Properties

Label 1449.4.a.j.1.1
Level $1449$
Weight $4$
Character 1449.1
Self dual yes
Analytic conductor $85.494$
Analytic rank $1$
Dimension $9$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1449,4,Mod(1,1449)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1449, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1449.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1449 = 3^{2} \cdot 7 \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1449.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(85.4937675983\)
Analytic rank: \(1\)
Dimension: \(9\)
Coefficient field: \(\mathbb{Q}[x]/(x^{9} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{9} - x^{8} - 51x^{7} + 34x^{6} + 861x^{5} - 401x^{4} - 5403x^{3} + 1772x^{2} + 8716x - 192 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 483)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-4.47249\) of defining polynomial
Character \(\chi\) \(=\) 1449.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-5.47249 q^{2} +21.9481 q^{4} -8.93744 q^{5} +7.00000 q^{7} -76.3311 q^{8} +48.9100 q^{10} +64.9462 q^{11} +34.6747 q^{13} -38.3074 q^{14} +242.136 q^{16} +30.9018 q^{17} -138.470 q^{19} -196.160 q^{20} -355.417 q^{22} +23.0000 q^{23} -45.1222 q^{25} -189.757 q^{26} +153.637 q^{28} -16.0755 q^{29} -142.943 q^{31} -714.437 q^{32} -169.110 q^{34} -62.5621 q^{35} +368.798 q^{37} +757.774 q^{38} +682.204 q^{40} +79.8823 q^{41} -441.379 q^{43} +1425.45 q^{44} -125.867 q^{46} -197.161 q^{47} +49.0000 q^{49} +246.931 q^{50} +761.046 q^{52} -38.9761 q^{53} -580.453 q^{55} -534.317 q^{56} +87.9728 q^{58} -854.084 q^{59} +435.416 q^{61} +782.257 q^{62} +1972.66 q^{64} -309.903 q^{65} -796.063 q^{67} +678.238 q^{68} +342.370 q^{70} +236.179 q^{71} +646.398 q^{73} -2018.25 q^{74} -3039.15 q^{76} +454.623 q^{77} -859.016 q^{79} -2164.07 q^{80} -437.155 q^{82} -821.976 q^{83} -276.183 q^{85} +2415.44 q^{86} -4957.41 q^{88} -576.608 q^{89} +242.723 q^{91} +504.807 q^{92} +1078.96 q^{94} +1237.56 q^{95} +1651.08 q^{97} -268.152 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 9 q - 8 q^{2} + 38 q^{4} - 39 q^{5} + 63 q^{7} - 135 q^{8} + 81 q^{10} - 38 q^{11} + 107 q^{13} - 56 q^{14} + 178 q^{16} - 170 q^{17} + 20 q^{19} - 300 q^{20} - 129 q^{22} + 207 q^{23} + 354 q^{25} + 114 q^{26}+ \cdots - 392 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −5.47249 −1.93482 −0.967409 0.253220i \(-0.918510\pi\)
−0.967409 + 0.253220i \(0.918510\pi\)
\(3\) 0 0
\(4\) 21.9481 2.74352
\(5\) −8.93744 −0.799389 −0.399694 0.916648i \(-0.630884\pi\)
−0.399694 + 0.916648i \(0.630884\pi\)
\(6\) 0 0
\(7\) 7.00000 0.377964
\(8\) −76.3311 −3.37339
\(9\) 0 0
\(10\) 48.9100 1.54667
\(11\) 64.9462 1.78018 0.890092 0.455782i \(-0.150640\pi\)
0.890092 + 0.455782i \(0.150640\pi\)
\(12\) 0 0
\(13\) 34.6747 0.739772 0.369886 0.929077i \(-0.379397\pi\)
0.369886 + 0.929077i \(0.379397\pi\)
\(14\) −38.3074 −0.731292
\(15\) 0 0
\(16\) 242.136 3.78337
\(17\) 30.9018 0.440870 0.220435 0.975402i \(-0.429252\pi\)
0.220435 + 0.975402i \(0.429252\pi\)
\(18\) 0 0
\(19\) −138.470 −1.67195 −0.835977 0.548765i \(-0.815098\pi\)
−0.835977 + 0.548765i \(0.815098\pi\)
\(20\) −196.160 −2.19314
\(21\) 0 0
\(22\) −355.417 −3.44433
\(23\) 23.0000 0.208514
\(24\) 0 0
\(25\) −45.1222 −0.360978
\(26\) −189.757 −1.43132
\(27\) 0 0
\(28\) 153.637 1.03695
\(29\) −16.0755 −0.102936 −0.0514679 0.998675i \(-0.516390\pi\)
−0.0514679 + 0.998675i \(0.516390\pi\)
\(30\) 0 0
\(31\) −142.943 −0.828174 −0.414087 0.910237i \(-0.635899\pi\)
−0.414087 + 0.910237i \(0.635899\pi\)
\(32\) −714.437 −3.94675
\(33\) 0 0
\(34\) −169.110 −0.853003
\(35\) −62.5621 −0.302141
\(36\) 0 0
\(37\) 368.798 1.63865 0.819325 0.573329i \(-0.194348\pi\)
0.819325 + 0.573329i \(0.194348\pi\)
\(38\) 757.774 3.23493
\(39\) 0 0
\(40\) 682.204 2.69665
\(41\) 79.8823 0.304281 0.152140 0.988359i \(-0.451383\pi\)
0.152140 + 0.988359i \(0.451383\pi\)
\(42\) 0 0
\(43\) −441.379 −1.56534 −0.782670 0.622437i \(-0.786143\pi\)
−0.782670 + 0.622437i \(0.786143\pi\)
\(44\) 1425.45 4.88396
\(45\) 0 0
\(46\) −125.867 −0.403437
\(47\) −197.161 −0.611893 −0.305946 0.952049i \(-0.598973\pi\)
−0.305946 + 0.952049i \(0.598973\pi\)
\(48\) 0 0
\(49\) 49.0000 0.142857
\(50\) 246.931 0.698426
\(51\) 0 0
\(52\) 761.046 2.02958
\(53\) −38.9761 −0.101015 −0.0505073 0.998724i \(-0.516084\pi\)
−0.0505073 + 0.998724i \(0.516084\pi\)
\(54\) 0 0
\(55\) −580.453 −1.42306
\(56\) −534.317 −1.27502
\(57\) 0 0
\(58\) 87.9728 0.199162
