Properties

Label 147.3.j.a.13.3
Level $147$
Weight $3$
Character 147.13
Analytic conductor $4.005$
Analytic rank $0$
Dimension $108$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [147,3,Mod(13,147)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(147, base_ring=CyclotomicField(14))
 
chi = DirichletCharacter(H, H._module([0, 11]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("147.13");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 147 = 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 147.j (of order \(14\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.00545988610\)
Analytic rank: \(0\)
Dimension: \(108\)
Relative dimension: \(18\) over \(\Q(\zeta_{14})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{14}]$

Embedding invariants

Embedding label 13.3
Character \(\chi\) \(=\) 147.13
Dual form 147.3.j.a.34.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.706945 - 3.09733i) q^{2} +(-1.35417 + 1.07992i) q^{3} +(-5.48980 + 2.64375i) q^{4} +(6.01934 - 4.80027i) q^{5} +(4.30218 + 3.43087i) q^{6} +(0.865390 - 6.94630i) q^{7} +(4.14628 + 5.19927i) q^{8} +(0.667563 - 2.92478i) q^{9} +O(q^{10})\) \(q+(-0.706945 - 3.09733i) q^{2} +(-1.35417 + 1.07992i) q^{3} +(-5.48980 + 2.64375i) q^{4} +(6.01934 - 4.80027i) q^{5} +(4.30218 + 3.43087i) q^{6} +(0.865390 - 6.94630i) q^{7} +(4.14628 + 5.19927i) q^{8} +(0.667563 - 2.92478i) q^{9} +(-19.1234 - 15.2504i) q^{10} +(0.494754 + 2.16766i) q^{11} +(4.57911 - 9.50861i) q^{12} +(-13.9628 + 3.18692i) q^{13} +(-22.1268 + 2.23025i) q^{14} +(-2.96734 + 13.0008i) q^{15} +(-2.02357 + 2.53748i) q^{16} +(-6.25315 + 12.9848i) q^{17} -9.53095 q^{18} -29.9360i q^{19} +(-20.3543 + 42.2661i) q^{20} +(6.32953 + 10.3410i) q^{21} +(6.36418 - 3.06483i) q^{22} +(21.2514 - 10.2341i) q^{23} +(-11.2296 - 2.56307i) q^{24} +(7.62692 - 33.4157i) q^{25} +(19.7419 + 40.9945i) q^{26} +(2.25453 + 4.68157i) q^{27} +(13.6135 + 40.4217i) q^{28} +(-27.9679 - 13.4686i) q^{29} +42.3654 q^{30} +19.0945i q^{31} +(33.2562 + 16.0153i) q^{32} +(-3.01087 - 2.40109i) q^{33} +(44.6388 + 10.1885i) q^{34} +(-28.1350 - 45.9663i) q^{35} +(4.06761 + 17.8213i) q^{36} +(9.51163 + 4.58056i) q^{37} +(-92.7216 + 21.1631i) q^{38} +(15.4665 - 19.3943i) q^{39} +(49.9158 + 11.3930i) q^{40} +(-23.7300 + 18.9241i) q^{41} +(27.5550 - 26.9152i) q^{42} +(33.8196 - 42.4085i) q^{43} +(-8.44684 - 10.5920i) q^{44} +(-10.0215 - 20.8098i) q^{45} +(-46.7221 - 58.5877i) q^{46} +(87.8533 - 20.0519i) q^{47} -5.62148i q^{48} +(-47.5022 - 12.0225i) q^{49} -108.891 q^{50} +(-5.55465 - 24.3365i) q^{51} +(68.2277 - 54.4098i) q^{52} +(26.1951 - 12.6149i) q^{53} +(12.9065 - 10.2926i) q^{54} +(13.3834 + 10.6729i) q^{55} +(39.7039 - 24.3019i) q^{56} +(32.3284 + 40.5385i) q^{57} +(-21.9450 + 96.1474i) q^{58} +(65.6405 + 52.3466i) q^{59} +(-18.0807 - 79.2166i) q^{60} +(2.76467 - 5.74090i) q^{61} +(59.1420 - 13.4988i) q^{62} +(-19.7387 - 7.16817i) q^{63} +(23.2056 - 101.671i) q^{64} +(-68.7490 + 86.2085i) q^{65} +(-5.30844 + 11.0231i) q^{66} +15.3478 q^{67} -87.8157i q^{68} +(-17.7261 + 36.8085i) q^{69} +(-122.483 + 119.639i) q^{70} +(87.0823 - 41.9366i) q^{71} +(17.9747 - 8.65614i) q^{72} +(44.4575 + 10.1471i) q^{73} +(7.46330 - 32.6988i) q^{74} +(25.7580 + 53.4871i) q^{75} +(79.1432 + 164.343i) q^{76} +(15.4854 - 1.56084i) q^{77} +(-71.0045 - 34.1940i) q^{78} -115.933 q^{79} +24.9877i q^{80} +(-8.10872 - 3.90495i) q^{81} +(75.3899 + 60.1214i) q^{82} +(116.081 + 26.4948i) q^{83} +(-62.0870 - 40.0365i) q^{84} +(24.6906 + 108.177i) q^{85} +(-155.262 - 74.7701i) q^{86} +(52.4184 - 11.9641i) q^{87} +(-9.21885 + 11.5601i) q^{88} +(56.2516 + 12.8391i) q^{89} +(-57.3701 + 45.7511i) q^{90} +(10.0540 + 99.7479i) q^{91} +(-89.6096 + 112.367i) q^{92} +(-20.6205 - 25.8573i) q^{93} +(-124.215 - 257.935i) q^{94} +(-143.701 - 180.195i) q^{95} +(-62.3298 + 14.2264i) q^{96} -84.1335i q^{97} +(-3.65627 + 155.629i) q^{98} +6.67021 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 108 q - 32 q^{4} - 2 q^{7} + 12 q^{8} + 54 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 108 q - 32 q^{4} - 2 q^{7} + 12 q^{8} + 54 q^{9} + 66 q^{11} - 2 q^{14} + 60 q^{15} - 96 q^{16} - 98 q^{17} - 112 q^{20} + 24 q^{21} - 116 q^{22} + 64 q^{23} + 126 q^{24} + 130 q^{25} + 224 q^{26} - 204 q^{28} + 72 q^{29} - 48 q^{30} - 220 q^{32} + 784 q^{34} - 376 q^{35} + 96 q^{36} + 156 q^{37} - 280 q^{38} - 60 q^{39} - 728 q^{40} - 196 q^{41} - 144 q^{42} - 56 q^{43} - 840 q^{44} - 42 q^{45} - 16 q^{46} + 266 q^{47} + 122 q^{49} - 244 q^{50} + 60 q^{51} + 168 q^{52} + 148 q^{53} - 252 q^{55} + 686 q^{56} - 120 q^{57} + 252 q^{58} + 700 q^{59} + 540 q^{60} - 112 q^{61} + 392 q^{62} - 78 q^{63} + 496 q^{64} - 12 q^{65} - 196 q^{67} + 898 q^{70} - 732 q^{71} + 90 q^{72} + 126 q^{73} - 508 q^{74} - 210 q^{76} - 230 q^{77} + 420 q^{78} + 136 q^{79} - 162 q^{81} - 1960 q^{82} - 574 q^{83} - 72 q^{84} - 480 q^{85} - 392 q^{86} - 252 q^{87} - 108 q^{88} - 742 q^{89} + 152 q^{91} - 42 q^{92} + 24 q^{93} + 98 q^{94} + 68 q^{95} - 504 q^{96} - 508 q^{98} + 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/147\mathbb{Z}\right)^\times\).

