Properties

Label 4732.2.g.k.337.14
Level $4732$
Weight $2$
Character 4732.337
Analytic conductor $37.785$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4732,2,Mod(337,4732)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4732, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4732.337");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4732 = 2^{2} \cdot 7 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4732.g (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(37.7852102365\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 38x^{14} + 587x^{12} + 4762x^{10} + 21849x^{8} + 56552x^{6} + 76456x^{4} + 42624x^{2} + 2704 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{10} \)
Twist minimal: no (minimal twist has level 364)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 337.14
Root \(-1.77673i\) of defining polynomial
Character \(\chi\) \(=\) 4732.337
Dual form 4732.2.g.k.337.13

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.77673 q^{3} +3.82804i q^{5} -1.00000i q^{7} +0.156761 q^{9} +4.32707i q^{11} +6.80139i q^{15} -2.91488 q^{17} +5.45810i q^{19} -1.77673i q^{21} +0.614224 q^{23} -9.65391 q^{25} -5.05166 q^{27} +9.25744 q^{29} +5.30753i q^{31} +7.68802i q^{33} +3.82804 q^{35} +1.12470i q^{37} -12.0239i q^{41} -1.28310 q^{43} +0.600087i q^{45} -5.68074i q^{47} -1.00000 q^{49} -5.17895 q^{51} -3.96013 q^{53} -16.5642 q^{55} +9.69757i q^{57} -7.71754i q^{59} -14.3462 q^{61} -0.156761i q^{63} -0.541525i q^{67} +1.09131 q^{69} +9.20202i q^{71} -7.36798i q^{73} -17.1524 q^{75} +4.32707 q^{77} +0.331686 q^{79} -9.44571 q^{81} +16.6777i q^{83} -11.1583i q^{85} +16.4479 q^{87} -2.95414i q^{89} +9.43004i q^{93} -20.8939 q^{95} +9.65583i q^{97} +0.678314i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 28 q^{9} - 4 q^{17} - 44 q^{25} - 12 q^{27} + 44 q^{29} + 12 q^{35} - 12 q^{43} - 16 q^{49} - 4 q^{51} + 8 q^{53} - 4 q^{55} - 8 q^{61} + 104 q^{69} + 20 q^{75} - 24 q^{77} + 8 q^{79} - 52 q^{87}+ \cdots + 60 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/4732\mathbb{Z}\right)^\times\).

\(n\) \(2367\) \(2705\) \(4565\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.77673 1.02579 0.512897 0.858450i \(-0.328572\pi\)
0.512897 + 0.858450i \(0.328572\pi\)
\(4\) 0 0
\(5\) 3.82804i 1.71195i 0.517015 + 0.855976i \(0.327043\pi\)
−0.517015 + 0.855976i \(0.672957\pi\)
\(6\) 0 0
\(7\) − 1.00000i − 0.377964i
\(8\) 0 0
\(9\) 0.156761 0.0522536
\(10\) 0 0
\(11\) 4.32707i 1.30466i 0.757935 + 0.652330i \(0.226208\pi\)
−0.757935 + 0.652330i \(0.773792\pi\)
\(12\) 0 0
\(13\) 0 0
\(14\) 0 0
\(15\) 6.80139i 1.75611i
\(16\) 0 0
\(17\) −2.91488 −0.706962 −0.353481 0.935442i \(-0.615002\pi\)
−0.353481 + 0.935442i \(0.615002\pi\)
\(18\) 0 0
\(19\) 5.45810i 1.25218i 0.779753 + 0.626088i \(0.215345\pi\)
−0.779753 + 0.626088i \(0.784655\pi\)
\(20\) 0 0
\(21\) − 1.77673i − 0.387714i
\(22\) 0 0
\(23\) 0.614224 0.128075 0.0640373 0.997948i \(-0.479602\pi\)
0.0640373 + 0.997948i \(0.479602\pi\)
\(24\) 0 0
\(25\) −9.65391 −1.93078
\(26\) 0 0
\(27\) −5.05166 −0.972193
\(28\) 0 0
\(29\) 9.25744 1.71906 0.859531 0.511083i \(-0.170756\pi\)
0.859531 + 0.511083i \(0.170756\pi\)
\(30\) 0 0
\(31\) 5.30753i 0.953261i 0.879104 + 0.476630i \(0.158142\pi\)
−0.879104 + 0.476630i \(0.841858\pi\)
\(32\) 0 0
\(33\) 7.68802i 1.33831i
\(34\) 0 0
\(35\) 3.82804 0.647057
\(36\) 0 0
\(37\) 1.12470i 0.184900i 0.995717 + 0.0924501i \(0.0294699\pi\)
−0.995717 + 0.0924501i \(0.970530\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) − 12.0239i − 1.87782i −0.344165 0.938909i \(-0.611838\pi\)
0.344165 0.938909i \(-0.388162\pi\)
\(42\) 0 0
\(43\) −1.28310 −0.195672 −0.0978358 0.995203i \(-0.531192\pi\)
−0.0978358 + 0.995203i \(0.531192\pi\)
\(44\) 0 0
\(45\) 0.600087i 0.0894557i
\(46\) 0 0
\(47\) − 5.68074i − 0.828620i −0.910136 0.414310i \(-0.864023\pi\)
0.910136 0.414310i \(-0.135977\pi\)
\(48\) 0 0
\(49\) −1.00000 −0.142857
\(50\) 0 0
\(51\) −5.17895 −0.725197
\(52\) 0 0
\(53\) −3.96013 −0.543966 −0.271983 0.962302i \(-0.587679\pi\)
−0.271983 + 0.962302i \(0.587679\pi\)
\(54\) 0 0
\(55\) −16.5642 −2.23351
\(56\) 0 0
\(57\) 9.69757i 1.28447i
\(58\) 0 0
\(59\) − 7.71754i − 1.00474i −0.864653 0.502369i \(-0.832462\pi\)
0.864653 0.502369i \(-0.167538\pi\)
\(60\) 0 0
\(61\) −14.3462 −1.83684 −0.918419 0.395610i \(-0.870533\pi\)
−0.918419 + 0.395610i \(0.870533\pi\)
\(62\) 0 0
