Properties

Label 425.2.n.c.274.1
Level $425$
Weight $2$
Character 425.274
Analytic conductor $3.394$
Analytic rank $0$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [425,2,Mod(49,425)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(425, base_ring=CyclotomicField(8))
 
chi = DirichletCharacter(H, H._module([4, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("425.49");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 425 = 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 425.n (of order \(8\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.39364208590\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(6\) over \(\Q(\zeta_{8})\)
Twist minimal: no (minimal twist has level 85)
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

Embedding invariants

Embedding label 274.1
Character \(\chi\) \(=\) 425.274
Dual form 425.2.n.c.349.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.66305 + 1.66305i) q^{2} +(0.600564 + 1.44989i) q^{3} -3.53144i q^{4} +(-3.41000 - 1.41247i) q^{6} +(3.30945 + 1.37082i) q^{7} +(2.54686 + 2.54686i) q^{8} +(0.379815 - 0.379815i) q^{9} +(2.29362 + 0.950048i) q^{11} +(5.12021 - 2.12086i) q^{12} +1.25948 q^{13} +(-7.78350 + 3.22403i) q^{14} -1.40821 q^{16} +(1.48772 - 3.84535i) q^{17} +1.26330i q^{18} +(2.56985 + 2.56985i) q^{19} +5.62161i q^{21} +(-5.39437 + 2.23442i) q^{22} +(-3.38021 + 8.16056i) q^{23} +(-2.16312 + 5.22222i) q^{24} +(-2.09458 + 2.09458i) q^{26} +(5.12847 + 2.12428i) q^{27} +(4.84097 - 11.6871i) q^{28} +(-3.35200 - 8.09244i) q^{29} +(2.25799 - 0.935290i) q^{31} +(-2.75181 + 2.75181i) q^{32} +3.89606i q^{33} +(3.92084 + 8.86913i) q^{34} +(-1.34129 - 1.34129i) q^{36} +(-1.76094 - 4.25128i) q^{37} -8.54755 q^{38} +(0.756400 + 1.82611i) q^{39} +(-1.65510 + 3.99575i) q^{41} +(-9.34899 - 9.34899i) q^{42} +(-5.33668 - 5.33668i) q^{43} +(3.35504 - 8.09978i) q^{44} +(-7.94993 - 19.1928i) q^{46} -11.3322 q^{47} +(-0.845719 - 2.04175i) q^{48} +(4.12357 + 4.12357i) q^{49} +(6.46880 - 0.152348i) q^{51} -4.44779i q^{52} +(4.02442 - 4.02442i) q^{53} +(-12.0616 + 4.99610i) q^{54} +(4.93742 + 11.9200i) q^{56} +(-2.18264 + 5.26936i) q^{57} +(19.0326 + 7.88357i) q^{58} +(-3.16077 + 3.16077i) q^{59} +(0.0929426 - 0.224383i) q^{61} +(-2.19971 + 5.31057i) q^{62} +(1.77764 - 0.736321i) q^{63} -11.9692i q^{64} +(-6.47933 - 6.47933i) q^{66} +7.23278i q^{67} +(-13.5796 - 5.25380i) q^{68} -13.8620 q^{69} +(-1.69789 + 0.703290i) q^{71} +1.93467 q^{72} +(-5.05599 + 2.09426i) q^{73} +(9.99859 + 4.14155i) q^{74} +(9.07527 - 9.07527i) q^{76} +(6.28827 + 6.28827i) q^{77} +(-4.29484 - 1.77898i) q^{78} +(8.34789 + 3.45781i) q^{79} +7.10006i q^{81} +(-3.89262 - 9.39762i) q^{82} +(-5.17302 + 5.17302i) q^{83} +19.8524 q^{84} +17.7503 q^{86} +(9.72006 - 9.72006i) q^{87} +(3.42189 + 8.26117i) q^{88} +2.19350i q^{89} +(4.16819 + 1.72652i) q^{91} +(28.8186 + 11.9370i) q^{92} +(2.71214 + 2.71214i) q^{93} +(18.8459 - 18.8459i) q^{94} +(-5.64246 - 2.33718i) q^{96} +(9.07286 - 3.75810i) q^{97} -13.7154 q^{98} +(1.23199 - 0.510308i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 8 q^{3} - 8 q^{6} + 24 q^{9} - 8 q^{11} + 40 q^{12} + 16 q^{13} - 24 q^{16} + 8 q^{19} - 24 q^{22} + 8 q^{23} + 8 q^{24} + 16 q^{26} + 16 q^{27} - 40 q^{28} + 8 q^{29} - 16 q^{34} - 24 q^{36} - 16 q^{37}+ \cdots + 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/425\mathbb{Z}\right)^\times\).

\(n\) \(52\) \(326\)
\(\chi(n)\) \(-1\) \(e\left(\frac{7}{8}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.66305 + 1.66305i −1.17595 + 1.17595i −0.195185 + 0.980767i \(0.562531\pi\)
−0.980767 + 0.195185i \(0.937469\pi\)
\(3\) 0.600564 + 1.44989i 0.346736 + 0.837095i 0.997001 + 0.0773874i \(0.0246578\pi\)
−0.650265 + 0.759707i \(0.725342\pi\)
\(4\) 3.53144i 1.76572i
\(5\) 0 0
\(6\) −3.41000 1.41247i −1.39213 0.576638i
\(7\) 3.30945 + 1.37082i 1.25085 + 0.518121i 0.907091 0.420935i \(-0.138298\pi\)
0.343764 + 0.939056i \(0.388298\pi\)
\(8\) 2.54686 + 2.54686i 0.900451 + 0.900451i
\(9\) 0.379815 0.379815i 0.126605 0.126605i
\(10\) 0 0
\(11\) 2.29362 + 0.950048i 0.691552 + 0.286450i 0.700647 0.713508i \(-0.252895\pi\)
−0.00909468 + 0.999959i \(0.502895\pi\)
\(12\) 5.12021 2.12086i 1.47808 0.612239i
\(13\) 1.25948 0.349317 0.174659 0.984629i \(-0.444118\pi\)
0.174659 + 0.984629i \(0.444118\pi\)
\(14\) −7.78350 + 3.22403i −2.08023 + 0.861659i
\(15\) 0 0
\(16\) −1.40821 −0.352052
\(17\) 1.48772 3.84535i 0.360825 0.932634i
\(18\) 1.26330i 0.297762i
\(19\) 2.56985 + 2.56985i 0.589563 + 0.589563i 0.937513 0.347950i \(-0.113122\pi\)
−0.347950 + 0.937513i \(0.613122\pi\)
\(20\) 0 0
\(21\) 5.62161i 1.22674i
\(22\) −5.39437 + 2.23442i −1.15008 + 0.476380i
\(23\) −3.38021 + 8.16056i −0.704823 + 1.70159i 0.00772401 + 0.999970i \(0.497541\pi\)
−0.712547 + 0.701624i \(0.752459\pi\)
\(24\) −2.16312 + 5.22222i −0.441544 + 1.06598i
\(25\) 0 0
\(26\) −2.09458 + 2.09458i −0.410780 + 0.410780i
\(27\) 5.12847 + 2.12428i 0.986974 + 0.408818i
\(28\) 4.84097 11.6871i 0.914857 2.20866i
\(29\) −3.35200 8.09244i −0.622451 1.50273i −0.848817 0.528686i \(-0.822685\pi\)
0.226367 0.974042i \(-0.427315\pi\)
\(30\) 0 0
\(31\) 2.25799 0.935290i 0.405547 0.167983i −0.170579 0.985344i \(-0.554564\pi\)
0.576126 + 0.817361i \(0.304564\pi\)
\(32\) −2.75181 + 2.75181i −0.486456 + 0.486456i
\(33\) 3.89606i 0.678217i
\(34\) 3.92084 + 8.86913i 0.672419 + 1.52104i
\(35\) 0 0
\(36\) −1.34129 1.34129i −0.223549 0.223549i
\(37\) −1.76094 4.25128i −0.289496 0.698906i 0.710492 0.703705i \(-0.248472\pi\)
−0.999988 + 0.00479925i \(0.998472\pi\)
\(38\) −8.54755 −1.38660
\(39\) 0.756400 + 1.82611i 0.121121 + 0.292412i
\(40\) 0 0
\(41\) −1.65510 + 3.99575i −0.258483 + 0.624032i −0.998839 0.0481830i \(-0.984657\pi\)
0.740356 + 0.672215i \(0.234657\pi\)
\(42\) −9.34899 9.34899i −1.44258 1.44258i
\(43\) −5.33668 5.33668i −0.813836 0.813836i 0.171371 0.985207i \(-0.445180\pi\)
−0.985207 + 0.171371i \(0.945180\pi\)
\(44\) 3.35504 8.09978i 0.505791 1.22109i
\(45\) 0 0
\(46\) −7.94993 19.1928i −1.17215 2.82983i
\(47\) −11.3322 −1.65297 −0.826484 0.562961i \(-0.809662\pi\)
−0.826484 + 0.562961i \(0.809662\pi\)
\(48\) −0.845719 2.04175i −0.122069 0.294701i
\(49\) 4.12357 + 4.12357i 0.589081 + 0.589081i
\(50\) 0 0
\(51\) 6.46880 0.152348i 0.905814 0.0213330i
\(52\) 4.44779i 0.616797i
\(53\) 4.02442 4.02442i 0.552797 0.552797i −0.374450 0.927247i \(-0.622169\pi\)
0.927247 + 0.374450i \(0.122169\pi\)
\(54\) −12.0616 + 4.99610i −1.64138 + 0.679883i
\(55\) 0 0
\(56\) 4.93742 + 11.9200i 0.659791 + 1.59288i
\(57\) −2.18264 + 5.26936i −0.289098 + 0.697943i
\(58\) 19.0326 + 7.88357i 2.49911 + 1.03516i
\(59\) −3.16077 + 3.16077i −0.411497 + 0.411497i −0.882260 0.470763i \(-0.843979\pi\)
