Properties

Label 2548.2.bq.c.361.2
Level $2548$
Weight $2$
Character 2548.361
Analytic conductor $20.346$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2548,2,Mod(361,2548)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2548, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 4, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2548.361");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2548 = 2^{2} \cdot 7^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2548.bq (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(20.3458824350\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 38x^{14} + 587x^{12} + 4762x^{10} + 21849x^{8} + 56552x^{6} + 76456x^{4} + 42624x^{2} + 2704 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: no (minimal twist has level 364)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 361.2
Root \(-1.77673i\) of defining polynomial
Character \(\chi\) \(=\) 2548.361
Dual form 2548.2.bq.c.1941.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.77673 q^{3} +(3.31518 - 1.91402i) q^{5} +0.156761 q^{9} -4.32707i q^{11} +(0.930395 - 3.48344i) q^{13} +(-5.89018 + 3.40069i) q^{15} +(-1.45744 - 2.52436i) q^{17} +5.45810i q^{19} +(-0.307112 + 0.531934i) q^{23} +(4.82696 - 8.36053i) q^{25} +5.05166 q^{27} +(-4.62872 - 8.01717i) q^{29} +(-4.59646 - 2.65377i) q^{31} +7.68802i q^{33} +(0.974022 + 0.562352i) q^{37} +(-1.65306 + 6.18913i) q^{39} +(-10.4130 + 6.01195i) q^{41} +(0.641552 - 1.11120i) q^{43} +(0.519691 - 0.300044i) q^{45} +(-4.91966 + 2.84037i) q^{47} +(2.58947 + 4.48510i) q^{51} +(1.98007 - 3.42958i) q^{53} +(-8.28210 - 14.3450i) q^{55} -9.69757i q^{57} +(-6.68359 + 3.85877i) q^{59} +14.3462 q^{61} +(-3.58295 - 13.3290i) q^{65} +0.541525i q^{67} +(0.545654 - 0.945101i) q^{69} +(7.96918 + 4.60101i) q^{71} +(6.38086 + 3.68399i) q^{73} +(-8.57618 + 14.8544i) q^{75} +(-0.165843 - 0.287249i) q^{79} -9.44571 q^{81} +16.6777i q^{83} +(-9.66335 - 5.57914i) q^{85} +(8.22397 + 14.2443i) q^{87} +(2.55836 + 1.47707i) q^{89} +(8.16665 + 4.71502i) q^{93} +(10.4469 + 18.0946i) q^{95} +(-8.36220 - 4.82792i) q^{97} -0.678314i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 28 q^{9} - 10 q^{13} + 6 q^{15} - 2 q^{17} + 22 q^{25} + 12 q^{27} - 22 q^{29} + 30 q^{31} - 12 q^{37} - 6 q^{39} - 36 q^{41} + 6 q^{43} - 30 q^{45} - 18 q^{47} + 2 q^{51} - 4 q^{53} - 2 q^{55} - 18 q^{59}+ \cdots + 42 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2548\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(885\) \(1275\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{2}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.77673 −1.02579 −0.512897 0.858450i \(-0.671428\pi\)
−0.512897 + 0.858450i \(0.671428\pi\)
\(4\) 0 0
\(5\) 3.31518 1.91402i 1.48259 0.855976i 0.482790 0.875736i \(-0.339624\pi\)
0.999805 + 0.0197599i \(0.00629017\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 0.156761 0.0522536
\(10\) 0 0
\(11\) 4.32707i 1.30466i −0.757935 0.652330i \(-0.773792\pi\)
0.757935 0.652330i \(-0.226208\pi\)
\(12\) 0 0
\(13\) 0.930395 3.48344i 0.258045 0.966133i
\(14\) 0 0
\(15\) −5.89018 + 3.40069i −1.52084 + 0.878056i
\(16\) 0 0
\(17\) −1.45744 2.52436i −0.353481 0.612247i 0.633376 0.773844i \(-0.281669\pi\)
−0.986857 + 0.161597i \(0.948335\pi\)
\(18\) 0 0
\(19\) 5.45810i 1.25218i 0.779753 + 0.626088i \(0.215345\pi\)
−0.779753 + 0.626088i \(0.784655\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −0.307112 + 0.531934i −0.0640373 + 0.110916i −0.896267 0.443516i \(-0.853731\pi\)
0.832229 + 0.554432i \(0.187064\pi\)
\(24\) 0 0
\(25\) 4.82696 8.36053i 0.965391 1.67211i
\(26\) 0 0
\(27\) 5.05166 0.972193
\(28\) 0 0
\(29\) −4.62872 8.01717i −0.859531 1.48875i −0.872377 0.488834i \(-0.837422\pi\)
0.0128452 0.999917i \(-0.495911\pi\)
\(30\) 0 0
\(31\) −4.59646 2.65377i −0.825548 0.476630i 0.0267778 0.999641i \(-0.491475\pi\)
−0.852326 + 0.523011i \(0.824809\pi\)
\(32\) 0 0
\(33\) 7.68802i 1.33831i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 0.974022 + 0.562352i 0.160128 + 0.0924501i 0.577923 0.816091i \(-0.303863\pi\)
−0.417795 + 0.908542i \(0.637197\pi\)
\(38\) 0 0
\(39\) −1.65306 + 6.18913i −0.264701 + 0.991053i
\(40\) 0 0
\(41\) −10.4130 + 6.01195i −1.62624 + 0.938909i −0.641037 + 0.767510i \(0.721495\pi\)
−0.985202 + 0.171399i \(0.945171\pi\)
\(42\) 0 0
\(43\) 0.641552 1.11120i 0.0978358 0.169457i −0.812953 0.582330i \(-0.802141\pi\)
0.910789 + 0.412873i \(0.135475\pi\)
\(44\) 0 0
\(45\) 0.519691 0.300044i 0.0774709 0.0447278i
\(46\) 0 0
\(47\) −4.91966 + 2.84037i −0.717606 + 0.414310i −0.813871 0.581046i \(-0.802644\pi\)
0.0962647 + 0.995356i \(0.469310\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 2.58947 + 4.48510i 0.362599 + 0.628039i
\(52\) 0 0
\(53\) 1.98007 3.42958i 0.271983 0.471088i −0.697386 0.716695i \(-0.745654\pi\)
0.969370 + 0.245607i \(0.0789872\pi\)
\(54\) 0 0
\(55\) −8.28210 14.3450i −1.11676 1.93428i
\(56\) 0 0
\(57\) 9.69757i 1.28447i
\(58\) 0 0
\(59\) −6.68359 + 3.85877i −0.870129 + 0.502369i −0.867391 0.497627i \(-0.834205\pi\)
−0.00273800 + 0.999996i \(0.500872\pi\)
\(60\) 0 0
\(61\) 14.3462 1.83684 0.918419 0.395610i \(-0.129467\pi\)