\(63\) − 0.156761i − 0.0197500i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) − 0.541525i − 0.0661578i −0.999453 0.0330789i \(-0.989469\pi\)
0.999453 0.0330789i \(-0.0105313\pi\)
\(68\) 0 0
\(69\) 1.09131 0.131378
\(70\) 0 0
\(71\) 9.20202i 1.09208i 0.837759 + 0.546040i \(0.183865\pi\)
−0.837759 + 0.546040i \(0.816135\pi\)
\(72\) 0 0
\(73\) − 7.36798i − 0.862357i −0.902267 0.431179i \(-0.858098\pi\)
0.902267 0.431179i \(-0.141902\pi\)
\(74\) 0 0
\(75\) −17.1524 −1.98059
\(76\) 0 0
\(77\) 4.32707 0.493115
\(78\) 0 0
\(79\) 0.331686 0.0373176 0.0186588 0.999826i \(-0.494060\pi\)
0.0186588 + 0.999826i \(0.494060\pi\)
\(80\) 0 0
\(81\) −9.44571 −1.04952
\(82\) 0 0
\(83\) 16.6777i 1.83061i 0.402758 + 0.915306i \(0.368052\pi\)
−0.402758 + 0.915306i \(0.631948\pi\)
\(84\) 0 0
\(85\) − 11.1583i − 1.21029i
\(86\) 0 0
\(87\) 16.4479 1.76340
\(88\) 0 0
\(89\) − 2.95414i − 0.313138i −0.987667 0.156569i \(-0.949957\pi\)
0.987667 0.156569i \(-0.0500433\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 9.43004i 0.977849i
\(94\) 0 0
\(95\) −20.8939 −2.14366
\(96\) 0 0
\(97\) 9.65583i 0.980401i 0.871610 + 0.490201i \(0.163076\pi\)
−0.871610 + 0.490201i \(0.836924\pi\)
\(98\) 0 0
\(99\) 0.678314i 0.0681731i
\(100\) 0 0
\(101\) 6.35056 0.631905 0.315952 0.948775i \(-0.397676\pi\)
0.315952 + 0.948775i \(0.397676\pi\)
\(102\) 0 0
\(103\) −5.07117 −0.499678 −0.249839 0.968287i \(-0.580378\pi\)
−0.249839 + 0.968287i \(0.580378\pi\)
\(104\) 0 0
\(105\) 6.80139 0.663748
\(106\) 0 0
\(107\) −5.48579 −0.530331 −0.265166 0.964203i \(-0.585427\pi\)
−0.265166 + 0.964203i \(0.585427\pi\)
\(108\) 0 0
\(109\) − 6.80685i − 0.651978i −0.945374 0.325989i \(-0.894303\pi\)
0.945374 0.325989i \(-0.105697\pi\)
\(110\) 0 0
\(111\) 1.99829i 0.189669i
\(112\) 0 0
\(113\) −6.56768 −0.617835 −0.308918 0.951089i \(-0.599967\pi\)
−0.308918 + 0.951089i \(0.599967\pi\)
\(114\) 0 0
\(115\) 2.35128i 0.219258i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 2.91488i 0.267207i
\(120\) 0 0
\(121\) −7.72349 −0.702136
\(122\) 0 0
\(123\) − 21.3632i − 1.92626i
\(124\) 0 0
\(125\) − 17.8154i − 1.59346i
\(126\) 0 0
\(127\) 20.2850 1.80001 0.900003 0.435884i \(-0.143564\pi\)
0.900003 + 0.435884i \(0.143564\pi\)
\(128\) 0 0
\(129\) −2.27973 −0.200719
\(130\) 0 0
\(131\) 4.92442 0.430249 0.215124 0.976587i \(-0.430984\pi\)
0.215124 + 0.976587i \(0.430984\pi\)
\(132\) 0 0
\(133\) 5.45810 0.473278
\(134\) 0 0
\(135\) − 19.3380i − 1.66435i
\(136\) 0 0
\(137\) 12.9318i 1.10484i 0.833567 + 0.552419i \(0.186295\pi\)
−0.833567 + 0.552419i \(0.813705\pi\)
\(138\) 0 0
\(139\) 15.8093 1.34093 0.670464 0.741942i \(-0.266095\pi\)
0.670464 + 0.741942i \(0.266095\pi\)
\(140\) 0 0
\(141\) − 10.0931i − 0.849994i
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 35.4379i 2.94295i
\(146\) 0 0
\(147\) −1.77673 −0.146542
\(148\) 0 0
\(149\) 15.9310i 1.30512i 0.757737 + 0.652561i \(0.226305\pi\)
−0.757737 + 0.652561i \(0.773695\pi\)
\(150\) 0 0
\(151\) 6.37358i 0.518675i 0.965787 + 0.259337i \(0.0835041\pi\)
−0.965787 + 0.259337i \(0.916496\pi\)
\(152\) 0 0
\(153\) −0.456939 −0.0369413
\(154\) 0 0
\(155\) −20.3175 −1.63194
\(156\) 0 0
\(157\) −7.38800 −0.589627 −0.294813 0.955555i \(-0.595257\pi\)
−0.294813 + 0.955555i \(0.595257\pi\)
\(158\) 0 0
\(159\) −7.03608 −0.557997
\(160\) 0 0
\(161\) − 0.614224i − 0.0484076i
\(162\) 0 0
\(163\) − 0.0875638i − 0.00685852i −0.999994 0.00342926i \(-0.998908\pi\)
0.999994 0.00342926i \(-0.00109157\pi\)
\(164\) 0 0
\(165\) −29.4301 −2.29113
\(166\) 0 0
\(167\) − 18.5108i − 1.43241i −0.697889 0.716206i \(-0.745877\pi\)
0.697889 0.716206i \(-0.254123\pi\)
\(168\) 0 0
\(169\) 0 0
\(170\) 0 0
\(171\) 0.855617i 0.0654307i
\(172\) 0 0
\(173\) −0.410903 −0.0312404 −0.0156202 0.999878i \(-0.504972\pi\)
−0.0156202 + 0.999878i \(0.504972\pi\)
\(174\) 0 0
\(175\) 9.65391i 0.729767i
\(176\) 0 0
\(177\) − 13.7120i − 1.03065i
\(178\) 0 0
\(179\) −2.15475 −0.161054 −0.0805268 0.996752i \(-0.525660\pi\)
−0.0805268 + 0.996752i \(0.525660\pi\)
\(180\) 0 0
\(181\) 6.50124 0.483233 0.241617 0.970372i \(-0.422322\pi\)
0.241617 + 0.970372i \(0.422322\pi\)
\(182\) 0 0
\(183\) −25.4892 −1.88422
\(184\) 0 0
\(185\) −4.30541 −0.316540
\(186\) 0 0
\(187\) − 12.6129i − 0.922344i
\(188\) 0 0
\(189\) 5.05166i 0.367454i
\(190\) 0 0
\(191\) −18.7750 −1.35851 −0.679256 0.733901i \(-0.737698\pi\)
−0.679256 + 0.733901i \(0.737698\pi\)
\(192\) 0 0
\(193\) 25.6173i 1.84397i 0.387224 + 0.921986i \(0.373434\pi\)