0.470763 + 0.882260i \(0.343979\pi\)
\(60\) 0 0
\(61\) 0.0929426 0.224383i 0.0119001 0.0287293i −0.917818 0.397002i \(-0.870051\pi\)
0.929718 + 0.368273i \(0.120051\pi\)
\(62\) −2.19971 + 5.31057i −0.279364 + 0.674443i
\(63\) 1.77764 0.736321i 0.223961 0.0927677i
\(64\) 11.9692i 1.49615i
\(65\) 0 0
\(66\) −6.47933 6.47933i −0.797550 0.797550i
\(67\) 7.23278i 0.883625i 0.897108 + 0.441812i \(0.145664\pi\)
−0.897108 + 0.441812i \(0.854336\pi\)
\(68\) −13.5796 5.25380i −1.64677 0.637116i
\(69\) −13.8620 −1.66878
\(70\) 0 0
\(71\) −1.69789 + 0.703290i −0.201503 + 0.0834651i −0.481152 0.876637i \(-0.659782\pi\)
0.279650 + 0.960102i \(0.409782\pi\)
\(72\) 1.93467 0.228003
\(73\) −5.05599 + 2.09426i −0.591758 + 0.245114i −0.658407 0.752662i \(-0.728769\pi\)
0.0666485 + 0.997777i \(0.478769\pi\)
\(74\) 9.99859 + 4.14155i 1.16231 + 0.481446i
\(75\) 0 0
\(76\) 9.07527 9.07527i 1.04100 1.04100i
\(77\) 6.28827 + 6.28827i 0.716615 + 0.716615i
\(78\) −4.29484 1.77898i −0.486294 0.201430i
\(79\) 8.34789 + 3.45781i 0.939211 + 0.389034i 0.799166 0.601111i \(-0.205275\pi\)
0.140046 + 0.990145i \(0.455275\pi\)
\(80\) 0 0
\(81\) 7.10006i 0.788896i
\(82\) −3.89262 9.39762i −0.429868 1.03779i
\(83\) −5.17302 + 5.17302i −0.567812 + 0.567812i −0.931515 0.363703i \(-0.881512\pi\)
0.363703 + 0.931515i \(0.381512\pi\)
\(84\) 19.8524 2.16607
\(85\) 0 0
\(86\) 17.7503 1.91406
\(87\) 9.72006 9.72006i 1.04210 1.04210i
\(88\) 3.42189 + 8.26117i 0.364774 + 0.880643i
\(89\) 2.19350i 0.232510i 0.993219 + 0.116255i \(0.0370890\pi\)
−0.993219 + 0.116255i \(0.962911\pi\)
\(90\) 0 0
\(91\) 4.16819 + 1.72652i 0.436945 + 0.180989i
\(92\) 28.8186 + 11.9370i 3.00454 + 1.24452i
\(93\) 2.71214 + 2.71214i 0.281235 + 0.281235i
\(94\) 18.8459 18.8459i 1.94381 1.94381i
\(95\) 0 0
\(96\) −5.64246 2.33718i −0.575882 0.238538i
\(97\) 9.07286 3.75810i 0.921209 0.381577i 0.128872 0.991661i \(-0.458864\pi\)
0.792337 + 0.610084i \(0.208864\pi\)
\(98\) −13.7154 −1.38546
\(99\) 1.23199 0.510308i 0.123820 0.0512879i
\(100\) 0 0
\(101\) 5.46415 0.543704 0.271852 0.962339i \(-0.412364\pi\)
0.271852 + 0.962339i \(0.412364\pi\)
\(102\) −10.5046 + 11.0113i −1.04011 + 1.09028i
\(103\) 7.16074i 0.705568i −0.935705 0.352784i \(-0.885235\pi\)
0.935705 0.352784i \(-0.114765\pi\)
\(104\) 3.20773 + 3.20773i 0.314543 + 0.314543i
\(105\) 0 0
\(106\) 13.3856i 1.30012i
\(107\) 0.575721 0.238471i 0.0556570 0.0230539i −0.354681 0.934987i \(-0.615411\pi\)
0.410338 + 0.911933i \(0.365411\pi\)
\(108\) 7.50177 18.1109i 0.721859 1.74272i
\(109\) −2.36863 + 5.71837i −0.226873 + 0.547720i −0.995794 0.0916242i \(-0.970794\pi\)
0.768921 + 0.639344i \(0.220794\pi\)
\(110\) 0 0
\(111\) 5.10633 5.10633i 0.484672 0.484672i
\(112\) −4.66039 1.93040i −0.440365 0.182405i
\(113\) 6.14574 14.8371i 0.578143 1.39576i −0.316335 0.948648i \(-0.602452\pi\)
0.894478 0.447113i \(-0.147548\pi\)
\(114\) −5.13335 12.3930i −0.480782 1.16071i
\(115\) 0 0
\(116\) −28.5780 + 11.8374i −2.65340 + 1.09907i
\(117\) 0.478370 0.478370i 0.0442253 0.0442253i
\(118\) 10.5130i 0.967801i
\(119\) 10.1948 10.6866i 0.934557 0.979638i
\(120\) 0 0
\(121\) −3.42008 3.42008i −0.310916 0.310916i
\(122\) 0.218592 + 0.527727i 0.0197904 + 0.0477782i
\(123\) −6.78740 −0.611999
\(124\) −3.30292 7.97396i −0.296611 0.716083i
\(125\) 0 0
\(126\) −1.73175 + 4.18082i −0.154277 + 0.372457i
\(127\) 4.18456 + 4.18456i 0.371320 + 0.371320i 0.867958 0.496638i \(-0.165432\pi\)
−0.496638 + 0.867958i \(0.665432\pi\)
\(128\) 14.4017 + 14.4017i 1.27294 + 1.27294i
\(129\) 4.53258 10.9426i 0.399072 0.963444i
\(130\) 0 0
\(131\) 6.16914 + 14.8936i 0.539000 + 1.30126i 0.925422 + 0.378939i \(0.123711\pi\)
−0.386421 + 0.922322i \(0.626289\pi\)
\(132\) 13.7587 1.19754
\(133\) 4.98198 + 12.0276i 0.431993 + 1.04292i
\(134\) −12.0284 12.0284i −1.03910 1.03910i
\(135\) 0 0
\(136\) 13.5826 6.00455i 1.16470 0.514886i
\(137\) 17.1320i 1.46369i −0.681473 0.731843i \(-0.738661\pi\)
0.681473 0.731843i \(-0.261339\pi\)
\(138\) 23.0531 23.0531i 1.96241 1.96241i
\(139\) −1.97070 + 0.816292i −0.167153 + 0.0692369i −0.464691 0.885473i \(-0.653835\pi\)
0.297538 + 0.954710i \(0.403835\pi\)
\(140\) 0 0
\(141\) −6.80570 16.4304i −0.573143 1.38369i
\(142\) 1.65407 3.99327i 0.138806 0.335108i
\(143\) 2.88877 + 1.19657i 0.241571 + 0.100062i
\(144\) −0.534857 + 0.534857i −0.0445715 + 0.0445715i
\(145\) 0 0
\(146\) 4.92549 11.8912i 0.407636 0.984121i
\(147\) −3.50226 + 8.45519i −0.288861 + 0.697373i
\(148\) −15.0131 + 6.21865i −1.23407 + 0.511170i
\(149\) 18.5384i 1.51872i 0.650669 + 0.759362i \(0.274489\pi\)
−0.650669 + 0.759362i \(0.725511\pi\)
\(150\) 0 0
\(151\) −6.30217 6.30217i −0.512863 0.512863i 0.402539 0.915403i \(-0.368128\pi\)
−0.915403 + 0.402539i \(0.868128\pi\)
\(152\) 13.0901i 1.06175i
\(153\) −0.895462 2.02558i −0.0723938 0.163758i
\(154\) −20.9154 −1.68541
\(155\) 0 0
\(156\) 6.44881 2.67118i 0.516318 0.213866i
\(157\) −18.2426 −1.45592 −0.727960 0.685620i \(-0.759531\pi\)
−0.727960 + 0.685620i \(0.759531\pi\)
\(158\) −19.6334 + 8.13243i −1.56195 + 0.646982i
\(159\) 8.25189 + 3.41805i 0.654418 + 0.271069i
\(160\) 0 0
\(161\) −22.3733 + 22.3733i −1.76326 + 1.76326i
\(162\) −11.8077 11.8077i −0.927703 0.927703i
\(163\) 8.65222 + 3.58387i 0.677694 + 0.280710i 0.694863 0.719142i \(-0.255465\pi\)
−0.0171684 + 0.999853i \(0.505465\pi\)
\(164\) 14.1108 + 5.84488i 1.10187 + 0.456408i
\(165\) 0 0
\(166\) 17.2059i 1.33544i
\(167\) −3.55181 8.57484i −0.274848 0.663541i 0.724830 0.688928i \(-0.241918\pi\)
−0.999678 + 0.0253869i \(0.991918\pi\)
\(168\) −14.3175 + 14.3175i −1.10462 + 1.10462i
\(169\) −11.4137 −0.877977
\(170\) 0 0
\(171\) 1.95213 0.149283
\(172\) −18.8462 + 18.8462i −1.43701 + 1.43701i
\(173\) 1.64545 + 3.97248i 0.125102 + 0.302022i 0.974005 0.226526i \(-0.0727368\pi\)
−0.848904 + 0.528548i \(0.822737\pi\)
\(174\) 32.3298i 2.45092i
\(175\) 0 0
\(176\) −3.22989 1.33786i −0.243462 0.100845i
\(177\) −6.48102 2.68453i −0.487143 0.201781i
\(178\) −3.64789 3.64789i −0.273421 0.273421i
\(179\) 0.0832109 0.0832109i 0.00621948 0.00621948i −0.703990 0.710210i \(-0.748600\pi\)
0.710210 + 0.703990i \(0.248600\pi\)
\(180\) 0 0
\(181\) −2.14676 0.889218i −0.159568 0.0660951i 0.301470 0.953476i \(-0.402523\pi\)
−0.461038 + 0.887381i \(0.652523\pi\)
\(182\) −9.80318 + 4.06061i −0.726660 + 0.300993i
\(183\) 0.381149 0.0281754
\(184\) −29.3927 + 12.1749i −2.16686 + 0.897544i
\(185\) 0 0
\(186\) −9.02082 −0.661438
\(187\) 7.06552 7.40635i 0.516682 0.541606i
\(188\) 40.0189i 2.91868i
\(189\) 14.0604 + 14.0604i 1.02274 + 1.02274i
\(190\) 0 0
\(191\) 14.6622i 1.06092i −0.847710 0.530461i \(-0.822019\pi\)
0.847710 0.530461i \(-0.177981\pi\)
