Properties

Label 1456.2.cc.f.673.7
Level $1456$
Weight $2$
Character 1456.673
Analytic conductor $11.626$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1456,2,Mod(225,1456)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1456, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1456.225");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1456 = 2^{4} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1456.cc (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.6262185343\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 38x^{14} + 587x^{12} + 4762x^{10} + 21849x^{8} + 56552x^{6} + 76456x^{4} + 42624x^{2} + 2704 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 364)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 673.7
Root \(-1.77673i\) of defining polynomial
Character \(\chi\) \(=\) 1456.673
Dual form 1456.2.cc.f.225.7

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.888364 + 1.53869i) q^{3} -3.82804i q^{5} +(0.866025 + 0.500000i) q^{7} +(-0.0783804 + 0.135759i) q^{9} +(3.74735 - 2.16353i) q^{11} +(-0.930395 + 3.48344i) q^{13} +(5.89018 - 3.40069i) q^{15} +(1.45744 - 2.52436i) q^{17} +(-4.72686 - 2.72905i) q^{19} +1.77673i q^{21} +(0.307112 + 0.531934i) q^{23} -9.65391 q^{25} +5.05166 q^{27} +(-4.62872 - 8.01717i) q^{29} +5.30753i q^{31} +(6.65802 + 3.84401i) q^{33} +(1.91402 - 3.31518i) q^{35} +(-0.974022 + 0.562352i) q^{37} +(-6.18647 + 1.66297i) q^{39} +(10.4130 - 6.01195i) q^{41} +(-0.641552 + 1.11120i) q^{43} +(0.519691 + 0.300044i) q^{45} -5.68074i q^{47} +(0.500000 + 0.866025i) q^{49} +5.17895 q^{51} -3.96013 q^{53} +(-8.28210 - 14.3450i) q^{55} -9.69757i q^{57} +(6.68359 + 3.85877i) q^{59} +(7.17308 - 12.4241i) q^{61} +(-0.135759 + 0.0783804i) q^{63} +(13.3348 + 3.56159i) q^{65} +(-0.468974 + 0.270762i) q^{67} +(-0.545654 + 0.945101i) q^{69} +(-7.96918 - 4.60101i) q^{71} +7.36798i q^{73} +(-8.57618 - 14.8544i) q^{75} +4.32707 q^{77} -0.331686 q^{79} +(4.72285 + 8.18022i) q^{81} +16.6777i q^{83} +(-9.66335 - 5.57914i) q^{85} +(8.22397 - 14.2443i) q^{87} +(2.55836 - 1.47707i) q^{89} +(-2.54747 + 2.55155i) q^{91} +(-8.16665 + 4.71502i) q^{93} +(-10.4469 + 18.0946i) q^{95} +(8.36220 + 4.82792i) q^{97} +0.678314i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 14 q^{9} - 6 q^{11} + 10 q^{13} - 6 q^{15} + 2 q^{17} - 44 q^{25} + 12 q^{27} - 22 q^{29} + 42 q^{33} + 6 q^{35} + 12 q^{37} - 24 q^{39} + 36 q^{41} - 6 q^{43} - 30 q^{45} + 8 q^{49} + 4 q^{51} + 8 q^{53}+ \cdots - 42 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1456\mathbb{Z}\right)^\times\).

\(n\) \(561\) \(911\) \(1093\) \(1249\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.888364 + 1.53869i 0.512897 + 0.888364i 0.999888 + 0.0149568i \(0.00476108\pi\)
−0.486991 + 0.873407i \(0.661906\pi\)
\(4\) 0 0
\(5\) 3.82804i 1.71195i −0.517015 0.855976i \(-0.672957\pi\)
0.517015 0.855976i \(-0.327043\pi\)
\(6\) 0 0
\(7\) 0.866025 + 0.500000i 0.327327 + 0.188982i
\(8\) 0 0
\(9\) −0.0783804 + 0.135759i −0.0261268 + 0.0452529i
\(10\) 0 0
\(11\) 3.74735 2.16353i 1.12987 0.652330i 0.185966 0.982556i \(-0.440458\pi\)
0.943902 + 0.330227i \(0.107125\pi\)
\(12\) 0 0
\(13\) −0.930395 + 3.48344i −0.258045 + 0.966133i
\(14\) 0 0
\(15\) 5.89018 3.40069i 1.52084 0.878056i
\(16\) 0 0
\(17\) 1.45744 2.52436i 0.353481 0.612247i −0.633376 0.773844i \(-0.718331\pi\)
0.986857 + 0.161597i \(0.0516646\pi\)
\(18\) 0 0
\(19\) −4.72686 2.72905i −1.08442 0.626088i −0.152331 0.988329i \(-0.548678\pi\)
−0.932084 + 0.362242i \(0.882011\pi\)
\(20\) 0 0
\(21\) 1.77673i 0.387714i
\(22\) 0 0
\(23\) 0.307112 + 0.531934i 0.0640373 + 0.110916i 0.896267 0.443516i \(-0.146269\pi\)
−0.832229 + 0.554432i \(0.812936\pi\)
\(24\) 0 0
\(25\) −9.65391 −1.93078
\(26\) 0 0
\(27\) 5.05166 0.972193
\(28\) 0 0
\(29\) −4.62872 8.01717i −0.859531 1.48875i −0.872377 0.488834i \(-0.837422\pi\)
0.0128452 0.999917i \(-0.495911\pi\)
\(30\) 0 0
\(31\) 5.30753i 0.953261i 0.879104 + 0.476630i \(0.158142\pi\)
−0.879104 + 0.476630i \(0.841858\pi\)
\(32\) 0 0
\(33\) 6.65802 + 3.84401i 1.15901 + 0.669156i
\(34\) 0 0
\(35\) 1.91402 3.31518i 0.323529 0.560368i
\(36\) 0 0
\(37\) −0.974022 + 0.562352i −0.160128 + 0.0924501i −0.577923 0.816091i \(-0.696137\pi\)
0.417795 + 0.908542i \(0.362803\pi\)
\(38\) 0 0
\(39\) −6.18647 + 1.66297i −0.990628 + 0.266289i
\(40\) 0 0
\(41\) 10.4130 6.01195i 1.62624 0.938909i 0.641037 0.767510i \(-0.278505\pi\)
0.985202 0.171399i \(-0.0548287\pi\)
\(42\) 0 0
\(43\) −0.641552 + 1.11120i −0.0978358 + 0.169457i −0.910789 0.412873i \(-0.864525\pi\)
0.812953 + 0.582330i \(0.197859\pi\)
\(44\) 0 0
\(45\) 0.519691 + 0.300044i 0.0774709 + 0.0447278i
\(46\) 0 0
\(47\) 5.68074i 0.828620i −0.910136 0.414310i \(-0.864023\pi\)
0.910136 0.414310i \(-0.135977\pi\)
\(48\) 0 0
\(49\) 0.500000 + 0.866025i 0.0714286 + 0.123718i
\(50\) 0 0
\(51\) 5.17895 0.725197
\(52\) 0 0
\(53\) −3.96013 −0.543966 −0.271983 0.962302i \(-0.587679\pi\)
−0.271983 + 0.962302i \(0.587679\pi\)
\(54\) 0 0
\(55\) −8.28210 14.3450i −1.11676 1.93428i
\(56\) 0 0
\(57\) 9.69757i 1.28447i
\(58\) 0 0
\(59\) 6.68359 + 3.85877i 0.870129 + 0.502369i 0.867391 0.497627i \(-0.165795\pi\)
0.00273800 + 0.999996i \(0.499128\pi\)
\(60\) 0 0
\(61\) 7.17308 12.4241i 0.918419 1.59075i 0.116601 0.993179i \(-0.462800\pi\)
0.801817 0.597569i \(-0.203867\pi\)
\(62\) 0 0
\(63\) −0.135759 + 0.0783804i −0.0171040 + 0.00987500i