\(59\) −854.084 −1.88461 −0.942307 0.334750i \(-0.891348\pi\)
−0.942307 + 0.334750i \(0.891348\pi\)
\(60\) 0 0
\(61\) 435.416 0.913923 0.456962 0.889486i \(-0.348938\pi\)
0.456962 + 0.889486i \(0.348938\pi\)
\(62\) 782.257 1.60237
\(63\) 0 0
\(64\) 1972.66 3.85286
\(65\) −309.903 −0.591366
\(66\) 0 0
\(67\) −796.063 −1.45156 −0.725781 0.687926i \(-0.758521\pi\)
−0.725781 + 0.687926i \(0.758521\pi\)
\(68\) 678.238 1.20954
\(69\) 0 0
\(70\) 342.370 0.584587
\(71\) 236.179 0.394779 0.197389 0.980325i \(-0.436754\pi\)
0.197389 + 0.980325i \(0.436754\pi\)
\(72\) 0 0
\(73\) 646.398 1.03637 0.518186 0.855268i \(-0.326608\pi\)
0.518186 + 0.855268i \(0.326608\pi\)
\(74\) −2018.25 −3.17049
\(75\) 0 0
\(76\) −3039.15 −4.58704
\(77\) 454.623 0.672846
\(78\) 0 0
\(79\) −859.016 −1.22338 −0.611689 0.791098i \(-0.709510\pi\)
−0.611689 + 0.791098i \(0.709510\pi\)
\(80\) −2164.07 −3.02439
\(81\) 0 0
\(82\) −437.155 −0.588728
\(83\) −821.976 −1.08703 −0.543516 0.839399i \(-0.682907\pi\)
−0.543516 + 0.839399i \(0.682907\pi\)
\(84\) 0 0
\(85\) −276.183 −0.352427
\(86\) 2415.44 3.02865
\(87\) 0 0
\(88\) −4957.41 −6.00525
\(89\) −576.608 −0.686745 −0.343373 0.939199i \(-0.611569\pi\)
−0.343373 + 0.939199i \(0.611569\pi\)
\(90\) 0 0
\(91\) 242.723 0.279608
\(92\) 504.807 0.572063
\(93\) 0 0
\(94\) 1078.96 1.18390
\(95\) 1237.56 1.33654
\(96\) 0 0
\(97\) 1651.08 1.72826 0.864131 0.503268i \(-0.167869\pi\)
0.864131 + 0.503268i \(0.167869\pi\)
\(98\) −268.152 −0.276402
\(99\) 0 0
\(100\) −990.349 −0.990349
\(101\) 1177.39 1.15995 0.579974 0.814635i \(-0.303063\pi\)
0.579974 + 0.814635i \(0.303063\pi\)
\(102\) 0 0
\(103\) 1358.79 1.29986 0.649930 0.759994i \(-0.274798\pi\)
0.649930 + 0.759994i \(0.274798\pi\)
\(104\) −2646.76 −2.49554
\(105\) 0 0
\(106\) 213.296 0.195445
\(107\) 550.175 0.497079 0.248539 0.968622i \(-0.420049\pi\)
0.248539 + 0.968622i \(0.420049\pi\)
\(108\) 0 0
\(109\) −996.931 −0.876042 −0.438021 0.898965i \(-0.644321\pi\)
−0.438021 + 0.898965i \(0.644321\pi\)
\(110\) 3176.52 2.75336
\(111\) 0 0
\(112\) 1694.95 1.42998
\(113\) −1890.29 −1.57366 −0.786828 0.617172i \(-0.788278\pi\)
−0.786828 + 0.617172i \(0.788278\pi\)
\(114\) 0 0
\(115\) −205.561 −0.166684
\(116\) −352.827 −0.282406
\(117\) 0 0
\(118\) 4673.96 3.64638
\(119\) 216.313 0.166633
\(120\) 0 0
\(121\) 2887.01 2.16905
\(122\) −2382.81 −1.76827
\(123\) 0 0
\(124\) −3137.34 −2.27211
\(125\) 1520.46 1.08795
\(126\) 0 0
\(127\) −2062.71 −1.44123 −0.720613 0.693337i \(-0.756140\pi\)
−0.720613 + 0.693337i \(0.756140\pi\)
\(128\) −5079.89 −3.50783
\(129\) 0 0
\(130\) 1695.94 1.14418
\(131\) 1112.85 0.742218 0.371109 0.928589i \(-0.378978\pi\)
0.371109 + 0.928589i \(0.378978\pi\)
\(132\) 0 0
\(133\) −969.288 −0.631939
\(134\) 4356.45 2.80851
\(135\) 0 0
\(136\) −2358.77 −1.48723
\(137\) 456.121 0.284446 0.142223 0.989835i \(-0.454575\pi\)
0.142223 + 0.989835i \(0.454575\pi\)
\(138\) 0 0
\(139\) 618.754 0.377569 0.188784 0.982019i \(-0.439545\pi\)
0.188784 + 0.982019i \(0.439545\pi\)
\(140\) −1373.12 −0.828928
\(141\) 0 0
\(142\) −1292.49 −0.763824
\(143\) 2251.99 1.31693
\(144\) 0 0
\(145\) 143.674 0.0822858
\(146\) −3537.40 −2.00519
\(147\) 0 0
\(148\) 8094.44 4.49567
\(149\) −191.696 −0.105398 −0.0526992 0.998610i \(-0.516782\pi\)
−0.0526992 + 0.998610i \(0.516782\pi\)
\(150\) 0 0
\(151\) −1503.50 −0.810288 −0.405144 0.914253i \(-0.632779\pi\)
−0.405144 + 0.914253i \(0.632779\pi\)
\(152\) 10569.5 5.64015
\(153\) 0 0
\(154\) −2487.92 −1.30183
\(155\) 1277.55 0.662033
\(156\) 0 0
\(157\) −1360.53 −0.691605 −0.345803 0.938307i \(-0.612393\pi\)
−0.345803 + 0.938307i \(0.612393\pi\)
\(158\) 4700.96 2.36701
\(159\) 0 0
\(160\) 6385.24 3.15498
\(161\) 161.000 0.0788110
\(162\) 0 0
\(163\) 2283.61 1.09734 0.548670 0.836039i \(-0.315134\pi\)
0.548670 + 0.836039i \(0.315134\pi\)
\(164\) 1753.27 0.834800
\(165\) 0 0
\(166\) 4498.26 2.10321
\(167\) 970.287 0.449599 0.224800 0.974405i \(-0.427827\pi\)
0.224800 + 0.974405i \(0.427827\pi\)
\(168\) 0 0
\(169\) −994.664 −0.452737
\(170\) 1511.41 0.681881
\(171\) 0 0
\(172\) −9687.45 −4.29454
\(173\) 2175.48 0.956062 0.478031 0.878343i \(-0.341351\pi\)
0.478031 + 0.878343i \(0.341351\pi\)
\(174\) 0 0
\(175\) −315.855 −0.136437
\(176\) 15725.8 6.73510
\(177\) 0 0
\(178\) 3155.48 1.32873
\(179\) −3254.30 −1.35887 −0.679435 0.733736i \(-0.737775\pi\)
−0.679435 + 0.733736i \(0.737775\pi\)
\(180\) 0 0
\(181\) 1147.73 0.471325 0.235663 0.971835i \(-0.424274\pi\)
0.235663 + 0.971835i \(0.424274\pi\)
\(182\) −1328.30 −0.540990
