Properties

Label 483.4.a.i.1.9
Level $483$
Weight $4$
Character 483.1
Self dual yes
Analytic conductor $28.498$
Analytic rank $0$
Dimension $9$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [483,4,Mod(1,483)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(483, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("483.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 483 = 3 \cdot 7 \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 483.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(28.4979225328\)
Analytic rank: \(0\)
Dimension: \(9\)
Coefficient field: \(\mathbb{Q}[x]/(x^{9} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{9} - x^{8} - 51x^{7} + 34x^{6} + 861x^{5} - 401x^{4} - 5403x^{3} + 1772x^{2} + 8716x - 192 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.9
Root \(-4.47249\) of defining polynomial
Character \(\chi\) \(=\) 483.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+5.47249 q^{2} +3.00000 q^{3} +21.9481 q^{4} +8.93744 q^{5} +16.4175 q^{6} +7.00000 q^{7} +76.3311 q^{8} +9.00000 q^{9} +48.9100 q^{10} -64.9462 q^{11} +65.8444 q^{12} +34.6747 q^{13} +38.3074 q^{14} +26.8123 q^{15} +242.136 q^{16} -30.9018 q^{17} +49.2524 q^{18} -138.470 q^{19} +196.160 q^{20} +21.0000 q^{21} -355.417 q^{22} -23.0000 q^{23} +228.993 q^{24} -45.1222 q^{25} +189.757 q^{26} +27.0000 q^{27} +153.637 q^{28} +16.0755 q^{29} +146.730 q^{30} -142.943 q^{31} +714.437 q^{32} -194.839 q^{33} -169.110 q^{34} +62.5621 q^{35} +197.533 q^{36} +368.798 q^{37} -757.774 q^{38} +104.024 q^{39} +682.204 q^{40} -79.8823 q^{41} +114.922 q^{42} -441.379 q^{43} -1425.45 q^{44} +80.4369 q^{45} -125.867 q^{46} +197.161 q^{47} +726.408 q^{48} +49.0000 q^{49} -246.931 q^{50} -92.7055 q^{51} +761.046 q^{52} +38.9761 q^{53} +147.757 q^{54} -580.453 q^{55} +534.317 q^{56} -415.409 q^{57} +87.9728 q^{58} +854.084 q^{59} +588.480 q^{60} +435.416 q^{61} -782.257 q^{62} +63.0000 q^{63} +1972.66 q^{64} +309.903 q^{65} -1066.25 q^{66} -796.063 q^{67} -678.238 q^{68} -69.0000 q^{69} +342.370 q^{70} -236.179 q^{71} +686.980 q^{72} +646.398 q^{73} +2018.25 q^{74} -135.367 q^{75} -3039.15 q^{76} -454.623 q^{77} +569.271 q^{78} -859.016 q^{79} +2164.07 q^{80} +81.0000 q^{81} -437.155 q^{82} +821.976 q^{83} +460.911 q^{84} -276.183 q^{85} -2415.44 q^{86} +48.2264 q^{87} -4957.41 q^{88} +576.608 q^{89} +440.190 q^{90} +242.723 q^{91} -504.807 q^{92} -428.830 q^{93} +1078.96 q^{94} -1237.56 q^{95} +2143.31 q^{96} +1651.08 q^{97} +268.152 q^{98} -584.516 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 9 q + 8 q^{2} + 27 q^{3} + 38 q^{4} + 39 q^{5} + 24 q^{6} + 63 q^{7} + 135 q^{8} + 81 q^{9} + 81 q^{10} + 38 q^{11} + 114 q^{12} + 107 q^{13} + 56 q^{14} + 117 q^{15} + 178 q^{16} + 170 q^{17} + 72 q^{18}+ \cdots + 342 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 5.47249 1.93482 0.967409 0.253220i \(-0.0814898\pi\)
0.967409 + 0.253220i \(0.0814898\pi\)
\(3\) 3.00000 0.577350
\(4\) 21.9481 2.74352
\(5\) 8.93744 0.799389 0.399694 0.916648i \(-0.369116\pi\)
0.399694 + 0.916648i \(0.369116\pi\)
\(6\) 16.4175 1.11707
\(7\) 7.00000 0.377964
\(8\) 76.3311 3.37339
\(9\) 9.00000 0.333333
\(10\) 48.9100 1.54667
\(11\) −64.9462 −1.78018 −0.890092 0.455782i \(-0.849360\pi\)
−0.890092 + 0.455782i \(0.849360\pi\)
\(12\) 65.8444 1.58397
\(13\) 34.6747 0.739772 0.369886 0.929077i \(-0.379397\pi\)
0.369886 + 0.929077i \(0.379397\pi\)
\(14\) 38.3074 0.731292
\(15\) 26.8123 0.461527
\(16\) 242.136 3.78337
\(17\) −30.9018 −0.440870 −0.220435 0.975402i \(-0.570748\pi\)
−0.220435 + 0.975402i \(0.570748\pi\)
\(18\) 49.2524 0.644939
\(19\) −138.470 −1.67195 −0.835977 0.548765i \(-0.815098\pi\)
−0.835977 + 0.548765i \(0.815098\pi\)
\(20\) 196.160 2.19314
\(21\) 21.0000 0.218218
\(22\) −355.417 −3.44433
\(23\) −23.0000 −0.208514
\(24\) 228.993 1.94763
\(25\) −45.1222 −0.360978
\(26\) 189.757 1.43132
\(27\) 27.0000 0.192450
\(28\) 153.637 1.03695
\(29\) 16.0755 0.102936 0.0514679 0.998675i \(-0.483610\pi\)
0.0514679 + 0.998675i \(0.483610\pi\)
\(30\) 146.730 0.892971
\(31\) −142.943 −0.828174 −0.414087 0.910237i \(-0.635899\pi\)
−0.414087 + 0.910237i \(0.635899\pi\)
\(32\) 714.437 3.94675
\(33\) −194.839 −1.02779
\(34\) −169.110 −0.853003
\(35\) 62.5621 0.302141
\(36\) 197.533 0.914506
\(37\) 368.798 1.63865 0.819325 0.573329i \(-0.194348\pi\)
0.819325 + 0.573329i \(0.194348\pi\)
\(38\) −757.774 −3.23493
\(39\) 104.024 0.427108
\(40\) 682.204 2.69665
\(41\) −79.8823 −0.304281 −0.152140 0.988359i \(-0.548617\pi\)
−0.152140 + 0.988359i \(0.548617\pi\)
\(42\) 114.922 0.422212
\(43\) −441.379 −1.56534 −0.782670 0.622437i \(-0.786143\pi\)
−0.782670 + 0.622437i \(0.786143\pi\)
\(44\) −1425.45 −4.88396
\(45\) 80.4369 0.266463
\(46\) −125.867 −0.403437
\(47\) 197.161 0.611893 0.305946 0.952049i \(-0.401027\pi\)
0.305946 + 0.952049i \(0.401027\pi\)
\(48\) 726.408 2.18433
\(49\) 49.0000 0.142857
\(50\) −246.931 −0.698426
\(51\) −92.7055 −0.254537
\(52\) 761.046 2.02958
\(53\) 38.9761 0.101015 0.0505073 0.998724i \(-0.483916\pi\)
0.0505073 + 0.998724i \(0.483916\pi\)
\(54\) 147.757 0.372356
\(55\) −580.453 −1.42306
\(56\) 534.317 1.27502