\(n\) \(50\) \(52\)
\(\chi(n)\) \(1\) \(e\left(\frac{11}{14}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.706945 3.09733i −0.353473 1.54866i −0.769099 0.639129i \(-0.779295\pi\)
0.415627 0.909535i \(-0.363562\pi\)
\(3\) −1.35417 + 1.07992i −0.451391 + 0.359972i
\(4\) −5.48980 + 2.64375i −1.37245 + 0.660937i
\(5\) 6.01934 4.80027i 1.20387 0.960053i 0.204048 0.978961i \(-0.434590\pi\)
0.999821 + 0.0189075i \(0.00601880\pi\)
\(6\) 4.30218 + 3.43087i 0.717030 + 0.571812i
\(7\) 0.865390 6.94630i 0.123627 0.992329i
\(8\) 4.14628 + 5.19927i 0.518285 + 0.649909i
\(9\) 0.667563 2.92478i 0.0741736 0.324976i
\(10\) −19.1234 15.2504i −1.91234 1.52504i
\(11\) 0.494754 + 2.16766i 0.0449776 + 0.197060i 0.992425 0.122852i \(-0.0392040\pi\)
−0.947447 + 0.319911i \(0.896347\pi\)
\(12\) 4.57911 9.50861i 0.381592 0.792384i
\(13\) −13.9628 + 3.18692i −1.07406 + 0.245148i −0.722750 0.691110i \(-0.757122\pi\)
−0.351314 + 0.936258i \(0.614265\pi\)
\(14\) −22.1268 + 2.23025i −1.58048 + 0.159304i
\(15\) −2.96734 + 13.0008i −0.197823 + 0.866718i
\(16\) −2.02357 + 2.53748i −0.126473 + 0.158593i
\(17\) −6.25315 + 12.9848i −0.367832 + 0.763811i −0.999939 0.0110701i \(-0.996476\pi\)
0.632107 + 0.774881i \(0.282190\pi\)
\(18\) −9.53095 −0.529497
\(19\) 29.9360i 1.57558i −0.615945 0.787789i \(-0.711226\pi\)
0.615945 0.787789i \(-0.288774\pi\)
\(20\) −20.3543 + 42.2661i −1.01772 + 2.11331i
\(21\) 6.32953 + 10.3410i 0.301406 + 0.492430i
\(22\) 6.36418 3.06483i 0.289281 0.139310i
\(23\) 21.2514 10.2341i 0.923975 0.444963i 0.0894864 0.995988i \(-0.471477\pi\)
0.834489 + 0.551025i \(0.185763\pi\)
\(24\) −11.2296 2.56307i −0.467898 0.106795i
\(25\) 7.62692 33.4157i 0.305077 1.33663i
\(26\) 19.7419 + 40.9945i 0.759304 + 1.57671i
\(27\) 2.25453 + 4.68157i 0.0835010 + 0.173392i
\(28\) 13.6135 + 40.4217i 0.486195 + 1.44363i
\(29\) −27.9679 13.4686i −0.964411 0.464436i −0.115695 0.993285i \(-0.536910\pi\)
−0.848716 + 0.528849i \(0.822624\pi\)
\(30\) 42.3654 1.41218
\(31\) 19.0945i 0.615952i 0.951394 + 0.307976i \(0.0996517\pi\)
−0.951394 + 0.307976i \(0.900348\pi\)
\(32\) 33.2562 + 16.0153i 1.03926 + 0.500479i
\(33\) −3.01087 2.40109i −0.0912385 0.0727603i
\(34\) 44.6388 + 10.1885i 1.31291 + 0.299662i
\(35\) −28.1350 45.9663i −0.803858 1.31332i
\(36\) 4.06761 + 17.8213i 0.112989 + 0.495037i
\(37\) 9.51163 + 4.58056i 0.257071 + 0.123799i 0.557981 0.829854i \(-0.311576\pi\)
−0.300910 + 0.953652i \(0.597290\pi\)
\(38\) −92.7216 + 21.1631i −2.44004 + 0.556924i
\(39\) 15.4665 19.3943i 0.396576 0.497290i
\(40\) 49.9158 + 11.3930i 1.24789 + 0.284824i
\(41\) −23.7300 + 18.9241i −0.578781 + 0.461563i −0.868597 0.495520i \(-0.834978\pi\)
0.289815 + 0.957083i \(0.406406\pi\)
\(42\) 27.5550 26.9152i 0.656070 0.640838i
\(43\) 33.8196 42.4085i 0.786503 0.986244i −0.213454 0.976953i \(-0.568471\pi\)
0.999957 0.00929049i \(-0.00295730\pi\)
\(44\) −8.44684 10.5920i −0.191974 0.240727i
\(45\) −10.0215 20.8098i −0.222699 0.462439i
\(46\) −46.7221 58.5877i −1.01570 1.27365i
\(47\) 87.8533 20.0519i 1.86922 0.426637i 0.871279 0.490787i \(-0.163291\pi\)
0.997940 + 0.0641503i \(0.0204337\pi\)
\(48\) 5.62148i 0.117114i
\(49\) −47.5022 12.0225i −0.969433 0.245358i
\(50\) −108.891 −2.17783
\(51\) −5.55465 24.3365i −0.108915 0.477187i
\(52\) 68.2277 54.4098i 1.31207 1.04634i
\(53\) 26.1951 12.6149i 0.494247 0.238017i −0.170120 0.985423i \(-0.554416\pi\)
0.664367 + 0.747407i \(0.268701\pi\)
\(54\) 12.9065 10.2926i 0.239010 0.190604i
\(55\) 13.3834 + 10.6729i 0.243335 + 0.194053i
\(56\) 39.7039 24.3019i 0.708998 0.433963i
\(57\) 32.3284 + 40.5385i 0.567164 + 0.711201i
\(58\) −21.9450 + 96.1474i −0.378362 + 1.65771i
\(59\) 65.6405 + 52.3466i 1.11255 + 0.887230i 0.994391 0.105765i \(-0.0337291\pi\)
0.118160 + 0.992995i \(0.462301\pi\)
\(60\) −18.0807 79.2166i −0.301344 1.32028i
\(61\) 2.76467 5.74090i 0.0453225 0.0941131i −0.877078 0.480348i \(-0.840510\pi\)
0.922400 + 0.386235i \(0.126225\pi\)
\(62\) 59.1420 13.4988i 0.953904 0.217722i
\(63\) −19.7387 7.16817i −0.313313 0.113781i
\(64\) 23.2056 101.671i 0.362588 1.58860i
\(65\) −68.7490 + 86.2085i −1.05768 + 1.32628i
\(66\) −5.30844 + 11.0231i −0.0804309 + 0.167017i
\(67\) 15.3478 0.229072 0.114536 0.993419i \(-0.463462\pi\)
0.114536 + 0.993419i \(0.463462\pi\)
\(68\) 87.8157i 1.29141i
\(69\) −17.7261 + 36.8085i −0.256899 + 0.533457i
\(70\) −122.483 + 119.639i −1.74975 + 1.70913i
\(71\) 87.0823 41.9366i 1.22651 0.590656i 0.295393 0.955376i \(-0.404549\pi\)
0.931117 + 0.364719i \(0.118835\pi\)
\(72\) 17.9747 8.65614i 0.249648 0.120224i
\(73\) 44.4575 + 10.1471i 0.609007 + 0.139002i 0.515892 0.856653i \(-0.327460\pi\)
0.0931148 + 0.995655i \(0.470318\pi\)
\(74\) 7.46330 32.6988i 0.100855 0.441876i
\(75\) 25.7580 + 53.4871i 0.343440 + 0.713161i
\(76\) 79.1432 + 164.343i 1.04136 + 2.16240i
\(77\) 15.4854 1.56084i 0.201109 0.0202706i
\(78\) −71.0045 34.1940i −0.910315 0.438384i
\(79\) −115.933 −1.46751 −0.733753 0.679416i \(-0.762233\pi\)
−0.733753 + 0.679416i \(0.762233\pi\)
\(80\) 24.9877i 0.312346i
\(81\) −8.10872 3.90495i −0.100108 0.0482093i