\(183\) 0 0
\(184\) −1755.61 −0.703400
\(185\) −3296.11 −1.30992
\(186\) 0 0
\(187\) 2006.96 0.784830
\(188\) −4327.33 −1.67874
\(189\) 0 0
\(190\) −6772.56 −2.58596
\(191\) 865.071 0.327719 0.163859 0.986484i \(-0.447606\pi\)
0.163859 + 0.986484i \(0.447606\pi\)
\(192\) 0 0
\(193\) −2005.48 −0.747969 −0.373984 0.927435i \(-0.622009\pi\)
−0.373984 + 0.927435i \(0.622009\pi\)
\(194\) −9035.49 −3.34387
\(195\) 0 0
\(196\) 1075.46 0.391931
\(197\) 218.707 0.0790975 0.0395488 0.999218i \(-0.487408\pi\)
0.0395488 + 0.999218i \(0.487408\pi\)
\(198\) 0 0
\(199\) −273.538 −0.0974401 −0.0487201 0.998812i \(-0.515514\pi\)
−0.0487201 + 0.998812i \(0.515514\pi\)
\(200\) 3444.23 1.21772
\(201\) 0 0
\(202\) −6443.26 −2.24429
\(203\) −112.528 −0.0389061
\(204\) 0 0
\(205\) −713.943 −0.243239
\(206\) −7435.96 −2.51499
\(207\) 0 0
\(208\) 8395.99 2.79883
\(209\) −8993.08 −2.97638
\(210\) 0 0
\(211\) 899.743 0.293559 0.146779 0.989169i \(-0.453109\pi\)
0.146779 + 0.989169i \(0.453109\pi\)
\(212\) −855.453 −0.277136
\(213\) 0 0
\(214\) −3010.83 −0.961756
\(215\) 3944.80 1.25132
\(216\) 0 0
\(217\) −1000.60 −0.313020
\(218\) 5455.69 1.69498
\(219\) 0 0
\(220\) −12739.9 −3.90419
\(221\) 1071.51 0.326144
\(222\) 0 0
\(223\) −827.023 −0.248348 −0.124174 0.992260i \(-0.539628\pi\)
−0.124174 + 0.992260i \(0.539628\pi\)
\(224\) −5001.06 −1.49173
\(225\) 0 0
\(226\) 10344.6 3.04474
\(227\) 3323.67 0.971806 0.485903 0.874013i \(-0.338491\pi\)
0.485903 + 0.874013i \(0.338491\pi\)
\(228\) 0 0
\(229\) 4620.63 1.33336 0.666681 0.745343i \(-0.267714\pi\)
0.666681 + 0.745343i \(0.267714\pi\)
\(230\) 1124.93 0.322503
\(231\) 0 0
\(232\) 1227.06 0.347243
\(233\) 2523.32 0.709478 0.354739 0.934965i \(-0.384570\pi\)
0.354739 + 0.934965i \(0.384570\pi\)
\(234\) 0 0
\(235\) 1762.12 0.489140
\(236\) −18745.5 −5.17047
\(237\) 0 0
\(238\) −1183.77 −0.322405
\(239\) −4250.48 −1.15038 −0.575190 0.818020i \(-0.695072\pi\)
−0.575190 + 0.818020i \(0.695072\pi\)
\(240\) 0 0
\(241\) −7054.93 −1.88568 −0.942838 0.333250i \(-0.891855\pi\)
−0.942838 + 0.333250i \(0.891855\pi\)
\(242\) −15799.1 −4.19672
\(243\) 0 0
\(244\) 9556.58 2.50736
\(245\) −437.934 −0.114198
\(246\) 0 0
\(247\) −4801.40 −1.23686
\(248\) 10911.0 2.79375
\(249\) 0 0
\(250\) −8320.68 −2.10498
\(251\) −5829.72 −1.46601 −0.733005 0.680223i \(-0.761883\pi\)
−0.733005 + 0.680223i \(0.761883\pi\)
\(252\) 0 0
\(253\) 1493.76 0.371194
\(254\) 11288.2 2.78851
\(255\) 0 0
\(256\) 12018.3 2.93416
\(257\) 1639.22 0.397866 0.198933 0.980013i \(-0.436252\pi\)
0.198933 + 0.980013i \(0.436252\pi\)
\(258\) 0 0
\(259\) 2581.59 0.619352
\(260\) −6801.80 −1.62242
\(261\) 0 0
\(262\) −6090.09 −1.43606
\(263\) 273.365 0.0640927 0.0320464 0.999486i \(-0.489798\pi\)
0.0320464 + 0.999486i \(0.489798\pi\)
\(264\) 0 0
\(265\) 348.346 0.0807500
\(266\) 5304.42 1.22269
\(267\) 0 0
\(268\) −17472.1 −3.98238
\(269\) −7443.39 −1.68711 −0.843553 0.537046i \(-0.819540\pi\)
−0.843553 + 0.537046i \(0.819540\pi\)
\(270\) 0 0
\(271\) 3102.28 0.695388 0.347694 0.937608i \(-0.386965\pi\)
0.347694 + 0.937608i \(0.386965\pi\)
\(272\) 7482.44 1.66798
\(273\) 0 0
\(274\) −2496.12 −0.550350
\(275\) −2930.52 −0.642606
\(276\) 0 0
\(277\) 2151.15 0.466608 0.233304 0.972404i \(-0.425046\pi\)
0.233304 + 0.972404i \(0.425046\pi\)
\(278\) −3386.13 −0.730527
\(279\) 0 0
\(280\) 4775.43 1.01924
\(281\) −664.784 −0.141131 −0.0705653 0.997507i \(-0.522480\pi\)
−0.0705653 + 0.997507i \(0.522480\pi\)
\(282\) 0 0
\(283\) 2923.45 0.614067 0.307033 0.951699i \(-0.400664\pi\)
0.307033 + 0.951699i \(0.400664\pi\)
\(284\) 5183.69 1.08308
\(285\) 0 0
\(286\) −12324.0 −2.54802
\(287\) 559.176 0.115007
\(288\) 0 0
\(289\) −3958.08 −0.805633
\(290\) −786.252 −0.159208
\(291\) 0 0
\(292\) 14187.2 2.84330
\(293\) 1765.02 0.351924 0.175962 0.984397i \(-0.443696\pi\)
0.175962 + 0.984397i \(0.443696\pi\)
\(294\) 0 0
\(295\) 7633.32 1.50654
\(296\) −28150.8 −5.52781
\(297\) 0 0
\(298\) 1049.06 0.203927
\(299\) 797.519 0.154253
\(300\) 0 0
\(301\) −3089.65 −0.591643
\(302\) 8227.91 1.56776
\(303\) 0 0
\(304\) −33528.5 −6.32562
\(305\) −3891.50 −0.730580
\(306\) 0 0
\(307\) −4091.63 −0.760657 −0.380328 0.924852i \(-0.624189\pi\)
−0.380328 + 0.924852i \(0.624189\pi\)
\(308\) 9978.14 1.84596
\(309\) 0 0
\(310\) −6991.37 −1.28091
\(311\) −2508.33 −0.457346 −0.228673 0.973503i \(-0.573439\pi\)
−0.228673 + 0.973503i \(0.573439\pi\)
\(312\) 0 0
\(313\) −2276.71 −0.411142 −0.205571 0.978642i \(-0.565905\pi\)
−0.205571 + 0.978642i \(0.565905\pi\)