−0.387224 + 0.921986i \(0.626566\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 0.589556i 0.0420041i 0.999779 + 0.0210021i \(0.00668565\pi\)
−0.999779 + 0.0210021i \(0.993314\pi\)
\(198\) 0 0
\(199\) −16.0903 −1.14061 −0.570304 0.821433i \(-0.693175\pi\)
−0.570304 + 0.821433i \(0.693175\pi\)
\(200\) 0 0
\(201\) − 0.962142i − 0.0678643i
\(202\) 0 0
\(203\) − 9.25744i − 0.649745i
\(204\) 0 0
\(205\) 46.0280 3.21474
\(206\) 0 0
\(207\) 0.0962862 0.00669236
\(208\) 0 0
\(209\) −23.6176 −1.63366
\(210\) 0 0
\(211\) −11.3849 −0.783772 −0.391886 0.920014i \(-0.628177\pi\)
−0.391886 + 0.920014i \(0.628177\pi\)
\(212\) 0 0
\(213\) 16.3495i 1.12025i
\(214\) 0 0
\(215\) − 4.91178i − 0.334981i
\(216\) 0 0
\(217\) 5.30753 0.360299
\(218\) 0 0
\(219\) − 13.0909i − 0.884601i
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 2.34614i 0.157109i 0.996910 + 0.0785545i \(0.0250305\pi\)
−0.996910 + 0.0785545i \(0.974970\pi\)
\(224\) 0 0
\(225\) −1.51335 −0.100890
\(226\) 0 0
\(227\) − 8.25134i − 0.547660i −0.961778 0.273830i \(-0.911709\pi\)
0.961778 0.273830i \(-0.0882906\pi\)
\(228\) 0 0
\(229\) 17.2750i 1.14156i 0.821103 + 0.570780i \(0.193359\pi\)
−0.821103 + 0.570780i \(0.806641\pi\)
\(230\) 0 0
\(231\) 7.68802 0.505834
\(232\) 0 0
\(233\) −4.13778 −0.271075 −0.135537 0.990772i \(-0.543276\pi\)
−0.135537 + 0.990772i \(0.543276\pi\)
\(234\) 0 0
\(235\) 21.7461 1.41856
\(236\) 0 0
\(237\) 0.589316 0.0382802
\(238\) 0 0
\(239\) − 5.83879i − 0.377680i −0.982008 0.188840i \(-0.939527\pi\)
0.982008 0.188840i \(-0.0604727\pi\)
\(240\) 0 0
\(241\) 28.4467i 1.83241i 0.400704 + 0.916207i \(0.368766\pi\)
−0.400704 + 0.916207i \(0.631234\pi\)
\(242\) 0 0
\(243\) −1.62747 −0.104402
\(244\) 0 0
\(245\) − 3.82804i − 0.244565i
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 29.6317i 1.87783i
\(250\) 0 0
\(251\) 12.7800 0.806667 0.403334 0.915053i \(-0.367851\pi\)
0.403334 + 0.915053i \(0.367851\pi\)
\(252\) 0 0
\(253\) 2.65779i 0.167094i
\(254\) 0 0
\(255\) − 19.8252i − 1.24150i
\(256\) 0 0
\(257\) −0.671390 −0.0418802 −0.0209401 0.999781i \(-0.506666\pi\)
−0.0209401 + 0.999781i \(0.506666\pi\)
\(258\) 0 0
\(259\) 1.12470 0.0698857
\(260\) 0 0
\(261\) 1.45120 0.0898272
\(262\) 0 0
\(263\) −18.9702 −1.16976 −0.584878 0.811122i \(-0.698857\pi\)
−0.584878 + 0.811122i \(0.698857\pi\)
\(264\) 0 0
\(265\) − 15.1596i − 0.931244i
\(266\) 0 0
\(267\) − 5.24870i − 0.321215i
\(268\) 0 0
\(269\) −9.58482 −0.584397 −0.292198 0.956358i \(-0.594387\pi\)
−0.292198 + 0.956358i \(0.594387\pi\)
\(270\) 0 0
\(271\) − 10.4715i − 0.636097i −0.948075 0.318048i \(-0.896973\pi\)
0.948075 0.318048i \(-0.103027\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) − 41.7731i − 2.51901i
\(276\) 0 0
\(277\) 19.3371 1.16185 0.580927 0.813956i \(-0.302690\pi\)
0.580927 + 0.813956i \(0.302690\pi\)
\(278\) 0 0
\(279\) 0.832013i 0.0498113i
\(280\) 0 0
\(281\) − 18.7039i − 1.11578i −0.829915 0.557890i \(-0.811611\pi\)
0.829915 0.557890i \(-0.188389\pi\)
\(282\) 0 0
\(283\) −1.17591 −0.0699007 −0.0349504 0.999389i \(-0.511127\pi\)
−0.0349504 + 0.999389i \(0.511127\pi\)
\(284\) 0 0
\(285\) −37.1227 −2.19896
\(286\) 0 0
\(287\) −12.0239 −0.709749
\(288\) 0 0
\(289\) −8.50348 −0.500205
\(290\) 0 0
\(291\) 17.1558i 1.00569i
\(292\) 0 0
\(293\) − 6.50698i − 0.380142i −0.981770 0.190071i \(-0.939128\pi\)
0.981770 0.190071i \(-0.0608718\pi\)
\(294\) 0 0
\(295\) 29.5431 1.72007
\(296\) 0 0
\(297\) − 21.8589i − 1.26838i
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 1.28310i 0.0739569i
\(302\) 0 0
\(303\) 11.2832 0.648204
\(304\) 0 0
\(305\) − 54.9177i − 3.14458i
\(306\) 0 0
\(307\) − 27.0573i − 1.54424i −0.635475 0.772121i \(-0.719196\pi\)
0.635475 0.772121i \(-0.280804\pi\)
\(308\) 0 0
\(309\) −9.01009 −0.512566
\(310\) 0 0
\(311\) 30.9061 1.75253 0.876263 0.481834i \(-0.160029\pi\)
0.876263 + 0.481834i \(0.160029\pi\)
\(312\) 0 0
\(313\) 30.0816 1.70031 0.850157 0.526530i \(-0.176507\pi\)
0.850157 + 0.526530i \(0.176507\pi\)
\(314\) 0 0
\(315\) 0.600087 0.0338111
\(316\) 0 0
\(317\) − 3.78351i − 0.212503i −0.994339 0.106251i \(-0.966115\pi\)
0.994339 0.106251i \(-0.0338848\pi\)
\(318\) 0 0
\(319\) 40.0575i 2.24279i
\(320\) 0 0
\(321\) −9.74675 −0.544011
\(322\) 0 0
\(323\) − 15.9097i − 0.885240i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) − 12.0939i − 0.668795i
\(328\) 0 0
\(329\) −5.68074 −0.313189
\(330\) 0 0
\(331\) 23.2552i 1.27822i 0.769115 + 0.639110i \(0.220697\pi\)