\(57\) −415.409 −0.965303
\(58\) 87.9728 0.199162
\(59\) 854.084 1.88461 0.942307 0.334750i \(-0.108652\pi\)
0.942307 + 0.334750i \(0.108652\pi\)
\(60\) 588.480 1.26621
\(61\) 435.416 0.913923 0.456962 0.889486i \(-0.348938\pi\)
0.456962 + 0.889486i \(0.348938\pi\)
\(62\) −782.257 −1.60237
\(63\) 63.0000 0.125988
\(64\) 1972.66 3.85286
\(65\) 309.903 0.591366
\(66\) −1066.25 −1.98858
\(67\) −796.063 −1.45156 −0.725781 0.687926i \(-0.758521\pi\)
−0.725781 + 0.687926i \(0.758521\pi\)
\(68\) −678.238 −1.20954
\(69\) −69.0000 −0.120386
\(70\) 342.370 0.584587
\(71\) −236.179 −0.394779 −0.197389 0.980325i \(-0.563246\pi\)
−0.197389 + 0.980325i \(0.563246\pi\)
\(72\) 686.980 1.12446
\(73\) 646.398 1.03637 0.518186 0.855268i \(-0.326608\pi\)
0.518186 + 0.855268i \(0.326608\pi\)
\(74\) 2018.25 3.17049
\(75\) −135.367 −0.208411
\(76\) −3039.15 −4.58704
\(77\) −454.623 −0.672846
\(78\) 569.271 0.826375
\(79\) −859.016 −1.22338 −0.611689 0.791098i \(-0.709510\pi\)
−0.611689 + 0.791098i \(0.709510\pi\)
\(80\) 2164.07 3.02439
\(81\) 81.0000 0.111111
\(82\) −437.155 −0.588728
\(83\) 821.976 1.08703 0.543516 0.839399i \(-0.317093\pi\)
0.543516 + 0.839399i \(0.317093\pi\)
\(84\) 460.911 0.598685
\(85\) −276.183 −0.352427
\(86\) −2415.44 −3.02865
\(87\) 48.2264 0.0594300
\(88\) −4957.41 −6.00525
\(89\) 576.608 0.686745 0.343373 0.939199i \(-0.388431\pi\)
0.343373 + 0.939199i \(0.388431\pi\)
\(90\) 440.190 0.515557
\(91\) 242.723 0.279608
\(92\) −504.807 −0.572063
\(93\) −428.830 −0.478147
\(94\) 1078.96 1.18390
\(95\) −1237.56 −1.33654
\(96\) 2143.31 2.27865
\(97\) 1651.08 1.72826 0.864131 0.503268i \(-0.167869\pi\)
0.864131 + 0.503268i \(0.167869\pi\)
\(98\) 268.152 0.276402
\(99\) −584.516 −0.593394
\(100\) −990.349 −0.990349
\(101\) −1177.39 −1.15995 −0.579974 0.814635i \(-0.696937\pi\)
−0.579974 + 0.814635i \(0.696937\pi\)
\(102\) −507.330 −0.492482
\(103\) 1358.79 1.29986 0.649930 0.759994i \(-0.274798\pi\)
0.649930 + 0.759994i \(0.274798\pi\)
\(104\) 2646.76 2.49554
\(105\) 187.686 0.174441
\(106\) 213.296 0.195445
\(107\) −550.175 −0.497079 −0.248539 0.968622i \(-0.579951\pi\)
−0.248539 + 0.968622i \(0.579951\pi\)
\(108\) 592.600 0.527990
\(109\) −996.931 −0.876042 −0.438021 0.898965i \(-0.644321\pi\)
−0.438021 + 0.898965i \(0.644321\pi\)
\(110\) −3176.52 −2.75336
\(111\) 1106.40 0.946075
\(112\) 1694.95 1.42998
\(113\) 1890.29 1.57366 0.786828 0.617172i \(-0.211722\pi\)
0.786828 + 0.617172i \(0.211722\pi\)
\(114\) −2273.32 −1.86768
\(115\) −205.561 −0.166684
\(116\) 352.827 0.282406
\(117\) 312.073 0.246591
\(118\) 4673.96 3.64638
\(119\) −216.313 −0.166633
\(120\) 2046.61 1.55691
\(121\) 2887.01 2.16905
\(122\) 2382.81 1.76827
\(123\) −239.647 −0.175677
\(124\) −3137.34 −2.27211
\(125\) −1520.46 −1.08795
\(126\) 344.767 0.243764
\(127\) −2062.71 −1.44123 −0.720613 0.693337i \(-0.756140\pi\)
−0.720613 + 0.693337i \(0.756140\pi\)
\(128\) 5079.89 3.50783
\(129\) −1324.14 −0.903750
\(130\) 1695.94 1.14418
\(131\) −1112.85 −0.742218 −0.371109 0.928589i \(-0.621022\pi\)
−0.371109 + 0.928589i \(0.621022\pi\)
\(132\) −4276.35 −2.81976
\(133\) −969.288 −0.631939
\(134\) −4356.45 −2.80851
\(135\) 241.311 0.153842
\(136\) −2358.77 −1.48723
\(137\) −456.121 −0.284446 −0.142223 0.989835i \(-0.545425\pi\)
−0.142223 + 0.989835i \(0.545425\pi\)
\(138\) −377.602 −0.232925
\(139\) 618.754 0.377569 0.188784 0.982019i \(-0.439545\pi\)
0.188784 + 0.982019i \(0.439545\pi\)
\(140\) 1373.12 0.828928
\(141\) 591.484 0.353276
\(142\) −1292.49 −0.763824
\(143\) −2251.99 −1.31693
\(144\) 2179.22 1.26112
\(145\) 143.674 0.0822858
\(146\) 3537.40 2.00519
\(147\) 147.000 0.0824786
\(148\) 8094.44 4.49567
\(149\) 191.696 0.105398 0.0526992 0.998610i \(-0.483218\pi\)
0.0526992 + 0.998610i \(0.483218\pi\)
\(150\) −740.792 −0.403236
\(151\) −1503.50 −0.810288 −0.405144 0.914253i \(-0.632779\pi\)
−0.405144 + 0.914253i \(0.632779\pi\)
\(152\) −10569.5 −5.64015
\(153\) −278.116 −0.146957
\(154\) −2487.92 −1.30183
\(155\) −1277.55 −0.662033
\(156\) 2283.14 1.17178
\(157\) −1360.53 −0.691605 −0.345803 0.938307i \(-0.612393\pi\)
−0.345803 + 0.938307i \(0.612393\pi\)
\(158\) −4700.96 −2.36701
\(159\) 116.928 0.0583209
\(160\) 6385.24 3.15498
\(161\) −161.000 −0.0788110
\(162\) 443.272 0.214980
\(163\) 2283.61 1.09734 0.548670 0.836039i \(-0.315134\pi\)
0.548670 + 0.836039i \(0.315134\pi\)
\(164\) −1753.27 −0.834800
\(165\) −1741.36 −0.821603
\(166\) 4498.26 2.10321
\(167\) −970.287 −0.449599 −0.224800 0.974405i \(-0.572173\pi\)
−0.224800 + 0.974405i \(0.572173\pi\)
\(168\) 1602.95 0.736134
\(169\) −994.664 −0.452737
\(170\) −1511.41 −0.681881
\(171\) −1246.23 −0.557318
\(172\) −9687.45 −4.29454
\(173\) −2175.48 −0.956062 −0.478031 0.878343i \(-0.658649\pi\)
−0.478031 + 0.878343i \(0.658649\pi\)
\(174\) 263.919 0.114986
\(175\) −315.855 −0.136437
\(176\) −15725.8 −6.73510
\(177\) 2562.25 1.08808
\(178\) 3155.48 1.32873
\(179\) 3254.30 1.35887 0.679435 0.733736i \(-0.262225\pi\)
0.679435 + 0.733736i \(0.262225\pi\)
\(180\) 1765.44 0.731046
\(181\) 1147.73 0.471325 0.235663 0.971835i \(-0.424274\pi\)
0.235663 + 0.971835i \(0.424274\pi\)
\(182\) 1328.30 0.540990
