905574i
\(605\) 0 0
\(606\) −18.6328 + 7.71795i −0.756905 + 0.313520i
\(607\) −1.45561 0.602934i −0.0590814 0.0244723i 0.352947 0.935643i \(-0.385180\pi\)
−0.412028 + 0.911171i \(0.635180\pi\)
\(608\) −14.1435 −0.573593
\(609\) 45.4925 + 18.8436i 1.84345 + 0.763582i
\(610\) 0 0
\(611\) −14.2727 −0.577410
\(612\) −7.15321 3.16227i −0.289151 0.127827i
\(613\) 22.4800i 0.907959i −0.891012 0.453980i \(-0.850004\pi\)
0.891012 0.453980i \(-0.149996\pi\)
\(614\) −28.1845 + 28.1845i −1.13743 + 1.13743i
\(615\) 0 0
\(616\) 32.0307i 1.29055i
\(617\) −25.1273 10.4081i −1.01159 0.419013i −0.185554 0.982634i \(-0.559408\pi\)
−0.826034 + 0.563621i \(0.809408\pi\)
\(618\) −10.1143 24.4181i −0.406858 0.982241i
\(619\) −5.49924 13.2763i −0.221033 0.533621i 0.773998 0.633188i \(-0.218254\pi\)
−0.995031 + 0.0995671i \(0.968254\pi\)
\(620\) 0 0
\(621\) −34.6706 34.6706i −1.39128 1.39128i
\(622\) 37.3527 15.4720i 1.49771 0.620371i
\(623\) −3.00689 7.25927i −0.120469 0.290837i
\(624\) −1.06517 + 2.57154i −0.0426408 + 0.102944i
\(625\) 0 0
\(626\) −12.8523 5.32358i −0.513680 0.212773i
\(627\) −10.0123 10.0123i −0.399852 0.399852i
\(628\) 64.4228i 2.57075i
\(629\) −18.9674 0.446705i −0.756280 0.0178113i
\(630\) 0 0
\(631\) −16.4538 + 16.4538i −0.655014 + 0.655014i −0.954196 0.299182i \(-0.903286\pi\)
0.299182 + 0.954196i \(0.403286\pi\)
\(632\) 12.4544 30.0675i 0.495408 1.19602i
\(633\) 10.3887 0.412913
\(634\) 0.576538 1.39189i 0.0228972 0.0552788i
\(635\) 0 0
\(636\) 12.0706 + 29.1411i 0.478632 + 1.15552i
\(637\) 5.19356 5.19356i 0.205776 0.205776i
\(638\) 36.1638 36.1638i 1.43174 1.43174i
\(639\) −0.377764 0.912004i −0.0149441 0.0360783i
\(640\) 0 0
\(641\) −2.06038 + 4.97419i −0.0813800 + 0.196469i −0.959332 0.282280i \(-0.908909\pi\)
0.877952 + 0.478748i \(0.158909\pi\)
\(642\) −2.30004 −0.0907754
\(643\) −6.19532 + 14.9568i −0.244319 + 0.589839i −0.997703 0.0677421i \(-0.978420\pi\)
0.753383 + 0.657582i \(0.228420\pi\)
\(644\) 79.0101 79.0101i 3.11343 3.11343i
\(645\) 0 0
\(646\) −12.7163 32.8683i −0.500318 1.29319i
\(647\) 25.8383i 1.01581i 0.861413 + 0.507904i \(0.169580\pi\)
−0.861413 + 0.507904i \(0.830420\pi\)
\(648\) −18.0829 18.0829i −0.710362 0.710362i
\(649\) −10.2525 4.24672i −0.402445 0.166698i
\(650\) 0 0
\(651\) 5.25783 12.6935i 0.206071 0.497499i
\(652\) 12.6562 + 30.5548i 0.495656 + 1.19662i
\(653\) 11.5286 4.77529i 0.451148 0.186872i −0.145528 0.989354i \(-0.546488\pi\)
0.596675 + 0.802483i \(0.296488\pi\)