\(314\) 7445.48 1.33813
\(315\) 0 0
\(316\) −18853.8 −3.35636
\(317\) −2282.31 −0.404377 −0.202188 0.979347i \(-0.564805\pi\)
−0.202188 + 0.979347i \(0.564805\pi\)
\(318\) 0 0
\(319\) −1044.04 −0.183245
\(320\) −17630.6 −3.07993
\(321\) 0 0
\(322\) −881.071 −0.152485
\(323\) −4278.97 −0.737115
\(324\) 0 0
\(325\) −1564.60 −0.267041
\(326\) −12497.0 −2.12315
\(327\) 0 0
\(328\) −6097.50 −1.02646
\(329\) −1380.13 −0.231274
\(330\) 0 0
\(331\) −6834.36 −1.13490 −0.567448 0.823409i \(-0.692069\pi\)
−0.567448 + 0.823409i \(0.692069\pi\)
\(332\) −18040.9 −2.98229
\(333\) 0 0
\(334\) −5309.89 −0.869892
\(335\) 7114.76 1.16036
\(336\) 0 0
\(337\) −2946.37 −0.476258 −0.238129 0.971234i \(-0.576534\pi\)
−0.238129 + 0.971234i \(0.576534\pi\)
\(338\) 5443.29 0.875964
\(339\) 0 0
\(340\) −6061.71 −0.966889
\(341\) −9283.63 −1.47430
\(342\) 0 0
\(343\) 343.000 0.0539949
\(344\) 33690.9 5.28050
\(345\) 0 0
\(346\) −11905.3 −1.84981
\(347\) −10980.7 −1.69878 −0.849391 0.527764i \(-0.823030\pi\)
−0.849391 + 0.527764i \(0.823030\pi\)
\(348\) 0 0
\(349\) −1299.92 −0.199379 −0.0996894 0.995019i \(-0.531785\pi\)
−0.0996894 + 0.995019i \(0.531785\pi\)
\(350\) 1728.52 0.263980
\(351\) 0 0
\(352\) −46400.0 −7.02593
\(353\) 5177.82 0.780702 0.390351 0.920666i \(-0.372354\pi\)
0.390351 + 0.920666i \(0.372354\pi\)
\(354\) 0 0
\(355\) −2110.83 −0.315582
\(356\) −12655.5 −1.88410
\(357\) 0 0
\(358\) 17809.1 2.62916
\(359\) −11913.7 −1.75148 −0.875740 0.482784i \(-0.839626\pi\)
−0.875740 + 0.482784i \(0.839626\pi\)
\(360\) 0 0
\(361\) 12314.9 1.79543
\(362\) −6280.93 −0.911929
\(363\) 0 0
\(364\) 5327.32 0.767108
\(365\) −5777.14 −0.828464
\(366\) 0 0
\(367\) 2003.44 0.284956 0.142478 0.989798i \(-0.454493\pi\)
0.142478 + 0.989798i \(0.454493\pi\)
\(368\) 5569.12 0.788888
\(369\) 0 0
\(370\) 18037.9 2.53445
\(371\) −272.833 −0.0381800
\(372\) 0 0
\(373\) 5882.77 0.816618 0.408309 0.912844i \(-0.366119\pi\)
0.408309 + 0.912844i \(0.366119\pi\)
\(374\) −10983.0 −1.51850
\(375\) 0 0
\(376\) 15049.5 2.06415
\(377\) −557.412 −0.0761491
\(378\) 0 0
\(379\) −11601.1 −1.57232 −0.786162 0.618020i \(-0.787935\pi\)
−0.786162 + 0.618020i \(0.787935\pi\)
\(380\) 27162.2 3.66682
\(381\) 0 0
\(382\) −4734.09 −0.634076
\(383\) 1653.63 0.220618 0.110309 0.993897i \(-0.464816\pi\)
0.110309 + 0.993897i \(0.464816\pi\)
\(384\) 0 0
\(385\) −4063.17 −0.537865
\(386\) 10975.0 1.44718
\(387\) 0 0
\(388\) 36238.0 4.74152
\(389\) 11585.3 1.51002 0.755008 0.655716i \(-0.227633\pi\)
0.755008 + 0.655716i \(0.227633\pi\)
\(390\) 0 0
\(391\) 710.742 0.0919278
\(392\) −3740.22 −0.481913
\(393\) 0 0
\(394\) −1196.87 −0.153039
\(395\) 7677.41 0.977955
\(396\) 0 0
\(397\) −2639.48 −0.333682 −0.166841 0.985984i \(-0.553357\pi\)
−0.166841 + 0.985984i \(0.553357\pi\)
\(398\) 1496.93 0.188529
\(399\) 0 0
\(400\) −10925.7 −1.36571
\(401\) −2043.37 −0.254466 −0.127233 0.991873i \(-0.540610\pi\)
−0.127233 + 0.991873i \(0.540610\pi\)
\(402\) 0 0
\(403\) −4956.52 −0.612660
\(404\) 25841.5 3.18234
\(405\) 0 0
\(406\) 615.810 0.0752762
\(407\) 23952.0 2.91710
\(408\) 0 0
\(409\) 2054.04 0.248327 0.124163 0.992262i \(-0.460375\pi\)
0.124163 + 0.992262i \(0.460375\pi\)
\(410\) 3907.04 0.470622
\(411\) 0 0
\(412\) 29822.9 3.56619
\(413\) −5978.59 −0.712317
\(414\) 0 0
\(415\) 7346.36 0.868961
\(416\) −24772.9 −2.91969
\(417\) 0 0
\(418\) 49214.5 5.75876
\(419\) 3741.09 0.436191 0.218095 0.975927i \(-0.430016\pi\)
0.218095 + 0.975927i \(0.430016\pi\)
\(420\) 0 0
\(421\) −7830.25 −0.906468 −0.453234 0.891392i \(-0.649730\pi\)
−0.453234 + 0.891392i \(0.649730\pi\)
\(422\) −4923.83 −0.567982
\(423\) 0 0
\(424\) 2975.09 0.340762
\(425\) −1394.36 −0.159144
\(426\) 0 0
\(427\) 3047.91 0.345431
\(428\) 12075.3 1.36374
\(429\) 0 0
\(430\) −21587.9 −2.42107
\(431\) −14614.5 −1.63331 −0.816654 0.577128i \(-0.804173\pi\)
−0.816654 + 0.577128i \(0.804173\pi\)
\(432\) 0 0
\(433\) −1920.46 −0.213144 −0.106572 0.994305i \(-0.533987\pi\)
−0.106572 + 0.994305i \(0.533987\pi\)
\(434\) 5475.80 0.605637
\(435\) 0 0
\(436\) −21880.8 −2.40344
\(437\) −3184.80 −0.348626
\(438\) 0 0
\(439\) 4703.07 0.511310 0.255655 0.966768i \(-0.417709\pi\)
0.255655 + 0.966768i \(0.417709\pi\)
\(440\) 44306.6 4.80053
\(441\) 0 0
\(442\) −5863.84 −0.631028
\(443\) −5855.09 −0.627954 −0.313977 0.949431i \(-0.601662\pi\)
−0.313977 + 0.949431i \(0.601662\pi\)
\(444\) 0 0
\(445\) 5153.40 0.548976
\(446\) 4525.87 0.480507
\(447\) 0 0
\(448\) 13808.6 1.45624
\(449\) −14581.6 −1.53262 −0.766312 0.642469i \(-0.777910\pi\)