\(192\) 17.3540 7.18827i 1.25242 0.518768i
\(193\) 3.21303 7.75695i 0.231279 0.558357i −0.765049 0.643972i \(-0.777285\pi\)
0.996328 + 0.0856146i \(0.0272854\pi\)
\(194\) −8.83869 + 21.3385i −0.634581 + 1.53201i
\(195\) 0 0
\(196\) 14.5622 14.5622i 1.04015 1.04015i
\(197\) −6.17290 2.55690i −0.439801 0.182171i 0.151785 0.988414i \(-0.451498\pi\)
−0.591586 + 0.806242i \(0.701498\pi\)
\(198\) −1.20019 + 2.89752i −0.0852941 + 0.205918i
\(199\) −7.22192 17.4353i −0.511949 1.23595i −0.942748 0.333506i \(-0.891768\pi\)
0.430800 0.902448i \(-0.358232\pi\)
\(200\) 0 0
\(201\) −10.4867 + 4.34375i −0.739678 + 0.306384i
\(202\) −9.08714 + 9.08714i −0.639369 + 0.639369i
\(203\) 31.3765i 2.20220i
\(204\) −0.538009 22.8442i −0.0376681 1.59942i
\(205\) 0 0
\(206\) 11.9086 + 11.9086i 0.829714 + 0.829714i
\(207\) 1.81565 + 4.38336i 0.126196 + 0.304664i
\(208\) −1.77361 −0.122978
\(209\) 3.45277 + 8.33572i 0.238833 + 0.576594i
\(210\) 0 0
\(211\) 2.53326 6.11583i 0.174397 0.421031i −0.812377 0.583132i \(-0.801827\pi\)
0.986774 + 0.162101i \(0.0518270\pi\)
\(212\) −14.2120 14.2120i −0.976085 0.976085i
\(213\) −2.03939 2.03939i −0.139736 0.139736i
\(214\) −0.560861 + 1.35404i −0.0383397 + 0.0925602i
\(215\) 0 0
\(216\) 7.65124 + 18.4717i 0.520601 + 1.25684i
\(217\) 8.75482 0.594316
\(218\) −5.57077 13.4490i −0.377300 0.910884i
\(219\) −6.07289 6.07289i −0.410368 0.410368i
\(220\) 0 0
\(221\) 1.87376 4.84315i 0.126042 0.325785i
\(222\) 16.9841i 1.13990i
\(223\) 2.08077 2.08077i 0.139339 0.139339i −0.633997 0.773336i \(-0.718587\pi\)
0.773336 + 0.633997i \(0.218587\pi\)
\(224\) −12.8792 + 5.33474i −0.860529 + 0.356443i
\(225\) 0 0
\(226\) 14.4542 + 34.8955i 0.961478 + 2.32121i
\(227\) 8.23750 19.8871i 0.546742 1.31995i −0.373147 0.927772i \(-0.621721\pi\)
0.919889 0.392180i \(-0.128279\pi\)
\(228\) 18.6084 + 7.70786i 1.23237 + 0.510466i
\(229\) −8.44347 + 8.44347i −0.557960 + 0.557960i −0.928726 0.370766i \(-0.879095\pi\)
0.370766 + 0.928726i \(0.379095\pi\)
\(230\) 0 0
\(231\) −5.34080 + 12.8938i −0.351399 + 0.848351i
\(232\) 12.0732 29.1474i 0.792647 1.91362i
\(233\) −9.30228 + 3.85313i −0.609412 + 0.252427i −0.665977 0.745972i \(-0.731985\pi\)
0.0565648 + 0.998399i \(0.481985\pi\)
\(234\) 1.59110i 0.104014i
\(235\) 0 0
\(236\) 11.1621 + 11.1621i 0.726590 + 0.726590i
\(237\) 14.1802i 0.921101i
\(238\) 0.817856 + 34.7267i 0.0530137 + 2.25100i
\(239\) 16.6253 1.07540 0.537701 0.843135i \(-0.319293\pi\)
0.537701 + 0.843135i \(0.319293\pi\)
\(240\) 0 0
\(241\) 5.47122 2.26625i 0.352432 0.145982i −0.199442 0.979910i \(-0.563913\pi\)
0.551874 + 0.833928i \(0.313913\pi\)
\(242\) 11.3755 0.731245
\(243\) 5.09108 2.10879i 0.326593 0.135279i
\(244\) −0.792397 0.328221i −0.0507280 0.0210122i
\(245\) 0 0
\(246\) 11.2878 11.2878i 0.719681 0.719681i
\(247\) 3.23668 + 3.23668i 0.205945 + 0.205945i
\(248\) 8.13284 + 3.36873i 0.516436 + 0.213915i
\(249\) −10.6070 4.39358i −0.672194 0.278432i
\(250\) 0 0
\(251\) 7.77270i 0.490608i −0.969446 0.245304i \(-0.921112\pi\)
0.969446 0.245304i \(-0.0788878\pi\)
\(252\) −2.60027 6.27762i −0.163802 0.395453i
\(253\) −15.5058 + 15.5058i −0.974844 + 0.974844i
\(254\) −13.9182 −0.873307
\(255\) 0 0
\(256\) −23.9630 −1.49768
\(257\) 5.70344 5.70344i 0.355771 0.355771i −0.506481 0.862251i \(-0.669054\pi\)
0.862251 + 0.506481i \(0.169054\pi\)
\(258\) 10.6602 + 25.7360i 0.663674 + 1.60225i
\(259\) 16.4833i 1.02422i
\(260\) 0 0
\(261\) −4.34677 1.80049i −0.269058 0.111448i
\(262\) −35.0283 14.5092i −2.16406 0.896382i
\(263\) −15.0792 15.0792i −0.929822 0.929822i 0.0678724 0.997694i \(-0.478379\pi\)
−0.997694 + 0.0678724i \(0.978379\pi\)
\(264\) −9.92273 + 9.92273i −0.610702 + 0.610702i
\(265\) 0 0
\(266\) −28.2877 11.7171i −1.73443 0.718424i
\(267\) −3.18033 + 1.31734i −0.194633 + 0.0806197i
\(268\) 25.5422 1.56024
\(269\) −3.88200 + 1.60798i −0.236690 + 0.0980401i −0.497876 0.867248i \(-0.665886\pi\)
0.261186 + 0.965289i \(0.415886\pi\)
\(270\) 0 0
\(271\) −24.7136 −1.50124 −0.750621 0.660733i \(-0.770245\pi\)
−0.750621 + 0.660733i \(0.770245\pi\)
\(272\) −2.09502 + 5.41504i −0.127029 + 0.328335i
\(273\) 7.08031i 0.428520i
\(274\) 28.4913 + 28.4913i 1.72122 + 1.72122i
\(275\) 0 0
\(276\) 48.9527i 2.94661i
\(277\) −18.5355 + 7.67765i −1.11369 + 0.461305i −0.862207 0.506556i \(-0.830918\pi\)
−0.251483 + 0.967862i \(0.580918\pi\)
\(278\) 1.91984 4.63490i 0.115144 0.277983i
\(279\) 0.502381 1.21285i 0.0300768 0.0726117i
\(280\) 0 0
\(281\) 17.8053 17.8053i 1.06218 1.06218i 0.0642430 0.997934i \(-0.479537\pi\)
0.997934 0.0642430i \(-0.0204633\pi\)
\(282\) 38.6427 + 16.0063i 2.30114 + 0.953164i
\(283\) 3.24768 7.84059i 0.193054 0.466075i −0.797479 0.603347i \(-0.793833\pi\)
0.990533 + 0.137272i \(0.0438335\pi\)
\(284\) 2.48363 + 5.99601i 0.147376 + 0.355798i
\(285\) 0 0
\(286\) −6.79411 + 2.81421i −0.401744 + 0.166408i
\(287\) −10.9549 + 10.9549i −0.646648 + 0.646648i
\(288\) 2.09036i 0.123175i
\(289\) −12.5734 11.4416i −0.739611 0.673035i
\(290\) 0 0
\(291\) 10.8977 + 10.8977i 0.638833 + 0.638833i
\(292\) 7.39575 + 17.8549i 0.432804 + 1.04488i
\(293\) 25.9873 1.51820 0.759098 0.650977i \(-0.225640\pi\)
0.759098 + 0.650977i \(0.225640\pi\)
\(294\) −8.23696 19.8858i −0.480389 1.15976i
\(295\) 0 0
\(296\) 6.34255 15.3123i 0.368653 0.890008i
\(297\) 9.74457 + 9.74457i 0.565438 + 0.565438i
\(298\) −30.8302 30.8302i −1.78594 1.78594i
\(299\) −4.25732 + 10.2781i −0.246207 + 0.594397i
\(300\) 0 0
\(301\) −10.3458 24.9771i −0.596325 1.43966i
\(302\) 20.9616 1.20620
\(303\) 3.28158 + 7.92243i 0.188522 + 0.455132i
\(304\) −3.61887 3.61887i −0.207557 0.207557i
\(305\) 0 0
\(306\) 4.85782 + 1.87943i 0.277703 + 0.107440i
\(307\) 16.9475i 0.967245i 0.875277 + 0.483622i \(0.160679\pi\)
−0.875277 + 0.483622i \(0.839321\pi\)
\(308\) 22.2067 22.2067i 1.26534 1.26534i
\(309\) 10.3823 4.30048i 0.590628 0.244646i
\(310\) 0 0
\(311\) −6.57851 15.8819i −0.373033 0.900581i −0.993233 0.116138i \(-0.962949\pi\)
0.620200 0.784444i \(-0.287051\pi\)
\(312\) −2.72441 + 6.57730i −0.154239 + 0.372366i
\(313\) 5.46463 + 2.26352i 0.308879 + 0.127942i 0.531738 0.846909i \(-0.321539\pi\)
−0.222859 + 0.974851i \(0.571539\pi\)
\(314\) 30.3383 30.3383i 1.71209 1.71209i
\(315\) 0 0
\(316\) 12.2111 29.4801i 0.686926 1.65839i
\(317\) 0.245137 0.591813i 0.0137683 0.0332395i −0.916846 0.399241i \(-0.869274\pi\)
0.930614 + 0.366002i \(0.119274\pi\)
\(318\) −19.4076 + 8.03891i −1.08833 + 0.450800i
\(319\) 21.7455i 1.21752i
\(320\) 0 0
\(321\) 0.691515 + 0.691515i 0.0385966 + 0.0385966i
\(322\) 74.4157i 4.14702i
\(323\) 13.7052 6.05874i 0.762576 0.337117i
\(324\) 25.0735 1.39297
\(325\) 0 0
\(326\) −20.3492 + 8.42891i −1.12704 + 0.466834i