\(183\) 1306.25 0.527654
\(184\) −1755.61 −0.703400
\(185\) 3296.11 1.30992
\(186\) −2346.77 −0.925126
\(187\) 2006.96 0.784830
\(188\) 4327.33 1.67874
\(189\) 189.000 0.0727393
\(190\) −6772.56 −2.58596
\(191\) −865.071 −0.327719 −0.163859 0.986484i \(-0.552394\pi\)
−0.163859 + 0.986484i \(0.552394\pi\)
\(192\) 5917.99 2.22445
\(193\) −2005.48 −0.747969 −0.373984 0.927435i \(-0.622009\pi\)
−0.373984 + 0.927435i \(0.622009\pi\)
\(194\) 9035.49 3.34387
\(195\) 929.710 0.341425
\(196\) 1075.46 0.391931
\(197\) −218.707 −0.0790975 −0.0395488 0.999218i \(-0.512592\pi\)
−0.0395488 + 0.999218i \(0.512592\pi\)
\(198\) −3198.76 −1.14811
\(199\) −273.538 −0.0974401 −0.0487201 0.998812i \(-0.515514\pi\)
−0.0487201 + 0.998812i \(0.515514\pi\)
\(200\) −3444.23 −1.21772
\(201\) −2388.19 −0.838059
\(202\) −6443.26 −2.24429
\(203\) 112.528 0.0389061
\(204\) −2034.71 −0.698326
\(205\) −713.943 −0.243239
\(206\) 7435.96 2.51499
\(207\) −207.000 −0.0695048
\(208\) 8395.99 2.79883
\(209\) 8993.08 2.97638
\(210\) 1027.11 0.337511
\(211\) 899.743 0.293559 0.146779 0.989169i \(-0.453109\pi\)
0.146779 + 0.989169i \(0.453109\pi\)
\(212\) 855.453 0.277136
\(213\) −708.537 −0.227926
\(214\) −3010.83 −0.961756
\(215\) −3944.80 −1.25132
\(216\) 2060.94 0.649209
\(217\) −1000.60 −0.313020
\(218\) −5455.69 −1.69498
\(219\) 1939.19 0.598349
\(220\) −12739.9 −3.90419
\(221\) −1071.51 −0.326144
\(222\) 6054.74 1.83048
\(223\) −827.023 −0.248348 −0.124174 0.992260i \(-0.539628\pi\)
−0.124174 + 0.992260i \(0.539628\pi\)
\(224\) 5001.06 1.49173
\(225\) −406.100 −0.120326
\(226\) 10344.6 3.04474
\(227\) −3323.67 −0.971806 −0.485903 0.874013i \(-0.661509\pi\)
−0.485903 + 0.874013i \(0.661509\pi\)
\(228\) −9117.46 −2.64833
\(229\) 4620.63 1.33336 0.666681 0.745343i \(-0.267714\pi\)
0.666681 + 0.745343i \(0.267714\pi\)
\(230\) −1124.93 −0.322503
\(231\) −1363.87 −0.388468
\(232\) 1227.06 0.347243
\(233\) −2523.32 −0.709478 −0.354739 0.934965i \(-0.615430\pi\)
−0.354739 + 0.934965i \(0.615430\pi\)
\(234\) 1707.81 0.477108
\(235\) 1762.12 0.489140
\(236\) 18745.5 5.17047
\(237\) −2577.05 −0.706318
\(238\) −1183.77 −0.322405
\(239\) 4250.48 1.15038 0.575190 0.818020i \(-0.304928\pi\)
0.575190 + 0.818020i \(0.304928\pi\)
\(240\) 6492.22 1.74613
\(241\) −7054.93 −1.88568 −0.942838 0.333250i \(-0.891855\pi\)
−0.942838 + 0.333250i \(0.891855\pi\)
\(242\) 15799.1 4.19672
\(243\) 243.000 0.0641500
\(244\) 9556.58 2.50736
\(245\) 437.934 0.114198
\(246\) −1311.46 −0.339902
\(247\) −4801.40 −1.23686
\(248\) −10911.0 −2.79375
\(249\) 2465.93 0.627598
\(250\) −8320.68 −2.10498
\(251\) 5829.72 1.46601 0.733005 0.680223i \(-0.238117\pi\)
0.733005 + 0.680223i \(0.238117\pi\)
\(252\) 1382.73 0.345651
\(253\) 1493.76 0.371194
\(254\) −11288.2 −2.78851
\(255\) −828.550 −0.203474
\(256\) 12018.3 2.93416
\(257\) −1639.22 −0.397866 −0.198933 0.980013i \(-0.563748\pi\)
−0.198933 + 0.980013i \(0.563748\pi\)
\(258\) −7246.32 −1.74859
\(259\) 2581.59 0.619352
\(260\) 6801.80 1.62242
\(261\) 144.679 0.0343120
\(262\) −6090.09 −1.43606
\(263\) −273.365 −0.0640927 −0.0320464 0.999486i \(-0.510202\pi\)
−0.0320464 + 0.999486i \(0.510202\pi\)
\(264\) −14872.2 −3.46713
\(265\) 348.346 0.0807500
\(266\) −5304.42 −1.22269
\(267\) 1729.82 0.396492
\(268\) −17472.1 −3.98238
\(269\) 7443.39 1.68711 0.843553 0.537046i \(-0.180460\pi\)
0.843553 + 0.537046i \(0.180460\pi\)
\(270\) 1320.57 0.297657
\(271\) 3102.28 0.695388 0.347694 0.937608i \(-0.386965\pi\)
0.347694 + 0.937608i \(0.386965\pi\)
\(272\) −7482.44 −1.66798
\(273\) 728.169 0.161432
\(274\) −2496.12 −0.550350
\(275\) 2930.52 0.642606
\(276\) −1514.42 −0.330281
\(277\) 2151.15 0.466608 0.233304 0.972404i \(-0.425046\pi\)
0.233304 + 0.972404i \(0.425046\pi\)
\(278\) 3386.13 0.730527
\(279\) −1286.49 −0.276058
\(280\) 4775.43 1.01924
\(281\) 664.784 0.141131 0.0705653 0.997507i \(-0.477520\pi\)
0.0705653 + 0.997507i \(0.477520\pi\)
\(282\) 3236.89 0.683525
\(283\) 2923.45 0.614067 0.307033 0.951699i \(-0.400664\pi\)
0.307033 + 0.951699i \(0.400664\pi\)
\(284\) −5183.69 −1.08308
\(285\) −3712.69 −0.771652
\(286\) −12324.0 −2.54802
\(287\) −559.176 −0.115007
\(288\) 6429.94 1.31558
\(289\) −3958.08 −0.805633
\(290\) 786.252 0.159208
\(291\) 4953.23 0.997812
\(292\) 14187.2 2.84330
\(293\) −1765.02 −0.351924 −0.175962 0.984397i \(-0.556304\pi\)
−0.175962 + 0.984397i \(0.556304\pi\)
\(294\) 804.456 0.159581
\(295\) 7633.32 1.50654
\(296\) 28150.8 5.52781
\(297\) −1753.55 −0.342596
\(298\) 1049.06 0.203927
\(299\) −797.519 −0.154253
\(300\) −2971.05 −0.571778
\(301\) −3089.65 −0.591643
\(302\) −8227.91 −1.56776
\(303\) −3532.17 −0.669696
\(304\) −33528.5 −6.32562
\(305\) 3891.50 0.730580
\(306\) −1521.99 −0.284334
\(307\) −4091.63 −0.760657 −0.380328 0.924852i \(-0.624189\pi\)
−0.380328 + 0.924852i \(0.624189\pi\)
\(308\) −9978.14 −1.84596
\(309\) 4076.37 0.750474
\(310\) −6991.37 −1.28091
\(311\) 2508.33 0.457346 0.228673 0.973503i \(-0.426561\pi\)
0.228673 + 0.973503i \(0.426561\pi\)
\(312\) 7940.28 1.44080
\(313\) −2276.71 −0.411142 −0.205571 0.978642i \(-0.565905\pi\)
−0.205571 + 0.978642i \(0.565905\pi\)
\(314\) −7445.48 −1.33813