−0.766312 + 0.642469i \(0.777910\pi\)
\(450\) 0 0
\(451\) 5188.05 0.541676
\(452\) −41488.3 −4.31735
\(453\) 0 0
\(454\) −18188.8 −1.88027
\(455\) −2169.32 −0.223515
\(456\) 0 0
\(457\) −1552.87 −0.158950 −0.0794752 0.996837i \(-0.525324\pi\)
−0.0794752 + 0.996837i \(0.525324\pi\)
\(458\) −25286.4 −2.57981
\(459\) 0 0
\(460\) −4511.68 −0.457301
\(461\) −11609.2 −1.17287 −0.586436 0.809996i \(-0.699469\pi\)
−0.586436 + 0.809996i \(0.699469\pi\)
\(462\) 0 0
\(463\) −15818.5 −1.58779 −0.793897 0.608053i \(-0.791951\pi\)
−0.793897 + 0.608053i \(0.791951\pi\)
\(464\) −3892.45 −0.389445
\(465\) 0 0
\(466\) −13808.9 −1.37271
\(467\) −11797.8 −1.16903 −0.584516 0.811382i \(-0.698715\pi\)
−0.584516 + 0.811382i \(0.698715\pi\)
\(468\) 0 0
\(469\) −5572.44 −0.548639
\(470\) −9643.17 −0.946397
\(471\) 0 0
\(472\) 65193.1 6.35753
\(473\) −28665.9 −2.78659
\(474\) 0 0
\(475\) 6248.06 0.603538
\(476\) 4747.66 0.457161
\(477\) 0 0
\(478\) 23260.7 2.22578
\(479\) 9158.14 0.873582 0.436791 0.899563i \(-0.356115\pi\)
0.436791 + 0.899563i \(0.356115\pi\)
\(480\) 0 0
\(481\) 12788.0 1.21223
\(482\) 38608.0 3.64844
\(483\) 0 0
\(484\) 63364.5 5.95083
\(485\) −14756.4 −1.38155
\(486\) 0 0
\(487\) 16332.9 1.51974 0.759871 0.650074i \(-0.225262\pi\)
0.759871 + 0.650074i \(0.225262\pi\)
\(488\) −33235.8 −3.08302
\(489\) 0 0
\(490\) 2396.59 0.220953
\(491\) −17333.9 −1.59321 −0.796607 0.604498i \(-0.793374\pi\)
−0.796607 + 0.604498i \(0.793374\pi\)
\(492\) 0 0
\(493\) −496.761 −0.0453814
\(494\) 26275.6 2.39311
\(495\) 0 0
\(496\) −34611.7 −3.13329
\(497\) 1653.25 0.149212
\(498\) 0 0
\(499\) 9399.30 0.843227 0.421614 0.906776i \(-0.361464\pi\)
0.421614 + 0.906776i \(0.361464\pi\)
\(500\) 33371.2 2.98481
\(501\) 0 0
\(502\) 31903.1 2.83646
\(503\) −16313.9 −1.44612 −0.723062 0.690783i \(-0.757266\pi\)
−0.723062 + 0.690783i \(0.757266\pi\)
\(504\) 0 0
\(505\) −10522.9 −0.927249
\(506\) −8174.60 −0.718192
\(507\) 0 0
\(508\) −45272.6 −3.95403
\(509\) −14553.0 −1.26729 −0.633643 0.773626i \(-0.718441\pi\)
−0.633643 + 0.773626i \(0.718441\pi\)
\(510\) 0 0
\(511\) 4524.78 0.391712
\(512\) −25131.0 −2.16922
\(513\) 0 0
\(514\) −8970.59 −0.769797
\(515\) −12144.1 −1.03909
\(516\) 0 0
\(517\) −12804.9 −1.08928
\(518\) −14127.7 −1.19833
\(519\) 0 0
\(520\) 23655.2 1.99491
\(521\) −3658.55 −0.307647 −0.153823 0.988098i \(-0.549159\pi\)
−0.153823 + 0.988098i \(0.549159\pi\)
\(522\) 0 0
\(523\) 9660.17 0.807667 0.403834 0.914832i \(-0.367677\pi\)
0.403834 + 0.914832i \(0.367677\pi\)
\(524\) 24425.1 2.03629
\(525\) 0 0
\(526\) −1495.99 −0.124008
\(527\) −4417.21 −0.365117
\(528\) 0 0
\(529\) 529.000 0.0434783
\(530\) −1906.32 −0.156236
\(531\) 0 0
\(532\) −21274.1 −1.73374
\(533\) 2769.90 0.225098
\(534\) 0 0
\(535\) −4917.15 −0.397359
\(536\) 60764.4 4.89668
\(537\) 0 0
\(538\) 40733.9 3.26424
\(539\) 3182.36 0.254312
\(540\) 0 0
\(541\) −11525.7 −0.915950 −0.457975 0.888965i \(-0.651425\pi\)
−0.457975 + 0.888965i \(0.651425\pi\)
\(542\) −16977.2 −1.34545
\(543\) 0 0
\(544\) −22077.4 −1.74000
\(545\) 8910.00 0.700298
\(546\) 0 0
\(547\) −18887.0 −1.47633 −0.738163 0.674623i \(-0.764306\pi\)
−0.738163 + 0.674623i \(0.764306\pi\)
\(548\) 10011.0 0.780381
\(549\) 0 0
\(550\) 16037.2 1.24333
\(551\) 2225.97 0.172104
\(552\) 0 0
\(553\) −6013.11 −0.462394
\(554\) −11772.2 −0.902801
\(555\) 0 0
\(556\) 13580.5 1.03587
\(557\) 13486.0 1.02589 0.512943 0.858423i \(-0.328555\pi\)
0.512943 + 0.858423i \(0.328555\pi\)
\(558\) 0 0
\(559\) −15304.7 −1.15800
\(560\) −15148.5 −1.14311
\(561\) 0 0
\(562\) 3638.02 0.273062
\(563\) 16192.7 1.21215 0.606075 0.795408i \(-0.292743\pi\)
0.606075 + 0.795408i \(0.292743\pi\)
\(564\) 0 0
\(565\) 16894.3 1.25796
\(566\) −15998.5 −1.18811
\(567\) 0 0
\(568\) −18027.8 −1.33174
\(569\) −9293.58 −0.684722 −0.342361 0.939568i \(-0.611227\pi\)
−0.342361 + 0.939568i \(0.611227\pi\)
\(570\) 0 0
\(571\) 15286.5 1.12035 0.560175 0.828374i \(-0.310734\pi\)
0.560175 + 0.828374i \(0.310734\pi\)
\(572\) 49427.0 3.61302
\(573\) 0 0
\(574\) −3060.08 −0.222518
\(575\) −1037.81 −0.0752690
\(576\) 0 0
\(577\) −10993.2 −0.793161 −0.396581 0.918000i \(-0.629803\pi\)
−0.396581 + 0.918000i \(0.629803\pi\)
\(578\) 21660.5 1.55875
\(579\) 0 0
\(580\) 3153.37 0.225752
\(581\) −5753.83 −0.410859
\(582\) 0 0
\(583\) −2531.35 −0.179825
\(584\) −49340.2 −3.49608
\(585\) 0 0
\(586\) −9659.06 −0.680908
\(587\) 5939.95 0.417663 0.208831 0.977952i \(-0.433034\pi\)
0.208831 + 0.977952i \(0.433034\pi\)