\(327\) −9.71352 −0.537159
\(328\) −14.3919 + 5.96133i −0.794661 + 0.329160i
\(329\) −37.5033 15.5344i −2.06762 0.856437i
\(330\) 0 0
\(331\) −8.24547 + 8.24547i −0.453212 + 0.453212i −0.896419 0.443207i \(-0.853841\pi\)
0.443207 + 0.896419i \(0.353841\pi\)
\(332\) 18.2682 + 18.2682i 1.00260 + 1.00260i
\(333\) −2.28353 0.945868i −0.125137 0.0518333i
\(334\) 20.1672 + 8.35352i 1.10350 + 0.457084i
\(335\) 0 0
\(336\) 7.91638i 0.431874i
\(337\) 11.8175 + 28.5300i 0.643740 + 1.55413i 0.821596 + 0.570070i \(0.193084\pi\)
−0.177856 + 0.984056i \(0.556916\pi\)
\(338\) 18.9815 18.9815i 1.03246 1.03246i
\(339\) 25.2031 1.36885
\(340\) 0 0
\(341\) 6.06754 0.328576
\(342\) −3.24648 + 3.24648i −0.175550 + 0.175550i
\(343\) −1.60166 3.86674i −0.0864813 0.208784i
\(344\) 27.1836i 1.46564i
\(345\) 0 0
\(346\) −9.34288 3.86995i −0.502276 0.208050i
\(347\) −0.0138574 0.00573993i −0.000743905 0.000308135i 0.382311 0.924034i \(-0.375128\pi\)
−0.383055 + 0.923725i \(0.625128\pi\)
\(348\) −34.3259 34.3259i −1.84006 1.84006i
\(349\) 2.58441 2.58441i 0.138340 0.138340i −0.634545 0.772886i \(-0.718813\pi\)
0.772886 + 0.634545i \(0.218813\pi\)
\(350\) 0 0
\(351\) 6.45921 + 2.67549i 0.344767 + 0.142807i
\(352\) −8.92595 + 3.69725i −0.475755 + 0.197064i
\(353\) −3.82333 −0.203495 −0.101748 0.994810i \(-0.532443\pi\)
−0.101748 + 0.994810i \(0.532443\pi\)
\(354\) 15.2427 6.31374i 0.810141 0.335572i
\(355\) 0 0
\(356\) 7.74622 0.410549
\(357\) 21.6170 + 8.36337i 1.14409 + 0.442637i
\(358\) 0.276767i 0.0146276i
\(359\) 4.73532 + 4.73532i 0.249921 + 0.249921i 0.820938 0.571017i \(-0.193451\pi\)
−0.571017 + 0.820938i \(0.693451\pi\)
\(360\) 0 0
\(361\) 5.79178i 0.304830i
\(362\) 5.04897 2.09135i 0.265368 0.109919i
\(363\) 2.90476 7.01272i 0.152461 0.368072i
\(364\) 6.09712 14.7197i 0.319576 0.771524i
\(365\) 0 0
\(366\) −0.633869 + 0.633869i −0.0331328 + 0.0331328i
\(367\) −21.2747 8.81227i −1.11053 0.459997i −0.249410 0.968398i \(-0.580237\pi\)
−0.861120 + 0.508401i \(0.830237\pi\)
\(368\) 4.76004 11.4917i 0.248134 0.599049i
\(369\) 0.889017 + 2.14628i 0.0462804 + 0.111731i
\(370\) 0 0
\(371\) 18.8354 7.80187i 0.977884 0.405053i
\(372\) 9.57776 9.57776i 0.496584 0.496584i
\(373\) 23.7303i 1.22871i 0.789030 + 0.614355i \(0.210584\pi\)
−0.789030 + 0.614355i \(0.789416\pi\)
\(374\) 0.566816 + 24.0674i 0.0293094 + 1.24450i
\(375\) 0 0
\(376\) −28.8615 28.8615i −1.48842 1.48842i
\(377\) −4.22178 10.1923i −0.217433 0.524929i
\(378\) −46.7662 −2.40539
\(379\) −1.13970 2.75149i −0.0585427 0.141335i 0.891902 0.452230i \(-0.149371\pi\)
−0.950444 + 0.310895i \(0.899371\pi\)
\(380\) 0 0
\(381\) −3.55406 + 8.58025i −0.182080 + 0.439580i
\(382\) 24.3839 + 24.3839i 1.24759 + 1.24759i
\(383\) 17.2691 + 17.2691i 0.882408 + 0.882408i 0.993779 0.111371i \(-0.0355241\pi\)
−0.111371 + 0.993779i \(0.535524\pi\)
\(384\) −12.2317 + 29.5300i −0.624198 + 1.50695i
\(385\) 0 0
\(386\) 7.55674 + 18.2436i 0.384628 + 0.928574i
\(387\) −4.05390 −0.206071
\(388\) −13.2715 32.0403i −0.673759 1.62660i
\(389\) 1.19407 + 1.19407i 0.0605418 + 0.0605418i 0.736729 0.676188i \(-0.236369\pi\)
−0.676188 + 0.736729i \(0.736369\pi\)
\(390\) 0 0
\(391\) 26.3514 + 25.1387i 1.33265 + 1.27132i
\(392\) 21.0043i 1.06088i
\(393\) −17.8892 + 17.8892i −0.902389 + 0.902389i
\(394\) 14.5181 6.01357i 0.731409 0.302960i
\(395\) 0 0
\(396\) −1.80212 4.35071i −0.0905601 0.218631i
\(397\) 12.0643 29.1259i 0.605491 1.46178i −0.262365 0.964969i \(-0.584502\pi\)
0.867856 0.496816i \(-0.165498\pi\)
\(398\) 41.0060 + 16.9853i 2.05545 + 0.851394i
\(399\) −14.4467 + 14.4467i −0.723238 + 0.723238i
\(400\) 0 0
\(401\) 1.93870 4.68044i 0.0968141 0.233730i −0.868051 0.496474i \(-0.834628\pi\)
0.964865 + 0.262745i \(0.0846276\pi\)
\(402\) 10.2161 24.6638i 0.509531 1.23012i
\(403\) 2.84390 1.17798i 0.141665 0.0586794i
\(404\) 19.2964i 0.960029i
\(405\) 0 0
\(406\) 52.1806 + 52.1806i 2.58968 + 2.58968i
\(407\) 11.4238i 0.566256i
\(408\) 16.8632 + 16.0871i 0.834850 + 0.796432i
\(409\) 26.1178 1.29144 0.645722 0.763573i \(-0.276557\pi\)
0.645722 + 0.763573i \(0.276557\pi\)
\(410\) 0 0
\(411\) 24.8395 10.2889i 1.22524 0.507513i
\(412\) −25.2877 −1.24584
\(413\) −14.7933 + 6.12757i −0.727929 + 0.301518i
\(414\) −10.3092 4.27022i −0.506671 0.209870i
\(415\) 0 0
\(416\) −3.46586 + 3.46586i −0.169928 + 0.169928i
\(417\) −2.36707 2.36707i −0.115916 0.115916i
\(418\) −19.6048 8.12058i −0.958903 0.397190i
\(419\) −6.74298 2.79303i −0.329416 0.136449i 0.211845 0.977303i \(-0.432053\pi\)
−0.541261 + 0.840855i \(0.682053\pi\)
\(420\) 0 0
\(421\) 21.0644i 1.02662i 0.858204 + 0.513309i \(0.171580\pi\)
−0.858204 + 0.513309i \(0.828420\pi\)
\(422\) 5.95798 + 14.3838i 0.290030 + 0.700194i
\(423\) −4.30413 + 4.30413i −0.209274 + 0.209274i
\(424\) 20.4993 0.995533
\(425\) 0 0
\(426\) 6.78319 0.328646
\(427\) 0.615178 0.615178i 0.0297705 0.0297705i
\(428\) −0.842148 2.03313i −0.0407068 0.0982749i
\(429\) 4.90702i 0.236913i
\(430\) 0 0
\(431\) −19.4414 8.05290i −0.936460 0.387894i −0.138334 0.990386i \(-0.544175\pi\)
−0.798126 + 0.602491i \(0.794175\pi\)
\(432\) −7.22194 2.99142i −0.347466 0.143925i
\(433\) 26.2522 + 26.2522i 1.26160 + 1.26160i 0.950318 + 0.311280i \(0.100758\pi\)
0.311280 + 0.950318i \(0.399242\pi\)
\(434\) −14.5597 + 14.5597i −0.698886 + 0.698886i
\(435\) 0 0
\(436\) 20.1941 + 8.36467i 0.967121 + 0.400595i
\(437\) −29.6580 + 12.2848i −1.41874 + 0.587659i
\(438\) 20.1990 0.965145
\(439\) −0.435448 + 0.180369i −0.0207828 + 0.00860852i −0.393051 0.919517i \(-0.628580\pi\)
0.372268 + 0.928125i \(0.378580\pi\)
\(440\) 0 0
\(441\) 3.13238 0.149161
\(442\) 4.93823 + 11.1705i 0.234888 + 0.531327i
\(443\) 11.0249i 0.523808i 0.965094 + 0.261904i \(0.0843504\pi\)
−0.965094 + 0.261904i \(0.915650\pi\)
\(444\) −18.0327 18.0327i −0.855795 0.855795i
\(445\) 0 0
\(446\) 6.92084i 0.327711i
\(447\) −26.8786 + 11.1335i −1.27132 + 0.526596i
\(448\) 16.4076 39.6114i 0.775186 1.87146i
\(449\) −6.60636 + 15.9492i −0.311773 + 0.752688i 0.687866 + 0.725838i \(0.258548\pi\)
−0.999639 + 0.0268500i \(0.991452\pi\)
\(450\) 0 0
\(451\) −7.59232 + 7.59232i −0.357508 + 0.357508i
\(452\) −52.3965 21.7033i −2.46452 1.02084i
\(453\) 5.35260 12.9223i 0.251487 0.607143i
\(454\) 19.3738 + 46.7725i 0.909257 + 2.19514i
\(455\) 0 0
\(456\) −18.9792 + 7.86144i −0.888782 + 0.368146i
\(457\) 7.96742 7.96742i 0.372700 0.372700i −0.495760 0.868460i \(-0.665110\pi\)
0.868460 + 0.495760i \(0.165110\pi\)
\(458\) 28.0837i 1.31227i
\(459\) 15.7983 16.5604i 0.737402 0.772973i
\(460\) 0 0
\(461\) 21.2185 + 21.2185i 0.988244 + 0.988244i 0.999932 0.0116873i \(-0.00372025\pi\)
−0.0116873 + 0.999932i \(0.503720\pi\)
\(462\) −12.5610 30.3250i −0.584392 1.41085i