\(64\) 0 0
\(65\) 13.3348 + 3.56159i 1.65397 + 0.441761i
\(66\) 0 0
\(67\) −0.468974 + 0.270762i −0.0572943 + 0.0330789i −0.528374 0.849012i \(-0.677198\pi\)
0.471079 + 0.882091i \(0.343865\pi\)
\(68\) 0 0
\(69\) −0.545654 + 0.945101i −0.0656891 + 0.113777i
\(70\) 0 0
\(71\) −7.96918 4.60101i −0.945768 0.546040i −0.0540044 0.998541i \(-0.517199\pi\)
−0.891764 + 0.452501i \(0.850532\pi\)
\(72\) 0 0
\(73\) 7.36798i 0.862357i 0.902267 + 0.431179i \(0.141902\pi\)
−0.902267 + 0.431179i \(0.858098\pi\)
\(74\) 0 0
\(75\) −8.57618 14.8544i −0.990293 1.71524i
\(76\) 0 0
\(77\) 4.32707 0.493115
\(78\) 0 0
\(79\) −0.331686 −0.0373176 −0.0186588 0.999826i \(-0.505940\pi\)
−0.0186588 + 0.999826i \(0.505940\pi\)
\(80\) 0 0
\(81\) 4.72285 + 8.18022i 0.524762 + 0.908914i
\(82\) 0 0
\(83\) 16.6777i 1.83061i 0.402758 + 0.915306i \(0.368052\pi\)
−0.402758 + 0.915306i \(0.631948\pi\)
\(84\) 0 0
\(85\) −9.66335 5.57914i −1.04814 0.605143i
\(86\) 0 0
\(87\) 8.22397 14.2443i 0.881702 1.52715i
\(88\) 0 0
\(89\) 2.55836 1.47707i 0.271185 0.156569i −0.358241 0.933629i \(-0.616623\pi\)
0.629426 + 0.777060i \(0.283290\pi\)
\(90\) 0 0
\(91\) −2.54747 + 2.55155i −0.267047 + 0.267475i
\(92\) 0 0
\(93\) −8.16665 + 4.71502i −0.846842 + 0.488925i
\(94\) 0 0
\(95\) −10.4469 + 18.0946i −1.07183 + 1.85647i
\(96\) 0 0
\(97\) 8.36220 + 4.82792i 0.849052 + 0.490201i 0.860331 0.509736i \(-0.170257\pi\)
−0.0112787 + 0.999936i \(0.503590\pi\)
\(98\) 0 0
\(99\) 0.678314i 0.0681731i
\(100\) 0 0
\(101\) −3.17528 5.49975i −0.315952 0.547246i 0.663687 0.748010i \(-0.268991\pi\)
−0.979639 + 0.200765i \(0.935657\pi\)
\(102\) 0 0
\(103\) 5.07117 0.499678 0.249839 0.968287i \(-0.419622\pi\)
0.249839 + 0.968287i \(0.419622\pi\)
\(104\) 0 0
\(105\) 6.80139 0.663748
\(106\) 0 0
\(107\) −2.74289 4.75083i −0.265166 0.459280i 0.702441 0.711742i \(-0.252093\pi\)
−0.967607 + 0.252461i \(0.918760\pi\)
\(108\) 0 0
\(109\) 6.80685i 0.651978i 0.945374 + 0.325989i \(0.105697\pi\)
−0.945374 + 0.325989i \(0.894303\pi\)
\(110\) 0 0
\(111\) −1.73057 0.999146i −0.164259 0.0948347i
\(112\) 0 0
\(113\) 3.28384 5.68778i 0.308918 0.535061i −0.669208 0.743075i \(-0.733367\pi\)
0.978126 + 0.208014i \(0.0666999\pi\)
\(114\) 0 0
\(115\) 2.03626 1.17564i 0.189883 0.109629i
\(116\) 0 0
\(117\) −0.399983 0.399343i −0.0369785 0.0369193i
\(118\) 0 0
\(119\) 2.52436 1.45744i 0.231408 0.133603i
\(120\) 0 0
\(121\) 3.86175 6.68874i 0.351068 0.608067i
\(122\) 0 0
\(123\) 18.5011 + 10.6816i 1.66819 + 0.963128i
\(124\) 0 0
\(125\) 17.8154i 1.59346i
\(126\) 0 0
\(127\) 10.1425 + 17.5674i 0.900003 + 1.55885i 0.827488 + 0.561483i \(0.189769\pi\)
0.0725145 + 0.997367i \(0.476898\pi\)
\(128\) 0 0
\(129\) −2.27973 −0.200719
\(130\) 0 0
\(131\) −4.92442 −0.430249 −0.215124 0.976587i \(-0.569016\pi\)
−0.215124 + 0.976587i \(0.569016\pi\)
\(132\) 0 0
\(133\) −2.72905 4.72686i −0.236639 0.409871i
\(134\) 0 0
\(135\) 19.3380i 1.66435i
\(136\) 0 0
\(137\) 11.1993 + 6.46589i 0.956817 + 0.552419i 0.895192 0.445681i \(-0.147038\pi\)
0.0616251 + 0.998099i \(0.480372\pi\)
\(138\) 0 0
\(139\) 7.90466 13.6913i 0.670464 1.16128i −0.307308 0.951610i \(-0.599428\pi\)
0.977773 0.209668i \(-0.0672384\pi\)
\(140\) 0 0
\(141\) 8.74090 5.04656i 0.736116 0.424997i
\(142\) 0 0
\(143\) 4.05003 + 15.0666i 0.338680 + 1.25993i
\(144\) 0 0
\(145\) −30.6901 + 17.7189i −2.54867 + 1.47148i
\(146\) 0 0
\(147\) −0.888364 + 1.53869i −0.0732710 + 0.126909i
\(148\) 0 0
\(149\) 13.7967 + 7.96552i 1.13027 + 0.652561i 0.944002 0.329939i \(-0.107028\pi\)
0.186266 + 0.982499i \(0.440361\pi\)
\(150\) 0 0
\(151\) 6.37358i 0.518675i 0.965787 + 0.259337i \(0.0835041\pi\)
−0.965787 + 0.259337i \(0.916496\pi\)
\(152\) 0 0
\(153\) 0.228469 + 0.395721i 0.0184707 + 0.0319921i
\(154\) 0 0
\(155\) 20.3175 1.63194
\(156\) 0 0
\(157\) −7.38800 −0.589627 −0.294813 0.955555i \(-0.595257\pi\)
−0.294813 + 0.955555i \(0.595257\pi\)
\(158\) 0 0
\(159\) −3.51804 6.09342i −0.278999 0.483240i
\(160\) 0 0
\(161\) 0.614224i 0.0484076i
\(162\) 0 0
\(163\) 0.0758325 + 0.0437819i 0.00593966 + 0.00342926i 0.502967 0.864306i \(-0.332242\pi\)
−0.497027 + 0.867735i \(0.665575\pi\)
\(164\) 0 0
\(165\) 14.7150 25.4872i 1.14556 1.98417i
\(166\) 0 0
\(167\) −16.0309 + 9.25542i −1.24050 + 0.716206i −0.969197 0.246287i \(-0.920789\pi\)
−0.271308 + 0.962493i \(0.587456\pi\)
\(168\) 0 0
\(169\) −11.2687 6.48195i −0.866826 0.498612i
\(170\) 0 0
\(171\) 0.740986 0.427808i 0.0566646 0.0327153i
\(172\) 0 0
\(173\) 0.205452 0.355853i 0.0156202 0.0270550i −0.858110 0.513466i \(-0.828361\pi\)
0.873730 + 0.486412i \(0.161694\pi\)
\(174\) 0 0
\(175\) −8.36053 4.82696i −0.631997 0.364884i
\(176\) 0 0
\(177\) 13.7120i 1.03065i
\(178\) 0 0
\(179\) −1.07738 1.86607i −0.0805268 0.139477i 0.822950 0.568114i \(-0.192327\pi\)
−0.903476 + 0.428638i \(0.858994\pi\)
\(180\) 0 0
\(181\) 6.50124 0.483233 0.241617 0.970372i \(-0.422322\pi\)
0.241617 + 0.970372i \(0.422322\pi\)
\(182\) 0 0
\(183\) 25.4892 1.88422
\(184\) 0 0
\(185\) 2.15271 + 3.72860i 0.158270 + 0.274132i
\(186\) 0 0
\(187\) 12.6129i 0.922344i
\(188\) 0 0
\(189\) 4.37487 + 2.52583i 0.318225 + 0.183727i
\(190\) 0 0
\(191\) −9.38751 + 16.2596i −0.679256 + 1.17651i 0.295949 + 0.955204i \(0.404364\pi\)
−0.975205 + 0.221303i \(0.928969\pi\)
\(192\) 0 0
\(193\) −22.1852 + 12.8086i −1.59693 + 0.921986i −0.604851 + 0.796339i \(0.706767\pi\)
−0.992075 + 0.125647i \(0.959899\pi\)