\(82\) 75.3899 + 60.1214i 0.919389 + 0.733188i
\(83\) 116.081 + 26.4948i 1.39857 + 0.319215i 0.854337 0.519719i \(-0.173963\pi\)
0.544234 + 0.838934i \(0.316820\pi\)
\(84\) −62.0870 40.0365i −0.739131 0.476625i
\(85\) 24.6906 + 108.177i 0.290478 + 1.27267i
\(86\) −155.262 74.7701i −1.80537 0.869419i
\(87\) 52.4184 11.9641i 0.602510 0.137519i
\(88\) −9.21885 + 11.5601i −0.104760 + 0.131365i
\(89\) 56.2516 + 12.8391i 0.632040 + 0.144259i 0.526526 0.850159i \(-0.323494\pi\)
0.105514 + 0.994418i \(0.466351\pi\)
\(90\) −57.3701 + 45.7511i −0.637445 + 0.508346i
\(91\) 10.0540 + 99.7479i 0.110484 + 1.09613i
\(92\) −89.6096 + 112.367i −0.974017 + 1.22138i
\(93\) −20.6205 25.8573i −0.221726 0.278035i
\(94\) −124.215 257.935i −1.32144 2.74399i
\(95\) −143.701 180.195i −1.51264 1.89679i
\(96\) −62.3298 + 14.2264i −0.649269 + 0.148191i
\(97\) 84.1335i 0.867355i −0.901068 0.433678i \(-0.857216\pi\)
0.901068 0.433678i \(-0.142784\pi\)
\(98\) −3.65627 + 155.629i −0.0373089 + 1.58805i
\(99\) 6.67021 0.0673758
\(100\) 46.4725 + 203.609i 0.464725 + 2.03609i
\(101\) −124.049 + 98.9260i −1.22821 + 0.979465i −0.228228 + 0.973608i \(0.573293\pi\)
−0.999983 + 0.00585750i \(0.998135\pi\)
\(102\) −71.4514 + 34.4092i −0.700504 + 0.337345i
\(103\) −147.564 + 117.678i −1.43266 + 1.14251i −0.466508 + 0.884517i \(0.654488\pi\)
−0.966148 + 0.257989i \(0.916940\pi\)
\(104\) −74.4635 59.3827i −0.715995 0.570987i
\(105\) 87.7394 + 31.8628i 0.835613 + 0.303455i
\(106\) −57.5910 72.2168i −0.543311 0.681290i
\(107\) 16.5117 72.3424i 0.154315 0.676098i −0.837286 0.546765i \(-0.815859\pi\)
0.991601 0.129333i \(-0.0412836\pi\)
\(108\) −24.7538 19.7405i −0.229202 0.182782i
\(109\) −0.460599 2.01801i −0.00422568 0.0185139i 0.972771 0.231768i \(-0.0744510\pi\)
−0.976997 + 0.213254i \(0.931594\pi\)
\(110\) 23.5962 48.9981i 0.214511 0.445437i
\(111\) −17.8270 + 4.06890i −0.160604 + 0.0366567i
\(112\) 15.8749 + 16.2523i 0.141740 + 0.145110i
\(113\) 9.09400 39.8434i 0.0804779 0.352597i −0.918616 0.395151i \(-0.870692\pi\)
0.999094 + 0.0425541i \(0.0135495\pi\)
\(114\) 102.707 128.790i 0.900935 1.12974i
\(115\) 78.7930 163.615i 0.685157 1.42274i
\(116\) 189.146 1.63057
\(117\) 42.9657i 0.367228i
\(118\) 115.730 240.316i 0.980765 2.03658i
\(119\) 84.7849 + 54.6732i 0.712478 + 0.459438i
\(120\) −79.8980 + 38.4768i −0.665817 + 0.320640i
\(121\) 104.563 50.3550i 0.864159 0.416157i
\(122\) −19.7359 4.50460i −0.161770 0.0369229i
\(123\) 11.6981 51.2529i 0.0951068 0.416690i
\(124\) −50.4811 104.825i −0.407106 0.845364i
\(125\) −30.9832 64.3374i −0.247866 0.514699i
\(126\) −8.24799 + 66.2048i −0.0654602 + 0.525435i
\(127\) 125.228 + 60.3069i 0.986051 + 0.474857i 0.856182 0.516674i \(-0.172830\pi\)
0.129869 + 0.991531i \(0.458544\pi\)
\(128\) −183.666 −1.43489
\(129\) 93.9507i 0.728300i
\(130\) 315.618 + 151.994i 2.42783 + 1.16918i
\(131\) −27.2971 21.7687i −0.208374 0.166173i 0.513742 0.857945i \(-0.328259\pi\)
−0.722116 + 0.691772i \(0.756830\pi\)
\(132\) 22.8769 + 5.22151i 0.173310 + 0.0395569i
\(133\) −207.944 25.9063i −1.56349 0.194784i
\(134\) −10.8501 47.5373i −0.0809708 0.354756i
\(135\) 36.0436 + 17.3577i 0.266989 + 0.128575i
\(136\) −93.4388 + 21.3268i −0.687050 + 0.156815i
\(137\) 55.6089 69.7313i 0.405904 0.508988i −0.536300 0.844028i \(-0.680178\pi\)
0.942204 + 0.335040i \(0.108750\pi\)
\(138\) 126.540 + 28.8818i 0.916953 + 0.209289i
\(139\) −145.085 + 115.702i −1.04378 + 0.832387i −0.986134 0.165950i \(-0.946931\pi\)
−0.0576457 + 0.998337i \(0.518359\pi\)
\(140\) 275.979 + 177.964i 1.97128 + 1.27117i
\(141\) −97.3141 + 122.028i −0.690171 + 0.865447i
\(142\) −191.454 240.076i −1.34827 1.69067i
\(143\) −13.8163 28.6899i −0.0966176 0.200629i
\(144\) 6.07072 + 7.61245i 0.0421578 + 0.0528642i
\(145\) −233.002 + 53.1811i −1.60691 + 0.366766i
\(146\) 144.873i 0.992281i
\(147\) 77.3095 35.0178i 0.525915 0.238216i
\(148\) −64.3268 −0.434640
\(149\) −30.2231 132.416i −0.202840 0.888700i −0.969197 0.246285i \(-0.920790\pi\)
0.766357 0.642414i \(-0.222067\pi\)
\(150\) 147.458 117.593i 0.983050 0.783957i
\(151\) −147.359 + 70.9645i −0.975889 + 0.469963i −0.852689 0.522419i \(-0.825030\pi\)
−0.123200 + 0.992382i \(0.539316\pi\)
\(152\) 155.645 124.123i 1.02398 0.816599i
\(153\) 33.8033 + 26.9573i 0.220937 + 0.176191i
\(154\) −15.7817 46.8598i −0.102479 0.304285i
\(155\) 91.6588 + 114.937i 0.591347 + 0.741526i
\(156\) −33.6340 + 147.360i −0.215603 + 0.944618i
\(157\) −85.4961 68.1809i −0.544561 0.434273i 0.312177 0.950024i \(-0.398942\pi\)
−0.856739 + 0.515751i \(0.827513\pi\)
\(158\) 81.9583 + 359.083i 0.518723 + 2.27268i
\(159\) −21.8496 + 45.3712i −0.137419 + 0.285354i
\(160\) 277.058 63.2367i 1.73161 0.395230i
\(161\) −52.6987 156.475i −0.327321 0.971896i
\(162\) −6.36251 + 27.8760i −0.0392747 + 0.172074i
\(163\) 65.5057 82.1415i 0.401875 0.503936i −0.539179 0.842191i \(-0.681265\pi\)
0.941054 + 0.338256i \(0.109837\pi\)
\(164\) 80.2427 166.626i 0.489284 1.01601i
\(165\) −29.6493 −0.179693
\(166\) 378.273i 2.27875i