0.918419 + 0.395610i \(0.129467\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −3.58295 13.3290i −0.444411 1.65326i
\(66\) 0 0
\(67\) 0.541525i 0.0661578i 0.999453 + 0.0330789i \(0.0105313\pi\)
−0.999453 + 0.0330789i \(0.989469\pi\)
\(68\) 0 0
\(69\) 0.545654 0.945101i 0.0656891 0.113777i
\(70\) 0 0
\(71\) 7.96918 + 4.60101i 0.945768 + 0.546040i 0.891764 0.452501i \(-0.149468\pi\)
0.0540044 + 0.998541i \(0.482801\pi\)
\(72\) 0 0
\(73\) 6.38086 + 3.68399i 0.746823 + 0.431179i 0.824545 0.565797i \(-0.191431\pi\)
−0.0777217 + 0.996975i \(0.524765\pi\)
\(74\) 0 0
\(75\) −8.57618 + 14.8544i −0.990293 + 1.71524i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −0.165843 0.287249i −0.0186588 0.0323180i 0.856545 0.516072i \(-0.172606\pi\)
−0.875204 + 0.483754i \(0.839273\pi\)
\(80\) 0 0
\(81\) −9.44571 −1.04952
\(82\) 0 0
\(83\) 16.6777i 1.83061i 0.402758 + 0.915306i \(0.368052\pi\)
−0.402758 + 0.915306i \(0.631948\pi\)
\(84\) 0 0
\(85\) −9.66335 5.57914i −1.04814 0.605143i
\(86\) 0 0
\(87\) 8.22397 + 14.2443i 0.881702 + 1.52715i
\(88\) 0 0
\(89\) 2.55836 + 1.47707i 0.271185 + 0.156569i 0.629426 0.777060i \(-0.283290\pi\)
−0.358241 + 0.933629i \(0.616623\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 8.16665 + 4.71502i 0.846842 + 0.488925i
\(94\) 0 0
\(95\) 10.4469 + 18.0946i 1.07183 + 1.85647i
\(96\) 0 0
\(97\) −8.36220 4.82792i −0.849052 0.490201i 0.0112787 0.999936i \(-0.496410\pi\)
−0.860331 + 0.509736i \(0.829743\pi\)
\(98\) 0 0
\(99\) 0.678314i 0.0681731i
\(100\) 0 0
\(101\) −6.35056 −0.631905 −0.315952 0.948775i \(-0.602324\pi\)
−0.315952 + 0.948775i \(0.602324\pi\)
\(102\) 0 0
\(103\) −2.53559 4.39176i −0.249839 0.432733i 0.713642 0.700510i \(-0.247044\pi\)
−0.963481 + 0.267777i \(0.913711\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 2.74289 4.75083i 0.265166 0.459280i −0.702441 0.711742i \(-0.747907\pi\)
0.967607 + 0.252461i \(0.0812401\pi\)
\(108\) 0 0
\(109\) −5.89490 3.40342i −0.564629 0.325989i 0.190372 0.981712i \(-0.439031\pi\)
−0.755002 + 0.655723i \(0.772364\pi\)
\(110\) 0 0
\(111\) −1.73057 0.999146i −0.164259 0.0948347i
\(112\) 0 0
\(113\) 3.28384 5.68778i 0.308918 0.535061i −0.669208 0.743075i \(-0.733367\pi\)
0.978126 + 0.208014i \(0.0666999\pi\)
\(114\) 0 0
\(115\) 2.35128i 0.219258i
\(116\) 0 0
\(117\) 0.145849 0.546067i 0.0134838 0.0504839i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −7.72349 −0.702136
\(122\) 0 0
\(123\) 18.5011 10.6816i 1.66819 0.963128i
\(124\) 0 0
\(125\) 17.8154i 1.59346i
\(126\) 0 0
\(127\) −10.1425 17.5674i −0.900003 1.55885i −0.827488 0.561483i \(-0.810231\pi\)
−0.0725145 0.997367i \(-0.523102\pi\)
\(128\) 0 0
\(129\) −1.13986 + 1.97430i −0.100359 + 0.173828i
\(130\) 0 0
\(131\) 2.46221 + 4.26467i 0.215124 + 0.372606i 0.953311 0.301990i \(-0.0976510\pi\)
−0.738187 + 0.674596i \(0.764318\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 16.7472 9.66899i 1.44137 0.832174i
\(136\) 0 0
\(137\) −11.1993 + 6.46589i −0.956817 + 0.552419i −0.895192 0.445681i \(-0.852962\pi\)
−0.0616251 + 0.998099i \(0.519628\pi\)
\(138\) 0 0
\(139\) 7.90466 13.6913i 0.670464 1.16128i −0.307308 0.951610i \(-0.599428\pi\)
0.977773 0.209668i \(-0.0672384\pi\)
\(140\) 0 0
\(141\) 8.74090 5.04656i 0.736116 0.424997i
\(142\) 0 0
\(143\) −15.0731 4.02588i −1.26047 0.336661i
\(144\) 0 0
\(145\) −30.6901 17.7189i −2.54867 1.47148i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 15.9310i 1.30512i −0.757737 0.652561i \(-0.773695\pi\)
0.757737 0.652561i \(-0.226305\pi\)
\(150\) 0 0
\(151\) 5.51968 + 3.18679i 0.449185 + 0.259337i 0.707486 0.706727i \(-0.249829\pi\)
−0.258301 + 0.966065i \(0.583163\pi\)
\(152\) 0 0
\(153\) −0.228469 0.395721i −0.0184707 0.0319921i
\(154\) 0 0
\(155\) −20.3175 −1.63194
\(156\) 0 0
\(157\) −3.69400 + 6.39820i −0.294813 + 0.510632i −0.974941 0.222462i \(-0.928591\pi\)
0.680128 + 0.733093i \(0.261924\pi\)
\(158\) 0 0
\(159\) −3.51804 + 6.09342i −0.278999 + 0.483240i
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 0.0875638i 0.00685852i 0.999994 + 0.00342926i \(0.00109157\pi\)
−0.999994 + 0.00342926i \(0.998908\pi\)
\(164\) 0 0
\(165\) 14.7150 + 25.4872i 1.14556 + 1.98417i
\(166\) 0 0
\(167\) −16.0309 + 9.25542i −1.24050 + 0.716206i −0.969197 0.246287i \(-0.920789\pi\)
−0.271308 + 0.962493i \(0.587456\pi\)
\(168\) 0 0
\(169\) −11.2687 6.48195i −0.866826 0.498612i
\(170\) 0 0
\(171\) 0.855617i 0.0654307i
\(172\) 0 0
\(173\) 0.410903 0.0312404 0.0156202 0.999878i \(-0.495028\pi\)
0.0156202 + 0.999878i \(0.495028\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 11.8749 6.85599i 0.892573 0.515327i
\(178\) 0 0
\(179\) −2.15475 −0.161054 −0.0805268 0.996752i \(-0.525660\pi\)
−0.0805268 + 0.996752i \(0.525660\pi\)
\(180\) 0 0
\(181\) −6.50124 −0.483233 −0.241617 0.970372i \(-0.577678\pi\)
−0.241617 + 0.970372i \(0.577678\pi\)
\(182\) 0 0
\(183\) −25.4892 −1.88422
\(184\) 0 0
\(185\) 4.30541 0.316540
\(186\) 0 0
\(187\) −10.9231 + 6.30644i −0.798774 + 0.461172i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −18.7750 −1.35851 −0.679256 0.733901i \(-0.737698\pi\)
−0.679256 + 0.733901i \(0.737698\pi\)
\(192\) 0 0
\(193\) 25.6173i 1.84397i −0.387224 0.921986i \(-0.626566\pi\)