\(194\) 0 0
\(195\) 6.36593 + 23.6821i 0.455874 + 1.69591i
\(196\) 0 0
\(197\) −0.510570 + 0.294778i −0.0363766 + 0.0210021i −0.518078 0.855333i \(-0.673352\pi\)
0.481701 + 0.876335i \(0.340019\pi\)
\(198\) 0 0
\(199\) −8.04513 + 13.9346i −0.570304 + 0.987796i 0.426230 + 0.904615i \(0.359841\pi\)
−0.996534 + 0.0831814i \(0.973492\pi\)
\(200\) 0 0
\(201\) −0.833240 0.481071i −0.0587722 0.0339321i
\(202\) 0 0
\(203\) 9.25744i 0.649745i
\(204\) 0 0
\(205\) −23.0140 39.8614i −1.60737 2.78404i
\(206\) 0 0
\(207\) −0.0962862 −0.00669236
\(208\) 0 0
\(209\) −23.6176 −1.63366
\(210\) 0 0
\(211\) −5.69247 9.85965i −0.391886 0.678766i 0.600812 0.799390i \(-0.294844\pi\)
−0.992698 + 0.120624i \(0.961510\pi\)
\(212\) 0 0
\(213\) 16.3495i 1.12025i
\(214\) 0 0
\(215\) 4.25373 + 2.45589i 0.290102 + 0.167490i
\(216\) 0 0
\(217\) −2.65377 + 4.59646i −0.180149 + 0.312028i
\(218\) 0 0
\(219\) −11.3370 + 6.54545i −0.766087 + 0.442300i
\(220\) 0 0
\(221\) 7.43746 + 7.42556i 0.500298 + 0.499497i
\(222\) 0 0
\(223\) 2.03182 1.17307i 0.136060 0.0785545i −0.430425 0.902626i \(-0.641636\pi\)
0.566485 + 0.824072i \(0.308303\pi\)
\(224\) 0 0
\(225\) 0.756677 1.31060i 0.0504452 0.0873736i
\(226\) 0 0
\(227\) 7.14587 + 4.12567i 0.474288 + 0.273830i 0.718033 0.696009i \(-0.245043\pi\)
−0.243745 + 0.969839i \(0.578376\pi\)
\(228\) 0 0
\(229\) 17.2750i 1.14156i −0.821103 0.570780i \(-0.806641\pi\)
0.821103 0.570780i \(-0.193359\pi\)
\(230\) 0 0
\(231\) 3.84401 + 6.65802i 0.252917 + 0.438065i
\(232\) 0 0
\(233\) −4.13778 −0.271075 −0.135537 0.990772i \(-0.543276\pi\)
−0.135537 + 0.990772i \(0.543276\pi\)
\(234\) 0 0
\(235\) −21.7461 −1.41856
\(236\) 0 0
\(237\) −0.294658 0.510363i −0.0191401 0.0331516i
\(238\) 0 0
\(239\) 5.83879i 0.377680i −0.982008 0.188840i \(-0.939527\pi\)
0.982008 0.188840i \(-0.0604727\pi\)
\(240\) 0 0
\(241\) 24.6356 + 14.2234i 1.58692 + 0.916207i 0.993811 + 0.111084i \(0.0354322\pi\)
0.593107 + 0.805124i \(0.297901\pi\)
\(242\) 0 0
\(243\) −0.813733 + 1.40943i −0.0522010 + 0.0904148i
\(244\) 0 0
\(245\) 3.31518 1.91402i 0.211799 0.122282i
\(246\) 0 0
\(247\) 13.9043 13.9266i 0.884712 0.886131i
\(248\) 0 0
\(249\) −25.6618 + 14.8158i −1.62625 + 0.938916i
\(250\) 0 0
\(251\) 6.39001 11.0678i 0.403334 0.698595i −0.590792 0.806824i \(-0.701185\pi\)
0.994126 + 0.108229i \(0.0345180\pi\)
\(252\) 0 0
\(253\) 2.30171 + 1.32889i 0.144707 + 0.0835468i
\(254\) 0 0
\(255\) 19.8252i 1.24150i
\(256\) 0 0
\(257\) 0.335695 + 0.581441i 0.0209401 + 0.0362693i 0.876306 0.481756i \(-0.160001\pi\)
−0.855365 + 0.518025i \(0.826667\pi\)
\(258\) 0 0
\(259\) −1.12470 −0.0698857
\(260\) 0 0
\(261\) 1.45120 0.0898272
\(262\) 0 0
\(263\) −9.48512 16.4287i −0.584878 1.01304i −0.994891 0.100958i \(-0.967809\pi\)
0.410013 0.912080i \(-0.365524\pi\)
\(264\) 0 0
\(265\) 15.1596i 0.931244i
\(266\) 0 0
\(267\) 4.54550 + 2.62435i 0.278180 + 0.160607i
\(268\) 0 0
\(269\) 4.79241 8.30070i 0.292198 0.506102i −0.682131 0.731230i \(-0.738947\pi\)
0.974329 + 0.225128i \(0.0722799\pi\)
\(270\) 0 0
\(271\) −9.06856 + 5.23574i −0.550876 + 0.318048i −0.749475 0.662032i \(-0.769694\pi\)
0.198599 + 0.980081i \(0.436361\pi\)
\(272\) 0 0
\(273\) −6.18913 1.65306i −0.374583 0.100048i
\(274\) 0 0
\(275\) −36.1766 + 20.8866i −2.18153 + 1.25951i
\(276\) 0 0
\(277\) −9.66856 + 16.7464i −0.580927 + 1.00620i 0.414443 + 0.910075i \(0.363977\pi\)
−0.995370 + 0.0961199i \(0.969357\pi\)
\(278\) 0 0
\(279\) −0.720544 0.416006i −0.0431379 0.0249057i
\(280\) 0 0
\(281\) 18.7039i 1.11578i 0.829915 + 0.557890i \(0.188389\pi\)
−0.829915 + 0.557890i \(0.811611\pi\)
\(282\) 0 0
\(283\) −0.587956 1.01837i −0.0349504 0.0605358i 0.848021 0.529962i \(-0.177794\pi\)
−0.882971 + 0.469427i \(0.844461\pi\)
\(284\) 0 0
\(285\) −37.1227 −2.19896
\(286\) 0 0
\(287\) 12.0239 0.709749
\(288\) 0 0
\(289\) 4.25174 + 7.36423i 0.250102 + 0.433190i
\(290\) 0 0
\(291\) 17.1558i 1.00569i
\(292\) 0 0
\(293\) −5.63521 3.25349i −0.329213 0.190071i 0.326279 0.945274i \(-0.394205\pi\)
−0.655491 + 0.755203i \(0.727538\pi\)
\(294\) 0 0
\(295\) 14.7715 25.5851i 0.860033 1.48962i
\(296\) 0 0
\(297\) 18.9303 10.9294i 1.09845 0.634190i
\(298\) 0 0
\(299\) −2.13869 + 0.574899i −0.123684 + 0.0332472i
\(300\) 0 0
\(301\) −1.11120 + 0.641552i −0.0640486 + 0.0369785i
\(302\) 0 0
\(303\) 5.64161 9.77156i 0.324102 0.561361i
\(304\) 0 0
\(305\) −47.5601 27.4589i −2.72329 1.57229i
\(306\) 0 0
\(307\) 27.0573i 1.54424i −0.635475 0.772121i \(-0.719196\pi\)
0.635475 0.772121i \(-0.280804\pi\)
\(308\) 0 0
\(309\) 4.50505 + 7.80297i 0.256283 + 0.443895i
\(310\) 0 0
\(311\) −30.9061 −1.75253 −0.876263 0.481834i \(-0.839971\pi\)
−0.876263 + 0.481834i \(0.839971\pi\)
\(312\) 0 0
\(313\) 30.0816 1.70031 0.850157 0.526530i \(-0.176507\pi\)
0.850157 + 0.526530i \(0.176507\pi\)
\(314\) 0 0
\(315\) 0.300044 + 0.519691i 0.0169055 + 0.0292812i
\(316\) 0 0
\(317\) 3.78351i 0.212503i 0.994339 + 0.106251i \(0.0338848\pi\)
−0.994339 + 0.106251i \(0.966115\pi\)
\(318\) 0 0
\(319\) −34.6908 20.0288i −1.94231 1.12140i
\(320\) 0 0
\(321\) 4.87338 8.44093i 0.272005 0.471127i
\(322\) 0 0
\(323\) −13.7782 + 7.95486i −0.766641 + 0.442620i
\(324\) 0 0
\(325\) 8.98195 33.6288i 0.498229 1.86539i
\(326\) 0 0
\(327\) −10.4736 + 6.04696i −0.579194 + 0.334398i
\(328\) 0 0
\(329\) 2.84037 4.91966i 0.156595 0.271230i
\(330\) 0 0
\(331\) −20.1396 11.6276i −1.10697 0.639110i −0.168928 0.985628i \(-0.554031\pi\)