\(315\) 563.059 0.100714
\(316\) −18853.8 −3.35636
\(317\) 2282.31 0.404377 0.202188 0.979347i \(-0.435195\pi\)
0.202188 + 0.979347i \(0.435195\pi\)
\(318\) 639.889 0.112840
\(319\) −1044.04 −0.183245
\(320\) 17630.6 3.07993
\(321\) −1650.52 −0.286988
\(322\) −881.071 −0.152485
\(323\) 4278.97 0.737115
\(324\) 1777.80 0.304835
\(325\) −1564.60 −0.267041
\(326\) 12497.0 2.12315
\(327\) −2990.79 −0.505783
\(328\) −6097.50 −1.02646
\(329\) 1380.13 0.231274
\(330\) −9529.56 −1.58965
\(331\) −6834.36 −1.13490 −0.567448 0.823409i \(-0.692069\pi\)
−0.567448 + 0.823409i \(0.692069\pi\)
\(332\) 18040.9 2.98229
\(333\) 3319.19 0.546217
\(334\) −5309.89 −0.869892
\(335\) −7114.76 −1.16036
\(336\) 5084.85 0.825600
\(337\) −2946.37 −0.476258 −0.238129 0.971234i \(-0.576534\pi\)
−0.238129 + 0.971234i \(0.576534\pi\)
\(338\) −5443.29 −0.875964
\(339\) 5670.86 0.908551
\(340\) −6061.71 −0.966889
\(341\) 9283.63 1.47430
\(342\) −6819.96 −1.07831
\(343\) 343.000 0.0539949
\(344\) −33690.9 −5.28050
\(345\) −616.683 −0.0962351
\(346\) −11905.3 −1.84981
\(347\) 10980.7 1.69878 0.849391 0.527764i \(-0.176970\pi\)
0.849391 + 0.527764i \(0.176970\pi\)
\(348\) 1058.48 0.163047
\(349\) −1299.92 −0.199379 −0.0996894 0.995019i \(-0.531785\pi\)
−0.0996894 + 0.995019i \(0.531785\pi\)
\(350\) −1728.52 −0.263980
\(351\) 936.218 0.142369
\(352\) −46400.0 −7.02593
\(353\) −5177.82 −0.780702 −0.390351 0.920666i \(-0.627646\pi\)
−0.390351 + 0.920666i \(0.627646\pi\)
\(354\) 14021.9 2.10524
\(355\) −2110.83 −0.315582
\(356\) 12655.5 1.88410
\(357\) −648.938 −0.0962058
\(358\) 17809.1 2.62916
\(359\) 11913.7 1.75148 0.875740 0.482784i \(-0.160374\pi\)
0.875740 + 0.482784i \(0.160374\pi\)
\(360\) 6139.84 0.898883
\(361\) 12314.9 1.79543
\(362\) 6280.93 0.911929
\(363\) 8661.02 1.25230
\(364\) 5327.32 0.767108
\(365\) 5777.14 0.828464
\(366\) 7148.43 1.02091
\(367\) 2003.44 0.284956 0.142478 0.989798i \(-0.454493\pi\)
0.142478 + 0.989798i \(0.454493\pi\)
\(368\) −5569.12 −0.788888
\(369\) −718.940 −0.101427
\(370\) 18037.9 2.53445
\(371\) 272.833 0.0381800
\(372\) −9412.03 −1.31180
\(373\) 5882.77 0.816618 0.408309 0.912844i \(-0.366119\pi\)
0.408309 + 0.912844i \(0.366119\pi\)
\(374\) 10983.0 1.51850
\(375\) −4561.37 −0.628128
\(376\) 15049.5 2.06415
\(377\) 557.412 0.0761491
\(378\) 1034.30 0.140737
\(379\) −11601.1 −1.57232 −0.786162 0.618020i \(-0.787935\pi\)
−0.786162 + 0.618020i \(0.787935\pi\)
\(380\) −27162.2 −3.66682
\(381\) −6188.13 −0.832093
\(382\) −4734.09 −0.634076
\(383\) −1653.63 −0.220618 −0.110309 0.993897i \(-0.535184\pi\)
−0.110309 + 0.993897i \(0.535184\pi\)
\(384\) 15239.7 2.02525
\(385\) −4063.17 −0.537865
\(386\) −10975.0 −1.44718
\(387\) −3972.41 −0.521780
\(388\) 36238.0 4.74152
\(389\) −11585.3 −1.51002 −0.755008 0.655716i \(-0.772367\pi\)
−0.755008 + 0.655716i \(0.772367\pi\)
\(390\) 5087.83 0.660595
\(391\) 710.742 0.0919278
\(392\) 3740.22 0.481913
\(393\) −3338.56 −0.428520
\(394\) −1196.87 −0.153039
\(395\) −7677.41 −0.977955
\(396\) −12829.0 −1.62799
\(397\) −2639.48 −0.333682 −0.166841 0.985984i \(-0.553357\pi\)
−0.166841 + 0.985984i \(0.553357\pi\)
\(398\) −1496.93 −0.188529
\(399\) −2907.86 −0.364850
\(400\) −10925.7 −1.36571
\(401\) 2043.37 0.254466 0.127233 0.991873i \(-0.459390\pi\)
0.127233 + 0.991873i \(0.459390\pi\)
\(402\) −13069.3 −1.62149
\(403\) −4956.52 −0.612660
\(404\) −25841.5 −3.18234
\(405\) 723.932 0.0888210
\(406\) 615.810 0.0752762
\(407\) −23952.0 −2.91710
\(408\) −7076.31 −0.858651
\(409\) 2054.04 0.248327 0.124163 0.992262i \(-0.460375\pi\)
0.124163 + 0.992262i \(0.460375\pi\)
\(410\) −3907.04 −0.470622
\(411\) −1368.36 −0.164225
\(412\) 29822.9 3.56619
\(413\) 5978.59 0.712317
\(414\) −1132.81 −0.134479
\(415\) 7346.36 0.868961
\(416\) 24772.9 2.91969
\(417\) 1856.26 0.217989
\(418\) 49214.5 5.75876
\(419\) −3741.09 −0.436191 −0.218095 0.975927i \(-0.569984\pi\)
−0.218095 + 0.975927i \(0.569984\pi\)
\(420\) 4119.36 0.478582
\(421\) −7830.25 −0.906468 −0.453234 0.891392i \(-0.649730\pi\)
−0.453234 + 0.891392i \(0.649730\pi\)
\(422\) 4923.83 0.567982
\(423\) 1774.45 0.203964
\(424\) 2975.09 0.340762
\(425\) 1394.36 0.159144
\(426\) −3877.46 −0.440994
\(427\) 3047.91 0.345431
\(428\) −12075.3 −1.36374
\(429\) −6755.97 −0.760330
\(430\) −21587.9 −2.42107
\(431\) 14614.5 1.63331 0.816654 0.577128i \(-0.195827\pi\)
0.816654 + 0.577128i \(0.195827\pi\)
\(432\) 6537.67 0.728110
\(433\) −1920.46 −0.213144 −0.106572 0.994305i \(-0.533987\pi\)
−0.106572 + 0.994305i \(0.533987\pi\)
\(434\) −5475.80 −0.605637
\(435\) 431.021 0.0475077
\(436\) −21880.8 −2.40344
\(437\) 3184.80 0.348626
\(438\) 10612.2 1.15770
\(439\) 4703.07 0.511310 0.255655 0.966768i \(-0.417709\pi\)
0.255655 + 0.966768i \(0.417709\pi\)
\(440\) −44306.6 −4.80053
\(441\) 441.000 0.0476190
\(442\) −5863.84 −0.631028
\(443\) 5855.09 0.627954 0.313977 0.949431i \(-0.398338\pi\)
0.313977 + 0.949431i \(0.398338\pi\)
\(444\) 24283.3 2.59557
\(445\) 5153.40 0.548976
\(446\) −4525.87 −0.480507
\(447\) 575.088 0.0608518
\(448\) 13808.6 1.45624
\(449\) 14581.6 1.53262 0.766312 0.642469i \(-0.222090\pi\)
0.766312 + 0.642469i \(0.222090\pi\)