\(654\) 16.1540 + 16.1540i 0.631672 + 0.631672i
\(655\) 0 0
\(656\) 2.33072 + 5.62685i 0.0909992 + 0.219691i
\(657\) −1.12491 2.71577i −0.0438868 0.105952i
\(658\) 88.2040 + 36.5353i 3.43855 + 1.42429i
\(659\) 41.7109i 1.62483i −0.583082 0.812413i \(-0.698153\pi\)
0.583082 0.812413i \(-0.301847\pi\)
\(660\) 0 0
\(661\) −12.8495 + 12.8495i −0.499789 + 0.499789i −0.911372 0.411583i \(-0.864976\pi\)
0.411583 + 0.911372i \(0.364976\pi\)
\(662\) 27.4252i 1.06591i
\(663\) 8.14734 + 0.191880i 0.316417 + 0.00745199i
\(664\) −26.3499 −1.02257
\(665\) 0 0
\(666\) 5.37063 + 2.22459i 0.208108 + 0.0862011i
\(667\) 77.3693 2.99575
\(668\) −30.2815 12.5430i −1.17163 0.485304i
\(669\) 4.26653 1.76726i 0.164954 0.0683260i
\(670\) 0 0
\(671\) 0.426350 + 0.426350i 0.0164590 + 0.0164590i
\(672\) −15.4696 + 15.4696i −0.596753 + 0.596753i
\(673\) −5.90984 + 2.44794i −0.227808 + 0.0943610i −0.493668 0.869651i \(-0.664344\pi\)
0.265860 + 0.964012i \(0.414344\pi\)
\(674\) −67.0997 + 27.7936i −2.58458 + 1.07057i
\(675\) 0 0
\(676\) 40.3069i 1.55026i
\(677\) −16.0301 + 38.7001i −0.616087 + 1.48737i 0.240125 + 0.970742i \(0.422811\pi\)
−0.856212 + 0.516624i \(0.827189\pi\)
\(678\) −41.9140 41.9140i −1.60970 1.60970i
\(679\) 35.1779 1.35000
\(680\) 0 0
\(681\) 33.7812 1.29450
\(682\) −10.0906 10.0906i −0.386389 0.386389i
\(683\) −11.5977 + 27.9994i −0.443775 + 1.07137i 0.530838 + 0.847473i \(0.321877\pi\)
−0.974613 + 0.223895i \(0.928123\pi\)
\(684\) 6.89384i 0.263593i
\(685\) 0 0
\(686\) 9.09419 3.76694i 0.347218 0.143822i
\(687\) −17.3130 + 7.17126i −0.660530 + 0.273601i
\(688\) 7.51514 7.51514i 0.286512 0.286512i
\(689\) 5.06869 + 5.06869i 0.193102 + 0.193102i
\(690\) 0 0
\(691\) 5.35185 2.21681i 0.203594 0.0843314i −0.278556 0.960420i \(-0.589856\pi\)
0.482150 + 0.876088i \(0.339856\pi\)
\(692\) 14.0286 + 5.81083i 0.533287 + 0.220895i
\(693\) 4.77676 0.181454
\(694\) 0.0325913 + 0.0134997i 0.00123715 + 0.000512443i
\(695\) 0 0
\(696\) 49.5113 1.87672
\(697\) 12.9027 12.3090i 0.488726 0.466236i
\(698\) 8.59600i 0.325363i
\(699\) −11.1732 + 11.1732i −0.422611 + 0.422611i
\(700\) 0 0
\(701\) 5.24783i 0.198208i −0.995077 0.0991039i \(-0.968402\pi\)
0.995077 0.0991039i \(-0.0315976\pi\)
\(702\) −15.1914 6.29250i −0.573364 0.237495i
\(703\) 6.39979 + 15.4505i 0.241373 + 0.582726i
\(704\) 11.3713 + 27.4527i 0.428572 + 1.03466i
\(705\) 0 0
\(706\) 6.35837 + 6.35837i 0.239300 + 0.239300i
\(707\) 18.0833 7.49037i 0.680094 0.281704i
\(708\) −9.48025 22.8873i −0.356290 0.860159i