−0.938043 + 0.346518i \(0.887364\pi\)
\(332\) 0 0
\(333\) 0.176309i 0.00966170i
\(334\) 0 0
\(335\) 1.03649 + 1.79525i 0.0566295 + 0.0980852i
\(336\) 0 0
\(337\) 6.51910 0.355118 0.177559 0.984110i \(-0.443180\pi\)
0.177559 + 0.984110i \(0.443180\pi\)
\(338\) 0 0
\(339\) 11.6690 0.633772
\(340\) 0 0
\(341\) 11.4830 + 19.8892i 0.621840 + 1.07706i
\(342\) 0 0
\(343\) 1.00000i 0.0539949i
\(344\) 0 0
\(345\) 3.61789 + 2.08879i 0.194780 + 0.112457i
\(346\) 0 0
\(347\) −6.55696 + 11.3570i −0.351996 + 0.609675i −0.986599 0.163163i \(-0.947830\pi\)
0.634603 + 0.772838i \(0.281164\pi\)
\(348\) 0 0
\(349\) 8.41298 4.85724i 0.450336 0.260002i −0.257636 0.966242i \(-0.582943\pi\)
0.707972 + 0.706240i \(0.249610\pi\)
\(350\) 0 0
\(351\) −4.70004 + 17.5972i −0.250869 + 0.939267i
\(352\) 0 0
\(353\) −26.2632 + 15.1631i −1.39785 + 0.807049i −0.994167 0.107850i \(-0.965603\pi\)
−0.403683 + 0.914899i \(0.632270\pi\)
\(354\) 0 0
\(355\) −17.6129 + 30.5064i −0.934794 + 1.61911i
\(356\) 0 0
\(357\) 4.48510 + 2.58947i 0.237377 + 0.137049i
\(358\) 0 0
\(359\) 10.5854i 0.558677i 0.960193 + 0.279339i \(0.0901152\pi\)
−0.960193 + 0.279339i \(0.909885\pi\)
\(360\) 0 0
\(361\) 5.39545 + 9.34520i 0.283971 + 0.491853i
\(362\) 0 0
\(363\) 13.7225 0.720247
\(364\) 0 0
\(365\) 28.2050 1.47631
\(366\) 0 0
\(367\) 13.3188 + 23.0688i 0.695234 + 1.20418i 0.970102 + 0.242699i \(0.0780328\pi\)
−0.274867 + 0.961482i \(0.588634\pi\)
\(368\) 0 0
\(369\) 1.88488i 0.0981228i
\(370\) 0 0
\(371\) −3.42958 1.98007i −0.178055 0.102800i
\(372\) 0 0
\(373\) 3.07064 5.31851i 0.158992 0.275382i −0.775514 0.631331i \(-0.782509\pi\)
0.934505 + 0.355949i \(0.115842\pi\)
\(374\) 0 0
\(375\) −27.4124 + 15.8265i −1.41557 + 0.817278i
\(376\) 0 0
\(377\) 32.2339 8.66473i 1.66013 0.446256i
\(378\) 0 0
\(379\) −20.4175 + 11.7880i −1.04877 + 0.605510i −0.922306 0.386460i \(-0.873698\pi\)
−0.126469 + 0.991971i \(0.540364\pi\)
\(380\) 0 0
\(381\) −18.0205 + 31.2124i −0.923217 + 1.59906i
\(382\) 0 0
\(383\) 17.4736 + 10.0884i 0.892860 + 0.515493i 0.874877 0.484346i \(-0.160942\pi\)
0.0179828 + 0.999838i \(0.494276\pi\)
\(384\) 0 0
\(385\) 16.5642i 0.844189i
\(386\) 0 0
\(387\) −0.100570 0.174193i −0.00511227 0.00885472i
\(388\) 0 0
\(389\) −32.8506 −1.66559 −0.832795 0.553581i \(-0.813261\pi\)
−0.832795 + 0.553581i \(0.813261\pi\)
\(390\) 0 0
\(391\) 1.79039 0.0905438
\(392\) 0 0
\(393\) −4.37468 7.57716i −0.220673 0.382217i
\(394\) 0 0
\(395\) 1.26971i 0.0638860i
\(396\) 0 0
\(397\) 21.8789 + 12.6318i 1.09807 + 0.633970i 0.935713 0.352762i \(-0.114758\pi\)
0.162355 + 0.986732i \(0.448091\pi\)
\(398\) 0 0
\(399\) 4.84878 8.39834i 0.242743 0.420443i
\(400\) 0 0
\(401\) −25.3059 + 14.6104i −1.26372 + 0.729608i −0.973792 0.227441i \(-0.926964\pi\)
−0.289926 + 0.957049i \(0.593631\pi\)
\(402\) 0 0
\(403\) −18.4885 4.93810i −0.920977 0.245984i
\(404\) 0 0
\(405\) 31.3142 18.0793i 1.55602 0.898367i
\(406\) 0 0
\(407\) −2.43333 + 4.21466i −0.120616 + 0.208913i
\(408\) 0 0
\(409\) 23.6697 + 13.6657i 1.17039 + 0.675727i 0.953773 0.300529i \(-0.0971633\pi\)
0.216620 + 0.976256i \(0.430497\pi\)
\(410\) 0 0
\(411\) 22.9763i 1.13334i
\(412\) 0 0
\(413\) 3.85877 + 6.68359i 0.189878 + 0.328878i
\(414\) 0 0
\(415\) 63.8429 3.13392
\(416\) 0 0
\(417\) 28.0889 1.37552
\(418\) 0 0
\(419\) 10.1693 + 17.6137i 0.496802 + 0.860486i 0.999993 0.00368888i \(-0.00117421\pi\)
−0.503191 + 0.864175i \(0.667841\pi\)
\(420\) 0 0
\(421\) 21.0712i 1.02695i 0.858106 + 0.513473i \(0.171641\pi\)
−0.858106 + 0.513473i \(0.828359\pi\)
\(422\) 0 0
\(423\) 0.771210 + 0.445258i 0.0374975 + 0.0216492i
\(424\) 0 0
\(425\) −14.0700 + 24.3699i −0.682495 + 1.18212i
\(426\) 0 0
\(427\) 12.4241 7.17308i 0.601246 0.347130i
\(428\) 0 0
\(429\) −19.5850 + 19.6164i −0.945571 + 0.947087i
\(430\) 0 0
\(431\) 25.6632 14.8167i 1.23615 0.713694i 0.267848 0.963461i \(-0.413687\pi\)
0.968306 + 0.249767i \(0.0803541\pi\)
\(432\) 0 0
\(433\) −14.2983 + 24.7653i −0.687130 + 1.19014i 0.285632 + 0.958339i \(0.407796\pi\)
−0.972762 + 0.231805i \(0.925537\pi\)
\(434\) 0 0
\(435\) −54.5279 31.4817i −2.61441 1.50943i
\(436\) 0 0
\(437\) 3.35250i 0.160372i
\(438\) 0 0
\(439\) 10.9124 + 18.9009i 0.520821 + 0.902088i 0.999707 + 0.0242113i \(0.00770744\pi\)
−0.478886 + 0.877877i \(0.658959\pi\)
\(440\) 0 0
\(441\) −0.156761 −0.00746480
\(442\) 0 0
\(443\) 6.32956 0.300726 0.150363 0.988631i \(-0.451956\pi\)
0.150363 + 0.988631i \(0.451956\pi\)
\(444\) 0 0
\(445\) −5.65428 9.79350i −0.268039 0.464256i
\(446\) 0 0
\(447\) 28.3051i 1.33879i
\(448\) 0 0
\(449\) 21.2777 + 12.2847i 1.00415 + 0.579749i 0.909475 0.415759i \(-0.136484\pi\)
0.0946799 + 0.995508i \(0.469817\pi\)
\(450\) 0 0
\(451\) 26.0141 45.0578i 1.22496 2.12169i
\(452\) 0 0
\(453\) −9.80697 + 5.66206i −0.460772 + 0.266027i
\(454\) 0 0
\(455\) 9.76745 + 9.75181i 0.457905 + 0.457172i
\(456\) 0 0
\(457\) −3.90240 + 2.25305i −0.182547 + 0.105393i −0.588489 0.808505i \(-0.700277\pi\)
0.405942 + 0.913899i \(0.366944\pi\)
\(458\) 0 0
\(459\) 7.36249 12.7522i 0.343652 0.595222i
\(460\) 0 0
\(461\) 0.260026 + 0.150126i 0.0121106 + 0.00699206i 0.506043 0.862508i \(-0.331108\pi\)
−0.493932 + 0.869500i \(0.664441\pi\)
\(462\) 0 0
\(463\) 19.2907i 0.896514i 0.893905 + 0.448257i \(0.147955\pi\)
−0.893905 + 0.448257i \(0.852045\pi\)
\(464\) 0 0
\(465\) 18.0493 + 31.2623i 0.837016 + 1.44975i
\(466\) 0 0