−0.769115 + 0.639110i \(0.779303\pi\)
\(332\) 0 0
\(333\) 0.176309i 0.00966170i
\(334\) 0 0
\(335\) 2.07298 0.113259
\(336\) 0 0
\(337\) 6.51910 0.355118 0.177559 0.984110i \(-0.443180\pi\)
0.177559 + 0.984110i \(0.443180\pi\)
\(338\) 0 0
\(339\) −11.6690 −0.633772
\(340\) 0 0
\(341\) −22.9660 −1.24368
\(342\) 0 0
\(343\) 1.00000i 0.0539949i
\(344\) 0 0
\(345\) 4.17758i 0.224913i
\(346\) 0 0
\(347\) −13.1139 −0.703992 −0.351996 0.936001i \(-0.614497\pi\)
−0.351996 + 0.936001i \(0.614497\pi\)
\(348\) 0 0
\(349\) − 9.71447i − 0.520004i −0.965608 0.260002i \(-0.916277\pi\)
0.965608 0.260002i \(-0.0837232\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 30.3262i 1.61410i 0.590484 + 0.807049i \(0.298937\pi\)
−0.590484 + 0.807049i \(0.701063\pi\)
\(354\) 0 0
\(355\) −35.2257 −1.86959
\(356\) 0 0
\(357\) 5.17895i 0.274099i
\(358\) 0 0
\(359\) 10.5854i 0.558677i 0.960193 + 0.279339i \(0.0901152\pi\)
−0.960193 + 0.279339i \(0.909885\pi\)
\(360\) 0 0
\(361\) −10.7909 −0.567943
\(362\) 0 0
\(363\) −13.7225 −0.720247
\(364\) 0 0
\(365\) 28.2050 1.47631
\(366\) 0 0
\(367\) 26.6376 1.39047 0.695234 0.718783i \(-0.255301\pi\)
0.695234 + 0.718783i \(0.255301\pi\)
\(368\) 0 0
\(369\) − 1.88488i − 0.0981228i
\(370\) 0 0
\(371\) 3.96013i 0.205600i
\(372\) 0 0
\(373\) −6.14128 −0.317984 −0.158992 0.987280i \(-0.550824\pi\)
−0.158992 + 0.987280i \(0.550824\pi\)
\(374\) 0 0
\(375\) − 31.6531i − 1.63456i
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) − 23.5761i − 1.21102i −0.795837 0.605510i \(-0.792969\pi\)
0.795837 0.605510i \(-0.207031\pi\)
\(380\) 0 0
\(381\) 36.0410 1.84643
\(382\) 0 0
\(383\) − 20.1768i − 1.03099i −0.856894 0.515493i \(-0.827609\pi\)
0.856894 0.515493i \(-0.172391\pi\)
\(384\) 0 0
\(385\) 16.5642i 0.844189i
\(386\) 0 0
\(387\) −0.201141 −0.0102245
\(388\) 0 0
\(389\) −32.8506 −1.66559 −0.832795 0.553581i \(-0.813261\pi\)
−0.832795 + 0.553581i \(0.813261\pi\)
\(390\) 0 0
\(391\) −1.79039 −0.0905438
\(392\) 0 0
\(393\) 8.74936 0.441347
\(394\) 0 0
\(395\) 1.26971i 0.0638860i
\(396\) 0 0
\(397\) 25.2635i 1.26794i 0.773358 + 0.633970i \(0.218576\pi\)
−0.773358 + 0.633970i \(0.781424\pi\)
\(398\) 0 0
\(399\) 9.69757 0.485486
\(400\) 0 0
\(401\) 29.2208i 1.45922i 0.683866 + 0.729608i \(0.260297\pi\)
−0.683866 + 0.729608i \(0.739703\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) − 36.1586i − 1.79673i
\(406\) 0 0
\(407\) −4.86667 −0.241232
\(408\) 0 0
\(409\) 27.3315i 1.35145i 0.737152 + 0.675727i \(0.236170\pi\)
−0.737152 + 0.675727i \(0.763830\pi\)
\(410\) 0 0
\(411\) 22.9763i 1.13334i
\(412\) 0 0
\(413\) −7.71754 −0.379755
\(414\) 0 0
\(415\) −63.8429 −3.13392
\(416\) 0 0
\(417\) 28.0889 1.37552
\(418\) 0 0
\(419\) 20.3386 0.993604 0.496802 0.867864i \(-0.334508\pi\)
0.496802 + 0.867864i \(0.334508\pi\)
\(420\) 0 0
\(421\) − 21.0712i − 1.02695i −0.858106 0.513473i \(-0.828359\pi\)
0.858106 0.513473i \(-0.171641\pi\)
\(422\) 0 0
\(423\) − 0.890517i − 0.0432984i
\(424\) 0 0
\(425\) 28.1400 1.36499
\(426\) 0 0
\(427\) 14.3462i 0.694259i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 29.6333i 1.42739i 0.700458 + 0.713694i \(0.252979\pi\)
−0.700458 + 0.713694i \(0.747021\pi\)
\(432\) 0 0
\(433\) 28.5965 1.37426 0.687130 0.726534i \(-0.258870\pi\)
0.687130 + 0.726534i \(0.258870\pi\)
\(434\) 0 0
\(435\) 62.9634i 3.01887i
\(436\) 0 0
\(437\) 3.35250i 0.160372i
\(438\) 0 0
\(439\) 21.8248 1.04164 0.520821 0.853666i \(-0.325626\pi\)
0.520821 + 0.853666i \(0.325626\pi\)
\(440\) 0 0
\(441\) −0.156761 −0.00746480
\(442\) 0 0
\(443\) −6.32956 −0.300726 −0.150363 0.988631i \(-0.548044\pi\)
−0.150363 + 0.988631i \(0.548044\pi\)
\(444\) 0 0
\(445\) 11.3086 0.536077
\(446\) 0 0
\(447\) 28.3051i 1.33879i
\(448\) 0 0
\(449\) 24.5693i 1.15950i 0.814795 + 0.579749i \(0.196849\pi\)
−0.814795 + 0.579749i \(0.803151\pi\)
\(450\) 0 0
\(451\) 52.0282 2.44991
\(452\) 0 0
\(453\) 11.3241i 0.532053i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 4.50611i 0.210787i 0.994431 + 0.105393i \(0.0336102\pi\)
−0.994431 + 0.105393i \(0.966390\pi\)
\(458\) 0 0
\(459\) 14.7250 0.687303
\(460\) 0 0
\(461\) 0.300252i 0.0139841i 0.999976 + 0.00699206i \(0.00222566\pi\)
−0.999976 + 0.00699206i \(0.997774\pi\)
\(462\) 0 0
\(463\) 19.2907i 0.896514i 0.893905 + 0.448257i \(0.147955\pi\)
−0.893905 + 0.448257i \(0.852045\pi\)
\(464\) 0 0
\(465\) −36.0986 −1.67403
\(466\) 0 0
\(467\) 13.9509 0.645570 0.322785 0.946472i \(-0.395381\pi\)