\(709\) −15.9798 + 38.5786i −0.600134 + 1.44885i 0.273310 + 0.961926i \(0.411882\pi\)
−0.873444 + 0.486925i \(0.838118\pi\)
\(710\) 0 0
\(711\) 4.48398 + 1.85733i 0.168162 + 0.0696551i
\(712\) −5.58654 5.58654i −0.209364 0.209364i
\(713\) 21.5879i 0.808475i
\(714\) −49.8588 22.0414i −1.86592 0.824880i
\(715\) 0 0
\(716\) −0.293855 + 0.293855i −0.0109819 + 0.0109819i
\(717\) 9.98458 24.1049i 0.372881 0.900214i
\(718\) −15.7501 −0.587789
\(719\) −3.89643 + 9.40681i −0.145312 + 0.350815i −0.979731 0.200316i \(-0.935803\pi\)
0.834419 + 0.551130i \(0.185803\pi\)
\(720\) 0 0
\(721\) 9.81608 + 23.6981i 0.365570 + 0.882564i
\(722\) 9.63199 9.63199i 0.358465 0.358465i
\(723\) 6.57164 6.57164i 0.244402 0.244402i
\(724\) −3.14022 7.58117i −0.116705 0.281752i
\(725\) 0 0
\(726\) 6.83172 16.4932i 0.253549 0.612121i
\(727\) 46.0182 1.70672 0.853361 0.521321i \(-0.174561\pi\)
0.853361 + 0.521321i \(0.174561\pi\)
\(728\) 6.21860 15.0130i 0.230477 0.556420i
\(729\) 21.1766 21.1766i 0.784317 0.784317i
\(730\) 0 0
\(731\) −28.4609 12.5819i −1.05266 0.465358i
\(732\) 1.34601i 0.0497498i
\(733\) −1.80962 1.80962i −0.0668398 0.0668398i 0.672897 0.739736i \(-0.265050\pi\)
−0.739736 + 0.672897i \(0.765050\pi\)
\(734\) 50.0360 + 20.7256i 1.84686 + 0.764996i
\(735\) 0 0
\(736\) −13.1546 + 31.7580i −0.484885 + 1.17062i
\(737\) −6.87149 16.5892i −0.253114 0.611072i
\(738\) −5.04783 + 2.09088i −0.185813 + 0.0769664i
\(739\) −1.75127 1.75127i −0.0644215 0.0644215i 0.674162 0.738583i \(-0.264505\pi\)
−0.738583 + 0.674162i \(0.764505\pi\)
\(740\) 0 0
\(741\) −2.74899 6.63666i −0.100987 0.243804i
\(742\) −18.3492 44.2989i −0.673621 1.62627i
\(743\) 1.47337 + 0.610291i 0.0540528 + 0.0223894i 0.409546 0.912289i \(-0.365687\pi\)
−0.355493 + 0.934679i \(0.615687\pi\)
\(744\) 13.8149i 0.506478i
\(745\) 0 0
\(746\) −39.4646 + 39.4646i −1.44490 + 1.44490i
\(747\) 3.92957i 0.143776i
\(748\) −26.1551 + 24.9515i −0.956326 + 0.912317i
\(749\) 2.23222 0.0815636
\(750\) 0 0
\(751\) 11.7741 + 4.87697i 0.429641 + 0.177963i 0.587015 0.809576i \(-0.300303\pi\)
−0.157374 + 0.987539i \(0.550303\pi\)
\(752\) 15.9580 0.581930
\(753\) 11.2696 + 4.66801i 0.410686 + 0.170112i
\(754\) 23.9713 9.92922i 0.872982 0.361601i
\(755\) 0 0
\(756\) 49.6535 + 49.6535i 1.80588 + 1.80588i
\(757\) −32.5674 + 32.5674i −1.18368 + 1.18368i −0.204901 + 0.978783i \(0.565687\pi\)
−0.978783 + 0.204901i \(0.934313\pi\)
\(758\) 6.47123 2.68047i 0.235046 0.0973592i
\(759\) −31.7940 + 13.1695i −1.15405 + 0.478023i