\(463\) −17.1592 −0.797457 −0.398728 0.917069i \(-0.630548\pi\)
−0.398728 + 0.917069i \(0.630548\pi\)
\(464\) 4.72031 + 11.3958i 0.219135 + 0.529038i
\(465\) 0 0
\(466\) 9.06218 21.8780i 0.419798 1.01348i
\(467\) 18.8030 + 18.8030i 0.870099 + 0.870099i 0.992483 0.122384i \(-0.0390540\pi\)
−0.122384 + 0.992483i \(0.539054\pi\)
\(468\) −1.68934 1.68934i −0.0780896 0.0780896i
\(469\) −9.91483 + 23.9365i −0.457824 + 1.10529i
\(470\) 0 0
\(471\) −10.9559 26.4498i −0.504820 1.21874i
\(472\) −16.1001 −0.741066
\(473\) −7.17020 17.3104i −0.329686 0.795933i
\(474\) −23.5823 23.5823i −1.08317 1.08317i
\(475\) 0 0
\(476\) −37.7391 36.0024i −1.72977 1.65017i
\(477\) 3.05707i 0.139974i
\(478\) −27.6487 + 27.6487i −1.26462 + 1.26462i
\(479\) 21.1662 8.76732i 0.967107 0.400589i 0.157473 0.987523i \(-0.449665\pi\)
0.809635 + 0.586934i \(0.199665\pi\)
\(480\) 0 0
\(481\) −2.21787 5.35441i −0.101126 0.244140i
\(482\) −5.33000 + 12.8678i −0.242775 + 0.586111i
\(483\) −45.8755 19.0022i −2.08741 0.864632i
\(484\) −12.0778 + 12.0778i −0.548992 + 0.548992i
\(485\) 0 0
\(486\) −4.95968 + 11.9737i −0.224975 + 0.543139i
\(487\) −6.01330 + 14.5174i −0.272489 + 0.657846i −0.999588 0.0286857i \(-0.990868\pi\)
0.727100 + 0.686532i \(0.240868\pi\)
\(488\) 0.808185 0.334761i 0.0365848 0.0151539i
\(489\) 14.6971i 0.664627i
\(490\) 0 0
\(491\) 0.607534 + 0.607534i 0.0274176 + 0.0274176i 0.720683 0.693265i \(-0.243828\pi\)
−0.693265 + 0.720683i \(0.743828\pi\)
\(492\) 23.9693i 1.08062i
\(493\) −36.1051 + 0.850318i −1.62609 + 0.0382964i
\(494\) −10.7655 −0.484362
\(495\) 0 0
\(496\) −3.17972 + 1.31708i −0.142773 + 0.0591387i
\(497\) −6.58317 −0.295296
\(498\) 24.9467 10.3333i 1.11789 0.463045i
\(499\) 20.9163 + 8.66380i 0.936340 + 0.387845i 0.798080 0.602551i \(-0.205849\pi\)
0.138260 + 0.990396i \(0.455849\pi\)
\(500\) 0 0
\(501\) 10.2995 10.2995i 0.460147 0.460147i
\(502\) 12.9264 + 12.9264i 0.576931 + 0.576931i
\(503\) −15.8122 6.54963i −0.705032 0.292034i 0.00121517 0.999999i \(-0.499613\pi\)
−0.706247 + 0.707966i \(0.749613\pi\)
\(504\) 6.40270 + 2.65208i 0.285199 + 0.118133i
\(505\) 0 0
\(506\) 51.5739i 2.29274i
\(507\) −6.85467 16.5486i −0.304426 0.734950i
\(508\) 14.7775 14.7775i 0.655647 0.655647i
\(509\) −29.7081 −1.31679 −0.658393 0.752674i \(-0.728764\pi\)
−0.658393 + 0.752674i \(0.728764\pi\)
\(510\) 0 0
\(511\) −19.6034 −0.867203
\(512\) 11.0481 11.0481i 0.488263 0.488263i
\(513\) 7.72030 + 18.6384i 0.340859 + 0.822907i
\(514\) 18.9701i 0.836737i
\(515\) 0 0
\(516\) −38.6432 16.0066i −1.70117 0.704649i
\(517\) −25.9917 10.7661i −1.14311 0.473493i
\(518\) 27.4125 + 27.4125i 1.20444 + 1.20444i
\(519\) −4.77146 + 4.77146i −0.209444 + 0.209444i
\(520\) 0 0
\(521\) −35.7139 14.7932i −1.56465 0.648101i −0.578764 0.815495i \(-0.696465\pi\)
−0.985890 + 0.167395i \(0.946465\pi\)
\(522\) 10.2232 4.23458i 0.447456 0.185342i
\(523\) −0.599508 −0.0262147 −0.0131073 0.999914i \(-0.504172\pi\)
−0.0131073 + 0.999914i \(0.504172\pi\)
\(524\) 52.5960 21.7860i 2.29767 0.951724i
\(525\) 0 0
\(526\) 50.1547 2.18685
\(527\) −0.237259 10.0742i −0.0103352 0.438839i
\(528\) 5.48646i 0.238767i
\(529\) −38.9054 38.9054i −1.69154 1.69154i
\(530\) 0 0
\(531\) 2.40101i 0.104195i
\(532\) 42.4747 17.5936i 1.84151 0.762779i
\(533\) −2.08456 + 5.03258i −0.0902925 + 0.217985i
\(534\) 3.09825 7.47983i 0.134074 0.323684i
\(535\) 0 0
\(536\) −18.4209 + 18.4209i −0.795661 + 0.795661i
\(537\) 0.170620 + 0.0706732i 0.00736281 + 0.00304977i
\(538\) 3.78181 9.13009i 0.163045 0.393626i
\(539\) 5.54031 + 13.3755i 0.238638 + 0.576123i
\(540\) 0 0
\(541\) 36.6847 15.1953i 1.57720 0.653297i 0.589231 0.807965i \(-0.299431\pi\)
0.987966 + 0.154668i \(0.0494308\pi\)
\(542\) 41.0998 41.0998i 1.76539 1.76539i
\(543\) 3.64660i 0.156491i
\(544\) 6.48774 + 14.6756i 0.278160 + 0.629211i
\(545\) 0 0
\(546\) −11.7749 11.7749i −0.503919 0.503919i
\(547\) −1.54516 3.73035i −0.0660663 0.159498i 0.887398 0.461004i \(-0.152511\pi\)
−0.953464 + 0.301506i \(0.902511\pi\)
\(548\) −60.5007 −2.58446
\(549\) −0.0499231 0.120525i −0.00213067 0.00514388i
\(550\) 0 0
\(551\) 12.1822 29.4105i 0.518980 1.25293i
\(552\) −35.3045 35.3045i −1.50266 1.50266i
\(553\) 22.8869 + 22.8869i 0.973250 + 0.973250i
\(554\) 18.0571 43.5937i 0.767172 1.85212i
\(555\) 0 0
\(556\) 2.88269 + 6.95942i 0.122253 + 0.295145i
\(557\) 5.42781 0.229984 0.114992 0.993366i \(-0.463316\pi\)
0.114992 + 0.993366i \(0.463316\pi\)
\(558\) 1.18155 + 2.85252i 0.0500190 + 0.120757i
\(559\) −6.72145 6.72145i −0.284287 0.284287i
\(560\) 0 0
\(561\) 14.9817 + 5.79624i 0.632528 + 0.244718i
\(562\) 59.2222i 2.49814i
\(563\) −3.66888 + 3.66888i −0.154625 + 0.154625i −0.780180 0.625555i \(-0.784873\pi\)
0.625555 + 0.780180i \(0.284873\pi\)
\(564\) −58.0231 + 24.0339i −2.44321 + 1.01201i
\(565\) 0 0
\(566\) 7.63822 + 18.4403i 0.321058 + 0.775104i
\(567\) −9.73290 + 23.4973i −0.408744 + 0.986794i
\(568\) −6.11547 2.53311i −0.256600 0.106287i
\(569\) −8.48266 + 8.48266i −0.355611 + 0.355611i −0.862192 0.506581i \(-0.830909\pi\)
0.506581 + 0.862192i \(0.330909\pi\)
\(570\) 0 0
\(571\) −16.6512 + 40.1996i −0.696833 + 1.68230i 0.0337061 + 0.999432i \(0.489269\pi\)
−0.730539 + 0.682871i \(0.760731\pi\)
\(572\) 4.22561 10.2015i 0.176682 0.426548i
\(573\) 21.2586 8.80561i 0.888092 0.367860i
\(574\) 36.4371i 1.52085i
\(575\) 0 0
\(576\) −4.54607 4.54607i −0.189420 0.189420i
\(577\) 27.7097i 1.15357i 0.816897 + 0.576784i \(0.195693\pi\)
−0.816897 + 0.576784i \(0.804307\pi\)
\(578\) 39.9380 1.88222i 1.66120 0.0782900i
\(579\) 13.1764 0.547591
\(580\) 0 0
\(581\) −24.2111 + 10.0286i −1.00445 + 0.416055i
\(582\) −36.2467 −1.50247
\(583\) 13.0539 5.40709i 0.540636 0.223939i
\(584\) −18.2107 7.54311i −0.753563 0.312136i
\(585\) 0 0
\(586\) −43.2181 + 43.2181i −1.78532 + 1.78532i
\(587\) 3.09653 + 3.09653i 0.127808 + 0.127808i 0.768117 0.640309i \(-0.221194\pi\)
−0.640309 + 0.768117i \(0.721194\pi\)
\(588\) 29.8590 + 12.3680i 1.23137 + 0.510048i
\(589\) 8.20624 + 3.39914i 0.338132 + 0.140059i
\(590\) 0 0
\(591\) 10.4856i 0.431320i
\(592\) 2.47976 + 5.98668i 0.101918 + 0.246051i
\(593\) 25.3698 25.3698i 1.04181 1.04181i 0.0427255 0.999087i \(-0.486396\pi\)
0.999087 0.0427255i \(-0.0136041\pi\)
\(594\) −32.4114 −1.32985
\(595\) 0 0
\(596\) 65.4673 2.68164
\(597\) 20.9420 20.9420i 0.857099 0.857099i
\(598\) −10.0128 24.1730i −0.409454 0.988509i
\(599\) 11.1415i 0.455230i −0.973751 0.227615i \(-0.926907\pi\)
0.973751 0.227615i \(-0.0730928\pi\)
\(600\) 0 0
\(601\) 18.8938 + 7.82606i 0.770693 + 0.319232i 0.733153 0.680063i \(-0.238048\pi\)
0.0375402 + 0.999295i \(0.488048\pi\)
\(602\) 58.7437 + 24.3324i 2.39421 + 0.991716i