\(467\) −13.9509 −0.645570 −0.322785 0.946472i \(-0.604619\pi\)
−0.322785 + 0.946472i \(0.604619\pi\)
\(468\) 0 0
\(469\) −0.541525 −0.0250053
\(470\) 0 0
\(471\) −6.56323 11.3679i −0.302418 0.523803i
\(472\) 0 0
\(473\) 5.55208i 0.255285i
\(474\) 0 0
\(475\) 45.6327 + 26.3460i 2.09377 + 1.20884i
\(476\) 0 0
\(477\) 0.310397 0.537623i 0.0142121 0.0246161i
\(478\) 0 0
\(479\) 23.7743 13.7261i 1.08627 0.627160i 0.153692 0.988119i \(-0.450884\pi\)
0.932582 + 0.360959i \(0.117550\pi\)
\(480\) 0 0
\(481\) −1.05270 3.91616i −0.0479988 0.178561i
\(482\) 0 0
\(483\) −0.945101 + 0.545654i −0.0430036 + 0.0248281i
\(484\) 0 0
\(485\) 18.4815 32.0108i 0.839200 1.45354i
\(486\) 0 0
\(487\) −12.1206 6.99785i −0.549238 0.317103i 0.199577 0.979882i \(-0.436043\pi\)
−0.748815 + 0.662780i \(0.769377\pi\)
\(488\) 0 0
\(489\) 0.155577i 0.00703543i
\(490\) 0 0
\(491\) 3.76330 + 6.51823i 0.169836 + 0.294164i 0.938362 0.345654i \(-0.112343\pi\)
−0.768526 + 0.639818i \(0.779010\pi\)
\(492\) 0 0
\(493\) −26.9843 −1.21531
\(494\) 0 0
\(495\) 2.59662 0.116709
\(496\) 0 0
\(497\) −4.60101 7.96918i −0.206384 0.357467i
\(498\) 0 0
\(499\) 1.16848i 0.0523083i −0.999658 0.0261541i \(-0.991674\pi\)
0.999658 0.0261541i \(-0.00832607\pi\)
\(500\) 0 0
\(501\) −28.4825 16.4444i −1.27250 0.734680i
\(502\) 0 0
\(503\) −5.30877 + 9.19505i −0.236706 + 0.409987i −0.959767 0.280797i \(-0.909401\pi\)
0.723061 + 0.690784i \(0.242735\pi\)
\(504\) 0 0
\(505\) −21.0533 + 12.1551i −0.936859 + 0.540896i
\(506\) 0 0
\(507\) −0.0370126 23.0974i −0.00164379 1.02579i
\(508\) 0 0
\(509\) −21.0450 + 12.1503i −0.932803 + 0.538554i −0.887697 0.460428i \(-0.847696\pi\)
−0.0451058 + 0.998982i \(0.514363\pi\)
\(510\) 0 0
\(511\) −3.68399 + 6.38086i −0.162970 + 0.282273i
\(512\) 0 0
\(513\) −23.8785 13.7862i −1.05426 0.608678i
\(514\) 0 0
\(515\) 19.4127i 0.855424i
\(516\) 0 0
\(517\) −12.2905 21.2877i −0.540534 0.936232i
\(518\) 0 0
\(519\) 0.730063 0.0320462
\(520\) 0 0
\(521\) 11.3280 0.496289 0.248144 0.968723i \(-0.420179\pi\)
0.248144 + 0.968723i \(0.420179\pi\)
\(522\) 0 0
\(523\) 15.1328 + 26.2108i 0.661711 + 1.14612i 0.980166 + 0.198180i \(0.0635029\pi\)
−0.318454 + 0.947938i \(0.603164\pi\)
\(524\) 0 0
\(525\) 17.1524i 0.748591i
\(526\) 0 0
\(527\) 13.3981 + 7.73541i 0.583631 + 0.336960i
\(528\) 0 0
\(529\) 11.3114 19.5919i 0.491798 0.851820i
\(530\) 0 0
\(531\) −1.04772 + 0.604904i −0.0454674 + 0.0262506i
\(532\) 0 0
\(533\) 11.2541 + 41.8666i 0.487468 + 1.81344i
\(534\) 0 0
\(535\) −18.1864 + 10.4999i −0.786266 + 0.453951i
\(536\) 0 0
\(537\) 1.91420 3.31550i 0.0826039 0.143074i
\(538\) 0 0
\(539\) 3.74735 + 2.16353i 0.161410 + 0.0931899i
\(540\) 0 0
\(541\) 11.1529i 0.479500i −0.970835 0.239750i \(-0.922935\pi\)
0.970835 0.239750i \(-0.0770654\pi\)
\(542\) 0 0
\(543\) 5.77546 + 10.0034i 0.247849 + 0.429287i
\(544\) 0 0
\(545\) 26.0569 1.11616
\(546\) 0 0
\(547\) −4.87804 −0.208570 −0.104285 0.994547i \(-0.533255\pi\)
−0.104285 + 0.994547i \(0.533255\pi\)
\(548\) 0 0
\(549\) 1.12446 + 1.94762i 0.0479907 + 0.0831223i
\(550\) 0 0
\(551\) 50.5281i 2.15257i
\(552\) 0 0
\(553\) −0.287249 0.165843i −0.0122151 0.00705237i
\(554\) 0 0
\(555\) −3.82477 + 6.62470i −0.162353 + 0.281203i
\(556\) 0 0
\(557\) 2.62046 1.51293i 0.111033 0.0641047i −0.443455 0.896297i \(-0.646248\pi\)
0.554488 + 0.832192i \(0.312914\pi\)
\(558\) 0 0
\(559\) −3.27391 3.26867i −0.138472 0.138250i
\(560\) 0 0
\(561\) 19.4073 11.2048i 0.819377 0.473068i
\(562\) 0 0
\(563\) 13.6591 23.6583i 0.575664 0.997079i −0.420305 0.907383i \(-0.638077\pi\)
0.995969 0.0896963i \(-0.0285896\pi\)
\(564\) 0 0
\(565\) −21.7730 12.5707i −0.915999 0.528852i
\(566\) 0 0
\(567\) 9.44571i 0.396682i
\(568\) 0 0
\(569\) −6.46871 11.2041i −0.271183 0.469702i 0.697982 0.716115i \(-0.254081\pi\)
−0.969165 + 0.246413i \(0.920748\pi\)
\(570\) 0 0
\(571\) −10.6779 −0.446855 −0.223427 0.974721i \(-0.571725\pi\)
−0.223427 + 0.974721i \(0.571725\pi\)
\(572\) 0 0
\(573\) −33.3581 −1.39355
\(574\) 0 0
\(575\) −2.96483 5.13524i −0.123642 0.214154i
\(576\) 0 0
\(577\) 4.76467i 0.198356i −0.995070 0.0991778i \(-0.968379\pi\)
0.995070 0.0991778i \(-0.0316213\pi\)
\(578\) 0 0
\(579\) −39.4171 22.7575i −1.63812 0.945767i
\(580\) 0 0
\(581\) −8.33884 + 14.4433i −0.345953 + 0.599209i
\(582\) 0 0
\(583\) −14.8400 + 8.56788i −0.614610 + 0.354845i
\(584\) 0 0
\(585\) −1.52870 + 1.53115i −0.0632040 + 0.0633054i
\(586\) 0 0
\(587\) −27.6495 + 15.9634i −1.14122 + 0.658881i −0.946731 0.322024i \(-0.895637\pi\)
−0.194485 + 0.980906i \(0.562303\pi\)
\(588\) 0 0
\(589\) 14.4845 25.0879i 0.596825 1.03373i
\(590\) 0 0
\(591\) −0.907144 0.523740i −0.0373149 0.0215438i
\(592\) 0 0
\(593\) 1.27362i 0.0523015i −0.999658 0.0261508i \(-0.991675\pi\)
0.999658 0.0261508i \(-0.00832499\pi\)
\(594\) 0 0
\(595\) −5.57914 9.66335i −0.228722 0.396159i
\(596\) 0 0
\(597\) −28.5880 −1.17003
\(598\) 0 0
\(599\) 15.1462 0.618857 0.309428 0.950923i \(-0.399862\pi\)
0.309428 + 0.950923i \(0.399862\pi\)
\(600\) 0 0
\(601\) −17.1425 29.6917i −0.699258 1.21115i −0.968724 0.248141i \(-0.920180\pi\)
0.269466 0.963010i \(-0.413153\pi\)
\(602\) 0 0
\(603\) 0.0848899i 0.00345698i
\(604\) 0 0
\(605\) −25.6048 14.7829i −1.04098 0.601012i
\(606\) 0 0
\(607\) 4.73737 8.20537i 0.192284 0.333046i −0.753723 0.657192i \(-0.771744\pi\)
0.946007 + 0.324147i \(0.105077\pi\)
\(608\) 0 0
\(609\) 14.2443 8.22397i 0.577210 0.333252i