\(588\) 0 0
\(589\) 19793.3 1.38467
\(590\) −41773.3 −2.91488
\(591\) 0 0
\(592\) 89299.3 6.19963
\(593\) 11704.3 0.810518 0.405259 0.914202i \(-0.367181\pi\)
0.405259 + 0.914202i \(0.367181\pi\)
\(594\) 0 0
\(595\) −1933.28 −0.133205
\(596\) −4207.37 −0.289162
\(597\) 0 0
\(598\) −4364.41 −0.298452
\(599\) 3212.92 0.219159 0.109580 0.993978i \(-0.465050\pi\)
0.109580 + 0.993978i \(0.465050\pi\)
\(600\) 0 0
\(601\) 24141.0 1.63849 0.819246 0.573442i \(-0.194392\pi\)
0.819246 + 0.573442i \(0.194392\pi\)
\(602\) 16908.1 1.14472
\(603\) 0 0
\(604\) −32999.1 −2.22304
\(605\) −25802.5 −1.73392
\(606\) 0 0
\(607\) −8240.03 −0.550993 −0.275496 0.961302i \(-0.588842\pi\)
−0.275496 + 0.961302i \(0.588842\pi\)
\(608\) 98927.9 6.59878
\(609\) 0 0
\(610\) 21296.2 1.41354
\(611\) −6836.52 −0.452661
\(612\) 0 0
\(613\) −24760.8 −1.63145 −0.815726 0.578438i \(-0.803662\pi\)
−0.815726 + 0.578438i \(0.803662\pi\)
\(614\) 22391.4 1.47173
\(615\) 0 0
\(616\) −34701.9 −2.26977
\(617\) 4624.30 0.301730 0.150865 0.988554i \(-0.451794\pi\)
0.150865 + 0.988554i \(0.451794\pi\)
\(618\) 0 0
\(619\) −1330.77 −0.0864103 −0.0432051 0.999066i \(-0.513757\pi\)
−0.0432051 + 0.999066i \(0.513757\pi\)
\(620\) 28039.8 1.81630
\(621\) 0 0
\(622\) 13726.8 0.884880
\(623\) −4036.25 −0.259565
\(624\) 0 0
\(625\) −7948.71 −0.508717
\(626\) 12459.3 0.795484
\(627\) 0 0
\(628\) −29861.1 −1.89743
\(629\) 11396.5 0.722432
\(630\) 0 0
\(631\) −29390.6 −1.85423 −0.927117 0.374773i \(-0.877721\pi\)
−0.927117 + 0.374773i \(0.877721\pi\)
\(632\) 65569.6 4.12693
\(633\) 0 0
\(634\) 12489.9 0.782396
\(635\) 18435.3 1.15210
\(636\) 0 0
\(637\) 1699.06 0.105682
\(638\) 5713.50 0.354545
\(639\) 0 0
\(640\) 45401.2 2.80412
\(641\) 8899.76 0.548392 0.274196 0.961674i \(-0.411588\pi\)
0.274196 + 0.961674i \(0.411588\pi\)
\(642\) 0 0
\(643\) 24093.0 1.47766 0.738830 0.673892i \(-0.235379\pi\)
0.738830 + 0.673892i \(0.235379\pi\)
\(644\) 3533.65 0.216219
\(645\) 0 0
\(646\) 23416.6 1.42618
\(647\) 15696.8 0.953796 0.476898 0.878959i \(-0.341761\pi\)
0.476898 + 0.878959i \(0.341761\pi\)
\(648\) 0 0
\(649\) −55469.5 −3.35496
\(650\) 8562.26 0.516676
\(651\) 0 0
\(652\) 50121.1 3.01057
\(653\) −8664.84 −0.519267 −0.259634 0.965707i \(-0.583602\pi\)
−0.259634 + 0.965707i \(0.583602\pi\)
\(654\) 0 0
\(655\) −9946.07 −0.593321
\(656\) 19342.4 1.15121
\(657\) 0 0
\(658\) 7552.75 0.447472
\(659\) 18667.0 1.10343 0.551716 0.834032i \(-0.313973\pi\)
0.551716 + 0.834032i \(0.313973\pi\)
\(660\) 0 0
\(661\) 14121.6 0.830964 0.415482 0.909601i \(-0.363613\pi\)
0.415482 + 0.909601i \(0.363613\pi\)
\(662\) 37401.0 2.19582
\(663\) 0 0
\(664\) 62742.3 3.66698
\(665\) 8662.95 0.505165
\(666\) 0 0
\(667\) −369.736 −0.0214636
\(668\) 21296.0 1.23348
\(669\) 0 0
\(670\) −38935.5 −2.24509
\(671\) 28278.6 1.62695
\(672\) 0 0
\(673\) 31238.5 1.78923 0.894617 0.446833i \(-0.147448\pi\)
0.894617 + 0.446833i \(0.147448\pi\)
\(674\) 16124.0 0.921473
\(675\) 0 0
\(676\) −21831.0 −1.24209
\(677\) −23202.3 −1.31719 −0.658596 0.752497i \(-0.728849\pi\)
−0.658596 + 0.752497i \(0.728849\pi\)
\(678\) 0 0
\(679\) 11557.5 0.653221
\(680\) 21081.4 1.18887
\(681\) 0 0
\(682\) 50804.6 2.85250
\(683\) 11108.7 0.622348 0.311174 0.950353i \(-0.399278\pi\)
0.311174 + 0.950353i \(0.399278\pi\)
\(684\) 0 0
\(685\) −4076.55 −0.227383
\(686\) −1877.06 −0.104470
\(687\) 0 0
\(688\) −106874. −5.92227
\(689\) −1351.49 −0.0747278
\(690\) 0 0
\(691\) −32784.6 −1.80490 −0.902449 0.430797i \(-0.858233\pi\)
−0.902449 + 0.430797i \(0.858233\pi\)
\(692\) 47747.8 2.62297
\(693\) 0 0
\(694\) 60092.0 3.28683
\(695\) −5530.08 −0.301824
\(696\) 0 0
\(697\) 2468.51 0.134148
\(698\) 7113.80 0.385761
\(699\) 0 0
\(700\) −6932.44 −0.374317
\(701\) 2027.49 0.109240 0.0546200 0.998507i \(-0.482605\pi\)
0.0546200 + 0.998507i \(0.482605\pi\)
\(702\) 0 0
\(703\) −51067.4 −2.73975
\(704\) 128117. 6.85880
\(705\) 0 0
\(706\) −28335.6 −1.51052
\(707\) 8241.73 0.438419
\(708\) 0 0
\(709\) −31315.4 −1.65878 −0.829389 0.558671i \(-0.811311\pi\)
−0.829389 + 0.558671i \(0.811311\pi\)
\(710\) 11551.5 0.610593
\(711\) 0 0
\(712\) 44013.1 2.31666
\(713\) −3287.70 −0.172686
\(714\) 0 0
\(715\) −20127.0 −1.05274
\(716\) −71425.8 −3.72808
\(717\) 0 0
\(718\) 65197.6 3.38879
\(719\) −13785.9 −0.715060 −0.357530 0.933902i \(-0.616381\pi\)
−0.357530 + 0.933902i \(0.616381\pi\)
\(720\) 0 0
\(721\) 9511.53 0.491301
\(722\) −67392.9 −3.47383
\(723\) 0 0
\(724\) 25190.5 1.29309
\(725\) 725.361 0.0371575
\(726\) 0 0