0.387224 0.921986i \(-0.373434\pi\)
\(194\) 0 0
\(195\) 6.36593 + 23.6821i 0.455874 + 1.69591i
\(196\) 0 0
\(197\) −0.510570 + 0.294778i −0.0363766 + 0.0210021i −0.518078 0.855333i \(-0.673352\pi\)
0.481701 + 0.876335i \(0.340019\pi\)
\(198\) 0 0
\(199\) −8.04513 13.9346i −0.570304 0.987796i −0.996534 0.0831814i \(-0.973492\pi\)
0.426230 0.904615i \(-0.359841\pi\)
\(200\) 0 0
\(201\) 0.962142i 0.0678643i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −23.0140 + 39.8614i −1.60737 + 2.78404i
\(206\) 0 0
\(207\) −0.0481431 + 0.0833863i −0.00334618 + 0.00579575i
\(208\) 0 0
\(209\) 23.6176 1.63366
\(210\) 0 0
\(211\) 5.69247 + 9.85965i 0.391886 + 0.678766i 0.992698 0.120624i \(-0.0384895\pi\)
−0.600812 + 0.799390i \(0.705156\pi\)
\(212\) 0 0
\(213\) −14.1591 8.17474i −0.970164 0.560124i
\(214\) 0 0
\(215\) 4.91178i 0.334981i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) −11.3370 6.54545i −0.766087 0.442300i
\(220\) 0 0
\(221\) −10.1495 + 2.72826i −0.682726 + 0.183522i
\(222\) 0 0
\(223\) 2.03182 1.17307i 0.136060 0.0785545i −0.430425 0.902626i \(-0.641636\pi\)
0.566485 + 0.824072i \(0.308303\pi\)
\(224\) 0 0
\(225\) 0.756677 1.31060i 0.0504452 0.0873736i
\(226\) 0 0
\(227\) −7.14587 + 4.12567i −0.474288 + 0.273830i −0.718033 0.696009i \(-0.754957\pi\)
0.243745 + 0.969839i \(0.421624\pi\)
\(228\) 0 0
\(229\) 14.9605 8.63748i 0.988621 0.570780i 0.0837590 0.996486i \(-0.473307\pi\)
0.904862 + 0.425706i \(0.139974\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 2.06889 + 3.58342i 0.135537 + 0.234758i 0.925803 0.378007i \(-0.123391\pi\)
−0.790265 + 0.612765i \(0.790057\pi\)
\(234\) 0 0
\(235\) −10.8730 + 18.8327i −0.709280 + 1.22851i
\(236\) 0 0
\(237\) 0.294658 + 0.510363i 0.0191401 + 0.0331516i
\(238\) 0 0
\(239\) 5.83879i 0.377680i 0.982008 + 0.188840i \(0.0604727\pi\)
−0.982008 + 0.188840i \(0.939527\pi\)
\(240\) 0 0
\(241\) 24.6356 14.2234i 1.58692 0.916207i 0.593107 0.805124i \(-0.297901\pi\)
0.993811 0.111084i \(-0.0354322\pi\)
\(242\) 0 0
\(243\) 1.62747 0.104402
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 19.0130 + 5.07819i 1.20977 + 0.323118i
\(248\) 0 0
\(249\) 29.6317i 1.87783i
\(250\) 0 0
\(251\) 6.39001 11.0678i 0.403334 0.698595i −0.590792 0.806824i \(-0.701185\pi\)
0.994126 + 0.108229i \(0.0345180\pi\)
\(252\) 0 0
\(253\) 2.30171 + 1.32889i 0.144707 + 0.0835468i
\(254\) 0 0
\(255\) 17.1691 + 9.91261i 1.07517 + 0.620752i
\(256\) 0 0
\(257\) −0.335695 + 0.581441i −0.0209401 + 0.0362693i −0.876306 0.481756i \(-0.839999\pi\)
0.855365 + 0.518025i \(0.173333\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) −0.725602 1.25678i −0.0449136 0.0777926i
\(262\) 0 0
\(263\) −18.9702 −1.16976 −0.584878 0.811122i \(-0.698857\pi\)
−0.584878 + 0.811122i \(0.698857\pi\)
\(264\) 0 0
\(265\) 15.1596i 0.931244i
\(266\) 0 0
\(267\) −4.54550 2.62435i −0.278180 0.160607i
\(268\) 0 0
\(269\) −4.79241 8.30070i −0.292198 0.506102i 0.682131 0.731230i \(-0.261053\pi\)
−0.974329 + 0.225128i \(0.927720\pi\)
\(270\) 0 0
\(271\) 9.06856 + 5.23574i 0.550876 + 0.318048i 0.749475 0.662032i \(-0.230306\pi\)
−0.198599 + 0.980081i \(0.563639\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −36.1766 20.8866i −2.18153 1.25951i
\(276\) 0 0
\(277\) −9.66856 16.7464i −0.580927 1.00620i −0.995370 0.0961199i \(-0.969357\pi\)
0.414443 0.910075i \(-0.363977\pi\)
\(278\) 0 0
\(279\) −0.720544 0.416006i −0.0431379 0.0249057i
\(280\) 0 0
\(281\) 18.7039i 1.11578i 0.829915 + 0.557890i \(0.188389\pi\)
−0.829915 + 0.557890i \(0.811611\pi\)
\(282\) 0 0
\(283\) 1.17591 0.0699007 0.0349504 0.999389i \(-0.488873\pi\)
0.0349504 + 0.999389i \(0.488873\pi\)
\(284\) 0 0
\(285\) −18.5613 32.1492i −1.09948 1.90435i
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 4.25174 7.36423i 0.250102 0.433190i
\(290\) 0 0
\(291\) 14.8573 + 8.57789i 0.870953 + 0.502845i
\(292\) 0 0
\(293\) 5.63521 + 3.25349i 0.329213 + 0.190071i 0.655491 0.755203i \(-0.272462\pi\)
−0.326279 + 0.945274i \(0.605795\pi\)
\(294\) 0 0
\(295\) −14.7715 + 25.5851i −0.860033 + 1.48962i
\(296\) 0 0
\(297\) 21.8589i 1.26838i
\(298\) 0 0
\(299\) 1.56722 + 1.56471i 0.0906349 + 0.0904898i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 11.2832 0.648204
\(304\) 0 0
\(305\) 47.5601 27.4589i 2.72329 1.57229i
\(306\) 0 0
\(307\) 27.0573i 1.54424i −0.635475 0.772121i \(-0.719196\pi\)
0.635475 0.772121i \(-0.280804\pi\)
\(308\) 0 0
\(309\) 4.50505 + 7.80297i 0.256283 + 0.443895i
\(310\) 0 0
\(311\) 15.4531 26.7655i 0.876263 1.51773i 0.0208511 0.999783i \(-0.493362\pi\)
0.855412 0.517949i \(-0.173304\pi\)
\(312\) 0 0
\(313\) 15.0408 + 26.0514i 0.850157 + 1.47251i 0.881066 + 0.472993i \(0.156826\pi\)
−0.0309097 + 0.999522i \(0.509840\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 3.27661 1.89175i 0.184033 0.106251i −0.405153 0.914249i \(-0.632782\pi\)
0.589186 + 0.807997i \(0.299448\pi\)
\(318\) 0 0
\(319\) −34.6908 + 20.0288i −1.94231 + 1.12140i
\(320\) 0 0
\(321\) −4.87338 + 8.44093i −0.272005 + 0.471127i
\(322\) 0 0
\(323\) 13.7782 7.95486i 0.766641 0.442620i
\(324\) 0 0
\(325\) −24.6325 24.5930i −1.36636 1.36417i
\(326\) 0 0