\(167\) −56.9051 + 118.165i −0.340749 + 0.707573i −0.998976 0.0452471i \(-0.985592\pi\)
0.658227 + 0.752820i \(0.271307\pi\)
\(168\) −27.5218 + 75.7858i −0.163820 + 0.451106i
\(169\) 32.5403 15.6706i 0.192546 0.0927253i
\(170\) 317.604 152.950i 1.86826 0.899706i
\(171\) −87.5563 19.9842i −0.512025 0.116866i
\(172\) −73.5457 + 322.225i −0.427591 + 1.87340i
\(173\) 104.664 + 217.336i 0.604992 + 1.25628i 0.948395 + 0.317091i \(0.102706\pi\)
−0.343403 + 0.939188i \(0.611580\pi\)
\(174\) −74.1138 153.899i −0.425941 0.884477i
\(175\) −225.515 81.8965i −1.28866 0.467980i
\(176\) −6.50156 3.13099i −0.0369407 0.0177897i
\(177\) −145.418 −0.821573
\(178\) 183.306i 1.02981i
\(179\) 141.412 + 68.1003i 0.790010 + 0.380449i 0.784966 0.619539i \(-0.212680\pi\)
0.00504358 + 0.999987i \(0.498395\pi\)
\(180\) 110.032 + 87.7472i 0.611286 + 0.487485i
\(181\) 177.368 + 40.4832i 0.979935 + 0.223664i 0.682345 0.731030i \(-0.260960\pi\)
0.297590 + 0.954694i \(0.403817\pi\)
\(182\) 301.845 101.657i 1.65849 0.558555i
\(183\) 2.45585 + 10.7598i 0.0134199 + 0.0587966i
\(184\) 141.325 + 68.0583i 0.768068 + 0.369882i
\(185\) 79.2417 18.0864i 0.428333 0.0977643i
\(186\) −65.5109 + 82.1481i −0.352209 + 0.441656i
\(187\) −31.2404 7.13041i −0.167061 0.0381305i
\(188\) −429.285 + 342.343i −2.28343 + 1.82097i
\(189\) 34.4707 11.6092i 0.182384 0.0614245i
\(190\) −456.535 + 572.477i −2.40281 + 3.01303i
\(191\) −120.022 150.503i −0.628389 0.787975i 0.361109 0.932524i \(-0.382398\pi\)
−0.989498 + 0.144549i \(0.953827\pi\)
\(192\) 78.3712 + 162.739i 0.408183 + 0.847602i
\(193\) 158.733 + 199.045i 0.822451 + 1.03132i 0.998894 + 0.0470107i \(0.0149695\pi\)
−0.176443 + 0.984311i \(0.556459\pi\)
\(194\) −260.589 + 59.4777i −1.34324 + 0.306586i
\(195\) 190.984i 0.979406i
\(196\) 292.562 59.5826i 1.49266 0.303993i
\(197\) 133.655 0.678454 0.339227 0.940705i \(-0.389835\pi\)
0.339227 + 0.940705i \(0.389835\pi\)
\(198\) −4.71547 20.6598i −0.0238155 0.104343i
\(199\) 15.7589 12.5673i 0.0791904 0.0631522i −0.583095 0.812404i \(-0.698158\pi\)
0.662285 + 0.749252i \(0.269587\pi\)
\(200\) 205.361 98.8966i 1.02680 0.494483i
\(201\) −20.7836 + 16.5744i −0.103401 + 0.0824596i
\(202\) 394.102 + 314.286i 1.95100 + 1.55587i
\(203\) −117.760 + 182.618i −0.580100 + 0.899596i
\(204\) 94.8336 + 118.918i 0.464870 + 0.582929i
\(205\) −51.9986 + 227.821i −0.253652 + 1.11132i
\(206\) 468.807 + 373.861i 2.27576 + 1.81486i
\(207\) −15.7460 68.9878i −0.0760677 0.333274i
\(208\) 20.1681 41.8794i 0.0969618 0.201343i
\(209\) 64.8910 14.8109i 0.310483 0.0708658i
\(210\) 36.6626 294.283i 0.174584 1.40135i
\(211\) 39.7234 174.039i 0.188262 0.824831i −0.789270 0.614046i \(-0.789541\pi\)
0.977532 0.210785i \(-0.0676020\pi\)
\(212\) −110.455 + 138.506i −0.521015 + 0.653332i
\(213\) −72.6363 + 150.831i −0.341016 + 0.708126i
\(214\) −235.741 −1.10159
\(215\) 417.615i 1.94239i
\(216\) −14.9929 + 31.1330i −0.0694114 + 0.144134i
\(217\) 132.636 + 16.5242i 0.611227 + 0.0761485i
\(218\) −5.92484 + 2.85325i −0.0271781 + 0.0130883i
\(219\) −71.1612 + 34.2694i −0.324937 + 0.156481i
\(220\) −101.689 23.2098i −0.462222 0.105499i
\(221\) 45.9301 201.233i 0.207828 0.910555i
\(222\) 25.2054 + 52.3396i 0.113538 + 0.235764i
\(223\) −124.666 258.871i −0.559040 1.16086i −0.968611 0.248580i \(-0.920036\pi\)
0.409572 0.912278i \(-0.365678\pi\)
\(224\) 140.027 217.148i 0.625120 0.969410i
\(225\) −92.6423 44.6142i −0.411744 0.198285i
\(226\) −129.837 −0.574501
\(227\) 174.210i 0.767445i −0.923448 0.383722i \(-0.874642\pi\)
0.923448 0.383722i \(-0.125358\pi\)
\(228\) −284.650 137.080i −1.24846 0.601229i
\(229\) −74.9506 59.7711i −0.327295 0.261009i 0.446031 0.895017i \(-0.352837\pi\)
−0.773326 + 0.634008i \(0.781408\pi\)
\(230\) −562.473 128.381i −2.44553 0.558177i
\(231\) −19.2843 + 18.8365i −0.0834816 + 0.0815434i
\(232\) −45.9357 201.258i −0.197999 0.867490i
\(233\) 28.0392 + 13.5030i 0.120340 + 0.0579527i 0.493085 0.869981i \(-0.335869\pi\)
−0.372745 + 0.927934i \(0.621583\pi\)
\(234\) 133.079 30.3744i 0.568714 0.129805i
\(235\) 432.565 542.419i 1.84070 2.30817i
\(236\) −498.744 113.835i −2.11332 0.482352i
\(237\) 156.993 125.198i 0.662419 0.528261i
\(238\) 109.403 301.258i 0.459674 1.26579i
\(239\) −98.2789 + 123.238i −0.411209 + 0.515639i −0.943703 0.330794i \(-0.892683\pi\)
0.532494 + 0.846434i \(0.321255\pi\)
\(240\) −26.9846 33.8376i −0.112436 0.140990i
\(241\) 156.496 + 324.967i 0.649360 + 1.34841i 0.922336 + 0.386388i \(0.126278\pi\)
−0.272977 + 0.962021i \(0.588008\pi\)
\(242\) −229.887 288.269i −0.949944 1.19119i
\(243\) 15.1976 3.46876i 0.0625417 0.0142747i
\(244\) 38.8255i 0.159121i
\(245\) −343.643 + 155.656i −1.40263 + 0.635329i
\(246\) −167.017 −0.678931
\(247\) 95.4037 + 417.991i 0.386250 + 1.69227i
\(248\) −99.2776 + 79.1713i −0.400313 + 0.319239i
\(249\) −185.806 + 89.4796i −0.746210 + 0.359356i
\(250\) −177.371 + 141.448i −0.709482 + 0.565793i
\(251\) −24.3453 19.4148i −0.0969933 0.0773496i 0.573792 0.819001i \(-0.305472\pi\)
−0.670786 + 0.741651i \(0.734043\pi\)
\(252\) 127.313 12.8324i 0.505208 0.0509222i
\(253\) 32.6983 + 41.0024i 0.129242 + 0.162065i