0.322785 + 0.946472i \(0.395381\pi\)
\(468\) 0 0
\(469\) −0.541525 −0.0250053
\(470\) 0 0
\(471\) −13.1265 −0.604836
\(472\) 0 0
\(473\) − 5.55208i − 0.255285i
\(474\) 0 0
\(475\) − 52.6921i − 2.41768i
\(476\) 0 0
\(477\) −0.620794 −0.0284242
\(478\) 0 0
\(479\) 27.4521i 1.25432i 0.778890 + 0.627160i \(0.215783\pi\)
−0.778890 + 0.627160i \(0.784217\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) − 1.09131i − 0.0496563i
\(484\) 0 0
\(485\) −36.9629 −1.67840
\(486\) 0 0
\(487\) 13.9957i 0.634205i 0.948391 + 0.317103i \(0.102710\pi\)
−0.948391 + 0.317103i \(0.897290\pi\)
\(488\) 0 0
\(489\) − 0.155577i − 0.00703543i
\(490\) 0 0
\(491\) 7.52661 0.339671 0.169836 0.985472i \(-0.445676\pi\)
0.169836 + 0.985472i \(0.445676\pi\)
\(492\) 0 0
\(493\) −26.9843 −1.21531
\(494\) 0 0
\(495\) −2.59662 −0.116709
\(496\) 0 0
\(497\) 9.20202 0.412767
\(498\) 0 0
\(499\) − 1.16848i − 0.0523083i −0.999658 0.0261541i \(-0.991674\pi\)
0.999658 0.0261541i \(-0.00832607\pi\)
\(500\) 0 0
\(501\) − 32.8887i − 1.46936i
\(502\) 0 0
\(503\) −10.6175 −0.473412 −0.236706 0.971581i \(-0.576068\pi\)
−0.236706 + 0.971581i \(0.576068\pi\)
\(504\) 0 0
\(505\) 24.3102i 1.08179i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 24.3007i 1.07711i 0.842591 + 0.538554i \(0.181029\pi\)
−0.842591 + 0.538554i \(0.818971\pi\)
\(510\) 0 0
\(511\) −7.36798 −0.325940
\(512\) 0 0
\(513\) − 27.5725i − 1.21736i
\(514\) 0 0
\(515\) − 19.4127i − 0.855424i
\(516\) 0 0
\(517\) 24.5809 1.08107
\(518\) 0 0
\(519\) −0.730063 −0.0320462
\(520\) 0 0
\(521\) 11.3280 0.496289 0.248144 0.968723i \(-0.420179\pi\)
0.248144 + 0.968723i \(0.420179\pi\)
\(522\) 0 0
\(523\) 30.2656 1.32342 0.661711 0.749759i \(-0.269830\pi\)
0.661711 + 0.749759i \(0.269830\pi\)
\(524\) 0 0
\(525\) 17.1524i 0.748591i
\(526\) 0 0
\(527\) − 15.4708i − 0.673919i
\(528\) 0 0
\(529\) −22.6227 −0.983597
\(530\) 0 0
\(531\) − 1.20981i − 0.0525012i
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) − 20.9998i − 0.907902i
\(536\) 0 0
\(537\) −3.82840 −0.165208
\(538\) 0 0
\(539\) − 4.32707i − 0.186380i
\(540\) 0 0
\(541\) 11.1529i 0.479500i 0.970835 + 0.239750i \(0.0770654\pi\)
−0.970835 + 0.239750i \(0.922935\pi\)
\(542\) 0 0
\(543\) 11.5509 0.495698
\(544\) 0 0
\(545\) 26.0569 1.11616
\(546\) 0 0
\(547\) 4.87804 0.208570 0.104285 0.994547i \(-0.466745\pi\)
0.104285 + 0.994547i \(0.466745\pi\)
\(548\) 0 0
\(549\) −2.24892 −0.0959814
\(550\) 0 0
\(551\) 50.5281i 2.15257i
\(552\) 0 0
\(553\) − 0.331686i − 0.0141047i
\(554\) 0 0
\(555\) −7.64955 −0.324705
\(556\) 0 0
\(557\) − 3.02585i − 0.128209i −0.997943 0.0641047i \(-0.979581\pi\)
0.997943 0.0641047i \(-0.0204192\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) − 22.4096i − 0.946136i
\(562\) 0 0
\(563\) 27.3183 1.15133 0.575664 0.817686i \(-0.304744\pi\)
0.575664 + 0.817686i \(0.304744\pi\)
\(564\) 0 0
\(565\) − 25.1414i − 1.05770i
\(566\) 0 0
\(567\) 9.44571i 0.396682i
\(568\) 0 0
\(569\) 12.9374 0.542365 0.271183 0.962528i \(-0.412585\pi\)
0.271183 + 0.962528i \(0.412585\pi\)
\(570\) 0 0
\(571\) 10.6779 0.446855 0.223427 0.974721i \(-0.428275\pi\)
0.223427 + 0.974721i \(0.428275\pi\)
\(572\) 0 0
\(573\) −33.3581 −1.39355
\(574\) 0 0
\(575\) −5.92966 −0.247284
\(576\) 0 0
\(577\) 4.76467i 0.198356i 0.995070 + 0.0991778i \(0.0316213\pi\)
−0.995070 + 0.0991778i \(0.968379\pi\)
\(578\) 0 0
\(579\) 45.5149i 1.89153i
\(580\) 0 0
\(581\) 16.6777 0.691907
\(582\) 0 0
\(583\) − 17.1358i − 0.709690i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) − 31.9269i − 1.31776i −0.752247 0.658881i \(-0.771030\pi\)
0.752247 0.658881i \(-0.228970\pi\)
\(588\) 0 0
\(589\) −28.9691 −1.19365
\(590\) 0 0
\(591\) 1.04748i 0.0430876i
\(592\) 0 0
\(593\) 1.27362i 0.0523015i 0.999658 + 0.0261508i \(0.00832499\pi\)
−0.999658 + 0.0261508i \(0.991675\pi\)
\(594\) 0 0
\(595\) −11.1583 −0.457445
\(596\) 0 0
\(597\) −28.5880 −1.17003
\(598\) 0 0
\(599\) −15.1462 −0.618857 −0.309428 0.950923i \(-0.600138\pi\)
−0.309428 + 0.950923i \(0.600138\pi\)
\(600\) 0 0
\(601\) 34.2850 1.39852 0.699258 0.714869i \(-0.253514\pi\)
0.699258 + 0.714869i \(0.253514\pi\)
\(602\) 0 0
\(603\) − 0.0848899i − 0.00345698i
\(604\) 0 0
\(605\) − 29.5659i − 1.20202i
\(606\) 0 0
\(607\) 9.47474 0.384568 0.192284 0.981339i \(-0.438411\pi\)
0.192284 + 0.981339i \(0.438411\pi\)
\(608\) 0 0
\(609\) − 16.4479i − 0.666504i
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) − 11.6437i − 0.470283i −0.971961 0.235141i \(-0.924445\pi\)