\(327\) 10.4736 + 6.04696i 0.579194 + 0.334398i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 23.2552i 1.27822i −0.769115 0.639110i \(-0.779303\pi\)
0.769115 0.639110i \(-0.220697\pi\)
\(332\) 0 0
\(333\) 0.152688 + 0.0881547i 0.00836728 + 0.00483085i
\(334\) 0 0
\(335\) 1.03649 + 1.79525i 0.0566295 + 0.0980852i
\(336\) 0 0
\(337\) 6.51910 0.355118 0.177559 0.984110i \(-0.443180\pi\)
0.177559 + 0.984110i \(0.443180\pi\)
\(338\) 0 0
\(339\) −5.83449 + 10.1056i −0.316886 + 0.548862i
\(340\) 0 0
\(341\) −11.4830 + 19.8892i −0.621840 + 1.07706i
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 4.17758i 0.224913i
\(346\) 0 0
\(347\) 6.55696 + 11.3570i 0.351996 + 0.609675i 0.986599 0.163163i \(-0.0521696\pi\)
−0.634603 + 0.772838i \(0.718836\pi\)
\(348\) 0 0
\(349\) −8.41298 + 4.85724i −0.450336 + 0.260002i −0.707972 0.706240i \(-0.750390\pi\)
0.257636 + 0.966242i \(0.417057\pi\)
\(350\) 0 0
\(351\) 4.70004 17.5972i 0.250869 0.939267i
\(352\) 0 0
\(353\) 30.3262i 1.61410i 0.590484 + 0.807049i \(0.298937\pi\)
−0.590484 + 0.807049i \(0.701063\pi\)
\(354\) 0 0
\(355\) 35.2257 1.86959
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −9.16725 + 5.29271i −0.483829 + 0.279339i −0.722011 0.691882i \(-0.756782\pi\)
0.238182 + 0.971221i \(0.423449\pi\)
\(360\) 0 0
\(361\) −10.7909 −0.567943
\(362\) 0 0
\(363\) 13.7225 0.720247
\(364\) 0 0
\(365\) 28.2050 1.47631
\(366\) 0 0
\(367\) −26.6376 −1.39047 −0.695234 0.718783i \(-0.744699\pi\)
−0.695234 + 0.718783i \(0.744699\pi\)
\(368\) 0 0
\(369\) −1.63235 + 0.942438i −0.0849768 + 0.0490614i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −6.14128 −0.317984 −0.158992 0.987280i \(-0.550824\pi\)
−0.158992 + 0.987280i \(0.550824\pi\)
\(374\) 0 0
\(375\) 31.6531i 1.63456i
\(376\) 0 0
\(377\) −32.2339 + 8.66473i −1.66013 + 0.446256i
\(378\) 0 0
\(379\) 20.4175 11.7880i 1.04877 0.605510i 0.126469 0.991971i \(-0.459636\pi\)
0.922306 + 0.386460i \(0.126302\pi\)
\(380\) 0 0
\(381\) 18.0205 + 31.2124i 0.923217 + 1.59906i
\(382\) 0 0
\(383\) 20.1768i 1.03099i −0.856894 0.515493i \(-0.827609\pi\)
0.856894 0.515493i \(-0.172391\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0.100570 0.174193i 0.00511227 0.00885472i
\(388\) 0 0
\(389\) 16.4253 28.4494i 0.832795 1.44244i −0.0630179 0.998012i \(-0.520073\pi\)
0.895813 0.444431i \(-0.146594\pi\)
\(390\) 0 0
\(391\) 1.79039 0.0905438
\(392\) 0 0
\(393\) −4.37468 7.57716i −0.220673 0.382217i
\(394\) 0 0
\(395\) −1.09960 0.634855i −0.0553269 0.0319430i
\(396\) 0 0
\(397\) 25.2635i 1.26794i 0.773358 + 0.633970i \(0.218576\pi\)
−0.773358 + 0.633970i \(0.781424\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 25.3059 + 14.6104i 1.26372 + 0.729608i 0.973792 0.227441i \(-0.0730360\pi\)
0.289926 + 0.957049i \(0.406369\pi\)
\(402\) 0 0
\(403\) −13.5208 + 13.5424i −0.673517 + 0.674597i
\(404\) 0 0
\(405\) −31.3142 + 18.0793i −1.55602 + 0.898367i
\(406\) 0 0
\(407\) 2.43333 4.21466i 0.120616 0.208913i
\(408\) 0 0
\(409\) 23.6697 13.6657i 1.17039 0.675727i 0.216620 0.976256i \(-0.430497\pi\)
0.953773 + 0.300529i \(0.0971633\pi\)
\(410\) 0 0
\(411\) 19.8980 11.4881i 0.981497 0.566668i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 31.9214 + 55.2895i 1.56696 + 2.71406i
\(416\) 0 0
\(417\) −14.0444 + 24.3257i −0.687758 + 1.19123i
\(418\) 0 0
\(419\) 10.1693 + 17.6137i 0.496802 + 0.860486i 0.999993 0.00368888i \(-0.00117421\pi\)
−0.503191 + 0.864175i \(0.667841\pi\)
\(420\) 0 0
\(421\) 21.0712i 1.02695i 0.858106 + 0.513473i \(0.171641\pi\)
−0.858106 + 0.513473i \(0.828359\pi\)
\(422\) 0 0
\(423\) −0.771210 + 0.445258i −0.0374975 + 0.0216492i
\(424\) 0 0
\(425\) −28.1400 −1.36499
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 26.7808 + 7.15289i 1.29299 + 0.345345i
\(430\) 0 0
\(431\) 29.6333i 1.42739i −0.700458 0.713694i \(-0.747021\pi\)
0.700458 0.713694i \(-0.252979\pi\)
\(432\) 0 0
\(433\) 14.2983 24.7653i 0.687130 1.19014i −0.285632 0.958339i \(-0.592204\pi\)
0.972762 0.231805i \(-0.0744631\pi\)
\(434\) 0 0
\(435\) 54.5279 + 31.4817i 2.61441 + 1.50943i
\(436\) 0 0
\(437\) −2.90335 1.67625i −0.138886 0.0801859i
\(438\) 0 0
\(439\) 10.9124 18.9009i 0.520821 0.902088i −0.478886 0.877877i \(-0.658959\pi\)
0.999707 0.0242113i \(-0.00770744\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 3.16478 + 5.48156i 0.150363 + 0.260437i 0.931361 0.364097i \(-0.118622\pi\)
−0.780998 + 0.624534i \(0.785289\pi\)
\(444\) 0 0
\(445\) 11.3086 0.536077
\(446\) 0 0
\(447\) 28.3051i 1.33879i
\(448\) 0 0
\(449\) 21.2777 + 12.2847i 1.00415 + 0.579749i 0.909475 0.415759i \(-0.136484\pi\)
0.0946799 + 0.995508i \(0.469817\pi\)
\(450\) 0 0
\(451\) 26.0141 + 45.0578i 1.22496 + 2.12169i
\(452\) 0 0
\(453\) −9.80697 5.66206i −0.460772 0.266027i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 3.90240 + 2.25305i 0.182547 + 0.105393i 0.588489 0.808505i \(-0.299723\pi\)
−0.405942 + 0.913899i \(0.633056\pi\)
\(458\) 0 0
\(459\) −7.36249 12.7522i −0.343652 0.595222i
\(460\) 0 0
\(461\) −0.260026 0.150126i −0.0121106 0.00699206i 0.493932 0.869500i \(-0.335559\pi\)
−0.506043 + 0.862508i \(0.668892\pi\)
\(462\) 0 0
\(463\) 19.2907i 0.896514i −0.893905 0.448257i \(-0.852045\pi\)
0.893905 0.448257i \(-0.147955\pi\)
\(464\) 0 0
\(465\) 36.0986 1.67403