\(760\) 0 0
\(761\) 29.7003i 1.07664i −0.842742 0.538318i \(-0.819060\pi\)
0.842742 0.538318i \(-0.180940\pi\)
\(762\) −8.35879 + 20.1799i −0.302807 + 0.731041i
\(763\) −15.6777 15.6777i −0.567571 0.567571i
\(764\) −51.7788 −1.87329
\(765\) 0 0
\(766\) −57.4385 −2.07534
\(767\) −3.98093 3.98093i −0.143743 0.143743i
\(768\) −14.3913 + 34.7437i −0.519301 + 1.25370i
\(769\) 43.8299i 1.58055i 0.612755 + 0.790273i \(0.290061\pi\)
−0.612755 + 0.790273i \(0.709939\pi\)
\(770\) 0 0
\(771\) 11.6946 4.84408i 0.421172 0.174455i
\(772\) −27.3932 + 11.3466i −0.985904 + 0.408375i
\(773\) −19.7369 + 19.7369i −0.709887 + 0.709887i −0.966511 0.256624i \(-0.917390\pi\)
0.256624 + 0.966511i \(0.417390\pi\)
\(774\) 6.74182 + 6.74182i 0.242330 + 0.242330i
\(775\) 0 0
\(776\) 32.6787 13.5359i 1.17310 0.485912i
\(777\) 23.8990 + 9.89930i 0.857372 + 0.355135i
\(778\) −3.97159 −0.142388
\(779\) −14.5218 6.01513i −0.520298 0.215515i
\(780\) 0 0
\(781\) −4.56247 −0.163258
\(782\) −85.6304 2.01670i −3.06214 0.0721170i
\(783\) 48.6224i 1.73762i
\(784\) −5.80684 + 5.80684i −0.207387 + 0.207387i
\(785\) 0 0
\(786\) 59.5010i 2.12233i
\(787\) −27.7373 11.4892i −0.988728 0.409544i −0.171076 0.985258i \(-0.554724\pi\)
−0.817652 + 0.575713i \(0.804724\pi\)
\(788\) −9.02954 21.7992i −0.321664 0.776566i
\(789\) 12.8071 + 30.9192i 0.455946 + 1.10075i
\(790\) 0 0
\(791\) 40.6781 + 40.6781i 1.44635 + 1.44635i
\(792\) 4.43740 1.83803i 0.157676 0.0653115i
\(793\) 0.117060 + 0.282607i 0.00415691 + 0.0100357i
\(794\) 28.3741 68.5012i 1.00696 2.43102i
\(795\) 0 0
\(796\) −61.5717 25.5038i −2.18235 0.903959i
\(797\) −3.65013 3.65013i −0.129294 0.129294i 0.639498 0.768793i \(-0.279142\pi\)
−0.768793 + 0.639498i \(0.779142\pi\)
\(798\) 48.0509i 1.70099i
\(799\) −16.8591 43.5761i −0.596432 1.54161i
\(800\) 0 0
\(801\) 0.833123 0.833123i 0.0294370 0.0294370i
\(802\) 4.55963 11.0079i 0.161006 0.388704i
\(803\) −13.5861 −0.479445
\(804\) 15.3397 37.0333i 0.540990 1.30606i
\(805\) 0 0
\(806\) −2.77050 6.68857i −0.0975866 0.235595i
\(807\) −4.66278 + 4.66278i −0.164138 + 0.164138i
\(808\) 13.9164 13.9164i 0.489579 0.489579i
\(809\) −8.50871 20.5418i −0.299150 0.722213i −0.999961 0.00886509i \(-0.997178\pi\)
0.700810 0.713348i \(-0.252822\pi\)
\(810\) 0 0
\(811\) −5.99450 + 14.4720i −0.210495 + 0.508181i −0.993500 0.113836i \(-0.963686\pi\)
0.783004 + 0.622016i \(0.213686\pi\)
\(812\) −110.804 −3.88847
\(813\) −14.8421 + 35.8320i −0.520535 + 1.25668i