\(603\) 2.74712 + 2.74712i 0.111871 + 0.111871i
\(604\) −22.2558 + 22.2558i −0.905574 + 0.905574i
\(605\) 0 0
\(606\) −18.6328 7.71795i −0.756905 0.313520i
\(607\) −1.45561 + 0.602934i −0.0590814 + 0.0244723i −0.412028 0.911171i \(-0.635180\pi\)
0.352947 + 0.935643i \(0.385180\pi\)
\(608\) −14.1435 −0.573593
\(609\) 45.4925 18.8436i 1.84345 0.763582i
\(610\) 0 0
\(611\) −14.2727 −0.577410
\(612\) −7.15321 + 3.16227i −0.289151 + 0.127827i
\(613\) 22.4800i 0.907959i 0.891012 + 0.453980i \(0.149996\pi\)
−0.891012 + 0.453980i \(0.850004\pi\)
\(614\) −28.1845 28.1845i −1.13743 1.13743i
\(615\) 0 0
\(616\) 32.0307i 1.29055i
\(617\) −25.1273 + 10.4081i −1.01159 + 0.419013i −0.826034 0.563621i \(-0.809408\pi\)
−0.185554 + 0.982634i \(0.559408\pi\)
\(618\) −10.1143 + 24.4181i −0.406858 + 0.982241i
\(619\) −5.49924 + 13.2763i −0.221033 + 0.533621i −0.995031 0.0995671i \(-0.968254\pi\)
0.773998 + 0.633188i \(0.218254\pi\)
\(620\) 0 0
\(621\) −34.6706 + 34.6706i −1.39128 + 1.39128i
\(622\) 37.3527 + 15.4720i 1.49771 + 0.620371i
\(623\) −3.00689 + 7.25927i −0.120469 + 0.290837i
\(624\) −1.06517 2.57154i −0.0426408 0.102944i
\(625\) 0 0
\(626\) −12.8523 + 5.32358i −0.513680 + 0.212773i
\(627\) −10.0123 + 10.0123i −0.399852 + 0.399852i
\(628\) 64.4228i 2.57075i
\(629\) −18.9674 + 0.446705i −0.756280 + 0.0178113i
\(630\) 0 0
\(631\) −16.4538 16.4538i −0.655014 0.655014i 0.299182 0.954196i \(-0.403286\pi\)
−0.954196 + 0.299182i \(0.903286\pi\)
\(632\) 12.4544 + 30.0675i 0.495408 + 1.19602i
\(633\) 10.3887 0.412913
\(634\) 0.576538 + 1.39189i 0.0228972 + 0.0552788i
\(635\) 0 0
\(636\) 12.0706 29.1411i 0.478632 1.15552i
\(637\) 5.19356 + 5.19356i 0.205776 + 0.205776i
\(638\) 36.1638 + 36.1638i 1.43174 + 1.43174i
\(639\) −0.377764 + 0.912004i −0.0149441 + 0.0360783i
\(640\) 0 0
\(641\) −2.06038 4.97419i −0.0813800 0.196469i 0.877952 0.478748i \(-0.158909\pi\)
−0.959332 + 0.282280i \(0.908909\pi\)
\(642\) −2.30004 −0.0907754
\(643\) −6.19532 14.9568i −0.244319 0.589839i 0.753383 0.657582i \(-0.228420\pi\)
−0.997703 + 0.0677421i \(0.978420\pi\)
\(644\) 79.0101 + 79.0101i 3.11343 + 3.11343i
\(645\) 0 0
\(646\) −12.7163 + 32.8683i −0.500318 + 1.29319i
\(647\) 25.8383i 1.01581i −0.861413 0.507904i \(-0.830420\pi\)
0.861413 0.507904i \(-0.169580\pi\)
\(648\) −18.0829 + 18.0829i −0.710362 + 0.710362i
\(649\) −10.2525 + 4.24672i −0.402445 + 0.166698i
\(650\) 0 0
\(651\) 5.25783 + 12.6935i 0.206071 + 0.497499i
\(652\) 12.6562 30.5548i 0.495656 1.19662i
\(653\) 11.5286 + 4.77529i 0.451148 + 0.186872i 0.596675 0.802483i \(-0.296488\pi\)
−0.145528 + 0.989354i \(0.546488\pi\)
\(654\) 16.1540 16.1540i 0.631672 0.631672i
\(655\) 0 0
\(656\) 2.33072 5.62685i 0.0909992 0.219691i
\(657\) −1.12491 + 2.71577i −0.0438868 + 0.105952i
\(658\) 88.2040 36.5353i 3.43855 1.42429i
\(659\) 41.7109i 1.62483i 0.583082 + 0.812413i \(0.301847\pi\)
−0.583082 + 0.812413i \(0.698153\pi\)
\(660\) 0 0
\(661\) −12.8495 12.8495i −0.499789 0.499789i 0.411583 0.911372i \(-0.364976\pi\)
−0.911372 + 0.411583i \(0.864976\pi\)
\(662\) 27.4252i 1.06591i
\(663\) 8.14734 0.191880i 0.316417 0.00745199i
\(664\) −26.3499 −1.02257
\(665\) 0 0
\(666\) 5.37063 2.22459i 0.208108 0.0862011i
\(667\) 77.3693 2.99575
\(668\) −30.2815 + 12.5430i −1.17163 + 0.485304i
\(669\) 4.26653 + 1.76726i 0.164954 + 0.0683260i
\(670\) 0 0
\(671\) 0.426350 0.426350i 0.0164590 0.0164590i
\(672\) −15.4696 15.4696i −0.596753 0.596753i
\(673\) −5.90984 2.44794i −0.227808 0.0943610i 0.265860 0.964012i \(-0.414344\pi\)
−0.493668 + 0.869651i \(0.664344\pi\)
\(674\) −67.0997 27.7936i −2.58458 1.07057i
\(675\) 0 0
\(676\) 40.3069i 1.55026i
\(677\) −16.0301 38.7001i −0.616087 1.48737i −0.856212 0.516624i \(-0.827189\pi\)
0.240125 0.970742i \(-0.422811\pi\)
\(678\) −41.9140 + 41.9140i −1.60970 + 1.60970i
\(679\) 35.1779 1.35000
\(680\) 0 0
\(681\) 33.7812 1.29450
\(682\) −10.0906 + 10.0906i −0.386389 + 0.386389i
\(683\) −11.5977 27.9994i −0.443775 1.07137i −0.974613 0.223895i \(-0.928123\pi\)
0.530838 0.847473i \(-0.321877\pi\)
\(684\) 6.89384i 0.263593i
\(685\) 0 0
\(686\) 9.09419 + 3.76694i 0.347218 + 0.143822i
\(687\) −17.3130 7.17126i −0.660530 0.273601i
\(688\) 7.51514 + 7.51514i 0.286512 + 0.286512i
\(689\) 5.06869 5.06869i 0.193102 0.193102i
\(690\) 0 0
\(691\) 5.35185 + 2.21681i 0.203594 + 0.0843314i 0.482150 0.876088i \(-0.339856\pi\)
−0.278556 + 0.960420i \(0.589856\pi\)
\(692\) 14.0286 5.81083i 0.533287 0.220895i
\(693\) 4.77676 0.181454
\(694\) 0.0325913 0.0134997i 0.00123715 0.000512443i
\(695\) 0 0
\(696\) 49.5113 1.87672
\(697\) 12.9027 + 12.3090i 0.488726 + 0.466236i
\(698\) 8.59600i 0.325363i
\(699\) −11.1732 11.1732i −0.422611 0.422611i
\(700\) 0 0
\(701\) 5.24783i 0.198208i 0.995077 + 0.0991039i \(0.0315976\pi\)
−0.995077 + 0.0991039i \(0.968402\pi\)
\(702\) −15.1914 + 6.29250i −0.573364 + 0.237495i
\(703\) 6.39979 15.4505i 0.241373 0.582726i
\(704\) 11.3713 27.4527i 0.428572 1.03466i
\(705\) 0 0
\(706\) 6.35837 6.35837i 0.239300 0.239300i
\(707\) 18.0833 + 7.49037i 0.680094 + 0.281704i
\(708\) −9.48025 + 22.8873i −0.356290 + 0.860159i
\(709\) −15.9798 38.5786i −0.600134 1.44885i −0.873444 0.486925i \(-0.838118\pi\)
0.273310 0.961926i \(-0.411882\pi\)
\(710\) 0 0
\(711\) 4.48398 1.85733i 0.168162 0.0696551i
\(712\) −5.58654 + 5.58654i −0.209364 + 0.209364i
\(713\) 21.5879i 0.808475i
\(714\) −49.8588 + 22.0414i −1.86592 + 0.824880i
\(715\) 0 0
\(716\) −0.293855 0.293855i −0.0109819 0.0109819i
\(717\) 9.98458 + 24.1049i 0.372881 + 0.900214i
\(718\) −15.7501 −0.587789
\(719\) −3.89643 9.40681i −0.145312 0.350815i 0.834419 0.551130i \(-0.185803\pi\)
−0.979731 + 0.200316i \(0.935803\pi\)
\(720\) 0 0
\(721\) 9.81608 23.6981i 0.365570 0.882564i
\(722\) 9.63199 + 9.63199i 0.358465 + 0.358465i
\(723\) 6.57164 + 6.57164i 0.244402 + 0.244402i
\(724\) −3.14022 + 7.58117i −0.116705 + 0.281752i
\(725\) 0 0
\(726\) 6.83172 + 16.4932i 0.253549 + 0.612121i
\(727\) 46.0182 1.70672 0.853361 0.521321i \(-0.174561\pi\)
0.853361 + 0.521321i \(0.174561\pi\)
\(728\) 6.21860 + 15.0130i 0.230477 + 0.556420i
\(729\) 21.1766 + 21.1766i 0.784317 + 0.784317i
\(730\) 0 0
\(731\) −28.4609 + 12.5819i −1.05266 + 0.465358i
\(732\) 1.34601i 0.0497498i
\(733\) −1.80962 + 1.80962i −0.0668398 + 0.0668398i −0.739736 0.672897i \(-0.765050\pi\)
0.672897 + 0.739736i \(0.265050\pi\)
\(734\) 50.0360 20.7256i 1.84686 0.764996i
\(735\) 0 0
\(736\) −13.1546 31.7580i −0.484885 1.17062i
\(737\) −6.87149 + 16.5892i −0.253114 + 0.611072i
\(738\) −5.04783 2.09088i −0.185813 0.0769664i
\(739\) −1.75127 + 1.75127i −0.0644215 + 0.0644215i −0.738583 0.674162i \(-0.764505\pi\)
0.674162 + 0.738583i \(0.264505\pi\)
\(740\) 0 0