\(466\) 0 0
\(467\) 6.97544 + 12.0818i 0.322785 + 0.559080i 0.981062 0.193696i \(-0.0620477\pi\)
−0.658277 + 0.752776i \(0.728714\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 6.56323 11.3679i 0.302418 0.523803i
\(472\) 0 0
\(473\) −4.80824 2.77604i −0.221083 0.127642i
\(474\) 0 0
\(475\) 45.6327 + 26.3460i 2.09377 + 1.20884i
\(476\) 0 0
\(477\) 0.310397 0.537623i 0.0142121 0.0246161i
\(478\) 0 0
\(479\) 27.4521i 1.25432i 0.778890 + 0.627160i \(0.215783\pi\)
−0.778890 + 0.627160i \(0.784217\pi\)
\(480\) 0 0
\(481\) 2.86514 2.86974i 0.130639 0.130849i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −36.9629 −1.67840
\(486\) 0 0
\(487\) −12.1206 + 6.99785i −0.549238 + 0.317103i −0.748815 0.662780i \(-0.769377\pi\)
0.199577 + 0.979882i \(0.436043\pi\)
\(488\) 0 0
\(489\) 0.155577i 0.00703543i
\(490\) 0 0
\(491\) −3.76330 6.51823i −0.169836 0.294164i 0.768526 0.639818i \(-0.220990\pi\)
−0.938362 + 0.345654i \(0.887657\pi\)
\(492\) 0 0
\(493\) −13.4922 + 23.3691i −0.607656 + 1.05249i
\(494\) 0 0
\(495\) −1.29831 2.24874i −0.0583546 0.101073i
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 1.01193 0.584239i 0.0453003 0.0261541i −0.477179 0.878806i \(-0.658341\pi\)
0.522479 + 0.852652i \(0.325007\pi\)
\(500\) 0 0
\(501\) 28.4825 16.4444i 1.27250 0.734680i
\(502\) 0 0
\(503\) −5.30877 + 9.19505i −0.236706 + 0.409987i −0.959767 0.280797i \(-0.909401\pi\)
0.723061 + 0.690784i \(0.242735\pi\)
\(504\) 0 0
\(505\) −21.0533 + 12.1551i −0.936859 + 0.540896i
\(506\) 0 0
\(507\) 20.0215 + 11.5167i 0.889185 + 0.511473i
\(508\) 0 0
\(509\) −21.0450 12.1503i −0.932803 0.538554i −0.0451058 0.998982i \(-0.514363\pi\)
−0.887697 + 0.460428i \(0.847696\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 27.5725i 1.21736i
\(514\) 0 0
\(515\) −16.8119 9.70633i −0.740819 0.427712i
\(516\) 0 0
\(517\) 12.2905 + 21.2877i 0.540534 + 0.936232i
\(518\) 0 0
\(519\) −0.730063 −0.0320462
\(520\) 0 0
\(521\) 5.66400 9.81034i 0.248144 0.429799i −0.714867 0.699261i \(-0.753513\pi\)
0.963011 + 0.269462i \(0.0868459\pi\)
\(522\) 0 0
\(523\) 15.1328 26.2108i 0.661711 1.14612i −0.318454 0.947938i \(-0.603164\pi\)
0.980166 0.198180i \(-0.0635029\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 15.4708i 0.673919i
\(528\) 0 0
\(529\) 11.3114 + 19.5919i 0.491798 + 0.851820i
\(530\) 0 0
\(531\) −1.04772 + 0.604904i −0.0454674 + 0.0262506i
\(532\) 0 0
\(533\) 11.2541 + 41.8666i 0.487468 + 1.81344i
\(534\) 0 0
\(535\) 20.9998i 0.907902i
\(536\) 0 0
\(537\) 3.82840 0.165208
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −9.65868 + 5.57644i −0.415259 + 0.239750i −0.693047 0.720893i \(-0.743732\pi\)
0.277788 + 0.960642i \(0.410399\pi\)
\(542\) 0 0
\(543\) 11.5509 0.495698
\(544\) 0 0
\(545\) −26.0569 −1.11616
\(546\) 0 0
\(547\) 4.87804 0.208570 0.104285 0.994547i \(-0.466745\pi\)
0.104285 + 0.994547i \(0.466745\pi\)
\(548\) 0 0
\(549\) 2.24892 0.0959814
\(550\) 0 0
\(551\) 43.7586 25.2640i 1.86418 1.07628i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) −7.64955 −0.324705
\(556\) 0 0
\(557\) 3.02585i 0.128209i 0.997943 + 0.0641047i \(0.0204192\pi\)
−0.997943 + 0.0641047i \(0.979581\pi\)
\(558\) 0 0
\(559\) −3.27391 3.26867i −0.138472 0.138250i
\(560\) 0 0
\(561\) 19.4073 11.2048i 0.819377 0.473068i
\(562\) 0 0
\(563\) 13.6591 + 23.6583i 0.575664 + 0.997079i 0.995969 + 0.0896963i \(0.0285896\pi\)
−0.420305 + 0.907383i \(0.638077\pi\)
\(564\) 0 0
\(565\) 25.1414i 1.05770i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −6.46871 + 11.2041i −0.271183 + 0.469702i −0.969165 0.246413i \(-0.920748\pi\)
0.697982 + 0.716115i \(0.254081\pi\)
\(570\) 0 0
\(571\) −5.33893 + 9.24730i −0.223427 + 0.386988i −0.955846 0.293866i \(-0.905058\pi\)
0.732419 + 0.680854i \(0.238391\pi\)
\(572\) 0 0
\(573\) 33.3581 1.39355
\(574\) 0 0
\(575\) 2.96483 + 5.13524i 0.123642 + 0.214154i
\(576\) 0 0
\(577\) −4.12632 2.38233i −0.171781 0.0991778i 0.411644 0.911345i \(-0.364955\pi\)
−0.583425 + 0.812167i \(0.698288\pi\)
\(578\) 0 0
\(579\) 45.5149i 1.89153i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −14.8400 8.56788i −0.614610 0.354845i
\(584\) 0 0
\(585\) −0.561667 2.08947i −0.0232221 0.0863890i
\(586\) 0 0
\(587\) −27.6495 + 15.9634i −1.14122 + 0.658881i −0.946731 0.322024i \(-0.895637\pi\)
−0.194485 + 0.980906i \(0.562303\pi\)
\(588\) 0 0
\(589\) 14.4845 25.0879i 0.596825 1.03373i
\(590\) 0 0
\(591\) 0.907144 0.523740i 0.0373149 0.0215438i
\(592\) 0 0
\(593\) 1.10299 0.636812i 0.0452944 0.0261508i −0.477182 0.878805i \(-0.658342\pi\)
0.522476 + 0.852654i \(0.325008\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 14.2940 + 24.7580i 0.585015 + 1.01328i
\(598\) 0 0
\(599\) 7.57310 13.1170i 0.309428 0.535946i −0.668809 0.743434i \(-0.733196\pi\)
0.978237 + 0.207489i \(0.0665290\pi\)
\(600\) 0 0
\(601\) 17.1425 + 29.6917i 0.699258 + 1.21115i 0.968724 + 0.248141i \(0.0798195\pi\)
−0.269466 + 0.963010i \(0.586847\pi\)
\(602\) 0 0
\(603\) 0.0848899i 0.00345698i
\(604\) 0 0
\(605\) −25.6048 + 14.7829i −1.04098 + 0.601012i
\(606\) 0 0
\(607\) −9.47474 −0.384568 −0.192284 0.981339i \(-0.561589\pi\)
−0.192284 + 0.981339i \(0.561589\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 5.31703 + 19.7800i 0.215104 + 0.800214i