\(450\) −2222.38 −0.232809
\(451\) 5188.05 0.541676
\(452\) 41488.3 4.31735
\(453\) −4510.51 −0.467820
\(454\) −18188.8 −1.88027
\(455\) 2169.32 0.223515
\(456\) −31708.6 −3.25634
\(457\) −1552.87 −0.158950 −0.0794752 0.996837i \(-0.525324\pi\)
−0.0794752 + 0.996837i \(0.525324\pi\)
\(458\) 25286.4 2.57981
\(459\) −834.349 −0.0848455
\(460\) −4511.68 −0.457301
\(461\) 11609.2 1.17287 0.586436 0.809996i \(-0.300531\pi\)
0.586436 + 0.809996i \(0.300531\pi\)
\(462\) −7463.76 −0.751614
\(463\) −15818.5 −1.58779 −0.793897 0.608053i \(-0.791951\pi\)
−0.793897 + 0.608053i \(0.791951\pi\)
\(464\) 3892.45 0.389445
\(465\) −3832.64 −0.382225
\(466\) −13808.9 −1.37271
\(467\) 11797.8 1.16903 0.584516 0.811382i \(-0.301285\pi\)
0.584516 + 0.811382i \(0.301285\pi\)
\(468\) 6849.41 0.676526
\(469\) −5572.44 −0.548639
\(470\) 9643.17 0.946397
\(471\) −4081.59 −0.399298
\(472\) 65193.1 6.35753
\(473\) 28665.9 2.78659
\(474\) −14102.9 −1.36660
\(475\) 6248.06 0.603538
\(476\) −4747.66 −0.457161
\(477\) 350.785 0.0336716
\(478\) 23260.7 2.22578
\(479\) −9158.14 −0.873582 −0.436791 0.899563i \(-0.643885\pi\)
−0.436791 + 0.899563i \(0.643885\pi\)
\(480\) 19155.7 1.82153
\(481\) 12788.0 1.21223
\(482\) −38608.0 −3.64844
\(483\) −483.000 −0.0455016
\(484\) 63364.5 5.95083
\(485\) 14756.4 1.38155
\(486\) 1329.81 0.124119
\(487\) 16332.9 1.51974 0.759871 0.650074i \(-0.225262\pi\)
0.759871 + 0.650074i \(0.225262\pi\)
\(488\) 33235.8 3.08302
\(489\) 6850.84 0.633549
\(490\) 2396.59 0.220953
\(491\) 17333.9 1.59321 0.796607 0.604498i \(-0.206626\pi\)
0.796607 + 0.604498i \(0.206626\pi\)
\(492\) −5259.80 −0.481972
\(493\) −496.761 −0.0453814
\(494\) −26275.6 −2.39311
\(495\) −5224.07 −0.474353
\(496\) −34611.7 −3.13329
\(497\) −1653.25 −0.149212
\(498\) 13494.8 1.21429
\(499\) 9399.30 0.843227 0.421614 0.906776i \(-0.361464\pi\)
0.421614 + 0.906776i \(0.361464\pi\)
\(500\) −33371.2 −2.98481
\(501\) −2910.86 −0.259576
\(502\) 31903.1 2.83646
\(503\) 16313.9 1.44612 0.723062 0.690783i \(-0.242734\pi\)
0.723062 + 0.690783i \(0.242734\pi\)
\(504\) 4808.86 0.425007
\(505\) −10522.9 −0.927249
\(506\) 8174.60 0.718192
\(507\) −2983.99 −0.261388
\(508\) −45272.6 −3.95403
\(509\) 14553.0 1.26729 0.633643 0.773626i \(-0.281559\pi\)
0.633643 + 0.773626i \(0.281559\pi\)
\(510\) −4534.23 −0.393684
\(511\) 4524.78 0.391712
\(512\) 25131.0 2.16922
\(513\) −3738.68 −0.321768
\(514\) −8970.59 −0.769797
\(515\) 12144.1 1.03909
\(516\) −29062.3 −2.47945
\(517\) −12804.9 −1.08928
\(518\) 14127.7 1.19833
\(519\) −6526.44 −0.551983
\(520\) 23655.2 1.99491
\(521\) 3658.55 0.307647 0.153823 0.988098i \(-0.450841\pi\)
0.153823 + 0.988098i \(0.450841\pi\)
\(522\) 791.756 0.0663874
\(523\) 9660.17 0.807667 0.403834 0.914832i \(-0.367677\pi\)
0.403834 + 0.914832i \(0.367677\pi\)
\(524\) −24425.1 −2.03629
\(525\) −947.566 −0.0787718
\(526\) −1495.99 −0.124008
\(527\) 4417.21 0.365117
\(528\) −47177.4 −3.88851
\(529\) 529.000 0.0434783
\(530\) 1906.32 0.156236
\(531\) 7686.75 0.628205
\(532\) −21274.1 −1.73374
\(533\) −2769.90 −0.225098
\(534\) 9466.44 0.767140
\(535\) −4917.15 −0.397359
\(536\) −60764.4 −4.89668
\(537\) 9762.89 0.784544
\(538\) 40733.9 3.26424
\(539\) −3182.36 −0.254312
\(540\) 5296.32 0.422069
\(541\) −11525.7 −0.915950 −0.457975 0.888965i \(-0.651425\pi\)
−0.457975 + 0.888965i \(0.651425\pi\)
\(542\) 16977.2 1.34545
\(543\) 3443.18 0.272120
\(544\) −22077.4 −1.74000
\(545\) −8910.00 −0.700298
\(546\) 3984.90 0.312340
\(547\) −18887.0 −1.47633 −0.738163 0.674623i \(-0.764306\pi\)
−0.738163 + 0.674623i \(0.764306\pi\)
\(548\) −10011.0 −0.780381
\(549\) 3918.75 0.304641
\(550\) 16037.2 1.24333
\(551\) −2225.97 −0.172104
\(552\) −5266.84 −0.406108
\(553\) −6013.11 −0.462394
\(554\) 11772.2 0.902801
\(555\) 9888.34 0.756282
\(556\) 13580.5 1.03587
\(557\) −13486.0 −1.02589 −0.512943 0.858423i \(-0.671445\pi\)
−0.512943 + 0.858423i \(0.671445\pi\)
\(558\) −7040.31 −0.534122
\(559\) −15304.7 −1.15800
\(560\) 15148.5 1.14311
\(561\) 6020.87 0.453122
\(562\) 3638.02 0.273062
\(563\) −16192.7 −1.21215 −0.606075 0.795408i \(-0.707257\pi\)
−0.606075 + 0.795408i \(0.707257\pi\)
\(564\) 12982.0 0.969220
\(565\) 16894.3 1.25796
\(566\) 15998.5 1.18811
\(567\) 567.000 0.0419961
\(568\) −18027.8 −1.33174
\(569\) 9293.58 0.684722 0.342361 0.939568i \(-0.388773\pi\)
0.342361 + 0.939568i \(0.388773\pi\)
\(570\) −20317.7 −1.49301
\(571\) 15286.5 1.12035 0.560175 0.828374i \(-0.310734\pi\)
0.560175 + 0.828374i \(0.310734\pi\)
\(572\) −49427.0 −3.61302
\(573\) −2595.21 −0.189209
\(574\) −3060.08 −0.222518
\(575\) 1037.81 0.0752690
\(576\) 17754.0 1.28429
\(577\) −10993.2 −0.793161 −0.396581 0.918000i \(-0.629803\pi\)
−0.396581 + 0.918000i \(0.629803\pi\)
\(578\) −21660.5 −1.55875
\(579\) −6016.45 −0.431840
\(580\) 3153.37 0.225752
\(581\) 5753.83 0.410859
\(582\) 27106.5 1.93058
\(583\) −2531.35 −0.179825
\(584\) 49340.2 3.49608
\(585\) 2789.13 0.197122
\(586\) −9659.06 −0.680908
\(587\) −5939.95 −0.417663 −0.208831 0.977952i \(-0.566966\pi\)
−0.208831 + 0.977952i \(0.566966\pi\)
\(588\) 3226.38 0.226282
\(589\) 19793.3 1.38467
\(590\) 41773.3 2.91488