\(254\) 98.2605 430.508i 0.386852 1.69491i
\(255\) −150.257 119.826i −0.589244 0.469906i
\(256\) 37.0192 + 162.192i 0.144606 + 0.633561i
\(257\) −131.502 + 273.067i −0.511681 + 1.06252i 0.471834 + 0.881688i \(0.343592\pi\)
−0.983515 + 0.180829i \(0.942122\pi\)
\(258\) 290.996 66.4180i 1.12789 0.257434i
\(259\) 40.0492 62.1067i 0.154630 0.239794i
\(260\) 149.505 655.022i 0.575018 2.51932i
\(261\) −58.0632 + 72.8089i −0.222464 + 0.278961i
\(262\) −48.1272 + 99.9372i −0.183692 + 0.381440i
\(263\) −314.763 −1.19682 −0.598409 0.801191i \(-0.704200\pi\)
−0.598409 + 0.801191i \(0.704200\pi\)
\(264\) 25.6099i 0.0970073i
\(265\) 97.1224 201.677i 0.366500 0.761045i
\(266\) 66.7649 + 662.387i 0.250996 + 2.49018i
\(267\) −90.0394 + 43.3607i −0.337226 + 0.162400i
\(268\) −84.2566 + 40.5759i −0.314390 + 0.151402i
\(269\) −305.694 69.7726i −1.13641 0.259378i −0.387383 0.921919i \(-0.626621\pi\)
−0.749026 + 0.662541i \(0.769478\pi\)
\(270\) 28.2816 123.910i 0.104747 0.458925i
\(271\) 191.998 + 398.687i 0.708478 + 1.47117i 0.874488 + 0.485046i \(0.161197\pi\)
−0.166010 + 0.986124i \(0.553088\pi\)
\(272\) −20.2950 42.1429i −0.0746139 0.154937i
\(273\) −121.334 124.218i −0.444448 0.455012i
\(274\) −255.293 122.943i −0.931727 0.448696i
\(275\) 76.2073 0.277117
\(276\) 248.935i 0.901938i
\(277\) 99.3525 + 47.8457i 0.358673 + 0.172728i 0.604538 0.796576i \(-0.293358\pi\)
−0.245865 + 0.969304i \(0.579072\pi\)
\(278\) 460.934 + 367.582i 1.65804 + 1.32224i
\(279\) 55.8473 + 12.7468i 0.200170 + 0.0456874i
\(280\) 122.336 336.871i 0.436913 1.20311i
\(281\) −83.8035 367.167i −0.298233 1.30664i −0.872756 0.488156i \(-0.837670\pi\)
0.574523 0.818488i \(-0.305187\pi\)
\(282\) 446.757 + 215.147i 1.58424 + 0.762931i
\(283\) −105.468 + 24.0723i −0.372677 + 0.0850612i −0.404757 0.914424i \(-0.632644\pi\)
0.0320800 + 0.999485i \(0.489787\pi\)
\(284\) −367.194 + 460.447i −1.29294 + 1.62129i
\(285\) 389.191 + 88.8303i 1.36558 + 0.311685i
\(286\) −79.0946 + 63.0759i −0.276555 + 0.220545i
\(287\) 110.917 + 181.213i 0.386469 + 0.631403i
\(288\) 69.0420 86.5759i 0.239729 0.300611i
\(289\) 50.6855 + 63.5576i 0.175382 + 0.219923i
\(290\) 329.439 + 684.087i 1.13600 + 2.35892i
\(291\) 90.8571 + 113.931i 0.312224 + 0.391516i
\(292\) −270.889 + 61.8287i −0.927703 + 0.211742i
\(293\) 3.94591i 0.0134673i −0.999977 0.00673363i \(-0.997857\pi\)
0.999977 0.00673363i \(-0.00214340\pi\)
\(294\) −163.115 214.697i −0.554814 0.730262i
\(295\) 646.390 2.19115
\(296\) 15.6223 + 68.4458i 0.0527781 + 0.231236i
\(297\) −9.03261 + 7.20326i −0.0304128 + 0.0242534i
\(298\) −388.771 + 187.222i −1.30460 + 0.628262i
\(299\) −264.115 + 210.624i −0.883326 + 0.704429i
\(300\) −282.813 225.536i −0.942709 0.751785i
\(301\) −265.315 271.621i −0.881445 0.902396i
\(302\) 323.975 + 406.252i 1.07277 + 1.34521i
\(303\) 61.1523 267.926i 0.201823 0.884243i
\(304\) 75.9620 + 60.5777i 0.249875 + 0.199269i
\(305\) −10.9163 47.8276i −0.0357913 0.156812i
\(306\) 59.5984 123.757i 0.194766 0.404436i
\(307\) −469.573 + 107.177i −1.52955 + 0.349111i −0.902784 0.430094i \(-0.858480\pi\)
−0.626770 + 0.779205i \(0.715623\pi\)
\(308\) −80.8851 + 49.5081i −0.262614 + 0.160741i
\(309\) 72.7441 318.713i 0.235418 1.03143i
\(310\) 291.198 365.151i 0.939350 1.17791i
\(311\) 107.475 223.175i 0.345580 0.717604i −0.653652 0.756795i \(-0.726764\pi\)
0.999232 + 0.0391915i \(0.0124782\pi\)
\(312\) 164.965 0.528733
\(313\) 412.399i 1.31757i 0.752331 + 0.658785i \(0.228929\pi\)
−0.752331 + 0.658785i \(0.771071\pi\)
\(314\) −150.738 + 313.010i −0.480056 + 0.996846i
\(315\) −153.223 + 51.6035i −0.486423 + 0.163821i
\(316\) 636.449 306.498i 2.01408 0.969930i
\(317\) −400.377 + 192.811i −1.26302 + 0.608237i −0.940971 0.338487i \(-0.890085\pi\)
−0.322046 + 0.946724i \(0.604371\pi\)
\(318\) 155.976 + 35.6005i 0.490491 + 0.111951i
\(319\) 15.3582 67.2885i 0.0481447 0.210936i
\(320\) −348.363 723.383i −1.08863 2.26057i
\(321\) 55.7641 + 115.795i 0.173720 + 0.360733i
\(322\) −447.401 + 273.845i −1.38944 + 0.850449i
\(323\) 388.713 + 187.194i 1.20344 + 0.579549i
\(324\) 54.8390 0.169256
\(325\) 490.884i 1.51041i
\(326\) −300.728 144.823i −0.922479 0.444242i
\(327\) 2.80302 + 2.23533i 0.00857191 + 0.00683587i
\(328\) −196.783 44.9144i −0.599947 0.136934i
\(329\) −63.2594 627.608i −0.192278 1.90762i
\(330\) 20.9604 + 91.8337i 0.0635165 + 0.278284i
\(331\) 406.160 + 195.596i 1.22707 + 0.590925i 0.931272 0.364326i \(-0.118701\pi\)
0.295797 + 0.955251i \(0.404415\pi\)
\(332\) −707.309 + 161.439i −2.13045 + 0.486261i
\(333\) 19.7468 24.7616i 0.0592995 0.0743593i
\(334\) 406.223 + 92.7179i 1.21624 + 0.277598i
\(335\) 92.3840 73.6738i 0.275773 0.219922i
\(336\) −39.0485 4.86477i −0.116216 0.0144785i
\(337\) −315.179 + 395.222i −0.935250 + 1.17277i 0.0494966 + 0.998774i \(0.484238\pi\)
−0.984747 + 0.173993i \(0.944333\pi\)
\(338\) −71.5411 89.7097i −0.211660 0.265413i
\(339\) 30.7127 + 63.7756i 0.0905980 + 0.188129i
\(340\) −421.539 528.593i −1.23982 1.55468i
\(341\) −41.3904 + 9.44709i −0.121379 + 0.0277041i
\(342\) 285.318i 0.834264i