\(612\) 0 0
\(613\) 11.6437i 0.470283i 0.971961 + 0.235141i \(0.0755553\pi\)
−0.971961 + 0.235141i \(0.924445\pi\)
\(614\) 0 0
\(615\) 40.8896 70.8229i 1.64883 2.85586i
\(616\) 0 0
\(617\) −5.54295 3.20023i −0.223151 0.128836i 0.384257 0.923226i \(-0.374457\pi\)
−0.607408 + 0.794390i \(0.707791\pi\)
\(618\) 0 0
\(619\) −9.70507 5.60323i −0.390080 0.225213i 0.292115 0.956383i \(-0.405641\pi\)
−0.682195 + 0.731171i \(0.738974\pi\)
\(620\) 0 0
\(621\) −1.55143 + 2.68715i −0.0622566 + 0.107832i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −9.96422 17.2585i −0.398569 0.690342i
\(626\) 0 0
\(627\) −41.9620 −1.67580
\(628\) 0 0
\(629\) 3.27837i 0.130717i
\(630\) 0 0
\(631\) 39.1148 + 22.5830i 1.55714 + 0.899013i 0.997529 + 0.0702554i \(0.0223814\pi\)
0.559608 + 0.828758i \(0.310952\pi\)
\(632\) 0 0
\(633\) −10.1140 17.5179i −0.401994 0.696274i
\(634\) 0 0
\(635\) −67.2486 38.8260i −2.66868 1.54076i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 1.24926 + 0.721258i 0.0494198 + 0.0285325i
\(640\) 0 0
\(641\) −3.57997 6.20069i −0.141400 0.244912i 0.786624 0.617432i \(-0.211827\pi\)
−0.928024 + 0.372520i \(0.878494\pi\)
\(642\) 0 0
\(643\) 35.9015 + 20.7278i 1.41582 + 0.817423i 0.995928 0.0901516i \(-0.0287352\pi\)
0.419890 + 0.907575i \(0.362068\pi\)
\(644\) 0 0
\(645\) 8.72690i 0.343621i
\(646\) 0 0
\(647\) 15.5852 0.612716 0.306358 0.951916i \(-0.400890\pi\)
0.306358 + 0.951916i \(0.400890\pi\)
\(648\) 0 0
\(649\) 16.6972 + 28.9203i 0.655421 + 1.13522i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 11.9121 20.6323i 0.466156 0.807406i −0.533097 0.846054i \(-0.678972\pi\)
0.999253 + 0.0386482i \(0.0123052\pi\)
\(654\) 0 0
\(655\) 16.3254 + 9.42545i 0.637884 + 0.368283i
\(656\) 0 0
\(657\) 1.00027 + 0.577505i 0.0390242 + 0.0225306i
\(658\) 0 0
\(659\) −2.01861 + 3.49634i −0.0786340 + 0.136198i −0.902661 0.430353i \(-0.858389\pi\)
0.824027 + 0.566551i \(0.191723\pi\)
\(660\) 0 0
\(661\) 37.1979i 1.44683i −0.690412 0.723416i \(-0.742571\pi\)
0.690412 0.723416i \(-0.257429\pi\)
\(662\) 0 0
\(663\) 18.0328 4.84737i 0.700336 0.188256i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 5.68614 0.220168
\(668\) 0 0
\(669\) −3.60998 + 2.08422i −0.139570 + 0.0805808i
\(670\) 0 0
\(671\) 62.0768i 2.39645i
\(672\) 0 0
\(673\) −5.02863 8.70984i −0.193839 0.335740i 0.752680 0.658387i \(-0.228761\pi\)
−0.946519 + 0.322647i \(0.895427\pi\)
\(674\) 0 0
\(675\) 24.3841 42.2346i 0.938546 1.62561i
\(676\) 0 0
\(677\) −9.94034 17.2172i −0.382038 0.661710i 0.609315 0.792928i \(-0.291444\pi\)
−0.991353 + 0.131219i \(0.958111\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 12.6963 7.33019i 0.486522 0.280893i
\(682\) 0 0
\(683\) 17.2194 9.94161i 0.658881 0.380405i −0.132970 0.991120i \(-0.542451\pi\)
0.791850 + 0.610715i \(0.209118\pi\)
\(684\) 0 0
\(685\) −24.7517 + 42.8712i −0.945715 + 1.63803i
\(686\) 0 0
\(687\) −26.5808 + 15.3464i −1.01412 + 0.585503i
\(688\) 0 0
\(689\) −10.1045 10.0883i −0.384950 0.384334i
\(690\) 0 0
\(691\) −16.5968 9.58219i −0.631373 0.364524i 0.149910 0.988700i \(-0.452101\pi\)
−0.781284 + 0.624176i \(0.785435\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 60.5187i 2.29561i
\(696\) 0 0
\(697\) 30.3527 + 17.5241i 1.14969 + 0.663773i
\(698\) 0 0
\(699\) −3.67585 6.36676i −0.139033 0.240813i
\(700\) 0 0
\(701\) 18.5012 0.698780 0.349390 0.936977i \(-0.386389\pi\)
0.349390 + 0.936977i \(0.386389\pi\)
\(702\) 0 0
\(703\) −3.06938 + 5.31631i −0.115764 + 0.200509i
\(704\) 0 0
\(705\) 19.3184 33.4605i 0.727575 1.26020i
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 24.0214i 0.902144i 0.892488 + 0.451072i \(0.148958\pi\)
−0.892488 + 0.451072i \(0.851042\pi\)
\(710\) 0 0
\(711\) −0.0259977 0.0450294i −0.000974990 0.00168873i
\(712\) 0 0
\(713\) 2.82325 1.63001i 0.105732 0.0610442i
\(714\) 0 0
\(715\) −57.6756 + 15.5037i −2.15695 + 0.579805i
\(716\) 0 0
\(717\) 10.3739i 0.387422i
\(718\) 0 0
\(719\) 24.4297 0.911076 0.455538 0.890216i \(-0.349447\pi\)
0.455538 + 0.890216i \(0.349447\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) −43.7707 + 25.2710i −1.62785 + 0.939840i
\(724\) 0 0
\(725\) −89.3705 −3.31914
\(726\) 0 0
\(727\) −20.9000 −0.775138 −0.387569 0.921841i \(-0.626685\pi\)
−0.387569 + 0.921841i \(0.626685\pi\)
\(728\) 0 0
\(729\) 25.4456 0.942428
\(730\) 0 0
\(731\) −3.74010 −0.138332
\(732\) 0 0
\(733\) −6.13248 + 3.54059i −0.226508 + 0.130775i −0.608960 0.793201i \(-0.708413\pi\)
0.382452 + 0.923975i \(0.375080\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 2.34321 0.0863134
\(738\) 0 0
\(739\) 23.7150i 0.872371i −0.899857 0.436186i \(-0.856329\pi\)
0.899857 0.436186i \(-0.143671\pi\)
\(740\) 0 0
\(741\) −33.7809 9.02256i −1.24097 0.331452i
\(742\) 0 0
\(743\) −36.5813 + 21.1202i −1.34204 + 0.774825i −0.987106 0.160067i \(-0.948829\pi\)
−0.354931 + 0.934893i \(0.615496\pi\)
\(744\) 0 0
\(745\) −30.4923 52.8143i −1.11715 1.93497i
\(746\) 0 0
\(747\) 2.61441i 0.0956561i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 12.0710 20.9076i 0.440478 0.762930i −0.557247 0.830347i \(-0.688142\pi\)
0.997725 + 0.0674164i \(0.0214756\pi\)
\(752\) 0 0