\(814\) 18.9983 18.9983i 0.665889 0.665889i
\(815\) 0 0
\(816\) −9.10941 0.214537i −0.318893 0.00751031i
\(817\) 27.4289i 0.959615i
\(818\) −43.4351 43.4351i −1.51867 1.51867i
\(819\) 2.23890 + 0.927383i 0.0782335 + 0.0324054i
\(820\) 0 0
\(821\) 13.3707 32.2797i 0.466640 1.12657i −0.498981 0.866613i \(-0.666292\pi\)
0.965621 0.259955i \(-0.0837077\pi\)
\(822\) −24.1984 58.4201i −0.844017 2.03764i
\(823\) −2.25811 + 0.935339i −0.0787127 + 0.0326039i −0.421692 0.906739i \(-0.638564\pi\)
0.342980 + 0.939343i \(0.388564\pi\)
\(824\) 18.2374 + 18.2374i 0.635330 + 0.635330i
\(825\) 0 0
\(826\) 14.4114 + 34.7923i 0.501438 + 1.21058i
\(827\) 19.4487 + 46.9533i 0.676298 + 1.63273i 0.770703 + 0.637194i \(0.219905\pi\)
−0.0944054 + 0.995534i \(0.530095\pi\)
\(828\) 15.4796 + 6.41185i 0.537952 + 0.222827i
\(829\) 41.5846i 1.44429i −0.691740 0.722147i \(-0.743156\pi\)
0.691740 0.722147i \(-0.256844\pi\)
\(830\) 0 0
\(831\) −22.2635 + 22.2635i −0.772313 + 0.772313i
\(832\) 15.0750i 0.522631i
\(833\) 21.9913 + 9.72184i 0.761952 + 0.336842i
\(834\) 7.87308 0.272623
\(835\) 0 0
\(836\) 29.4371 + 12.1933i 1.01810 + 0.421713i
\(837\) 13.5668 0.468939
\(838\) 15.8588 + 6.56894i 0.547834 + 0.226920i
\(839\) −4.10912 + 1.70205i −0.141863 + 0.0587614i −0.452485 0.891772i \(-0.649462\pi\)
0.310623 + 0.950533i \(0.399462\pi\)
\(840\) 0 0
\(841\) −33.7456 33.7456i −1.16364 1.16364i
\(842\) −35.0311 + 35.0311i −1.20725 + 1.20725i
\(843\) 36.5090 15.1225i 1.25744 0.520848i
\(844\) −21.5977 + 8.94607i −0.743424 + 0.307936i
\(845\) 0 0
\(846\) 14.3159i 0.492191i
\(847\) −6.63027 + 16.0069i −0.227819 + 0.550004i
\(848\) −5.66721 5.66721i −0.194613 0.194613i
\(849\) 13.3184 0.457088
\(850\) 0 0
\(851\) 40.6451 1.39330
\(852\) −7.20198 7.20198i −0.246736 0.246736i
\(853\) −6.84491 + 16.5251i −0.234365 + 0.565808i −0.996682 0.0813967i \(-0.974062\pi\)
0.762317 + 0.647204i \(0.224062\pi\)
\(854\) 2.04614i 0.0700174i
\(855\) 0 0
\(856\) 2.07363 0.858928i 0.0708754 0.0293575i
\(857\) 35.6234 14.7557i 1.21687 0.504045i 0.320458 0.947263i \(-0.396163\pi\)
0.896414 + 0.443218i \(0.146163\pi\)
\(858\) −8.16060 + 8.16060i −0.278598 + 0.278598i
\(859\) −2.48184 2.48184i −0.0846792 0.0846792i 0.663498 0.748178i \(-0.269071\pi\)
−0.748178 + 0.663498i \(0.769071\pi\)
\(860\) 0 0
\(861\) −22.4626 + 9.30430i −0.765522 + 0.317090i
\(862\) 45.7243 + 18.9396i 1.55738 + 0.645086i
\(863\) 21.9552 0.747365 0.373683 0.927557i \(-0.378095\pi\)
0.373683 + 0.927557i \(0.378095\pi\)