\(610\) 0 0
\(611\) 19.7885 + 5.28533i 0.800557 + 0.213821i
\(612\) 0 0
\(613\) 10.0837 5.82183i 0.407277 0.235141i −0.282342 0.959314i \(-0.591111\pi\)
0.689619 + 0.724172i \(0.257778\pi\)
\(614\) 0 0
\(615\) 40.8896 70.8229i 1.64883 2.85586i
\(616\) 0 0
\(617\) −5.54295 3.20023i −0.223151 0.128836i 0.384257 0.923226i \(-0.374457\pi\)
−0.607408 + 0.794390i \(0.707791\pi\)
\(618\) 0 0
\(619\) 11.2065i 0.450425i 0.974310 + 0.225213i \(0.0723077\pi\)
−0.974310 + 0.225213i \(0.927692\pi\)
\(620\) 0 0
\(621\) 1.55143 + 2.68715i 0.0622566 + 0.107832i
\(622\) 0 0
\(623\) 2.95414 0.118355
\(624\) 0 0
\(625\) 19.9284 0.797138
\(626\) 0 0
\(627\) −20.9810 36.3402i −0.837900 1.45129i
\(628\) 0 0
\(629\) 3.27837i 0.130717i
\(630\) 0 0
\(631\) −39.1148 22.5830i −1.55714 0.899013i −0.997529 0.0702554i \(-0.977619\pi\)
−0.559608 0.828758i \(-0.689048\pi\)
\(632\) 0 0
\(633\) 10.1140 17.5179i 0.401994 0.696274i
\(634\) 0 0
\(635\) 67.2486 38.8260i 2.66868 1.54076i
\(636\) 0 0
\(637\) −3.48195 + 0.935975i −0.137960 + 0.0370847i
\(638\) 0 0
\(639\) 1.24926 0.721258i 0.0494198 0.0285325i
\(640\) 0 0
\(641\) −3.57997 + 6.20069i −0.141400 + 0.244912i −0.928024 0.372520i \(-0.878494\pi\)
0.786624 + 0.617432i \(0.211827\pi\)
\(642\) 0 0
\(643\) 35.9015 + 20.7278i 1.41582 + 0.817423i 0.995928 0.0901516i \(-0.0287352\pi\)
0.419890 + 0.907575i \(0.362068\pi\)
\(644\) 0 0
\(645\) 8.72690i 0.343621i
\(646\) 0 0
\(647\) −7.79258 13.4971i −0.306358 0.530627i 0.671205 0.741272i \(-0.265777\pi\)
−0.977563 + 0.210645i \(0.932444\pi\)
\(648\) 0 0
\(649\) 33.3943 1.31084
\(650\) 0 0
\(651\) −9.43004 −0.369592
\(652\) 0 0
\(653\) 11.9121 + 20.6323i 0.466156 + 0.807406i 0.999253 0.0386482i \(-0.0123052\pi\)
−0.533097 + 0.846054i \(0.678972\pi\)
\(654\) 0 0
\(655\) 18.8509i 0.736565i
\(656\) 0 0
\(657\) −1.00027 0.577505i −0.0390242 0.0225306i
\(658\) 0 0
\(659\) 2.01861 3.49634i 0.0786340 0.136198i −0.824027 0.566551i \(-0.808277\pi\)
0.902661 + 0.430353i \(0.141611\pi\)
\(660\) 0 0
\(661\) 32.2144 18.5990i 1.25299 0.723416i 0.281290 0.959623i \(-0.409238\pi\)
0.971703 + 0.236207i \(0.0759043\pi\)
\(662\) 0 0
\(663\) −4.81846 + 18.0406i −0.187134 + 0.700637i
\(664\) 0 0
\(665\) −18.0946 + 10.4469i −0.701679 + 0.405115i
\(666\) 0 0
\(667\) 2.84307 4.92434i 0.110084 0.190671i
\(668\) 0 0
\(669\) 3.60998 + 2.08422i 0.139570 + 0.0805808i
\(670\) 0 0
\(671\) 62.0768i 2.39645i
\(672\) 0 0
\(673\) −5.02863 8.70984i −0.193839 0.335740i 0.752680 0.658387i \(-0.228761\pi\)
−0.946519 + 0.322647i \(0.895427\pi\)
\(674\) 0 0
\(675\) −48.7683 −1.87709
\(676\) 0 0
\(677\) −19.8807 −0.764076 −0.382038 0.924147i \(-0.624778\pi\)
−0.382038 + 0.924147i \(0.624778\pi\)
\(678\) 0 0
\(679\) 4.82792 + 8.36220i 0.185278 + 0.320912i
\(680\) 0 0
\(681\) 14.6604i 0.561787i
\(682\) 0 0
\(683\) 17.2194 + 9.94161i 0.658881 + 0.380405i 0.791850 0.610715i \(-0.209118\pi\)
−0.132970 + 0.991120i \(0.542451\pi\)
\(684\) 0 0
\(685\) 24.7517 42.8712i 0.945715 1.63803i
\(686\) 0 0
\(687\) 26.5808 15.3464i 1.01412 0.585503i
\(688\) 0 0
\(689\) 3.68449 13.7949i 0.140368 0.525544i
\(690\) 0 0
\(691\) 16.5968 9.58219i 0.631373 0.364524i −0.149910 0.988700i \(-0.547899\pi\)
0.781284 + 0.624176i \(0.214565\pi\)
\(692\) 0 0
\(693\) −0.339157 + 0.587437i −0.0128835 + 0.0223149i
\(694\) 0 0
\(695\) −52.4108 30.2594i −1.98805 1.14780i
\(696\) 0 0
\(697\) 35.0482i 1.32755i
\(698\) 0 0
\(699\) −3.67585 6.36676i −0.139033 0.240813i
\(700\) 0 0
\(701\) 18.5012 0.698780 0.349390 0.936977i \(-0.386389\pi\)
0.349390 + 0.936977i \(0.386389\pi\)
\(702\) 0 0
\(703\) 6.13875 0.231527
\(704\) 0 0
\(705\) −19.3184 33.4605i −0.727575 1.26020i
\(706\) 0 0
\(707\) 6.35056i 0.238838i
\(708\) 0 0
\(709\) −20.8032 12.0107i −0.781279 0.451072i 0.0556043 0.998453i \(-0.482291\pi\)
−0.836883 + 0.547381i \(0.815625\pi\)
\(710\) 0 0
\(711\) 0.0259977 0.0450294i 0.000974990 0.00168873i
\(712\) 0 0
\(713\) −2.82325 + 1.63001i −0.105732 + 0.0610442i
\(714\) 0 0
\(715\) 57.6756 15.5037i 2.15695 0.579805i
\(716\) 0 0
\(717\) 8.98409 5.18697i 0.335517 0.193711i
\(718\) 0 0
\(719\) −12.2149 + 21.1568i −0.455538 + 0.789015i −0.998719 0.0506008i \(-0.983886\pi\)
0.543181 + 0.839616i \(0.317220\pi\)
\(720\) 0 0
\(721\) 4.39176 + 2.53559i 0.163558 + 0.0944302i
\(722\) 0 0
\(723\) 50.5421i 1.87968i
\(724\) 0 0
\(725\) 44.6852 + 77.3971i 1.65957 + 2.87446i
\(726\) 0 0
\(727\) −20.9000 −0.775138 −0.387569 0.921841i \(-0.626685\pi\)
−0.387569 + 0.921841i \(0.626685\pi\)
\(728\) 0 0
\(729\) 25.4456 0.942428
\(730\) 0 0
\(731\) 1.87005 + 3.23902i 0.0691662 + 0.119799i
\(732\) 0 0
\(733\) 7.08118i 0.261549i 0.991412 + 0.130775i \(0.0417465\pi\)
−0.991412 + 0.130775i \(0.958254\pi\)
\(734\) 0 0
\(735\) 5.89018 + 3.40069i 0.217262 + 0.125437i
\(736\) 0 0
\(737\) −1.17161 + 2.02928i −0.0431567 + 0.0747496i
\(738\) 0 0
\(739\) 20.5378 11.8575i 0.755496 0.436186i −0.0721806 0.997392i \(-0.522996\pi\)
0.827676 + 0.561206i \(0.189662\pi\)
\(740\) 0 0
\(741\) 33.7809 + 9.02256i 1.24097 + 0.331452i
\(742\) 0 0
\(743\) 36.5813 21.1202i 1.34204 0.774825i 0.354931 0.934893i \(-0.384504\pi\)
0.987106 + 0.160067i \(0.0511710\pi\)
\(744\) 0 0
\(745\) 30.4923 52.8143i 1.11715 1.93497i
\(746\) 0 0
\(747\) −2.26414 1.30720i −0.0828406 0.0478281i
\(748\) 0 0
\(749\) 5.48579i 0.200446i
\(750\) 0 0
\(751\) −12.0710 20.9076i −0.440478 0.762930i 0.557247 0.830347i \(-0.311858\pi\)