0.971961 0.235141i \(-0.0755553\pi\)
\(614\) 0 0
\(615\) 81.7792 3.29766
\(616\) 0 0
\(617\) − 6.40045i − 0.257672i −0.991666 0.128836i \(-0.958876\pi\)
0.991666 0.128836i \(-0.0411242\pi\)
\(618\) 0 0
\(619\) 11.2065i 0.450425i 0.974310 + 0.225213i \(0.0723077\pi\)
−0.974310 + 0.225213i \(0.927692\pi\)
\(620\) 0 0
\(621\) −3.10285 −0.124513
\(622\) 0 0
\(623\) −2.95414 −0.118355
\(624\) 0 0
\(625\) 19.9284 0.797138
\(626\) 0 0
\(627\) −41.9620 −1.67580
\(628\) 0 0
\(629\) − 3.27837i − 0.130717i
\(630\) 0 0
\(631\) 45.1659i 1.79803i 0.437922 + 0.899013i \(0.355715\pi\)
−0.437922 + 0.899013i \(0.644285\pi\)
\(632\) 0 0
\(633\) −20.2279 −0.803988
\(634\) 0 0
\(635\) 77.6520i 3.08152i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 1.44252i 0.0570651i
\(640\) 0 0
\(641\) 7.15994 0.282800 0.141400 0.989953i \(-0.454840\pi\)
0.141400 + 0.989953i \(0.454840\pi\)
\(642\) 0 0
\(643\) − 41.4555i − 1.63485i −0.576038 0.817423i \(-0.695402\pi\)
0.576038 0.817423i \(-0.304598\pi\)
\(644\) 0 0
\(645\) − 8.72690i − 0.343621i
\(646\) 0 0
\(647\) −15.5852 −0.612716 −0.306358 0.951916i \(-0.599110\pi\)
−0.306358 + 0.951916i \(0.599110\pi\)
\(648\) 0 0
\(649\) 33.3943 1.31084
\(650\) 0 0
\(651\) 9.43004 0.369592
\(652\) 0 0
\(653\) −23.8242 −0.932312 −0.466156 0.884702i \(-0.654362\pi\)
−0.466156 + 0.884702i \(0.654362\pi\)
\(654\) 0 0
\(655\) 18.8509i 0.736565i
\(656\) 0 0
\(657\) − 1.15501i − 0.0450613i
\(658\) 0 0
\(659\) 4.03723 0.157268 0.0786340 0.996904i \(-0.474944\pi\)
0.0786340 + 0.996904i \(0.474944\pi\)
\(660\) 0 0
\(661\) − 37.1979i − 1.44683i −0.690412 0.723416i \(-0.742571\pi\)
0.690412 0.723416i \(-0.257429\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 20.8939i 0.810229i
\(666\) 0 0
\(667\) 5.68614 0.220168
\(668\) 0 0
\(669\) 4.16845i 0.161162i
\(670\) 0 0
\(671\) − 62.0768i − 2.39645i
\(672\) 0 0
\(673\) 10.0573 0.387679 0.193839 0.981033i \(-0.437906\pi\)
0.193839 + 0.981033i \(0.437906\pi\)
\(674\) 0 0
\(675\) 48.7683 1.87709
\(676\) 0 0
\(677\) −19.8807 −0.764076 −0.382038 0.924147i \(-0.624778\pi\)
−0.382038 + 0.924147i \(0.624778\pi\)
\(678\) 0 0
\(679\) 9.65583 0.370557
\(680\) 0 0
\(681\) − 14.6604i − 0.561787i
\(682\) 0 0
\(683\) − 19.8832i − 0.760810i −0.924820 0.380405i \(-0.875785\pi\)
0.924820 0.380405i \(-0.124215\pi\)
\(684\) 0 0
\(685\) −49.5034 −1.89143
\(686\) 0 0
\(687\) 30.6929i 1.17101i
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 19.1644i 0.729047i 0.931194 + 0.364524i \(0.118768\pi\)
−0.931194 + 0.364524i \(0.881232\pi\)
\(692\) 0 0
\(693\) 0.678314 0.0257670
\(694\) 0 0
\(695\) 60.5187i 2.29561i
\(696\) 0 0
\(697\) 35.0482i 1.32755i
\(698\) 0 0
\(699\) −7.35170 −0.278067
\(700\) 0 0
\(701\) 18.5012 0.698780 0.349390 0.936977i \(-0.386389\pi\)
0.349390 + 0.936977i \(0.386389\pi\)
\(702\) 0 0
\(703\) −6.13875 −0.231527
\(704\) 0 0
\(705\) 38.6369 1.45515
\(706\) 0 0
\(707\) − 6.35056i − 0.238838i
\(708\) 0 0
\(709\) − 24.0214i − 0.902144i −0.892488 0.451072i \(-0.851042\pi\)
0.892488 0.451072i \(-0.148958\pi\)
\(710\) 0 0
\(711\) 0.0519954 0.00194998
\(712\) 0 0
\(713\) 3.26001i 0.122088i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) − 10.3739i − 0.387422i
\(718\) 0 0
\(719\) −24.4297 −0.911076 −0.455538 0.890216i \(-0.650553\pi\)
−0.455538 + 0.890216i \(0.650553\pi\)
\(720\) 0 0
\(721\) 5.07117i 0.188860i
\(722\) 0 0
\(723\) 50.5421i 1.87968i
\(724\) 0 0
\(725\) −89.3705 −3.31914
\(726\) 0 0
\(727\) 20.9000 0.775138 0.387569 0.921841i \(-0.373315\pi\)
0.387569 + 0.921841i \(0.373315\pi\)
\(728\) 0 0
\(729\) 25.4456 0.942428
\(730\) 0 0
\(731\) 3.74010 0.138332
\(732\) 0 0
\(733\) − 7.08118i − 0.261549i −0.991412 0.130775i \(-0.958254\pi\)
0.991412 0.130775i \(-0.0417465\pi\)
\(734\) 0 0
\(735\) − 6.80139i − 0.250873i
\(736\) 0 0
\(737\) 2.34321 0.0863134
\(738\) 0 0
\(739\) 23.7150i 0.872371i 0.899857 + 0.436186i \(0.143671\pi\)
−0.899857 + 0.436186i \(0.856329\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 42.2404i 1.54965i 0.632175 + 0.774825i \(0.282162\pi\)
−0.632175 + 0.774825i \(0.717838\pi\)
\(744\) 0 0
\(745\) −60.9847 −2.23431
\(746\) 0 0
\(747\) 2.61441i 0.0956561i
\(748\) 0 0
\(749\) 5.48579i 0.200446i
\(750\) 0 0
\(751\) −24.1421 −0.880956 −0.440478 0.897763i \(-0.645191\pi\)
−0.440478 + 0.897763i \(0.645191\pi\)
\(752\) 0 0
\(753\) 22.7066 0.827475
\(754\) 0 0
\(755\) −24.3983 −0.887947
\(756\) 0 0