\(753\) −11.3533 + 19.6645i −0.413737 + 0.716614i
\(754\) 0 0
\(755\) 24.3983 0.887947
\(756\) 0 0
\(757\) 15.9716 + 27.6636i 0.580497 + 1.00545i 0.995420 + 0.0955942i \(0.0304751\pi\)
−0.414923 + 0.909856i \(0.636192\pi\)
\(758\) 0 0
\(759\) −4.08951 2.36108i −0.148440 0.0857018i
\(760\) 0 0
\(761\) 42.2716i 1.53234i −0.642635 0.766172i \(-0.722159\pi\)
0.642635 0.766172i \(-0.277841\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) −1.51484 0.874590i −0.0547690 0.0316209i
\(766\) 0 0
\(767\) 7.22343 + 26.8721i 0.260823 + 0.970294i
\(768\) 0 0
\(769\) 2.36768 1.36698i 0.0853808 0.0492946i −0.456702 0.889620i \(-0.650969\pi\)
0.542083 + 0.840325i \(0.317636\pi\)
\(770\) 0 0
\(771\) 0.596439 1.03306i 0.0214802 0.0372048i
\(772\) 0 0
\(773\) −16.9343 + 9.77703i −0.609085 + 0.351655i −0.772607 0.634884i \(-0.781048\pi\)
0.163523 + 0.986540i \(0.447714\pi\)
\(774\) 0 0
\(775\) −44.3738 + 25.6192i −1.59395 + 0.920270i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −32.8139 56.8353i −1.17568 2.03634i
\(780\) 0 0
\(781\) 19.9089 34.4832i 0.712396 1.23391i
\(782\) 0 0
\(783\) −23.3827 40.5001i −0.835630 1.44735i
\(784\) 0 0
\(785\) 28.2816i 1.00941i
\(786\) 0 0
\(787\) 28.0930 16.2195i 1.00141 0.578163i 0.0927426 0.995690i \(-0.470437\pi\)
0.908664 + 0.417528i \(0.137103\pi\)
\(788\) 0 0
\(789\) 33.7050 1.19993
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 13.3476 49.9740i 0.473987 1.77463i
\(794\) 0 0
\(795\) 26.9344i 0.955265i
\(796\) 0 0
\(797\) −12.9397 + 22.4123i −0.458349 + 0.793883i −0.998874 0.0474447i \(-0.984892\pi\)
0.540525 + 0.841328i \(0.318226\pi\)
\(798\) 0 0
\(799\) 14.3402 + 8.27933i 0.507320 + 0.292902i
\(800\) 0 0
\(801\) 0.401050 + 0.231546i 0.0141704 + 0.00818129i
\(802\) 0 0
\(803\) 15.9409 27.6104i 0.562541 0.974350i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 8.51481 + 14.7481i 0.299735 + 0.519157i
\(808\) 0 0
\(809\) 22.4133 0.788008 0.394004 0.919109i \(-0.371090\pi\)
0.394004 + 0.919109i \(0.371090\pi\)
\(810\) 0 0
\(811\) 5.44486i 0.191195i −0.995420 0.0955974i \(-0.969524\pi\)
0.995420 0.0955974i \(-0.0304761\pi\)
\(812\) 0 0
\(813\) −16.1124 9.30247i −0.565085 0.326252i
\(814\) 0 0
\(815\) 0.167599 + 0.290290i 0.00587074 + 0.0101684i
\(816\) 0 0
\(817\) 6.06505 + 3.50166i 0.212189 + 0.122508i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −26.6843 15.4062i −0.931288 0.537679i −0.0440690 0.999028i \(-0.514032\pi\)
−0.887219 + 0.461349i \(0.847365\pi\)
\(822\) 0 0
\(823\) 0.102850 + 0.178141i 0.00358513 + 0.00620962i 0.867812 0.496892i \(-0.165525\pi\)
−0.864227 + 0.503102i \(0.832192\pi\)
\(824\) 0 0
\(825\) 64.2759 + 37.1097i 2.23780 + 1.29199i
\(826\) 0 0
\(827\) 9.66411i 0.336054i −0.985782 0.168027i \(-0.946260\pi\)
0.985782 0.168027i \(-0.0537396\pi\)
\(828\) 0 0
\(829\) 30.5334 1.06047 0.530234 0.847851i \(-0.322104\pi\)
0.530234 + 0.847851i \(0.322104\pi\)
\(830\) 0 0
\(831\) 17.1784 + 29.7538i 0.595912 + 1.03215i
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) −35.4301 + 61.3668i −1.22611 + 2.12369i
\(836\) 0 0
\(837\) −23.2197 13.4059i −0.802592 0.463377i
\(838\) 0 0
\(839\) 33.0722 + 19.0942i 1.14178 + 0.659206i 0.946871 0.321615i \(-0.104226\pi\)
0.194909 + 0.980821i \(0.437559\pi\)
\(840\) 0 0
\(841\) −28.3501 + 49.1037i −0.977588 + 1.69323i
\(842\) 0 0
\(843\) 33.2317i 1.14456i
\(844\) 0 0
\(845\) −49.7645 + 0.0797454i −1.71195 + 0.00274333i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) −2.08928 −0.0717038
\(850\) 0 0
\(851\) −0.598268 + 0.345410i −0.0205084 + 0.0118405i
\(852\) 0 0
\(853\) 28.3480i 0.970618i 0.874343 + 0.485309i \(0.161293\pi\)
−0.874343 + 0.485309i \(0.838707\pi\)
\(854\) 0 0
\(855\) 1.63767 + 2.83653i 0.0560071 + 0.0970071i
\(856\) 0 0
\(857\) 12.9244 22.3857i 0.441489 0.764681i −0.556311 0.830974i \(-0.687784\pi\)
0.997800 + 0.0662926i \(0.0211171\pi\)
\(858\) 0 0
\(859\) 9.80418 + 16.9813i 0.334514 + 0.579396i 0.983391 0.181497i \(-0.0580944\pi\)
−0.648877 + 0.760893i \(0.724761\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 11.6366 6.71841i 0.396115 0.228697i −0.288691 0.957422i \(-0.593220\pi\)
0.684807 + 0.728725i \(0.259887\pi\)
\(864\) 0 0
\(865\) 1.36222 0.786477i 0.0463168 0.0267410i
\(866\) 0 0
\(867\) −7.55418 + 13.0842i −0.256554 + 0.444364i
\(868\) 0 0
\(869\) −1.24294 + 0.717614i −0.0421640 + 0.0243434i
\(870\) 0 0
\(871\) 1.88637 + 0.503832i 0.0639172 + 0.0170717i
\(872\) 0 0
\(873\) −1.31086 0.756828i −0.0443660 0.0256147i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 30.1421i 1.01783i −0.860818 0.508914i \(-0.830047\pi\)
0.860818 0.508914i \(-0.169953\pi\)
\(878\) 0 0
\(879\) −10.0122 5.78057i −0.337704 0.194974i
\(880\) 0 0
\(881\) −4.52477 7.83714i −0.152443 0.264040i 0.779682 0.626176i \(-0.215381\pi\)
−0.932125 + 0.362136i \(0.882048\pi\)
\(882\) 0 0
\(883\) 47.3475 1.59337 0.796685 0.604395i \(-0.206585\pi\)
0.796685 + 0.604395i \(0.206585\pi\)
\(884\) 0 0
\(885\) 26.2450 45.4577i 0.882216 1.52804i
\(886\) 0 0
\(887\) 18.9895 32.8908i 0.637605 1.10436i −0.348352 0.937364i \(-0.613258\pi\)
0.985957 0.167001i \(-0.0534082\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 40.8722i 1.36927i
\(892\) 0 0