\(741\) −2.74899 + 6.63666i −0.100987 + 0.243804i
\(742\) −18.3492 + 44.2989i −0.673621 + 1.62627i
\(743\) 1.47337 0.610291i 0.0540528 0.0223894i −0.355493 0.934679i \(-0.615687\pi\)
0.409546 + 0.912289i \(0.365687\pi\)
\(744\) 13.8149i 0.506478i
\(745\) 0 0
\(746\) −39.4646 39.4646i −1.44490 1.44490i
\(747\) 3.92957i 0.143776i
\(748\) −26.1551 24.9515i −0.956326 0.912317i
\(749\) 2.23222 0.0815636
\(750\) 0 0
\(751\) 11.7741 4.87697i 0.429641 0.177963i −0.157374 0.987539i \(-0.550303\pi\)
0.587015 + 0.809576i \(0.300303\pi\)
\(752\) 15.9580 0.581930
\(753\) 11.2696 4.66801i 0.410686 0.170112i
\(754\) 23.9713 + 9.92922i 0.872982 + 0.361601i
\(755\) 0 0
\(756\) 49.6535 49.6535i 1.80588 1.80588i
\(757\) −32.5674 32.5674i −1.18368 1.18368i −0.978783 0.204901i \(-0.934313\pi\)
−0.204901 0.978783i \(-0.565687\pi\)
\(758\) 6.47123 + 2.68047i 0.235046 + 0.0973592i
\(759\) −31.7940 13.1695i −1.15405 0.478023i
\(760\) 0 0
\(761\) 29.7003i 1.07664i 0.842742 + 0.538318i \(0.180940\pi\)
−0.842742 + 0.538318i \(0.819060\pi\)
\(762\) −8.35879 20.1799i −0.302807 0.731041i
\(763\) −15.6777 + 15.6777i −0.567571 + 0.567571i
\(764\) −51.7788 −1.87329
\(765\) 0 0
\(766\) −57.4385 −2.07534
\(767\) −3.98093 + 3.98093i −0.143743 + 0.143743i
\(768\) −14.3913 34.7437i −0.519301 1.25370i
\(769\) 43.8299i 1.58055i −0.612755 0.790273i \(-0.709939\pi\)
0.612755 0.790273i \(-0.290061\pi\)
\(770\) 0 0
\(771\) 11.6946 + 4.84408i 0.421172 + 0.174455i
\(772\) −27.3932 11.3466i −0.985904 0.408375i
\(773\) −19.7369 19.7369i −0.709887 0.709887i 0.256624 0.966511i \(-0.417390\pi\)
−0.966511 + 0.256624i \(0.917390\pi\)
\(774\) 6.74182 6.74182i 0.242330 0.242330i
\(775\) 0 0
\(776\) 32.6787 + 13.5359i 1.17310 + 0.485912i
\(777\) 23.8990 9.89930i 0.857372 0.355135i
\(778\) −3.97159 −0.142388
\(779\) −14.5218 + 6.01513i −0.520298 + 0.215515i
\(780\) 0 0
\(781\) −4.56247 −0.163258
\(782\) −85.6304 + 2.01670i −3.06214 + 0.0721170i
\(783\) 48.6224i 1.73762i
\(784\) −5.80684 5.80684i −0.207387 0.207387i
\(785\) 0 0
\(786\) 59.5010i 2.12233i
\(787\) −27.7373 + 11.4892i −0.988728 + 0.409544i −0.817652 0.575713i \(-0.804724\pi\)
−0.171076 + 0.985258i \(0.554724\pi\)
\(788\) −9.02954 + 21.7992i −0.321664 + 0.776566i
\(789\) 12.8071 30.9192i 0.455946 1.10075i
\(790\) 0 0
\(791\) 40.6781 40.6781i 1.44635 1.44635i
\(792\) 4.43740 + 1.83803i 0.157676 + 0.0653115i
\(793\) 0.117060 0.282607i 0.00415691 0.0100357i
\(794\) 28.3741 + 68.5012i 1.00696 + 2.43102i
\(795\) 0 0
\(796\) −61.5717 + 25.5038i −2.18235 + 0.903959i
\(797\) −3.65013 + 3.65013i −0.129294 + 0.129294i −0.768793 0.639498i \(-0.779142\pi\)
0.639498 + 0.768793i \(0.279142\pi\)
\(798\) 48.0509i 1.70099i
\(799\) −16.8591 + 43.5761i −0.596432 + 1.54161i
\(800\) 0 0
\(801\) 0.833123 + 0.833123i 0.0294370 + 0.0294370i
\(802\) 4.55963 + 11.0079i 0.161006 + 0.388704i
\(803\) −13.5861 −0.479445
\(804\) 15.3397 + 37.0333i 0.540990 + 1.30606i
\(805\) 0 0
\(806\) −2.77050 + 6.68857i −0.0975866 + 0.235595i
\(807\) −4.66278 4.66278i −0.164138 0.164138i
\(808\) 13.9164 + 13.9164i 0.489579 + 0.489579i
\(809\) −8.50871 + 20.5418i −0.299150 + 0.722213i 0.700810 + 0.713348i \(0.252822\pi\)
−0.999961 + 0.00886509i \(0.997178\pi\)
\(810\) 0 0
\(811\) −5.99450 14.4720i −0.210495 0.508181i 0.783004 0.622016i \(-0.213686\pi\)
−0.993500 + 0.113836i \(0.963686\pi\)
\(812\) −110.804 −3.88847
\(813\) −14.8421 35.8320i −0.520535 1.25668i
\(814\) 18.9983 + 18.9983i 0.665889 + 0.665889i
\(815\) 0 0
\(816\) −9.10941 + 0.214537i −0.318893 + 0.00751031i
\(817\) 27.4289i 0.959615i
\(818\) −43.4351 + 43.4351i −1.51867 + 1.51867i
\(819\) 2.23890 0.927383i 0.0782335 0.0324054i
\(820\) 0 0
\(821\) 13.3707 + 32.2797i 0.466640 + 1.12657i 0.965621 + 0.259955i \(0.0837077\pi\)
−0.498981 + 0.866613i \(0.666292\pi\)
\(822\) −24.1984 + 58.4201i −0.844017 + 2.03764i
\(823\) −2.25811 0.935339i −0.0787127 0.0326039i 0.342980 0.939343i \(-0.388564\pi\)
−0.421692 + 0.906739i \(0.638564\pi\)
\(824\) 18.2374 18.2374i 0.635330 0.635330i
\(825\) 0 0
\(826\) 14.4114 34.7923i 0.501438 1.21058i
\(827\) 19.4487 46.9533i 0.676298 1.63273i −0.0944054 0.995534i \(-0.530095\pi\)
0.770703 0.637194i \(-0.219905\pi\)
\(828\) 15.4796 6.41185i 0.537952 0.222827i
\(829\) 41.5846i 1.44429i 0.691740 + 0.722147i \(0.256844\pi\)
−0.691740 + 0.722147i \(0.743156\pi\)
\(830\) 0 0
\(831\) −22.2635 22.2635i −0.772313 0.772313i
\(832\) 15.0750i 0.522631i
\(833\) 21.9913 9.72184i 0.761952 0.336842i
\(834\) 7.87308 0.272623
\(835\) 0 0
\(836\) 29.4371 12.1933i 1.01810 0.421713i
\(837\) 13.5668 0.468939
\(838\) 15.8588 6.56894i 0.547834 0.226920i
\(839\) −4.10912 1.70205i −0.141863 0.0587614i 0.310623 0.950533i \(-0.399462\pi\)
−0.452485 + 0.891772i \(0.649462\pi\)
\(840\) 0 0
\(841\) −33.7456 + 33.7456i −1.16364 + 1.16364i
\(842\) −35.0311 35.0311i −1.20725 1.20725i
\(843\) 36.5090 + 15.1225i 1.25744 + 0.520848i
\(844\) −21.5977 8.94607i −0.743424 0.307936i
\(845\) 0 0
\(846\) 14.3159i 0.492191i
\(847\) −6.63027 16.0069i −0.227819 0.550004i
\(848\) −5.66721 + 5.66721i −0.194613 + 0.194613i
\(849\) 13.3184 0.457088
\(850\) 0 0
\(851\) 40.6451 1.39330
\(852\) −7.20198 + 7.20198i −0.246736 + 0.246736i
\(853\) −6.84491 16.5251i −0.234365 0.565808i 0.762317 0.647204i \(-0.224062\pi\)
−0.996682 + 0.0813967i \(0.974062\pi\)
\(854\) 2.04614i 0.0700174i
\(855\) 0 0
\(856\) 2.07363 + 0.858928i 0.0708754 + 0.0293575i
\(857\) 35.6234 + 14.7557i 1.21687 + 0.504045i 0.896414 0.443218i \(-0.146163\pi\)
0.320458 + 0.947263i \(0.396163\pi\)
\(858\) −8.16060 8.16060i −0.278598 0.278598i
\(859\) −2.48184 + 2.48184i −0.0846792 + 0.0846792i −0.748178 0.663498i \(-0.769071\pi\)
0.663498 + 0.748178i \(0.269071\pi\)
\(860\) 0 0
\(861\) −22.4626 9.30430i −0.765522 0.317090i
\(862\) 45.7243 18.9396i 1.55738 0.645086i
\(863\) 21.9552 0.747365 0.373683 0.927557i \(-0.378095\pi\)
0.373683 + 0.927557i \(0.378095\pi\)
\(864\) −19.9582 + 8.26695i −0.678991 + 0.281247i
\(865\) 0 0
\(866\) −87.3171 −2.96715
\(867\) 9.03793 25.1014i 0.306944 0.852490i
\(868\) 30.9171i 1.04940i
\(869\) 15.8618 + 15.8618i 0.538075 + 0.538075i
\(870\) 0 0
\(871\) 9.10956i 0.308666i
\(872\) −20.5964 + 8.53133i −0.697484 + 0.288907i
\(873\) 2.01862 4.87339i 0.0683200 0.164939i
\(874\) 28.8925 69.7528i 0.977305 2.35942i
\(875\) 0 0
\(876\) −21.4461 + 21.4461i −0.724596 + 0.724596i
\(877\) 5.22542 + 2.16444i 0.176450 + 0.0730879i 0.469159 0.883113i \(-0.344557\pi\)
−0.292710 + 0.956201i \(0.594557\pi\)
\(878\) 0.424209 1.02413i 0.0143164 0.0345628i
\(879\) 15.6071 + 37.6788i 0.526413 + 1.27087i
\(880\) 0 0
\(881\) 31.7736 13.1611i 1.07048 0.443407i 0.223320 0.974745i \(-0.428311\pi\)
0.847160 + 0.531338i \(0.178311\pi\)