\(591\) −656.120 −0.0456670
\(592\) 89299.3 6.19963
\(593\) −11704.3 −0.810518 −0.405259 0.914202i \(-0.632819\pi\)
−0.405259 + 0.914202i \(0.632819\pi\)
\(594\) −9596.27 −0.662861
\(595\) −1933.28 −0.133205
\(596\) 4207.37 0.289162
\(597\) −820.614 −0.0562571
\(598\) −4364.41 −0.298452
\(599\) −3212.92 −0.219159 −0.109580 0.993978i \(-0.534950\pi\)
−0.109580 + 0.993978i \(0.534950\pi\)
\(600\) −10332.7 −0.703050
\(601\) 24141.0 1.63849 0.819246 0.573442i \(-0.194392\pi\)
0.819246 + 0.573442i \(0.194392\pi\)
\(602\) −16908.1 −1.14472
\(603\) −7164.57 −0.483854
\(604\) −32999.1 −2.22304
\(605\) 25802.5 1.73392
\(606\) −19329.8 −1.29574
\(607\) −8240.03 −0.550993 −0.275496 0.961302i \(-0.588842\pi\)
−0.275496 + 0.961302i \(0.588842\pi\)
\(608\) −98927.9 −6.59878
\(609\) 337.585 0.0224624
\(610\) 21296.2 1.41354
\(611\) 6836.52 0.452661
\(612\) −6104.14 −0.403178
\(613\) −24760.8 −1.63145 −0.815726 0.578438i \(-0.803662\pi\)
−0.815726 + 0.578438i \(0.803662\pi\)
\(614\) −22391.4 −1.47173
\(615\) −2141.83 −0.140434
\(616\) −34701.9 −2.26977
\(617\) −4624.30 −0.301730 −0.150865 0.988554i \(-0.548206\pi\)
−0.150865 + 0.988554i \(0.548206\pi\)
\(618\) 22307.9 1.45203
\(619\) −1330.77 −0.0864103 −0.0432051 0.999066i \(-0.513757\pi\)
−0.0432051 + 0.999066i \(0.513757\pi\)
\(620\) −28039.8 −1.81630
\(621\) −621.000 −0.0401286
\(622\) 13726.8 0.884880
\(623\) 4036.25 0.259565
\(624\) 25188.0 1.61591
\(625\) −7948.71 −0.508717
\(626\) −12459.3 −0.795484
\(627\) 26979.2 1.71842
\(628\) −29861.1 −1.89743
\(629\) −11396.5 −0.722432
\(630\) 3081.33 0.194862
\(631\) −29390.6 −1.85423 −0.927117 0.374773i \(-0.877721\pi\)
−0.927117 + 0.374773i \(0.877721\pi\)
\(632\) −65569.6 −4.12693
\(633\) 2699.23 0.169486
\(634\) 12489.9 0.782396
\(635\) −18435.3 −1.15210
\(636\) 2566.36 0.160004
\(637\) 1699.06 0.105682
\(638\) −5713.50 −0.354545
\(639\) −2125.61 −0.131593
\(640\) 45401.2 2.80412
\(641\) −8899.76 −0.548392 −0.274196 0.961674i \(-0.588412\pi\)
−0.274196 + 0.961674i \(0.588412\pi\)
\(642\) −9032.48 −0.555270
\(643\) 24093.0 1.47766 0.738830 0.673892i \(-0.235379\pi\)
0.738830 + 0.673892i \(0.235379\pi\)
\(644\) −3533.65 −0.216219
\(645\) −11834.4 −0.722447
\(646\) 23416.6 1.42618
\(647\) −15696.8 −0.953796 −0.476898 0.878959i \(-0.658239\pi\)
−0.476898 + 0.878959i \(0.658239\pi\)
\(648\) 6182.82 0.374821
\(649\) −55469.5 −3.35496
\(650\) −8562.26 −0.516676
\(651\) −3001.81 −0.180722
\(652\) 50121.1 3.01057
\(653\) 8664.84 0.519267 0.259634 0.965707i \(-0.416398\pi\)
0.259634 + 0.965707i \(0.416398\pi\)
\(654\) −16367.1 −0.978598
\(655\) −9946.07 −0.593321
\(656\) −19342.4 −1.15121
\(657\) 5817.58 0.345457
\(658\) 7552.75 0.447472
\(659\) −18667.0 −1.10343 −0.551716 0.834032i \(-0.686027\pi\)
−0.551716 + 0.834032i \(0.686027\pi\)
\(660\) −38219.6 −2.25408
\(661\) 14121.6 0.830964 0.415482 0.909601i \(-0.363613\pi\)
0.415482 + 0.909601i \(0.363613\pi\)
\(662\) −37401.0 −2.19582
\(663\) −3214.54 −0.188299
\(664\) 62742.3 3.66698
\(665\) −8662.95 −0.505165
\(666\) 18164.2 1.05683
\(667\) −369.736 −0.0214636
\(668\) −21296.0 −1.23348
\(669\) −2481.07 −0.143384
\(670\) −38935.5 −2.24509
\(671\) −28278.6 −1.62695
\(672\) 15003.2 0.861251
\(673\) 31238.5 1.78923 0.894617 0.446833i \(-0.147448\pi\)
0.894617 + 0.446833i \(0.147448\pi\)
\(674\) −16124.0 −0.921473
\(675\) −1218.30 −0.0694702
\(676\) −21831.0 −1.24209
\(677\) 23202.3 1.31719 0.658596 0.752497i \(-0.271151\pi\)
0.658596 + 0.752497i \(0.271151\pi\)
\(678\) 31033.7 1.75788
\(679\) 11557.5 0.653221
\(680\) −21081.4 −1.18887
\(681\) −9971.02 −0.561073
\(682\) 50804.6 2.85250
\(683\) −11108.7 −0.622348 −0.311174 0.950353i \(-0.600722\pi\)
−0.311174 + 0.950353i \(0.600722\pi\)
\(684\) −27352.4 −1.52901
\(685\) −4076.55 −0.227383
\(686\) 1877.06 0.104470
\(687\) 13861.9 0.769817
\(688\) −106874. −5.92227
\(689\) 1351.49 0.0747278
\(690\) −3374.79 −0.186197
\(691\) −32784.6 −1.80490 −0.902449 0.430797i \(-0.858233\pi\)
−0.902449 + 0.430797i \(0.858233\pi\)
\(692\) −47747.8 −2.62297
\(693\) −4091.61 −0.224282
\(694\) 60092.0 3.28683
\(695\) 5530.08 0.301824
\(696\) 3681.17 0.200481
\(697\) 2468.51 0.134148
\(698\) −7113.80 −0.385761
\(699\) −7569.97 −0.409618
\(700\) −6932.44 −0.374317
\(701\) −2027.49 −0.109240 −0.0546200 0.998507i \(-0.517395\pi\)
−0.0546200 + 0.998507i \(0.517395\pi\)
\(702\) 5123.44 0.275458
\(703\) −51067.4 −2.73975
\(704\) −128117. −6.85880
\(705\) 5286.35 0.282405
\(706\) −28335.6 −1.51052
\(707\) −8241.73 −0.438419
\(708\) 56236.6 2.98517
\(709\) −31315.4 −1.65878 −0.829389 0.558671i \(-0.811311\pi\)
−0.829389 + 0.558671i \(0.811311\pi\)
\(710\) −11551.5 −0.610593
\(711\) −7731.15 −0.407793
\(712\) 44013.1 2.31666
\(713\) 3287.70 0.172686
\(714\) −3551.31 −0.186141
\(715\) −20127.0 −1.05274
\(716\) 71425.8 3.72808
\(717\) 12751.5 0.664173
\(718\) 65197.6 3.38879
\(719\) 13785.9 0.715060 0.357530 0.933902i \(-0.383619\pi\)
0.357530 + 0.933902i \(0.383619\pi\)
\(720\) 19476.7 1.00813
\(721\) 9511.53 0.491301
\(722\) 67392.9 3.47383
\(723\) −21164.8 −1.08870
\(724\) 25190.5 1.29309
\(725\) −725.361 −0.0371575
\(726\) 47397.4 2.42298