\(893\) −15.5030 26.8520i −0.518789 0.898569i
\(894\) 0 0
\(895\) −7.14339 + 4.12424i −0.238777 + 0.137858i
\(896\) 0 0
\(897\) −2.78453 2.78007i −0.0929728 0.0928239i
\(898\) 0 0
\(899\) 49.1341i 1.63872i
\(900\) 0 0
\(901\) −11.5433 −0.384563
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −21.5528 + 12.4435i −0.716439 + 0.413636i
\(906\) 0 0
\(907\) −27.8867 −0.925962 −0.462981 0.886368i \(-0.653220\pi\)
−0.462981 + 0.886368i \(0.653220\pi\)
\(908\) 0 0
\(909\) −0.995519 −0.0330193
\(910\) 0 0
\(911\) −26.1435 −0.866172 −0.433086 0.901353i \(-0.642575\pi\)
−0.433086 + 0.901353i \(0.642575\pi\)
\(912\) 0 0
\(913\) 72.1654 2.38833
\(914\) 0 0
\(915\) −84.5014 + 48.7869i −2.79353 + 1.61285i
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) −3.08812 −0.101868 −0.0509338 0.998702i \(-0.516220\pi\)
−0.0509338 + 0.998702i \(0.516220\pi\)
\(920\) 0 0
\(921\) 48.0735i 1.58408i
\(922\) 0 0
\(923\) 23.4418 23.4794i 0.771598 0.772835i
\(924\) 0 0
\(925\) 9.40312 5.42889i 0.309173 0.178501i
\(926\) 0 0
\(927\) −0.397481 0.688457i −0.0130550 0.0226119i
\(928\) 0 0
\(929\) 38.5771i 1.26567i 0.774286 + 0.632836i \(0.218109\pi\)
−0.774286 + 0.632836i \(0.781891\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) −27.4559 + 47.5550i −0.898865 + 1.55688i
\(934\) 0 0
\(935\) −24.1413 + 41.8140i −0.789505 + 1.36746i
\(936\) 0 0
\(937\) −8.28836 −0.270769 −0.135384 0.990793i \(-0.543227\pi\)
−0.135384 + 0.990793i \(0.543227\pi\)
\(938\) 0 0
\(939\) −26.7234 46.2863i −0.872086 1.51050i
\(940\) 0 0
\(941\) −6.68923 3.86203i −0.218063 0.125899i 0.386990 0.922084i \(-0.373515\pi\)
−0.605053 + 0.796185i \(0.706848\pi\)
\(942\) 0 0
\(943\) 7.38537i 0.240501i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −44.8430 25.8901i −1.45720 0.841316i −0.458330 0.888782i \(-0.651552\pi\)
−0.998873 + 0.0474661i \(0.984885\pi\)
\(948\) 0 0
\(949\) 18.7697 18.7998i 0.609290 0.610267i
\(950\) 0 0
\(951\) −5.82165 + 3.36113i −0.188780 + 0.108992i
\(952\) 0 0
\(953\) 24.3912 42.2468i 0.790109 1.36851i −0.135791 0.990738i \(-0.543357\pi\)
0.925899 0.377771i \(-0.123309\pi\)
\(954\) 0 0
\(955\) −62.2426 + 35.9358i −2.01412 + 1.16285i
\(956\) 0 0
\(957\) 61.6362 35.5857i 1.99241 1.15032i
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −1.41505 2.45095i −0.0456469 0.0790627i
\(962\) 0 0
\(963\) 0.429978 0.744744i 0.0138559 0.0239990i
\(964\) 0 0
\(965\) −49.0320 84.9259i −1.57840 2.73386i
\(966\) 0 0
\(967\) 3.09186i 0.0994274i 0.998764 + 0.0497137i \(0.0158309\pi\)
−0.998764 + 0.0497137i \(0.984169\pi\)
\(968\) 0 0
\(969\) −24.4801 + 14.1336i −0.786415 + 0.454037i
\(970\) 0 0
\(971\) −54.4761 −1.74822 −0.874111 0.485727i \(-0.838555\pi\)
−0.874111 + 0.485727i \(0.838555\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 43.7652 + 43.6951i 1.40161 + 1.39936i
\(976\) 0 0
\(977\) 19.3385i 0.618693i 0.950949 + 0.309347i \(0.100110\pi\)
−0.950949 + 0.309347i \(0.899890\pi\)
\(978\) 0 0
\(979\) 6.39137 11.0702i 0.204269 0.353804i
\(980\) 0 0
\(981\) −0.924090 0.533524i −0.0295039 0.0170341i
\(982\) 0 0
\(983\) −4.27617 2.46885i −0.136389 0.0787440i 0.430253 0.902708i \(-0.358424\pi\)
−0.566642 + 0.823964i \(0.691758\pi\)
\(984\) 0 0
\(985\) −1.12842 + 1.95449i −0.0359545 + 0.0622751i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0.394057 + 0.682527i 0.0125303 + 0.0217031i
\(990\) 0 0
\(991\) 48.3434 1.53568 0.767839 0.640643i \(-0.221332\pi\)
0.767839 + 0.640643i \(0.221332\pi\)
\(992\) 0 0
\(993\) 41.3181i 1.31119i
\(994\) 0 0
\(995\) −53.3422 30.7971i −1.69106 0.976334i
\(996\) 0 0
\(997\) −21.6634 37.5222i −0.686088 1.18834i −0.973094 0.230411i \(-0.925993\pi\)
0.287005 0.957929i \(-0.407340\pi\)
\(998\) 0 0
\(999\) 4.92043 + 2.84081i 0.155675 + 0.0898793i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2548.2.bq.c.361.2 16
7.2 even 3 2548.2.bb.c.569.7 16
7.3 odd 6 364.2.u.a.309.2 yes 16
7.4 even 3 2548.2.u.c.1765.7 16
7.5 odd 6 2548.2.bb.d.569.2 16
7.6 odd 2 2548.2.bq.e.361.7 16
13.4 even 6 2548.2.bb.c.1733.7 16
21.17 even 6 3276.2.cf.c.1765.7 16
28.3 even 6 1456.2.cc.f.673.7 16
91.3 odd 6 4732.2.g.k.337.13 16
91.4 even 6 2548.2.u.c.589.7 16
91.10 odd 6 4732.2.g.k.337.14 16
91.17 odd 6 364.2.u.a.225.2 16
91.24 even 12 4732.2.a.t.1.7 8
91.30 even 6 inner 2548.2.bq.c.1941.2 16
91.69 odd 6 2548.2.bb.d.1733.2 16
91.80 even 12 4732.2.a.s.1.7 8
91.82 odd 6 2548.2.bq.e.1941.7 16
273.17 even 6 3276.2.cf.c.2773.2 16
364.199 even 6 1456.2.cc.f.225.7 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
364.2.u.a.225.2 16 91.17 odd 6
364.2.u.a.309.2 yes 16 7.3 odd 6
1456.2.cc.f.225.7 16 364.199 even 6
1456.2.cc.f.673.7 16 28.3 even 6
2548.2.u.c.589.7 16 91.4 even 6
2548.2.u.c.1765.7 16 7.4 even 3
2548.2.bb.c.569.7 16 7.2 even 3
2548.2.bb.c.1733.7 16 13.4 even 6
2548.2.bb.d.569.2 16 7.5 odd 6
2548.2.bb.d.1733.2 16 91.69 odd 6
2548.2.bq.c.361.2 16 1.1 even 1 trivial
2548.2.bq.c.1941.2 16 91.30 even 6 inner
2548.2.bq.e.361.7 16 7.6 odd 2
2548.2.bq.e.1941.7 16 91.82 odd 6
3276.2.cf.c.1765.7 16 21.17 even 6
3276.2.cf.c.2773.2 16 273.17 even 6
4732.2.a.s.1.7 8 91.80 even 12
4732.2.a.t.1.7 8 91.24 even 12
4732.2.g.k.337.13 16 91.3 odd 6
4732.2.g.k.337.14 16 91.10 odd 6