\(882\) −5.20930 + 5.20930i −0.175406 + 0.175406i
\(883\) 58.3115i 1.96234i 0.193148 + 0.981170i \(0.438130\pi\)
−0.193148 + 0.981170i \(0.561870\pi\)
\(884\) −17.1033 6.61706i −0.575246 0.222556i
\(885\) 0 0
\(886\) −18.3349 18.3349i −0.615973 0.615973i
\(887\) 17.0299 + 41.1137i 0.571807 + 1.38046i 0.900015 + 0.435859i \(0.143555\pi\)
−0.328208 + 0.944605i \(0.606445\pi\)
\(888\) 26.0102 0.872846
\(889\) 8.11232 + 19.5849i 0.272078 + 0.656855i
\(890\) 0 0
\(891\) −6.74540 + 16.2848i −0.225979 + 0.545563i
\(892\) −7.34813 7.34813i −0.246034 0.246034i
\(893\) −29.1220 29.1220i −0.974529 0.974529i
\(894\) 26.1849 63.2159i 0.875754 2.11426i
\(895\) 0 0
\(896\) 27.9196 + 67.4038i 0.932727 + 2.25180i
\(897\) −17.4589 −0.582935
\(898\) −15.5375 37.5109i −0.518494 1.25175i
\(899\) −15.1376 15.1376i −0.504866 0.504866i
\(900\) 0 0
\(901\) −9.48808 21.4625i −0.316094 0.715019i
\(902\) 25.2527i 0.840824i
\(903\) 30.0007 30.0007i 0.998361 0.998361i
\(904\) 53.4405 22.1358i 1.77740 0.736225i
\(905\) 0 0
\(906\) 12.5888 + 30.3920i 0.418234 + 1.00971i
\(907\) 13.5365 32.6800i 0.449472 1.08512i −0.523048 0.852303i \(-0.675205\pi\)
0.972520 0.232819i \(-0.0747949\pi\)
\(908\) −70.2301 29.0903i −2.33067 0.965394i
\(909\) 2.07537 2.07537i 0.0688355 0.0688355i
\(910\) 0 0
\(911\) −18.8207 + 45.4373i −0.623559 + 1.50540i 0.223937 + 0.974604i \(0.428109\pi\)
−0.847496 + 0.530801i \(0.821891\pi\)
\(912\) 3.07361 7.42034i 0.101777 0.245712i
\(913\) −16.7795 + 6.95031i −0.555322 + 0.230022i
\(914\) 26.5004i 0.876554i
\(915\) 0 0
\(916\) 29.8176 + 29.8176i 0.985202 + 0.985202i
\(917\) 57.7465i 1.90696i
\(918\) 1.26738 + 53.8140i 0.0418299 + 1.77613i
\(919\) −49.6635 −1.63825 −0.819123 0.573618i \(-0.805540\pi\)
−0.819123 + 0.573618i \(0.805540\pi\)
\(920\) 0 0
\(921\) −24.5720 + 10.1781i −0.809676 + 0.335379i
\(922\) −70.5747 −2.32425
\(923\) −2.13846 + 0.885781i −0.0703884 + 0.0291558i
\(924\) 45.5338 + 18.8607i 1.49795 + 0.620472i
\(925\) 0 0
\(926\) 28.5366 28.5366i 0.937770 0.937770i
\(927\) −2.71975 2.71975i −0.0893284 0.0893284i
\(928\) 31.4929 + 13.0448i 1.03381 + 0.428216i
\(929\) 31.5196 + 13.0558i 1.03412 + 0.428348i 0.834199 0.551463i \(-0.185930\pi\)
0.199924 + 0.979811i \(0.435930\pi\)
\(930\) 0 0
\(931\) 21.1939i 0.694601i
\(932\) 13.6071 + 32.8505i 0.445716 + 1.07605i
\(933\) 19.0762 19.0762i 0.624528 0.624528i
\(934\) −62.5405 −2.04639
\(935\) 0 0
\(936\) 2.43668 0.0796455
\(937\) 27.2430 27.2430i 0.889991 0.889991i −0.104530 0.994522i \(-0.533334\pi\)
0.994522 + 0.104530i \(0.0333340\pi\)
\(938\) −23.3187 56.2964i −0.761383 1.83814i
\(939\) 9.28250i 0.302923i
\(940\) 0 0
\(941\) 34.3095 + 14.2115i 1.11846 + 0.463280i 0.863842 0.503762i \(-0.168051\pi\)
0.254615 + 0.967043i \(0.418051\pi\)
\(942\) 62.2074 + 25.7671i 2.02683 + 0.839539i
\(943\) −27.0130 27.0130i −0.879665 0.879665i
\(944\) 4.45102 4.45102i 0.144868 0.144868i
\(945\) 0 0
\(946\) 40.7124 + 16.8636i 1.32367 + 0.548283i
\(947\) 2.06130 0.853817i 0.0669832 0.0277453i −0.348940 0.937145i \(-0.613458\pi\)
0.415923 + 0.909400i \(0.363458\pi\)
\(948\) 50.0765 1.62641
\(949\) −6.36792 + 2.63768i −0.206712 + 0.0856227i
\(950\) 0 0
\(951\) 1.00528 0.0325986
\(952\) 53.1820 1.25250i 1.72364 0.0405938i
\(953\) 25.8280i 0.836651i −0.908297 0.418326i \(-0.862617\pi\)
0.908297 0.418326i \(-0.137383\pi\)
\(954\) 5.08404 + 5.08404i 0.164602 + 0.164602i
\(955\) 0 0
\(956\) 58.7114i 1.89886i
\(957\) 31.5286 13.0596i 1.01918 0.422157i
\(958\) −20.6199 + 49.7808i −0.666198 + 1.60834i
\(959\) 23.4849 56.6975i 0.758366 1.83086i
\(960\) 0 0
\(961\) −17.6966 + 17.6966i −0.570857 + 0.570857i
\(962\) 12.5930 + 5.21621i 0.406016 + 0.168177i
\(963\) 0.128092 0.309242i 0.00412772 0.00996519i
\(964\) −8.00314 19.3213i −0.257764 0.622297i
\(965\) 0 0
\(966\) 107.895 44.6914i 3.47145 1.43792i
\(967\) −22.2041 + 22.2041i −0.714035 + 0.714035i −0.967377 0.253341i \(-0.918470\pi\)
0.253341 + 0.967377i \(0.418470\pi\)
\(968\) 17.4209i 0.559930i
\(969\) 17.0153 + 16.2323i 0.546612 + 0.521457i
\(970\) 0 0
\(971\) 29.0808 + 29.0808i 0.933248 + 0.933248i 0.997907 0.0646590i \(-0.0205960\pi\)
−0.0646590 + 0.997907i \(0.520596\pi\)
\(972\) −7.44709 17.9789i −0.238865 0.576672i
\(973\) −7.64093 −0.244957
\(974\) −14.1427 34.1435i −0.453161 1.09403i
\(975\) 0 0
\(976\) −0.130882 + 0.315978i −0.00418944 + 0.0101142i
\(977\) −19.7205 19.7205i −0.630916 0.630916i 0.317382 0.948298i \(-0.397196\pi\)
−0.948298 + 0.317382i \(0.897196\pi\)
\(978\) −24.4420 24.4420i −0.781569 0.781569i
\(979\) −2.08393 + 5.03105i −0.0666026 + 0.160793i
\(980\) 0 0
\(981\) 1.27228 + 3.07156i 0.0406208 + 0.0980673i
\(982\) −2.02071 −0.0644836
\(983\) 21.6956 + 52.3778i 0.691982 + 1.67059i 0.740749 + 0.671782i \(0.234471\pi\)
−0.0487673 + 0.998810i \(0.515529\pi\)
\(984\) −17.2866 17.2866i −0.551075 0.551075i
\(985\) 0 0
\(986\) 58.6303 61.4585i 1.86717 1.95724i
\(987\) 63.7050i 2.02775i
\(988\) 11.4301 11.4301i 0.363641 0.363641i
\(989\) 61.5894 25.5112i 1.95843 0.811208i
\(990\) 0 0
\(991\) −13.7333 33.1551i −0.436252 1.05321i −0.977233 0.212171i \(-0.931947\pi\)
0.540980 0.841035i \(-0.318053\pi\)
\(992\) −3.63982 + 8.78730i −0.115564 + 0.278997i
\(993\) −16.9070 7.00310i −0.536526 0.222237i
\(994\) 10.9481 10.9481i 0.347253 0.347253i
\(995\) 0 0
\(996\) −15.5157 + 37.4581i −0.491633 + 1.18691i
\(997\) −12.6113 + 30.4465i −0.399405 + 0.964249i 0.588402 + 0.808568i \(0.299757\pi\)
−0.987807 + 0.155681i \(0.950243\pi\)
\(998\) −49.1930 + 20.3764i −1.55718 + 0.645004i
\(999\) 25.5433i 0.808153i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 425.2.n.c.274.1 24
5.2 odd 4 425.2.m.b.376.1 24
5.3 odd 4 85.2.l.a.36.6 yes 24
5.4 even 2 425.2.n.f.274.6 24
15.8 even 4 765.2.be.b.631.1 24
17.9 even 8 425.2.n.f.349.6 24
85.3 even 16 1445.2.a.p.1.12 12
85.9 even 8 inner 425.2.n.c.349.1 24
85.37 even 16 7225.2.a.bs.1.1 12
85.43 odd 8 85.2.l.a.26.6 24
85.48 even 16 1445.2.a.q.1.12 12
85.63 even 16 1445.2.d.j.866.1 24
85.73 even 16 1445.2.d.j.866.2 24
85.77 odd 8 425.2.m.b.26.1 24
85.82 even 16 7225.2.a.bq.1.1 12
255.128 even 8 765.2.be.b.451.1 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
85.2.l.a.26.6 24 85.43 odd 8
85.2.l.a.36.6 yes 24 5.3 odd 4
425.2.m.b.26.1 24 85.77 odd 8
425.2.m.b.376.1 24 5.2 odd 4
425.2.n.c.274.1 24 1.1 even 1 trivial
425.2.n.c.349.1 24 85.9 even 8 inner
425.2.n.f.274.6 24 5.4 even 2
425.2.n.f.349.6 24 17.9 even 8
765.2.be.b.451.1 24 255.128 even 8
765.2.be.b.631.1 24 15.8 even 4
1445.2.a.p.1.12 12 85.3 even 16
1445.2.a.q.1.12 12 85.48 even 16
1445.2.d.j.866.1 24 85.63 even 16
1445.2.d.j.866.2 24 85.73 even 16
7225.2.a.bq.1.1 12 85.82 even 16
7225.2.a.bs.1.1 12 85.37 even 16