\(727\) 11853.4 0.604700 0.302350 0.953197i \(-0.402229\pi\)
0.302350 + 0.953197i \(0.402229\pi\)
\(728\) 18527.3 0.943225
\(729\) 729.000 0.0370370
\(730\) 31615.3 1.60293
\(731\) 13639.4 0.690112
\(732\) 28669.7 1.44763
\(733\) −6857.02 −0.345525 −0.172762 0.984964i \(-0.555269\pi\)
−0.172762 + 0.984964i \(0.555269\pi\)
\(734\) 10963.8 0.551338
\(735\) 1313.80 0.0659325
\(736\) −16432.1 −0.822953
\(737\) 51701.3 2.58404
\(738\) −3934.39 −0.196243
\(739\) 7095.95 0.353219 0.176609 0.984281i \(-0.443487\pi\)
0.176609 + 0.984281i \(0.443487\pi\)
\(740\) 72343.5 3.59379
\(741\) −14404.2 −0.714104
\(742\) 1493.07 0.0738712
\(743\) −26319.1 −1.29953 −0.649767 0.760133i \(-0.725134\pi\)
−0.649767 + 0.760133i \(0.725134\pi\)
\(744\) −32733.1 −1.61297
\(745\) 1713.27 0.0842543
\(746\) 32193.4 1.58001
\(747\) 7397.79 0.362344
\(748\) 44049.0 2.15319
\(749\) −3851.22 −0.187878
\(750\) −24962.0 −1.21531
\(751\) 27498.1 1.33611 0.668055 0.744112i \(-0.267127\pi\)
0.668055 + 0.744112i \(0.267127\pi\)
\(752\) 47739.9 2.31502
\(753\) 17489.1 0.846401
\(754\) 3050.43 0.147335
\(755\) −13437.5 −0.647735
\(756\) 4148.20 0.199562
\(757\) 28018.2 1.34523 0.672614 0.739994i \(-0.265172\pi\)
0.672614 + 0.739994i \(0.265172\pi\)
\(758\) −63487.2 −3.04216
\(759\) 4481.29 0.214309
\(760\) −94464.6 −4.50867
\(761\) −30614.8 −1.45833 −0.729163 0.684340i \(-0.760091\pi\)
−0.729163 + 0.684340i \(0.760091\pi\)
\(762\) −33864.5 −1.60995
\(763\) −6978.51 −0.331113
\(764\) −18986.7 −0.899103
\(765\) −2485.65 −0.117476
\(766\) −9049.48 −0.426855
\(767\) 29615.1 1.39418
\(768\) 36054.9 1.69404
\(769\) −36535.2 −1.71326 −0.856628 0.515935i \(-0.827445\pi\)
−0.856628 + 0.515935i \(0.827445\pi\)
\(770\) −22235.6 −1.04067
\(771\) −4917.65 −0.229708
\(772\) −44016.7 −2.05207
\(773\) −2926.76 −0.136181 −0.0680907 0.997679i \(-0.521691\pi\)
−0.0680907 + 0.997679i \(0.521691\pi\)
\(774\) −21739.0 −1.00955
\(775\) 6449.92 0.298952
\(776\) 126028. 5.83010
\(777\) 7744.77 0.357583
\(778\) −63400.2 −2.92160
\(779\) 11061.3 0.508743
\(780\) 20405.4 0.936706
\(781\) 15338.9 0.702778
\(782\) 3889.53 0.177864
\(783\) 434.038 0.0198100
\(784\) 11864.7 0.540482
\(785\) −12159.6 −0.552861
\(786\) −18270.3 −0.829108
\(787\) −15882.5 −0.719376 −0.359688 0.933073i \(-0.617117\pi\)
−0.359688 + 0.933073i \(0.617117\pi\)
\(788\) −4800.21 −0.217005
\(789\) −820.094 −0.0370040
\(790\) −42014.5 −1.89216
\(791\) 13232.0 0.594786
\(792\) −44616.7 −2.00175
\(793\) 15097.9 0.676095
\(794\) −14444.5 −0.645614
\(795\) 1045.04 0.0466210
\(796\) −6003.65 −0.267329
\(797\) −16842.7 −0.748556 −0.374278 0.927316i \(-0.622109\pi\)
−0.374278 + 0.927316i \(0.622109\pi\)
\(798\) −15913.3 −0.705919
\(799\) −6092.65 −0.269765
\(800\) −32237.0 −1.42469
\(801\) 5189.47 0.228915
\(802\) 11182.3 0.492345
\(803\) −41981.1 −1.84493
\(804\) −52416.3 −2.29923
\(805\) −1438.93 −0.0630007
\(806\) −27124.5 −1.18539
\(807\) 22330.2 0.974051
\(808\) −89871.4 −3.91295
\(809\) 18173.9 0.789815 0.394907 0.918721i \(-0.370777\pi\)
0.394907 + 0.918721i \(0.370777\pi\)
\(810\) 3961.71 0.171852
\(811\) −13426.0 −0.581321 −0.290661 0.956826i \(-0.593875\pi\)
−0.290661 + 0.956826i \(0.593875\pi\)
\(812\) 2469.79 0.106740
\(813\) 9306.84 0.401482
\(814\) −131077. −5.64405
\(815\) 20409.7 0.877201
\(816\) −22447.3 −0.963007
\(817\) 61117.6 2.61718
\(818\) 11240.7 0.480467
\(819\) 2184.51 0.0932025
\(820\) −15669.7 −0.667330
\(821\) −21961.4 −0.933569 −0.466784 0.884371i \(-0.654588\pi\)
−0.466784 + 0.884371i \(0.654588\pi\)
\(822\) −7488.35 −0.317745
\(823\) −5614.14 −0.237784 −0.118892 0.992907i \(-0.537934\pi\)
−0.118892 + 0.992907i \(0.537934\pi\)
\(824\) 103718. 4.38493
\(825\) 8791.55 0.371009
\(826\) 32717.7 1.37820
\(827\) 10174.5 0.427815 0.213907 0.976854i \(-0.431381\pi\)
0.213907 + 0.976854i \(0.431381\pi\)
\(828\) −4543.27 −0.190688
\(829\) −27711.0 −1.16097 −0.580485 0.814271i \(-0.697137\pi\)
−0.580485 + 0.814271i \(0.697137\pi\)
\(830\) 40202.9 1.68128
\(831\) 6453.46 0.269396
\(832\) 68401.6 2.85024
\(833\) −1514.19 −0.0629815
\(834\) 10158.4 0.421770
\(835\) −8671.88 −0.359404
\(836\) 197381. 8.16576
\(837\) −3859.47 −0.159382
\(838\) −20473.1 −0.843950
\(839\) −1474.25 −0.0606637 −0.0303319 0.999540i \(-0.509656\pi\)
−0.0303319 + 0.999540i \(0.509656\pi\)
\(840\) 14326.3 0.588457
\(841\) −24130.6 −0.989404
\(842\) −42850.9 −1.75385
\(843\) 1994.35 0.0814818
\(844\) 19747.7 0.805383
\(845\) −8889.74 −0.361913
\(846\) 9710.68 0.394633
\(847\) 20209.1 0.819825
\(848\) 9437.51 0.382176
\(849\) 8770.34 0.354532
\(850\) 7630.61 0.307915
\(851\) −8482.36 −0.341682
\(852\) −15551.1 −0.625318
\(853\) −31045.8 −1.24617 −0.623087 0.782152i \(-0.714122\pi\)
−0.623087 + 0.782152i \(0.714122\pi\)
\(854\) 16679.7 0.668345
\(855\) −11138.1 −0.445514
\(856\) −41995.4 −1.67684
\(857\) −41409.9 −1.65057 −0.825283 0.564720i \(-0.808984\pi\)
−0.825283 + 0.564720i \(0.808984\pi\)
\(858\) −36972.0 −1.47110
\(859\) 4188.80 0.166380 0.0831898 0.996534i \(-0.473489\pi\)
0.0831898 + 0.996534i \(0.473489\pi\)
\(860\) −86580.9 −3.43301
\(861\) −1677.53 −0.0663995
\(862\) 79977.7 3.16015
\(863\) −14097.9 −0.556082 −0.278041 0.960569i \(-0.589685\pi\)