\(343\) −124.620 + 319.560i −0.363324 + 0.931663i
\(344\) 360.719 1.04860
\(345\) 69.9916 + 306.653i 0.202874 + 0.888850i
\(346\) 599.171 477.823i 1.73171 1.38099i
\(347\) 527.553 254.056i 1.52032 0.732150i 0.527259 0.849705i \(-0.323220\pi\)
0.993066 + 0.117555i \(0.0375056\pi\)
\(348\) −256.136 + 204.262i −0.736023 + 0.586959i
\(349\) −49.7168 39.6478i −0.142455 0.113604i 0.549670 0.835382i \(-0.314754\pi\)
−0.692124 + 0.721778i \(0.743325\pi\)
\(350\) −94.2335 + 756.392i −0.269239 + 2.16112i
\(351\) −46.3994 58.1830i −0.132192 0.165763i
\(352\) −18.2621 + 80.0116i −0.0518811 + 0.227306i
\(353\) 173.636 + 138.470i 0.491888 + 0.392267i 0.837781 0.546006i \(-0.183853\pi\)
−0.345893 + 0.938274i \(0.612424\pi\)
\(354\) 102.803 + 450.409i 0.290403 + 1.27234i
\(355\) 322.871 670.449i 0.909496 1.88859i
\(356\) −342.753 + 78.2312i −0.962790 + 0.219750i
\(357\) −173.856 + 17.5237i −0.486991 + 0.0490860i
\(358\) 110.959 486.142i 0.309941 1.35794i
\(359\) −166.117 + 208.305i −0.462722 + 0.580235i −0.957372 0.288857i \(-0.906725\pi\)
0.494650 + 0.869092i \(0.335296\pi\)
\(360\) 66.6439 138.387i 0.185122 0.384409i
\(361\) −535.164 −1.48245
\(362\) 577.987i 1.59665i
\(363\) −87.2175 + 181.109i −0.240268 + 0.498923i
\(364\) −318.903 521.016i −0.876107 1.43136i
\(365\) 316.314 152.329i 0.866614 0.417339i
\(366\) 31.5904 15.2131i 0.0863127 0.0415660i
\(367\) 119.965 + 27.3811i 0.326879 + 0.0746080i 0.382811 0.923827i \(-0.374956\pi\)
−0.0559323 + 0.998435i \(0.517813\pi\)
\(368\) −17.0349 + 74.6347i −0.0462904 + 0.202812i
\(369\) 39.5075 + 82.0382i 0.107066 + 0.222326i
\(370\) −112.039 232.651i −0.302808 0.628788i
\(371\) −64.9579 192.876i −0.175089 0.519881i
\(372\) 181.562 + 87.4359i 0.488071 + 0.235043i
\(373\) 24.4689 0.0656002 0.0328001 0.999462i \(-0.489558\pi\)
0.0328001 + 0.999462i \(0.489558\pi\)
\(374\) 101.802i 0.272199i
\(375\) 111.436 + 53.6646i 0.297162 + 0.143105i
\(376\) 468.520 + 373.632i 1.24606 + 0.993703i
\(377\) 433.435 + 98.9286i 1.14969 + 0.262410i
\(378\) −60.3265 98.5599i −0.159594 0.260740i
\(379\) −97.8331 428.635i −0.258135 1.13096i −0.923243 0.384216i \(-0.874472\pi\)
0.665108 0.746747i \(-0.268385\pi\)
\(380\) 1265.28 + 609.326i 3.32968 + 1.60349i
\(381\) −234.707 + 53.5704i −0.616030 + 0.140605i
\(382\) −381.309 + 478.146i −0.998191 + 1.25169i
\(383\) 150.060 + 34.2503i 0.391802 + 0.0894263i 0.413883 0.910330i \(-0.364172\pi\)
−0.0220813 + 0.999756i \(0.507029\pi\)
\(384\) 248.715 198.344i 0.647696 0.516520i
\(385\) 85.7193 83.7291i 0.222647 0.217478i
\(386\) 504.292 632.363i 1.30646 1.63825i
\(387\) −101.459 127.225i −0.262168 0.328748i
\(388\) 222.428 + 461.876i 0.573267 + 1.19040i
\(389\) 298.268 + 374.017i 0.766756 + 0.961482i 0.999940 0.0109505i \(-0.00348573\pi\)
−0.233184 + 0.972433i \(0.574914\pi\)
\(390\) −591.541 + 135.015i −1.51677 + 0.346193i
\(391\) 339.941i 0.869414i
\(392\) −134.449 296.826i −0.342982 0.757208i
\(393\) 60.4732 0.153876
\(394\) −94.4870 413.975i −0.239815 1.05070i
\(395\) −697.841 + 556.509i −1.76669 + 1.40888i
\(396\) −36.6181 + 17.6344i −0.0924700 + 0.0445312i
\(397\) 221.069 176.297i 0.556849 0.444072i −0.304190 0.952611i \(-0.598386\pi\)
0.861039 + 0.508539i \(0.169814\pi\)
\(398\) −50.0657 39.9261i −0.125793 0.100317i
\(399\) 309.569 189.481i 0.775862 0.474889i
\(400\) 69.3582 + 86.9724i 0.173395 + 0.217431i
\(401\) −60.1393 + 263.487i −0.149973 + 0.657076i 0.842917 + 0.538043i \(0.180836\pi\)
−0.992890 + 0.119032i \(0.962021\pi\)
\(402\) 66.0292 + 52.6565i 0.164252 + 0.130986i
\(403\) −60.8528 266.613i −0.150999 0.661572i
\(404\) 419.470 871.039i 1.03829 2.15604i
\(405\) −67.5540 + 15.4188i −0.166800 + 0.0380710i
\(406\) 648.878 + 235.642i 1.59822 + 0.580399i
\(407\) −5.22317 + 22.8842i −0.0128333 + 0.0562265i
\(408\) 103.501 129.786i 0.253679 0.318103i
\(409\) 130.847 271.707i 0.319919 0.664319i −0.677545 0.735481i \(-0.736956\pi\)
0.997465 + 0.0711615i \(0.0226706\pi\)
\(410\) 742.397 1.81072
\(411\) 154.481i 0.375866i
\(412\) 498.984 1036.15i 1.21113 2.51493i
\(413\) 420.420 410.658i 1.01797 0.994330i
\(414\) −202.546 + 97.5411i −0.489242 + 0.235607i
\(415\) 825.916 397.740i 1.99016 0.958410i
\(416\) −515.390 117.634i −1.23892 0.282775i
\(417\) 71.5224 313.360i 0.171517 0.751463i
\(418\) −91.7487 190.518i −0.219495 0.455785i
\(419\) 18.8015 + 39.0418i 0.0448724 + 0.0931785i 0.922200 0.386714i \(-0.126390\pi\)
−0.877327 + 0.479892i \(0.840676\pi\)
\(420\) −565.909 + 57.0405i −1.34740 + 0.135811i
\(421\) −384.543 185.186i −0.913403 0.439872i −0.0826917 0.996575i \(-0.526352\pi\)
−0.830711 + 0.556703i \(0.812066\pi\)
\(422\) −567.139 −1.34393
\(423\) 270.338i 0.639097i
\(424\) 174.201 + 83.8905i 0.410850 + 0.197855i
\(425\) 386.204 + 307.987i 0.908715 + 0.724676i
\(426\) 518.523 + 118.349i 1.21719 + 0.277816i
\(427\) −37.4855 24.1724i −0.0877881 0.0566098i
\(428\) 100.609 + 440.798i 0.235069 + 1.02990i
\(429\) 49.6923 + 23.9306i 0.115833 + 0.0557822i
\(430\) −1293.49 + 295.231i −3.00812 + 0.686583i
\(431\) −110.299 + 138.310i −0.255913 + 0.320905i −0.893146 0.449766i \(-0.851507\pi\)