\(864\) −19.9582 8.26695i −0.678991 0.281247i
\(865\) 0 0
\(866\) −87.3171 −2.96715
\(867\) 9.03793 + 25.1014i 0.306944 + 0.852490i
\(868\) 30.9171i 1.04940i
\(869\) 15.8618 15.8618i 0.538075 0.538075i
\(870\) 0 0
\(871\) 9.10956i 0.308666i
\(872\) −20.5964 8.53133i −0.697484 0.288907i
\(873\) 2.01862 + 4.87339i 0.0683200 + 0.164939i
\(874\) 28.8925 + 69.7528i 0.977305 + 2.35942i
\(875\) 0 0
\(876\) −21.4461 21.4461i −0.724596 0.724596i
\(877\) 5.22542 2.16444i 0.176450 0.0730879i −0.292710 0.956201i \(-0.594557\pi\)
0.469159 + 0.883113i \(0.344557\pi\)
\(878\) 0.424209 + 1.02413i 0.0143164 + 0.0345628i
\(879\) 15.6071 37.6788i 0.526413 1.27087i
\(880\) 0 0
\(881\) 31.7736 + 13.1611i 1.07048 + 0.443407i 0.847160 0.531338i \(-0.178311\pi\)
0.223320 + 0.974745i \(0.428311\pi\)
\(882\) −5.20930 5.20930i −0.175406 0.175406i
\(883\) 58.3115i 1.96234i −0.193148 0.981170i \(-0.561870\pi\)
0.193148 0.981170i \(-0.438130\pi\)
\(884\) −17.1033 + 6.61706i −0.575246 + 0.222556i
\(885\) 0 0
\(886\) −18.3349 + 18.3349i −0.615973 + 0.615973i
\(887\) 17.0299 41.1137i 0.571807 1.38046i −0.328208 0.944605i \(-0.606445\pi\)
0.900015 0.435859i \(-0.143555\pi\)
\(888\) 26.0102 0.872846
\(889\) 8.11232 19.5849i 0.272078 0.656855i
\(890\) 0 0
\(891\) −6.74540 16.2848i −0.225979 0.545563i
\(892\) −7.34813 + 7.34813i −0.246034 + 0.246034i
\(893\) −29.1220 + 29.1220i −0.974529 + 0.974529i
\(894\) 26.1849 + 63.2159i 0.875754 + 2.11426i
\(895\) 0 0
\(896\) 27.9196 67.4038i 0.932727 2.25180i
\(897\) −17.4589 −0.582935
\(898\) −15.5375 + 37.5109i −0.518494 + 1.25175i
\(899\) −15.1376 + 15.1376i −0.504866 + 0.504866i
\(900\) 0 0
\(901\) −9.48808 + 21.4625i −0.316094 + 0.715019i
\(902\) 25.2527i 0.840824i
\(903\) 30.0007 + 30.0007i 0.998361 + 0.998361i
\(904\) 53.4405 + 22.1358i 1.77740 + 0.736225i
\(905\) 0 0
\(906\) 12.5888 30.3920i 0.418234 1.00971i
\(907\) 13.5365 + 32.6800i 0.449472 + 1.08512i 0.972520 + 0.232819i \(0.0747949\pi\)
−0.523048 + 0.852303i \(0.675205\pi\)
\(908\) −70.2301 + 29.0903i −2.33067 + 0.965394i
\(909\) 2.07537 + 2.07537i 0.0688355 + 0.0688355i
\(910\) 0 0
\(911\) −18.8207 45.4373i −0.623559 1.50540i −0.847496 0.530801i \(-0.821891\pi\)
0.223937 0.974604i \(-0.428109\pi\)
\(912\) 3.07361 + 7.42034i 0.101777 + 0.245712i
\(913\) −16.7795 6.95031i −0.555322 0.230022i
\(914\) 26.5004i 0.876554i
\(915\) 0 0
\(916\) 29.8176 29.8176i 0.985202 0.985202i
\(917\) 57.7465i 1.90696i
\(918\) 1.26738 53.8140i 0.0418299 1.77613i