−0.278041 + 0.960569i \(0.589685\pi\)
\(864\) 19289.8 0.759552
\(865\) −19443.2 −0.764265
\(866\) −10509.7 −0.412395
\(867\) −11874.2 −0.465133
\(868\) −21961.4 −0.858777
\(869\) 55789.8 2.17784
\(870\) 2358.76 0.0919187
\(871\) −27603.3 −1.07382
\(872\) −76096.8 −2.95523
\(873\) 14859.7 0.576087
\(874\) 17428.8 0.674528
\(875\) −10643.2 −0.411207
\(876\) 42561.7 1.64158
\(877\) −26701.7 −1.02811 −0.514055 0.857757i \(-0.671857\pi\)
−0.514055 + 0.857757i \(0.671857\pi\)
\(878\) 25737.5 0.989291
\(879\) −5295.06 −0.203183
\(880\) −140548. −5.38396
\(881\) −12186.4 −0.466029 −0.233014 0.972473i \(-0.574859\pi\)
−0.233014 + 0.972473i \(0.574859\pi\)
\(882\) 2413.37 0.0921342
\(883\) −43820.5 −1.67008 −0.835039 0.550191i \(-0.814555\pi\)
−0.835039 + 0.550191i \(0.814555\pi\)
\(884\) −23517.7 −0.894781
\(885\) 22900.0 0.869801
\(886\) 32041.9 1.21498
\(887\) −12779.0 −0.483741 −0.241871 0.970309i \(-0.577761\pi\)
−0.241871 + 0.970309i \(0.577761\pi\)
\(888\) 84452.3 3.19148
\(889\) −14439.0 −0.544732
\(890\) 28201.9 1.06217
\(891\) −5260.64 −0.197798
\(892\) −18151.6 −0.681346
\(893\) −27300.9 −1.02306
\(894\) 3147.17 0.117737
\(895\) 29085.1 1.08626
\(896\) 35559.2 1.32584
\(897\) −2392.56 −0.0890581
\(898\) 79797.6 2.96535
\(899\) −2297.88 −0.0852488
\(900\) −8913.14 −0.330116
\(901\) −1204.43 −0.0445344
\(902\) 28391.5 1.04804
\(903\) −9268.96 −0.341585
\(904\) 144288. 5.30855
\(905\) 10257.7 0.376772
\(906\) −24683.7 −0.905146
\(907\) −7244.34 −0.265209 −0.132604 0.991169i \(-0.542334\pi\)
−0.132604 + 0.991169i \(0.542334\pi\)
\(908\) −72948.5 −2.66617
\(909\) −10596.5 −0.386649
\(910\) 11871.6 0.432461
\(911\) −19922.1 −0.724531 −0.362266 0.932075i \(-0.617997\pi\)
−0.362266 + 0.932075i \(0.617997\pi\)
\(912\) −100585. −3.65210
\(913\) −53384.2 −1.93512
\(914\) −8498.09 −0.307540
\(915\) 11674.5 0.421801
\(916\) 101414. 3.65810
\(917\) −7789.98 −0.280532
\(918\) −4565.97 −0.164161
\(919\) −12768.2 −0.458306 −0.229153 0.973390i \(-0.573596\pi\)
−0.229153 + 0.973390i \(0.573596\pi\)
\(920\) −15690.7 −0.562290
\(921\) −12274.9 −0.439165
\(922\) 63531.2 2.26929
\(923\) −8189.44 −0.292046
\(924\) −29934.4 −1.06577
\(925\) −16641.0 −0.591516
\(926\) −86566.6 −3.07209
\(927\) 12229.1 0.433287
\(928\) 11484.9 0.406262
\(929\) 27889.7 0.984964 0.492482 0.870323i \(-0.336090\pi\)
0.492482 + 0.870323i \(0.336090\pi\)
\(930\) −20974.1 −0.739536
\(931\) −6785.01 −0.238851
\(932\) −55382.3 −1.94647
\(933\) 7525.00 0.264049
\(934\) 64563.4 2.26186
\(935\) 17937.0 0.627384
\(936\) 23820.8 0.831846
\(937\) −33958.2 −1.18395 −0.591977 0.805955i \(-0.701652\pi\)
−0.591977 + 0.805955i \(0.701652\pi\)
\(938\) −30495.1 −1.06152
\(939\) −6830.14 −0.237373
\(940\) 38675.2 1.34196
\(941\) 39002.5 1.35116 0.675582 0.737285i \(-0.263892\pi\)
0.675582 + 0.737285i \(0.263892\pi\)
\(942\) −22336.4 −0.772570
\(943\) 1837.29 0.0634469
\(944\) 206804. 7.13020
\(945\) 1689.18 0.0581470
\(946\) 156874. 5.39155
\(947\) −6375.90 −0.218784 −0.109392 0.993999i \(-0.534890\pi\)
−0.109392 + 0.993999i \(0.534890\pi\)
\(948\) −56561.4 −1.93780
\(949\) 22413.7 0.766679
\(950\) 34192.4 1.16774
\(951\) 6846.94 0.233467
\(952\) −16511.4 −0.562119
\(953\) 11469.9 0.389871 0.194935 0.980816i \(-0.437550\pi\)
0.194935 + 0.980816i \(0.437550\pi\)
\(954\) 1919.67 0.0651483
\(955\) −7731.52 −0.261975
\(956\) 93290.2 3.15609
\(957\) −3132.12 −0.105796
\(958\) −50117.8 −1.69022
\(959\) −3192.85 −0.107510
\(960\) 52891.7 1.77820
\(961\) −9358.17 −0.314127
\(962\) 69982.1 2.34544
\(963\) −4951.57 −0.165693
\(964\) −154843. −5.17339
\(965\) −17923.9 −0.597918
\(966\) −2643.21 −0.0880372
\(967\) −11097.4 −0.369045 −0.184523 0.982828i \(-0.559074\pi\)
−0.184523 + 0.982828i \(0.559074\pi\)
\(968\) 220368. 7.31705
\(969\) 12836.9 0.425573
\(970\) 80754.2 2.67305
\(971\) 19350.8 0.639545 0.319773 0.947494i \(-0.396394\pi\)
0.319773 + 0.947494i \(0.396394\pi\)
\(972\) 5333.40 0.175997
\(973\) 4331.28 0.142708
\(974\) 89381.7 2.94042
\(975\) −4693.80 −0.154176
\(976\) 105430. 3.45771
\(977\) 19020.2 0.622834 0.311417 0.950273i \(-0.399196\pi\)
0.311417 + 0.950273i \(0.399196\pi\)
\(978\) 37491.1 1.22580
\(979\) −37448.5 −1.22253
\(980\) 9611.85 0.313305
\(981\) −8972.37 −0.292014
\(982\) 94859.6 3.08258
\(983\) 48405.2 1.57059 0.785293 0.619125i \(-0.212512\pi\)
0.785293 + 0.619125i \(0.212512\pi\)
\(984\) −18292.5 −0.592626
\(985\) −1954.68 −0.0632297
\(986\) −2718.52 −0.0878046
\(987\) 4140.39 0.133526
\(988\) −105382. −3.39336
\(989\) 10151.7 0.326396
\(990\) −28588.7 −0.917786
\(991\) 31822.7 1.02006 0.510031 0.860156i \(-0.329634\pi\)
0.510031 + 0.860156i \(0.329634\pi\)
\(992\) −102124. −3.26859
\(993\) −20503.1 −0.655233
\(994\) −9047.41 −0.288699
\(995\) −2444.73 −0.0778926
\(996\) 54122.6 1.72183
\(997\) −7520.08 −0.238880 −0.119440 0.992841i \(-0.538110\pi\)
−0.119440 + 0.992841i \(0.538110\pi\)
\(998\) 51437.6 1.63149
\(999\) 9957.56 0.315358
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 483.4.a.i.1.9 9
3.2 odd 2 1449.4.a.j.1.1 9
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
483.4.a.i.1.9 9 1.1 even 1 trivial
1449.4.a.j.1.1 9 3.2 odd 2