0.637233 + 0.770671i \(0.280079\pi\)
\(432\) −16.4416 3.75269i −0.0380593 0.00868678i
\(433\) −39.5482 + 31.5386i −0.0913353 + 0.0728375i −0.668093 0.744078i \(-0.732889\pi\)
0.576758 + 0.816915i \(0.304318\pi\)
\(434\) −42.5857 422.500i −0.0981236 0.973502i
\(435\) 258.093 323.638i 0.593317 0.743997i
\(436\) 7.86372 + 9.86079i 0.0180360 + 0.0226165i
\(437\) −306.369 636.183i −0.701074 1.45580i
\(438\) 156.451 + 196.183i 0.357193 + 0.447906i
\(439\) −122.746 + 28.0160i −0.279604 + 0.0638177i −0.360023 0.932943i \(-0.617231\pi\)
0.0804193 + 0.996761i \(0.474374\pi\)
\(440\) 113.837i 0.258721i
\(441\) −66.8740 + 130.908i −0.151642 + 0.296843i
\(442\) −655.754 −1.48361
\(443\) 72.0907 + 315.850i 0.162733 + 0.712980i 0.988780 + 0.149379i \(0.0477273\pi\)
−0.826047 + 0.563601i \(0.809416\pi\)
\(444\) 87.1095 69.4675i 0.196193 0.156458i
\(445\) 400.229 192.740i 0.899390 0.433123i
\(446\) −713.678 + 569.139i −1.60017 + 1.27610i
\(447\) 183.926 + 146.676i 0.411467 + 0.328134i
\(448\) −686.152 249.178i −1.53159 0.556201i
\(449\) 154.124 + 193.265i 0.343260 + 0.430434i 0.923256 0.384185i \(-0.125518\pi\)
−0.579997 + 0.814619i \(0.696946\pi\)
\(450\) −72.6918 + 318.484i −0.161537 + 0.707741i
\(451\) −52.7614 42.0758i −0.116988 0.0932945i
\(452\) 55.4118 + 242.775i 0.122592 + 0.537112i
\(453\) 122.914 255.234i 0.271333 0.563430i
\(454\) −539.586 + 123.157i −1.18851 + 0.271271i
\(455\) 539.335 + 552.155i 1.18535 + 1.21353i
\(456\) −76.7281 + 336.168i −0.168263 + 0.737210i
\(457\) −215.095 + 269.721i −0.470668 + 0.590198i −0.959334 0.282272i \(-0.908912\pi\)
0.488667 + 0.872470i \(0.337483\pi\)
\(458\) −132.145 + 274.401i −0.288526 + 0.599130i
\(459\) −74.8871 −0.163153
\(460\) 1106.52i 2.40549i
\(461\) −234.612 + 487.176i −0.508919 + 1.05678i 0.475299 + 0.879824i \(0.342340\pi\)
−0.984219 + 0.176957i \(0.943375\pi\)
\(462\) 71.9758 + 46.4133i 0.155792 + 0.100462i
\(463\) 301.572 145.229i 0.651342 0.313670i −0.0788753 0.996884i \(-0.525133\pi\)
0.730218 + 0.683215i \(0.239419\pi\)
\(464\) 90.7716 43.7133i 0.195628 0.0942097i
\(465\) −248.244 56.6600i −0.533857 0.121849i
\(466\) 22.0010 96.3925i 0.0472124 0.206851i
\(467\) −187.703 389.770i −0.401934 0.834624i −0.999463 0.0327770i \(-0.989565\pi\)
0.597529 0.801848i \(-0.296149\pi\)
\(468\) −113.591 235.873i −0.242715 0.504003i
\(469\) 13.2819 106.611i 0.0283196 0.227315i
\(470\) −1985.85 956.335i −4.22521 2.03475i
\(471\) 189.406 0.402136
\(472\) 558.326i 1.18289i
\(473\) 108.659 + 52.3276i 0.229724 + 0.110629i
\(474\) −498.765 397.752i −1.05225 0.839138i
\(475\) −1000.33 228.319i −2.10596 0.480673i
\(476\) −609.994 75.9948i −1.28150 0.159653i
\(477\) −19.4090 85.0362i −0.0406896 0.178273i
\(478\) 451.186 + 217.280i 0.943903 + 0.454560i
\(479\) 311.115 71.0100i 0.649510 0.148246i 0.114942 0.993372i \(-0.463332\pi\)
0.534568 + 0.845126i \(0.320475\pi\)
\(480\) −306.894 + 384.833i −0.639363 + 0.801735i
\(481\) −147.407 33.6447i −0.306460 0.0699474i
\(482\) 895.895 714.452i 1.85870 1.48227i
\(483\) 240.343 + 154.984i 0.497605 + 0.320879i
\(484\) −440.905 + 552.878i −0.910962 + 1.14231i
\(485\) −403.863 506.428i −0.832707 1.04418i
\(486\) −21.4878 44.6198i −0.0442135 0.0918103i
\(487\) −453.074 568.137i −0.930336 1.16660i −0.985763 0.168142i \(-0.946223\pi\)
0.0554264 0.998463i \(-0.482348\pi\)
\(488\) 41.3116 9.42911i 0.0846550 0.0193219i
\(489\) 181.974i 0.372136i
\(490\) 725.053 + 954.337i 1.47970 + 1.94763i
\(491\) 26.5246 0.0540217 0.0270108 0.999635i \(-0.491401\pi\)
0.0270108 + 0.999635i \(0.491401\pi\)
\(492\) 71.2793 + 312.295i 0.144877 + 0.634746i
\(493\) 349.775 278.936i 0.709483 0.565794i
\(494\) 1227.21 590.994i 2.48423 1.19634i
\(495\) 40.1503 32.0188i 0.0811117 0.0646844i
\(496\) −48.4520 38.6392i −0.0976855 0.0779016i
\(497\) −215.944 641.191i −0.434495 1.29012i
\(498\) 408.503 + 512.246i 0.820287 + 1.02861i
\(499\) 35.2635 154.500i 0.0706684 0.309618i −0.927224 0.374507i \(-0.877812\pi\)
0.997893 + 0.0648884i \(0.0206692\pi\)
\(500\) 340.184 + 271.287i 0.680367 + 0.542575i
\(501\) −50.5486 221.468i −0.100895 0.442052i
\(502\) −42.9231 + 89.1307i −0.0855041 + 0.177551i
\(503\) −213.607 + 48.7545i −0.424667 + 0.0969274i −0.429513 0.903061i \(-0.641315\pi\)
0.00484591 + 0.999988i \(0.498457\pi\)
\(504\) −44.5730 132.348i −0.0884386 0.262596i
\(505\) −271.824 + 1190.94i −0.538266 + 2.35830i
\(506\) 103.882 130.264i 0.205301 0.257439i
\(507\) −27.1422 + 56.3614i −0.0535350 + 0.111167i
\(508\) −846.916 −1.66716
\(509\) 639.496i 1.25638i −0.778061 0.628188i \(-0.783797\pi\)
0.778061 0.628188i \(-0.216203\pi\)
\(510\) −264.917 + 550.106i −0.519446 + 1.07864i
\(511\) 108.958 300.034i 0.213225 0.587151i
\(512\) −185.719 + 89.4374i −0.362732 + 0.174682i
\(513\) 140.147 67.4915i 0.273192 0.131562i
\(514\) 938.742 + 214.262i 1.82635 + 0.416852i
\(515\) −323.350 + 1416.69i −0.627864 + 2.75085i
\(516\) −248.382 515.771i −0.481361 0.999556i
\(517\) 86.9315 + 180.515i 0.168146 + 0.349159i
\(518\) −220.677 80.1396i −0.426018 0.154710i