\(919\) −49.6635 −1.63825 −0.819123 0.573618i \(-0.805540\pi\)
−0.819123 + 0.573618i \(0.805540\pi\)
\(920\) 0 0
\(921\) −24.5720 10.1781i −0.809676 0.335379i
\(922\) −70.5747 −2.32425
\(923\) −2.13846 0.885781i −0.0703884 0.0291558i
\(924\) 45.5338 18.8607i 1.49795 0.620472i
\(925\) 0 0
\(926\) 28.5366 + 28.5366i 0.937770 + 0.937770i
\(927\) −2.71975 + 2.71975i −0.0893284 + 0.0893284i
\(928\) 31.4929 13.0448i 1.03381 0.428216i
\(929\) 31.5196 13.0558i 1.03412 0.428348i 0.199924 0.979811i \(-0.435930\pi\)
0.834199 + 0.551463i \(0.185930\pi\)
\(930\) 0 0
\(931\) 21.1939i 0.694601i
\(932\) 13.6071 32.8505i 0.445716 1.07605i
\(933\) 19.0762 + 19.0762i 0.624528 + 0.624528i
\(934\) −62.5405 −2.04639
\(935\) 0 0
\(936\) 2.43668 0.0796455
\(937\) 27.2430 + 27.2430i 0.889991 + 0.889991i 0.994522 0.104530i \(-0.0333340\pi\)
−0.104530 + 0.994522i \(0.533334\pi\)
\(938\) −23.3187 + 56.2964i −0.761383 + 1.83814i
\(939\) 9.28250i 0.302923i
\(940\) 0 0
\(941\) 34.3095 14.2115i 1.11846 0.463280i 0.254615 0.967043i \(-0.418051\pi\)
0.863842 + 0.503762i \(0.168051\pi\)
\(942\) 62.2074 25.7671i 2.02683 0.839539i
\(943\) −27.0130 + 27.0130i −0.879665 + 0.879665i
\(944\) 4.45102 + 4.45102i 0.144868 + 0.144868i
\(945\) 0 0
\(946\) 40.7124 16.8636i 1.32367 0.548283i
\(947\) 2.06130 + 0.853817i 0.0669832 + 0.0277453i 0.415923 0.909400i \(-0.363458\pi\)
−0.348940 + 0.937145i \(0.613458\pi\)
\(948\) 50.0765 1.62641
\(949\) −6.36792 2.63768i −0.206712 0.0856227i
\(950\) 0 0
\(951\) 1.00528 0.0325986
\(952\) 53.1820 + 1.25250i 1.72364 + 0.0405938i
\(953\) 25.8280i 0.836651i 0.908297 + 0.418326i \(0.137383\pi\)
−0.908297 + 0.418326i \(0.862617\pi\)
\(954\) 5.08404 5.08404i 0.164602 0.164602i
\(955\) 0 0
\(956\) 58.7114i 1.89886i
\(957\) 31.5286 + 13.0596i 1.01918 + 0.422157i
\(958\) −20.6199 49.7808i −0.666198 1.60834i
\(959\) 23.4849 + 56.6975i 0.758366 + 1.83086i
\(960\) 0 0
\(961\) −17.6966 17.6966i −0.570857 0.570857i
\(962\) 12.5930 5.21621i 0.406016 0.168177i
\(963\) 0.128092 + 0.309242i 0.00412772 + 0.00996519i
\(964\) −8.00314 + 19.3213i −0.257764 + 0.622297i
\(965\) 0 0
\(966\) 107.895 + 44.6914i 3.47145 + 1.43792i
\(967\) −22.2041 22.2041i −0.714035 0.714035i 0.253341 0.967377i \(-0.418470\pi\)
−0.967377 + 0.253341i \(0.918470\pi\)
\(968\) 17.4209i 0.559930i
\(969\) 17.0153 16.2323i 0.546612 0.521457i
\(970\) 0 0
\(971\) 29.0808 29.0808i 0.933248 0.933248i −0.0646590 0.997907i \(-0.520596\pi\)
0.997907 + 0.0646590i \(0.0205960\pi\)
\(972\) −7.44709 + 17.9789i −0.238865 + 0.576672i