\(757\) −31.9432 −1.16099 −0.580497 0.814262i \(-0.697142\pi\)
−0.580497 + 0.814262i \(0.697142\pi\)
\(758\) 0 0
\(759\) 4.72216i 0.171404i
\(760\) 0 0
\(761\) − 42.2716i − 1.53234i −0.642635 0.766172i \(-0.722159\pi\)
0.642635 0.766172i \(-0.277841\pi\)
\(762\) 0 0
\(763\) −6.80685 −0.246425
\(764\) 0 0
\(765\) − 1.74918i − 0.0632418i
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 2.73396i 0.0985892i 0.998784 + 0.0492946i \(0.0156973\pi\)
−0.998784 + 0.0492946i \(0.984303\pi\)
\(770\) 0 0
\(771\) −1.19288 −0.0429604
\(772\) 0 0
\(773\) − 19.5541i − 0.703310i −0.936130 0.351655i \(-0.885619\pi\)
0.936130 0.351655i \(-0.114381\pi\)
\(774\) 0 0
\(775\) − 51.2384i − 1.84054i
\(776\) 0 0
\(777\) 1.99829 0.0716883
\(778\) 0 0
\(779\) 65.6277 2.35136
\(780\) 0 0
\(781\) −39.8177 −1.42479
\(782\) 0 0
\(783\) −46.7654 −1.67126
\(784\) 0 0
\(785\) − 28.2816i − 1.00941i
\(786\) 0 0
\(787\) 32.4390i 1.15633i 0.815922 + 0.578163i \(0.196230\pi\)
−0.815922 + 0.578163i \(0.803770\pi\)
\(788\) 0 0
\(789\) −33.7050 −1.19993
\(790\) 0 0
\(791\) 6.56768i 0.233520i
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) − 26.9344i − 0.955265i
\(796\) 0 0
\(797\) −25.8795 −0.916697 −0.458349 0.888772i \(-0.651559\pi\)
−0.458349 + 0.888772i \(0.651559\pi\)
\(798\) 0 0
\(799\) 16.5587i 0.585803i
\(800\) 0 0
\(801\) − 0.463093i − 0.0163626i
\(802\) 0 0
\(803\) 31.8817 1.12508
\(804\) 0 0
\(805\) 2.35128 0.0828716
\(806\) 0 0
\(807\) −17.0296 −0.599471
\(808\) 0 0
\(809\) 22.4133 0.788008 0.394004 0.919109i \(-0.371090\pi\)
0.394004 + 0.919109i \(0.371090\pi\)
\(810\) 0 0
\(811\) − 5.44486i − 0.191195i −0.995420 0.0955974i \(-0.969524\pi\)
0.995420 0.0955974i \(-0.0304761\pi\)
\(812\) 0 0
\(813\) − 18.6049i − 0.652504i
\(814\) 0 0
\(815\) 0.335198 0.0117415
\(816\) 0 0
\(817\) − 7.00332i − 0.245015i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) − 30.8123i − 1.07536i −0.843150 0.537679i \(-0.819301\pi\)
0.843150 0.537679i \(-0.180699\pi\)
\(822\) 0 0
\(823\) −0.205700 −0.00717025 −0.00358513 0.999994i \(-0.501141\pi\)
−0.00358513 + 0.999994i \(0.501141\pi\)
\(824\) 0 0
\(825\) − 74.2194i − 2.58399i
\(826\) 0 0
\(827\) 9.66411i 0.336054i 0.985782 + 0.168027i \(0.0537396\pi\)
−0.985782 + 0.168027i \(0.946260\pi\)
\(828\) 0 0
\(829\) −30.5334 −1.06047 −0.530234 0.847851i \(-0.677896\pi\)
−0.530234 + 0.847851i \(0.677896\pi\)
\(830\) 0 0
\(831\) 34.3568 1.19182
\(832\) 0 0
\(833\) 2.91488 0.100995
\(834\) 0 0
\(835\) 70.8603 2.45222
\(836\) 0 0
\(837\) − 26.8119i − 0.926753i
\(838\) 0 0
\(839\) − 38.1885i − 1.31841i −0.751962 0.659206i \(-0.770892\pi\)
0.751962 0.659206i \(-0.229108\pi\)
\(840\) 0 0
\(841\) 56.7001 1.95518
\(842\) 0 0
\(843\) − 33.2317i − 1.14456i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 7.72349i 0.265382i
\(848\) 0 0
\(849\) −2.08928 −0.0717038
\(850\) 0 0
\(851\) 0.690820i 0.0236810i
\(852\) 0 0
\(853\) 28.3480i 0.970618i 0.874343 + 0.485309i \(0.161293\pi\)
−0.874343 + 0.485309i \(0.838707\pi\)
\(854\) 0 0
\(855\) −3.27534 −0.112014
\(856\) 0 0
\(857\) 25.8488 0.882978 0.441489 0.897267i \(-0.354450\pi\)
0.441489 + 0.897267i \(0.354450\pi\)
\(858\) 0 0
\(859\) 19.6084 0.669029 0.334514 0.942391i \(-0.391428\pi\)
0.334514 + 0.942391i \(0.391428\pi\)
\(860\) 0 0
\(861\) −21.3632 −0.728056
\(862\) 0 0
\(863\) − 13.4368i − 0.457395i −0.973498 0.228697i \(-0.926553\pi\)
0.973498 0.228697i \(-0.0734466\pi\)
\(864\) 0 0
\(865\) − 1.57295i − 0.0534821i
\(866\) 0 0
\(867\) −15.1084 −0.513107
\(868\) 0 0
\(869\) 1.43523i 0.0486868i
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 1.51366i 0.0512295i
\(874\) 0 0
\(875\) −17.8154 −0.602269
\(876\) 0 0
\(877\) 30.1421i 1.01783i 0.860818 + 0.508914i \(0.169953\pi\)
−0.860818 + 0.508914i \(0.830047\pi\)
\(878\) 0 0
\(879\) − 11.5611i − 0.389947i
\(880\) 0 0
\(881\) −9.04954 −0.304887 −0.152443 0.988312i \(-0.548714\pi\)
−0.152443 + 0.988312i \(0.548714\pi\)
\(882\) 0 0
\(883\) 47.3475 1.59337 0.796685 0.604395i \(-0.206585\pi\)
0.796685 + 0.604395i \(0.206585\pi\)
\(884\) 0 0
\(885\) 52.4900 1.76443
\(886\) 0 0
\(887\) 37.9790 1.27521 0.637605 0.770363i \(-0.279925\pi\)
0.637605 + 0.770363i \(0.279925\pi\)
\(888\) 0 0
\(889\) − 20.2850i − 0.680338i
\(890\) 0 0
\(891\) − 40.8722i − 1.36927i
\(892\) 0 0
\(893\) 31.0061 1.03758
\(894\) 0 0
\(895\) − 8.24848i − 0.275716i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 49.1341i 1.63872i
\(900\) 0 0
\(901\) 11.5433 0.384563