−0.997725 + 0.0674164i \(0.978524\pi\)
\(752\) 0 0
\(753\) 22.7066 0.827475
\(754\) 0 0
\(755\) 24.3983 0.887947
\(756\) 0 0
\(757\) 15.9716 + 27.6636i 0.580497 + 1.00545i 0.995420 + 0.0955942i \(0.0304751\pi\)
−0.414923 + 0.909856i \(0.636192\pi\)
\(758\) 0 0
\(759\) 4.72216i 0.171404i
\(760\) 0 0
\(761\) −36.6083 21.1358i −1.32705 0.766172i −0.342207 0.939625i \(-0.611174\pi\)
−0.984842 + 0.173452i \(0.944508\pi\)
\(762\) 0 0
\(763\) −3.40342 + 5.89490i −0.123212 + 0.213410i
\(764\) 0 0
\(765\) 1.51484 0.874590i 0.0547690 0.0316209i
\(766\) 0 0
\(767\) −19.6602 + 19.6917i −0.709888 + 0.711026i
\(768\) 0 0
\(769\) −2.36768 + 1.36698i −0.0853808 + 0.0492946i −0.542083 0.840325i \(-0.682364\pi\)
0.456702 + 0.889620i \(0.349031\pi\)
\(770\) 0 0
\(771\) −0.596439 + 1.03306i −0.0214802 + 0.0372048i
\(772\) 0 0
\(773\) −16.9343 9.77703i −0.609085 0.351655i 0.163523 0.986540i \(-0.447714\pi\)
−0.772607 + 0.634884i \(0.781048\pi\)
\(774\) 0 0
\(775\) 51.2384i 1.84054i
\(776\) 0 0
\(777\) −0.999146 1.73057i −0.0358442 0.0620839i
\(778\) 0 0
\(779\) −65.6277 −2.35136
\(780\) 0 0
\(781\) −39.8177 −1.42479
\(782\) 0 0
\(783\) −23.3827 40.5001i −0.835630 1.44735i
\(784\) 0 0
\(785\) 28.2816i 1.00941i
\(786\) 0 0
\(787\) −28.0930 16.2195i −1.00141 0.578163i −0.0927426 0.995690i \(-0.529563\pi\)
−0.908664 + 0.417528i \(0.862897\pi\)
\(788\) 0 0
\(789\) 16.8525 29.1893i 0.599964 1.03917i
\(790\) 0 0
\(791\) 5.68778 3.28384i 0.202234 0.116760i
\(792\) 0 0
\(793\) 36.6050 + 36.5464i 1.29988 + 1.29780i
\(794\) 0 0
\(795\) −23.3259 + 13.4672i −0.827284 + 0.477632i
\(796\) 0 0
\(797\) 12.9397 22.4123i 0.458349 0.793883i −0.540525 0.841328i \(-0.681774\pi\)
0.998874 + 0.0474447i \(0.0151078\pi\)
\(798\) 0 0
\(799\) −14.3402 8.27933i −0.507320 0.292902i
\(800\) 0 0
\(801\) 0.463093i 0.0163626i
\(802\) 0 0
\(803\) 15.9409 + 27.6104i 0.562541 + 0.974350i
\(804\) 0 0
\(805\) 2.35128 0.0828716
\(806\) 0 0
\(807\) 17.0296 0.599471
\(808\) 0 0
\(809\) −11.2066 19.4105i −0.394004 0.682435i 0.598969 0.800772i \(-0.295577\pi\)
−0.992974 + 0.118337i \(0.962244\pi\)
\(810\) 0 0
\(811\) 5.44486i 0.191195i −0.995420 0.0955974i \(-0.969524\pi\)
0.995420 0.0955974i \(-0.0304761\pi\)
\(812\) 0 0
\(813\) −16.1124 9.30247i −0.565085 0.326252i
\(814\) 0 0
\(815\) 0.167599 0.290290i 0.00587074 0.0101684i
\(816\) 0 0
\(817\) 6.06505 3.50166i 0.212189 0.122508i
\(818\) 0 0
\(819\) −0.146724 0.545833i −0.00512696 0.0190729i
\(820\) 0 0
\(821\) 26.6843 15.4062i 0.931288 0.537679i 0.0440690 0.999028i \(-0.485968\pi\)
0.887219 + 0.461349i \(0.152635\pi\)
\(822\) 0 0
\(823\) −0.102850 + 0.178141i −0.00358513 + 0.00620962i −0.867812 0.496892i \(-0.834475\pi\)
0.864227 + 0.503102i \(0.167808\pi\)
\(824\) 0 0
\(825\) −64.2759 37.1097i −2.23780 1.29199i
\(826\) 0 0
\(827\) 9.66411i 0.336054i 0.985782 + 0.168027i \(0.0537396\pi\)
−0.985782 + 0.168027i \(0.946260\pi\)
\(828\) 0 0
\(829\) 15.2667 + 26.4427i 0.530234 + 0.918393i 0.999378 + 0.0352709i \(0.0112294\pi\)
−0.469143 + 0.883122i \(0.655437\pi\)
\(830\) 0 0
\(831\) −34.3568 −1.19182
\(832\) 0 0
\(833\) 2.91488 0.100995
\(834\) 0 0
\(835\) 35.4301 + 61.3668i 1.22611 + 2.12369i
\(836\) 0 0
\(837\) 26.8119i 0.926753i
\(838\) 0 0
\(839\) 33.0722 + 19.0942i 1.14178 + 0.659206i 0.946871 0.321615i \(-0.104226\pi\)
0.194909 + 0.980821i \(0.437559\pi\)
\(840\) 0 0
\(841\) −28.3501 + 49.1037i −0.977588 + 1.69323i
\(842\) 0 0
\(843\) −28.7795 + 16.6158i −0.991218 + 0.572280i
\(844\) 0 0
\(845\) −24.8132 + 43.1372i −0.853599 + 1.48396i
\(846\) 0 0
\(847\) 6.68874 3.86175i 0.229828 0.132691i
\(848\) 0 0
\(849\) 1.04464 1.80937i 0.0358519 0.0620973i
\(850\) 0 0
\(851\) −0.598268 0.345410i −0.0205084 0.0118405i
\(852\) 0 0
\(853\) 28.3480i 0.970618i −0.874343 0.485309i \(-0.838707\pi\)
0.874343 0.485309i \(-0.161293\pi\)
\(854\) 0 0
\(855\) −1.63767 2.83653i −0.0560071 0.0970071i
\(856\) 0 0
\(857\) 25.8488 0.882978 0.441489 0.897267i \(-0.354450\pi\)
0.441489 + 0.897267i \(0.354450\pi\)
\(858\) 0 0
\(859\) −19.6084 −0.669029 −0.334514 0.942391i \(-0.608572\pi\)
−0.334514 + 0.942391i \(0.608572\pi\)
\(860\) 0 0
\(861\) 10.6816 + 18.5011i 0.364028 + 0.630515i
\(862\) 0 0
\(863\) 13.4368i 0.457395i −0.973498 0.228697i \(-0.926553\pi\)
0.973498 0.228697i \(-0.0734466\pi\)
\(864\) 0 0
\(865\) −1.36222 0.786477i −0.0463168 0.0267410i
\(866\) 0 0
\(867\) −7.55418 + 13.0842i −0.256554 + 0.444364i
\(868\) 0 0
\(869\) −1.24294 + 0.717614i −0.0421640 + 0.0243434i
\(870\) 0 0
\(871\) −0.506854 1.88556i −0.0171741 0.0638898i
\(872\) 0 0
\(873\) −1.31086 + 0.756828i −0.0443660 + 0.0256147i
\(874\) 0 0
\(875\) −8.90769 + 15.4286i −0.301135 + 0.521581i
\(876\) 0 0
\(877\) 26.1038 + 15.0711i 0.881464 + 0.508914i 0.871141 0.491033i \(-0.163381\pi\)
0.0103233 + 0.999947i \(0.496714\pi\)
\(878\) 0 0
\(879\) 11.5611i 0.389947i
\(880\) 0 0
\(881\) 4.52477 + 7.83714i 0.152443 + 0.264040i 0.932125 0.362136i \(-0.117952\pi\)
−0.779682 + 0.626176i \(0.784619\pi\)
\(882\) 0 0
\(883\) −47.3475 −1.59337 −0.796685 0.604395i \(-0.793415\pi\)
−0.796685 + 0.604395i \(0.793415\pi\)
\(884\) 0 0
\(885\) 52.4900 1.76443
\(886\) 0 0
\(887\) 18.9895 + 32.8908i 0.637605 + 1.10436i 0.985957 + 0.167001i \(0.0534082\pi\)
−0.348352 + 0.937364i \(0.613258\pi\)
\(888\) 0 0
\(889\) 20.2850i 0.680338i
\(890\) 0 0
\(891\) 35.3964 + 20.4361i 1.18582 + 0.684635i
\(892\) 0 0