\(727\) 11853.4 0.604700 0.302350 0.953197i \(-0.402229\pi\)
0.302350 + 0.953197i \(0.402229\pi\)
\(728\) −18527.3 −0.943225
\(729\) 0 0
\(730\) 31615.3 1.60293
\(731\) −13639.4 −0.690112
\(732\) 0 0
\(733\) −6857.02 −0.345525 −0.172762 0.984964i \(-0.555269\pi\)
−0.172762 + 0.984964i \(0.555269\pi\)
\(734\) −10963.8 −0.551338
\(735\) 0 0
\(736\) −16432.1 −0.822953
\(737\) −51701.3 −2.58404
\(738\) 0 0
\(739\) 7095.95 0.353219 0.176609 0.984281i \(-0.443487\pi\)
0.176609 + 0.984281i \(0.443487\pi\)
\(740\) −72343.5 −3.59379
\(741\) 0 0
\(742\) 1493.07 0.0738712
\(743\) 26319.1 1.29953 0.649767 0.760133i \(-0.274866\pi\)
0.649767 + 0.760133i \(0.274866\pi\)
\(744\) 0 0
\(745\) 1713.27 0.0842543
\(746\) −32193.4 −1.58001
\(747\) 0 0
\(748\) 44049.0 2.15319
\(749\) 3851.22 0.187878
\(750\) 0 0
\(751\) 27498.1 1.33611 0.668055 0.744112i \(-0.267127\pi\)
0.668055 + 0.744112i \(0.267127\pi\)
\(752\) −47739.9 −2.31502
\(753\) 0 0
\(754\) 3050.43 0.147335
\(755\) 13437.5 0.647735
\(756\) 0 0
\(757\) 28018.2 1.34523 0.672614 0.739994i \(-0.265172\pi\)
0.672614 + 0.739994i \(0.265172\pi\)
\(758\) 63487.2 3.04216
\(759\) 0 0
\(760\) −94464.6 −4.50867
\(761\) 30614.8 1.45833 0.729163 0.684340i \(-0.239909\pi\)
0.729163 + 0.684340i \(0.239909\pi\)
\(762\) 0 0
\(763\) −6978.51 −0.331113
\(764\) 18986.7 0.899103
\(765\) 0 0
\(766\) −9049.48 −0.426855
\(767\) −29615.1 −1.39418
\(768\) 0 0
\(769\) −36535.2 −1.71326 −0.856628 0.515935i \(-0.827445\pi\)
−0.856628 + 0.515935i \(0.827445\pi\)
\(770\) 22235.6 1.04067
\(771\) 0 0
\(772\) −44016.7 −2.05207
\(773\) 2926.76 0.136181 0.0680907 0.997679i \(-0.478309\pi\)
0.0680907 + 0.997679i \(0.478309\pi\)
\(774\) 0 0
\(775\) 6449.92 0.298952
\(776\) −126028. −5.83010
\(777\) 0 0
\(778\) −63400.2 −2.92160
\(779\) −11061.3 −0.508743
\(780\) 0 0
\(781\) 15338.9 0.702778
\(782\) −3889.53 −0.177864
\(783\) 0 0
\(784\) 11864.7 0.540482
\(785\) 12159.6 0.552861
\(786\) 0 0
\(787\) −15882.5 −0.719376 −0.359688 0.933073i \(-0.617117\pi\)
−0.359688 + 0.933073i \(0.617117\pi\)
\(788\) 4800.21 0.217005
\(789\) 0 0
\(790\) −42014.5 −1.89216
\(791\) −13232.0 −0.594786
\(792\) 0 0
\(793\) 15097.9 0.676095
\(794\) 14444.5 0.645614
\(795\) 0 0
\(796\) −6003.65 −0.267329
\(797\) 16842.7 0.748556 0.374278 0.927316i \(-0.377891\pi\)
0.374278 + 0.927316i \(0.377891\pi\)
\(798\) 0 0
\(799\) −6092.65 −0.269765
\(800\) 32237.0 1.42469
\(801\) 0 0
\(802\) 11182.3 0.492345
\(803\) 41981.1 1.84493
\(804\) 0 0
\(805\) −1438.93 −0.0630007
\(806\) 27124.5 1.18539
\(807\) 0 0
\(808\) −89871.4 −3.91295
\(809\) −18173.9 −0.789815 −0.394907 0.918721i \(-0.629223\pi\)
−0.394907 + 0.918721i \(0.629223\pi\)
\(810\) 0 0
\(811\) −13426.0 −0.581321 −0.290661 0.956826i \(-0.593875\pi\)
−0.290661 + 0.956826i \(0.593875\pi\)
\(812\) −2469.79 −0.106740
\(813\) 0 0
\(814\) −131077. −5.64405
\(815\) −20409.7 −0.877201
\(816\) 0 0
\(817\) 61117.6 2.61718
\(818\) −11240.7 −0.480467
\(819\) 0 0
\(820\) −15669.7 −0.667330
\(821\) 21961.4 0.933569 0.466784 0.884371i \(-0.345412\pi\)
0.466784 + 0.884371i \(0.345412\pi\)
\(822\) 0 0
\(823\) −5614.14 −0.237784 −0.118892 0.992907i \(-0.537934\pi\)
−0.118892 + 0.992907i \(0.537934\pi\)
\(824\) −103718. −4.38493
\(825\) 0 0
\(826\) 32717.7 1.37820
\(827\) −10174.5 −0.427815 −0.213907 0.976854i \(-0.568619\pi\)
−0.213907 + 0.976854i \(0.568619\pi\)
\(828\) 0 0
\(829\) −27711.0 −1.16097 −0.580485 0.814271i \(-0.697137\pi\)
−0.580485 + 0.814271i \(0.697137\pi\)
\(830\) −40202.9 −1.68128
\(831\) 0 0
\(832\) 68401.6 2.85024
\(833\) 1514.19 0.0629815
\(834\) 0 0
\(835\) −8671.88 −0.359404
\(836\) −197381. −8.16576
\(837\) 0 0
\(838\) −20473.1 −0.843950
\(839\) 1474.25 0.0606637 0.0303319 0.999540i \(-0.490344\pi\)
0.0303319 + 0.999540i \(0.490344\pi\)
\(840\) 0 0
\(841\) −24130.6 −0.989404
\(842\) 42850.9 1.75385
\(843\) 0 0
\(844\) 19747.7 0.805383
\(845\) 8889.74 0.361913
\(846\) 0 0
\(847\) 20209.1 0.819825
\(848\) −9437.51 −0.382176
\(849\) 0 0
\(850\) 7630.61 0.307915
\(851\) 8482.36 0.341682
\(852\) 0 0
\(853\) −31045.8 −1.24617 −0.623087 0.782152i \(-0.714122\pi\)
−0.623087 + 0.782152i \(0.714122\pi\)
\(854\) −16679.7 −0.668345
\(855\) 0 0
\(856\) −41995.4 −1.67684
\(857\) 41409.9 1.65057 0.825283 0.564720i \(-0.191016\pi\)
0.825283 + 0.564720i \(0.191016\pi\)
\(858\) 0 0
\(859\) 4188.80 0.166380 0.0831898 0.996534i \(-0.473489\pi\)
0.0831898 + 0.996534i \(0.473489\pi\)
\(860\) 86580.9 3.43301
\(861\) 0 0
\(862\) 79977.7 3.16015
\(863\) 14097.9 0.556082 0.278041 0.960569i \(-0.410315\pi\)