\(973\) −7.64093 −0.244957
\(974\) −14.1427 + 34.1435i −0.453161 + 1.09403i
\(975\) 0 0
\(976\) −0.130882 0.315978i −0.00418944 0.0101142i
\(977\) −19.7205 + 19.7205i −0.630916 + 0.630916i −0.948298 0.317382i \(-0.897196\pi\)
0.317382 + 0.948298i \(0.397196\pi\)
\(978\) −24.4420 + 24.4420i −0.781569 + 0.781569i
\(979\) −2.08393 5.03105i −0.0666026 0.160793i
\(980\) 0 0
\(981\) 1.27228 3.07156i 0.0406208 0.0980673i
\(982\) −2.02071 −0.0644836
\(983\) 21.6956 52.3778i 0.691982 1.67059i −0.0487673 0.998810i \(-0.515529\pi\)
0.740749 0.671782i \(-0.234471\pi\)
\(984\) −17.2866 + 17.2866i −0.551075 + 0.551075i
\(985\) 0 0
\(986\) 58.6303 + 61.4585i 1.86717 + 1.95724i
\(987\) 63.7050i 2.02775i
\(988\) 11.4301 + 11.4301i 0.363641 + 0.363641i
\(989\) 61.5894 + 25.5112i 1.95843 + 0.811208i
\(990\) 0 0
\(991\) −13.7333 + 33.1551i −0.436252 + 1.05321i 0.540980 + 0.841035i \(0.318053\pi\)
−0.977233 + 0.212171i \(0.931947\pi\)
\(992\) −3.63982 8.78730i −0.115564 0.278997i
\(993\) −16.9070 + 7.00310i −0.536526 + 0.222237i
\(994\) 10.9481 + 10.9481i 0.347253 + 0.347253i
\(995\) 0 0
\(996\) −15.5157 37.4581i −0.491633 1.18691i
\(997\) −12.6113 30.4465i −0.399405 0.964249i −0.987807 0.155681i \(-0.950243\pi\)
0.588402 0.808568i \(-0.299757\pi\)
\(998\) −49.1930 20.3764i −1.55718 0.645004i
\(999\) 25.5433i 0.808153i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 425.2.n.c.349.1 24
5.2 odd 4 85.2.l.a.26.6 24
5.3 odd 4 425.2.m.b.26.1 24
5.4 even 2 425.2.n.f.349.6 24
15.2 even 4 765.2.be.b.451.1 24
17.2 even 8 425.2.n.f.274.6 24
85.2 odd 8 85.2.l.a.36.6 yes 24
85.7 even 16 1445.2.d.j.866.1 24
85.19 even 8 inner 425.2.n.c.274.1 24
85.23 even 16 7225.2.a.bs.1.1 12
85.27 even 16 1445.2.d.j.866.2 24
85.28 even 16 7225.2.a.bq.1.1 12
85.53 odd 8 425.2.m.b.376.1 24
85.57 even 16 1445.2.a.p.1.12 12
85.62 even 16 1445.2.a.q.1.12 12
255.2 even 8 765.2.be.b.631.1 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
85.2.l.a.26.6 24 5.2 odd 4
85.2.l.a.36.6 yes 24 85.2 odd 8
425.2.m.b.26.1 24 5.3 odd 4
425.2.m.b.376.1 24 85.53 odd 8
425.2.n.c.274.1 24 85.19 even 8 inner
425.2.n.c.349.1 24 1.1 even 1 trivial
425.2.n.f.274.6 24 17.2 even 8
425.2.n.f.349.6 24 5.4 even 2
765.2.be.b.451.1 24 15.2 even 4
765.2.be.b.631.1 24 255.2 even 8
1445.2.a.p.1.12 12 85.57 even 16
1445.2.a.q.1.12 12 85.62 even 16
1445.2.d.j.866.1 24 85.7 even 16
1445.2.d.j.866.2 24 85.27 even 16
7225.2.a.bq.1.1 12 85.28 even 16
7225.2.a.bs.1.1 12 85.23 even 16