\(893\) −15.5030 + 26.8520i −0.518789 + 0.898569i
\(894\) 0 0
\(895\) −7.14339 + 4.12424i −0.238777 + 0.137858i
\(896\) 0 0
\(897\) −2.78453 2.78007i −0.0929728 0.0928239i
\(898\) 0 0
\(899\) 42.5514 24.5671i 1.41917 0.819358i
\(900\) 0 0
\(901\) −5.77165 + 9.99680i −0.192282 + 0.333042i
\(902\) 0 0
\(903\) −1.97430 1.13986i −0.0657007 0.0379323i
\(904\) 0 0
\(905\) 24.8870i 0.827272i
\(906\) 0 0
\(907\) −13.9433 24.1506i −0.462981 0.801906i 0.536127 0.844137i \(-0.319887\pi\)
−0.999108 + 0.0422309i \(0.986553\pi\)
\(908\) 0 0
\(909\) 0.995519 0.0330193
\(910\) 0 0
\(911\) 26.1435 0.866172 0.433086 0.901353i \(-0.357425\pi\)
0.433086 + 0.901353i \(0.357425\pi\)
\(912\) 0 0
\(913\) 36.0827 + 62.4971i 1.19416 + 2.06835i
\(914\) 0 0
\(915\) 97.5738i 3.22569i
\(916\) 0 0
\(917\) −4.26467 2.46221i −0.140832 0.0813094i
\(918\) 0 0
\(919\) −1.54406 + 2.67439i −0.0509338 + 0.0882199i −0.890368 0.455241i \(-0.849553\pi\)
0.839434 + 0.543461i \(0.182886\pi\)
\(920\) 0 0
\(921\) 41.6329 24.0367i 1.37185 0.792038i
\(922\) 0 0
\(923\) 23.4418 23.4794i 0.771598 0.772835i
\(924\) 0 0
\(925\) 9.40312 5.42889i 0.309173 0.178501i
\(926\) 0 0
\(927\) −0.397481 + 0.688457i −0.0130550 + 0.0226119i
\(928\) 0 0
\(929\) 33.4087 + 19.2885i 1.09610 + 0.632836i 0.935195 0.354133i \(-0.115224\pi\)
0.160910 + 0.986969i \(0.448557\pi\)
\(930\) 0 0
\(931\) 5.45810i 0.178882i
\(932\) 0 0
\(933\) −27.4559 47.5550i −0.898865 1.55688i
\(934\) 0 0
\(935\) −48.2826 −1.57901
\(936\) 0 0
\(937\) 8.28836 0.270769 0.135384 0.990793i \(-0.456773\pi\)
0.135384 + 0.990793i \(0.456773\pi\)
\(938\) 0 0
\(939\) 26.7234 + 46.2863i 0.872086 + 1.51050i
\(940\) 0 0
\(941\) 7.72406i 0.251797i −0.992043 0.125899i \(-0.959819\pi\)
0.992043 0.125899i \(-0.0401814\pi\)
\(942\) 0 0
\(943\) 6.39592 + 3.69269i 0.208280 + 0.120250i
\(944\) 0 0
\(945\) 9.66899 16.7472i 0.314532 0.544786i
\(946\) 0 0
\(947\) −44.8430 + 25.8901i −1.45720 + 0.841316i −0.998873 0.0474661i \(-0.984885\pi\)
−0.458330 + 0.888782i \(0.651552\pi\)
\(948\) 0 0
\(949\) −25.6659 6.85513i −0.833152 0.222527i
\(950\) 0 0
\(951\) −5.82165 + 3.36113i −0.188780 + 0.108992i
\(952\) 0 0
\(953\) 24.3912 42.2468i 0.790109 1.36851i −0.135791 0.990738i \(-0.543357\pi\)
0.925899 0.377771i \(-0.123309\pi\)
\(954\) 0 0
\(955\) 62.2426 + 35.9358i 2.01412 + 1.16285i
\(956\) 0 0
\(957\) 71.1713i 2.30064i
\(958\) 0 0
\(959\) 6.46589 + 11.1993i 0.208795 + 0.361643i
\(960\) 0 0
\(961\) 2.83011 0.0912938
\(962\) 0 0
\(963\) 0.859956 0.0277117
\(964\) 0 0
\(965\) 49.0320 + 84.9259i 1.57840 + 2.73386i
\(966\) 0 0
\(967\) 3.09186i 0.0994274i −0.998764 0.0497137i \(-0.984169\pi\)
0.998764 0.0497137i \(-0.0158309\pi\)
\(968\) 0 0
\(969\) −24.4801 14.1336i −0.786415 0.454037i
\(970\) 0 0
\(971\) 27.2381 47.1777i 0.874111 1.51400i 0.0164037 0.999865i \(-0.494778\pi\)
0.857707 0.514139i \(-0.171888\pi\)
\(972\) 0 0
\(973\) 13.6913 7.90466i 0.438922 0.253412i
\(974\) 0 0
\(975\) 59.7236 16.0542i 1.91269 0.514146i
\(976\) 0 0
\(977\) 16.7476 9.66925i 0.535804 0.309347i −0.207573 0.978220i \(-0.566556\pi\)
0.743377 + 0.668873i \(0.233223\pi\)
\(978\) 0 0
\(979\) 6.39137 11.0702i 0.204269 0.353804i
\(980\) 0 0
\(981\) −0.924090 0.533524i −0.0295039 0.0170341i
\(982\) 0 0
\(983\) 4.93770i 0.157488i 0.996895 + 0.0787440i \(0.0250910\pi\)
−0.996895 + 0.0787440i \(0.974909\pi\)
\(984\) 0 0
\(985\) 1.12842 + 1.95449i 0.0359545 + 0.0622751i
\(986\) 0 0
\(987\) 10.0931 0.321268
\(988\) 0 0
\(989\) −0.788114 −0.0250606
\(990\) 0 0
\(991\) 24.1717 + 41.8666i 0.767839 + 1.32994i 0.938733 + 0.344646i \(0.112001\pi\)
−0.170894 + 0.985289i \(0.554666\pi\)
\(992\) 0 0
\(993\) 41.3181i 1.31119i
\(994\) 0 0
\(995\) 53.3422 + 30.7971i 1.69106 + 0.976334i
\(996\) 0 0
\(997\) 21.6634 37.5222i 0.686088 1.18834i −0.287005 0.957929i \(-0.592660\pi\)
0.973094 0.230411i \(-0.0740069\pi\)
\(998\) 0 0
\(999\) −4.92043 + 2.84081i −0.155675 + 0.0898793i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1456.2.cc.f.673.7 16
4.3 odd 2 364.2.u.a.309.2 yes 16
12.11 even 2 3276.2.cf.c.1765.7 16
13.4 even 6 inner 1456.2.cc.f.225.7 16
28.3 even 6 2548.2.bb.c.569.7 16
28.11 odd 6 2548.2.bb.d.569.2 16
28.19 even 6 2548.2.bq.c.361.2 16
28.23 odd 6 2548.2.bq.e.361.7 16
28.27 even 2 2548.2.u.c.1765.7 16
52.3 odd 6 4732.2.g.k.337.13 16
52.11 even 12 4732.2.a.t.1.7 8
52.15 even 12 4732.2.a.s.1.7 8
52.23 odd 6 4732.2.g.k.337.14 16
52.43 odd 6 364.2.u.a.225.2 16
156.95 even 6 3276.2.cf.c.2773.2 16
364.95 odd 6 2548.2.bq.e.1941.7 16
364.199 even 6 2548.2.bq.c.1941.2 16
364.251 even 6 2548.2.u.c.589.7 16
364.303 odd 6 2548.2.bb.d.1733.2 16
364.355 even 6 2548.2.bb.c.1733.7 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
364.2.u.a.225.2 16 52.43 odd 6
364.2.u.a.309.2 yes 16 4.3 odd 2
1456.2.cc.f.225.7 16 13.4 even 6 inner
1456.2.cc.f.673.7 16 1.1 even 1 trivial
2548.2.u.c.589.7 16 364.251 even 6
2548.2.u.c.1765.7 16 28.27 even 2
2548.2.bb.c.569.7 16 28.3 even 6
2548.2.bb.c.1733.7 16 364.355 even 6
2548.2.bb.d.569.2 16 28.11 odd 6
2548.2.bb.d.1733.2 16 364.303 odd 6
2548.2.bq.c.361.2 16 28.19 even 6
2548.2.bq.c.1941.2 16 364.199 even 6
2548.2.bq.e.361.7 16 28.23 odd 6
2548.2.bq.e.1941.7 16 364.95 odd 6
3276.2.cf.c.1765.7 16 12.11 even 2
3276.2.cf.c.2773.2 16 156.95 even 6
4732.2.a.s.1.7 8 52.15 even 12
4732.2.a.t.1.7 8 52.11 even 12
4732.2.g.k.337.13 16 52.3 odd 6
4732.2.g.k.337.14 16 52.23 odd 6