\(902\) 0 0
\(903\) 2.27973i 0.0758646i
\(904\) 0 0
\(905\) 24.8870i 0.827272i
\(906\) 0 0
\(907\) −27.8867 −0.925962 −0.462981 0.886368i \(-0.653220\pi\)
−0.462981 + 0.886368i \(0.653220\pi\)
\(908\) 0 0
\(909\) 0.995519 0.0330193
\(910\) 0 0
\(911\) −26.1435 −0.866172 −0.433086 0.901353i \(-0.642575\pi\)
−0.433086 + 0.901353i \(0.642575\pi\)
\(912\) 0 0
\(913\) −72.1654 −2.38833
\(914\) 0 0
\(915\) − 97.5738i − 3.22569i
\(916\) 0 0
\(917\) − 4.92442i − 0.162619i
\(918\) 0 0
\(919\) −3.08812 −0.101868 −0.0509338 0.998702i \(-0.516220\pi\)
−0.0509338 + 0.998702i \(0.516220\pi\)
\(920\) 0 0
\(921\) − 48.0735i − 1.58408i
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) − 10.8578i − 0.357002i
\(926\) 0 0
\(927\) −0.794961 −0.0261100
\(928\) 0 0
\(929\) 38.5771i 1.26567i 0.774286 + 0.632836i \(0.218109\pi\)
−0.774286 + 0.632836i \(0.781891\pi\)
\(930\) 0 0
\(931\) − 5.45810i − 0.178882i
\(932\) 0 0
\(933\) 54.9118 1.79773
\(934\) 0 0
\(935\) 48.2826 1.57901
\(936\) 0 0
\(937\) 8.28836 0.270769 0.135384 0.990793i \(-0.456773\pi\)
0.135384 + 0.990793i \(0.456773\pi\)
\(938\) 0 0
\(939\) 53.4468 1.74417
\(940\) 0 0
\(941\) 7.72406i 0.251797i 0.992043 + 0.125899i \(0.0401814\pi\)
−0.992043 + 0.125899i \(0.959819\pi\)
\(942\) 0 0
\(943\) − 7.38537i − 0.240501i
\(944\) 0 0
\(945\) −19.3380 −0.629064
\(946\) 0 0
\(947\) − 51.7803i − 1.68263i −0.540543 0.841316i \(-0.681781\pi\)
0.540543 0.841316i \(-0.318219\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) − 6.72226i − 0.217984i
\(952\) 0 0
\(953\) −48.7824 −1.58022 −0.790109 0.612967i \(-0.789976\pi\)
−0.790109 + 0.612967i \(0.789976\pi\)
\(954\) 0 0
\(955\) − 71.8716i − 2.32571i
\(956\) 0 0
\(957\) 71.1713i 2.30064i
\(958\) 0 0
\(959\) 12.9318 0.417589
\(960\) 0 0
\(961\) 2.83011 0.0912938
\(962\) 0 0
\(963\) −0.859956 −0.0277117
\(964\) 0 0
\(965\) −98.0640 −3.15679
\(966\) 0 0
\(967\) − 3.09186i − 0.0994274i −0.998764 0.0497137i \(-0.984169\pi\)
0.998764 0.0497137i \(-0.0158309\pi\)
\(968\) 0 0
\(969\) − 28.2672i − 0.908074i
\(970\) 0 0
\(971\) 54.4761 1.74822 0.874111 0.485727i \(-0.161445\pi\)
0.874111 + 0.485727i \(0.161445\pi\)
\(972\) 0 0
\(973\) − 15.8093i − 0.506823i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) − 19.3385i − 0.618693i −0.950949 0.309347i \(-0.899890\pi\)
0.950949 0.309347i \(-0.100110\pi\)
\(978\) 0 0
\(979\) 12.7827 0.408538
\(980\) 0 0
\(981\) − 1.06705i − 0.0340682i
\(982\) 0 0
\(983\) 4.93770i 0.157488i 0.996895 + 0.0787440i \(0.0250910\pi\)
−0.996895 + 0.0787440i \(0.974909\pi\)
\(984\) 0 0
\(985\) −2.25684 −0.0719091
\(986\) 0 0
\(987\) −10.0931 −0.321268
\(988\) 0 0
\(989\) −0.788114 −0.0250606
\(990\) 0 0
\(991\) 48.3434 1.53568 0.767839 0.640643i \(-0.221332\pi\)
0.767839 + 0.640643i \(0.221332\pi\)
\(992\) 0 0
\(993\) 41.3181i 1.31119i
\(994\) 0 0
\(995\) − 61.5942i − 1.95267i
\(996\) 0 0
\(997\) −43.3269 −1.37218 −0.686088 0.727518i \(-0.740674\pi\)
−0.686088 + 0.727518i \(0.740674\pi\)
\(998\) 0 0
\(999\) − 5.68162i − 0.179759i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4732.2.g.k.337.14 16
13.3 even 3 364.2.u.a.225.2 16
13.4 even 6 364.2.u.a.309.2 yes 16
13.5 odd 4 4732.2.a.t.1.7 8
13.8 odd 4 4732.2.a.s.1.7 8
13.12 even 2 inner 4732.2.g.k.337.13 16
39.17 odd 6 3276.2.cf.c.1765.7 16
39.29 odd 6 3276.2.cf.c.2773.2 16
52.3 odd 6 1456.2.cc.f.225.7 16
52.43 odd 6 1456.2.cc.f.673.7 16
91.3 odd 6 2548.2.bq.c.1941.2 16
91.4 even 6 2548.2.bb.d.569.2 16
91.16 even 3 2548.2.bb.d.1733.2 16
91.17 odd 6 2548.2.bb.c.569.7 16
91.30 even 6 2548.2.bq.e.361.7 16
91.55 odd 6 2548.2.u.c.589.7 16
91.68 odd 6 2548.2.bb.c.1733.7 16
91.69 odd 6 2548.2.u.c.1765.7 16
91.81 even 3 2548.2.bq.e.1941.7 16
91.82 odd 6 2548.2.bq.c.361.2 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
364.2.u.a.225.2 16 13.3 even 3
364.2.u.a.309.2 yes 16 13.4 even 6
1456.2.cc.f.225.7 16 52.3 odd 6
1456.2.cc.f.673.7 16 52.43 odd 6
2548.2.u.c.589.7 16 91.55 odd 6
2548.2.u.c.1765.7 16 91.69 odd 6
2548.2.bb.c.569.7 16 91.17 odd 6
2548.2.bb.c.1733.7 16 91.68 odd 6
2548.2.bb.d.569.2 16 91.4 even 6
2548.2.bb.d.1733.2 16 91.16 even 3
2548.2.bq.c.361.2 16 91.82 odd 6
2548.2.bq.c.1941.2 16 91.3 odd 6
2548.2.bq.e.361.7 16 91.30 even 6
2548.2.bq.e.1941.7 16 91.81 even 3
3276.2.cf.c.1765.7 16 39.17 odd 6
3276.2.cf.c.2773.2 16 39.29 odd 6
4732.2.a.s.1.7 8 13.8 odd 4
4732.2.a.t.1.7 8 13.5 odd 4
4732.2.g.k.337.13 16 13.12 even 2 inner
4732.2.g.k.337.14 16 1.1 even 1 trivial