0.278041 + 0.960569i \(0.410315\pi\)
\(864\) 0 0
\(865\) −19443.2 −0.764265
\(866\) 10509.7 0.412395
\(867\) 0 0
\(868\) −21961.4 −0.858777
\(869\) −55789.8 −2.17784
\(870\) 0 0
\(871\) −27603.3 −1.07382
\(872\) 76096.8 2.95523
\(873\) 0 0
\(874\) 17428.8 0.674528
\(875\) 10643.2 0.411207
\(876\) 0 0
\(877\) −26701.7 −1.02811 −0.514055 0.857757i \(-0.671857\pi\)
−0.514055 + 0.857757i \(0.671857\pi\)
\(878\) −25737.5 −0.989291
\(879\) 0 0
\(880\) −140548. −5.38396
\(881\) 12186.4 0.466029 0.233014 0.972473i \(-0.425141\pi\)
0.233014 + 0.972473i \(0.425141\pi\)
\(882\) 0 0
\(883\) −43820.5 −1.67008 −0.835039 0.550191i \(-0.814555\pi\)
−0.835039 + 0.550191i \(0.814555\pi\)
\(884\) 23517.7 0.894781
\(885\) 0 0
\(886\) 32041.9 1.21498
\(887\) 12779.0 0.483741 0.241871 0.970309i \(-0.422239\pi\)
0.241871 + 0.970309i \(0.422239\pi\)
\(888\) 0 0
\(889\) −14439.0 −0.544732
\(890\) −28201.9 −1.06217
\(891\) 0 0
\(892\) −18151.6 −0.681346
\(893\) 27300.9 1.02306
\(894\) 0 0
\(895\) 29085.1 1.08626
\(896\) −35559.2 −1.32584
\(897\) 0 0
\(898\) 79797.6 2.96535
\(899\) 2297.88 0.0852488
\(900\) 0 0
\(901\) −1204.43 −0.0445344
\(902\) −28391.5 −1.04804
\(903\) 0 0
\(904\) 144288. 5.30855
\(905\) −10257.7 −0.376772
\(906\) 0 0
\(907\) −7244.34 −0.265209 −0.132604 0.991169i \(-0.542334\pi\)
−0.132604 + 0.991169i \(0.542334\pi\)
\(908\) 72948.5 2.66617
\(909\) 0 0
\(910\) 11871.6 0.432461
\(911\) 19922.1 0.724531 0.362266 0.932075i \(-0.382003\pi\)
0.362266 + 0.932075i \(0.382003\pi\)
\(912\) 0 0
\(913\) −53384.2 −1.93512
\(914\) 8498.09 0.307540
\(915\) 0 0
\(916\) 101414. 3.65810
\(917\) 7789.98 0.280532
\(918\) 0 0
\(919\) −12768.2 −0.458306 −0.229153 0.973390i \(-0.573596\pi\)
−0.229153 + 0.973390i \(0.573596\pi\)
\(920\) 15690.7 0.562290
\(921\) 0 0
\(922\) 63531.2 2.26929
\(923\) 8189.44 0.292046
\(924\) 0 0
\(925\) −16641.0 −0.591516
\(926\) 86566.6 3.07209
\(927\) 0 0
\(928\) 11484.9 0.406262
\(929\) −27889.7 −0.984964 −0.492482 0.870323i \(-0.663910\pi\)
−0.492482 + 0.870323i \(0.663910\pi\)
\(930\) 0 0
\(931\) −6785.01 −0.238851
\(932\) 55382.3 1.94647
\(933\) 0 0
\(934\) 64563.4 2.26186
\(935\) −17937.0 −0.627384
\(936\) 0 0
\(937\) −33958.2 −1.18395 −0.591977 0.805955i \(-0.701652\pi\)
−0.591977 + 0.805955i \(0.701652\pi\)
\(938\) 30495.1 1.06152
\(939\) 0 0
\(940\) 38675.2 1.34196
\(941\) −39002.5 −1.35116 −0.675582 0.737285i \(-0.736108\pi\)
−0.675582 + 0.737285i \(0.736108\pi\)
\(942\) 0 0
\(943\) 1837.29 0.0634469
\(944\) −206804. −7.13020
\(945\) 0 0
\(946\) 156874. 5.39155
\(947\) 6375.90 0.218784 0.109392 0.993999i \(-0.465110\pi\)
0.109392 + 0.993999i \(0.465110\pi\)
\(948\) 0 0
\(949\) 22413.7 0.766679
\(950\) −34192.4 −1.16774
\(951\) 0 0
\(952\) −16511.4 −0.562119
\(953\) −11469.9 −0.389871 −0.194935 0.980816i \(-0.562450\pi\)
−0.194935 + 0.980816i \(0.562450\pi\)
\(954\) 0 0
\(955\) −7731.52 −0.261975
\(956\) −93290.2 −3.15609
\(957\) 0 0
\(958\) −50117.8 −1.69022
\(959\) 3192.85 0.107510
\(960\) 0 0
\(961\) −9358.17 −0.314127
\(962\) −69982.1 −2.34544
\(963\) 0 0
\(964\) −154843. −5.17339
\(965\) 17923.9 0.597918
\(966\) 0 0
\(967\) −11097.4 −0.369045 −0.184523 0.982828i \(-0.559074\pi\)
−0.184523 + 0.982828i \(0.559074\pi\)
\(968\) −220368. −7.31705
\(969\) 0 0
\(970\) 80754.2 2.67305
\(971\) −19350.8 −0.639545 −0.319773 0.947494i \(-0.603606\pi\)
−0.319773 + 0.947494i \(0.603606\pi\)
\(972\) 0 0
\(973\) 4331.28 0.142708
\(974\) −89381.7 −2.94042
\(975\) 0 0
\(976\) 105430. 3.45771
\(977\) −19020.2 −0.622834 −0.311417 0.950273i \(-0.600804\pi\)
−0.311417 + 0.950273i \(0.600804\pi\)
\(978\) 0 0
\(979\) −37448.5 −1.22253
\(980\) −9611.85 −0.313305
\(981\) 0 0
\(982\) 94859.6 3.08258
\(983\) −48405.2 −1.57059 −0.785293 0.619125i \(-0.787488\pi\)
−0.785293 + 0.619125i \(0.787488\pi\)
\(984\) 0 0
\(985\) −1954.68 −0.0632297
\(986\) 2718.52 0.0878046
\(987\) 0 0
\(988\) −105382. −3.39336
\(989\) −10151.7 −0.326396
\(990\) 0 0
\(991\) 31822.7 1.02006 0.510031 0.860156i \(-0.329634\pi\)
0.510031 + 0.860156i \(0.329634\pi\)
\(992\) 102124. 3.26859
\(993\) 0 0
\(994\) −9047.41 −0.288699
\(995\) 2444.73 0.0778926
\(996\) 0 0
\(997\) −7520.08 −0.238880 −0.119440 0.992841i \(-0.538110\pi\)
−0.119440 + 0.992841i \(0.538110\pi\)
\(998\) −51437.6 −1.63149
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1449.4.a.j.1.1 9
3.2 odd 2 483.4.a.i.1.9 9
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
483.4.a.i.1.9 9 3.2 odd 2
1449.4.a.j.1.1 9 1.1 even 1 trivial