\(519\) −376.438 181.283i −0.725313 0.349292i
\(520\) −733.274 −1.41014
\(521\) 498.280i 0.956392i 0.878253 + 0.478196i \(0.158709\pi\)
−0.878253 + 0.478196i \(0.841291\pi\)
\(522\) 266.561 + 128.369i 0.510653 + 0.245917i
\(523\) 470.995 + 375.606i 0.900563 + 0.718175i 0.959983 0.280058i \(-0.0903536\pi\)
−0.0594197 + 0.998233i \(0.518925\pi\)
\(524\) 207.406 + 47.3391i 0.395813 + 0.0903418i
\(525\) 393.828 132.636i 0.750149 0.252640i
\(526\) 222.520 + 974.925i 0.423042 + 1.85347i
\(527\) −247.938 119.401i −0.470471 0.226567i
\(528\) 12.1854 2.78125i 0.0230785 0.00526751i
\(529\) 17.0592 21.3916i 0.0322480 0.0404377i
\(530\) −693.320 158.246i −1.30815 0.298577i
\(531\) 196.922 157.040i 0.370850 0.295743i
\(532\) 1210.06 407.532i 2.27455 0.766038i
\(533\) 271.029 339.859i 0.508497 0.637635i
\(534\) 197.955 + 248.228i 0.370703 + 0.464846i
\(535\) −247.873 514.715i −0.463315 0.962083i
\(536\) 63.6365 + 79.7976i 0.118725 + 0.148876i
\(537\) −265.038 + 60.4933i −0.493554 + 0.112650i
\(538\) 996.160i 1.85160i
\(539\) 2.55883 108.917i 0.00474736 0.202072i
\(540\) −243.761 −0.451410
\(541\) −149.681 655.794i −0.276674 1.21219i −0.901969 0.431800i \(-0.857879\pi\)
0.625295 0.780388i \(-0.284979\pi\)
\(542\) 1099.13 876.530i 2.02792 1.61721i
\(543\) −283.906 + 136.722i −0.522846 + 0.251790i
\(544\) −415.912 + 331.678i −0.764543 + 0.609703i
\(545\) −12.4595 9.93613i −0.0228615 0.0182314i
\(546\) −298.968 + 463.628i −0.547561 + 0.849135i
\(547\) −158.154 198.319i −0.289130 0.362557i 0.615960 0.787777i \(-0.288768\pi\)
−0.905090 + 0.425220i \(0.860197\pi\)
\(548\) −120.930 + 529.827i −0.220674 + 0.966837i
\(549\) −14.9453 11.9185i −0.0272228 0.0217094i
\(550\) −53.8744 236.039i −0.0979534 0.429162i
\(551\) −403.197 + 837.247i −0.731755 + 1.51951i
\(552\) −264.875 + 60.4560i −0.479846 + 0.109522i
\(553\) −100.327 + 805.306i −0.181424 + 1.45625i
\(554\) 77.9569 341.552i 0.140717 0.616519i
\(555\) −87.7750 + 110.066i −0.158153 + 0.198318i
\(556\) 490.604 1018.75i 0.882380 1.83228i
\(557\) −120.338 −0.216048 −0.108024 0.994148i \(-0.534452\pi\)
−0.108024 + 0.994148i \(0.534452\pi\)
\(558\) 181.989i 0.326145i
\(559\) −337.065 + 699.923i −0.602979 + 1.25210i
\(560\) 173.572 + 21.6241i 0.309950 + 0.0386145i
\(561\) 50.0050 24.0812i 0.0891356 0.0429254i
\(562\) −1077.99 + 519.134i −1.91814 + 0.923726i
\(563\) 315.781 + 72.0749i 0.560889 + 0.128019i 0.493560 0.869712i \(-0.335695\pi\)
0.0673289 + 0.997731i \(0.478552\pi\)
\(564\) 211.624 927.183i 0.375219 1.64394i
\(565\) −136.519 283.485i −0.241627 0.501743i
\(566\) 149.120 + 309.650i 0.263462 + 0.547085i
\(567\) −34.1422 + 52.9463i −0.0602155 + 0.0933797i
\(568\) 579.107 + 278.883i 1.01956 + 0.490992i
\(569\) −51.3233 −0.0901992 −0.0450996 0.998982i \(-0.514361\pi\)
−0.0450996 + 0.998982i \(0.514361\pi\)
\(570\) 1268.25i 2.22500i
\(571\) −139.297 67.0820i −0.243953 0.117482i 0.307913 0.951415i \(-0.400370\pi\)
−0.551866 + 0.833933i \(0.686084\pi\)
\(572\) 151.698 + 120.975i 0.265206 + 0.211494i
\(573\) 325.062 + 74.1932i 0.567298 + 0.129482i
\(574\) 482.863 471.652i 0.841225 0.821694i
\(575\) −179.899 788.187i −0.312867 1.37076i
\(576\) −281.873 135.743i −0.489363 0.235665i
\(577\) −723.893 + 165.224i −1.25458 + 0.286350i −0.797633 0.603143i \(-0.793915\pi\)
−0.456948 + 0.889493i \(0.651058\pi\)
\(578\) 161.027 201.922i 0.278594 0.349345i
\(579\) −429.904 98.1228i −0.742494 0.169469i
\(580\) 1138.53 907.951i 1.96299 1.56543i
\(581\) 284.497 783.408i 0.489667 1.34838i
\(582\) 288.651 361.957i 0.495965 0.621920i
\(583\) 40.3049 + 50.5407i 0.0691336 + 0.0866908i
\(584\) 131.576 + 273.220i 0.225301 + 0.467842i
\(585\) 206.247 + 258.625i 0.352559 + 0.442095i
\(586\) −12.2218 + 2.78954i −0.0208563 + 0.00476031i
\(587\) 388.147i 0.661238i −0.943764 0.330619i \(-0.892743\pi\)
0.943764 0.330619i \(-0.107257\pi\)
\(588\) −331.835 + 396.628i −0.564346 + 0.674537i
\(589\) 571.613 0.970481
\(590\) −456.962 2002.08i −0.774513 3.39336i
\(591\) −180.992 + 144.337i −0.306248 + 0.244224i
\(592\) −30.8706 + 14.8665i −0.0521462 + 0.0251123i
\(593\) 392.712 313.177i 0.662246 0.528123i −0.233688 0.972312i \(-0.575079\pi\)
0.895933 + 0.444188i \(0.146508\pi\)
\(594\) 28.6964 + 22.8846i 0.0483105 + 0.0385263i
\(595\) 772.795 77.8935i 1.29882 0.130913i
\(596\) 515.994 + 647.036i 0.865762 + 1.08563i
\(597\) −7.76862 + 34.0366i −0.0130128 + 0.0570127i
\(598\) 839.087 + 669.150i 1.40316 + 1.11898i
\(599\) 220.973 + 968.144i 0.368903 + 1.61627i 0.729799 + 0.683662i \(0.239614\pi\)
−0.360896 + 0.932606i \(0.617529\pi\)
\(600\) −171.294 + 355.695i −0.285490 + 0.592826i
\(601\) −303.110 + 69.1828i −0.504342 + 0.115113i −0.467120 0.884194i \(-0.654708\pi\)
−0.0372227 + 0.999307i \(0.511851\pi\)
\(602\) −653.737 + 1013.79i −1.08594 + 1.68403i
\(603\) 10.2457 44.8891i 0.0169911 0.0744430i
\(604\) 621.361 779.161i 1.02874 1.29000i
\(605\) 387.685 805.036i 0.640801 1.33064i
\(606\) −873.085 −1.44073
\(607\) 793.929i 1.30796i −0.756514 0.653978i \(-0.773099\pi\)
0.756514 0.653978i \(-0.226901\pi\)
\(608\) 479.435 995.557i 0.788544 1.63743i
\(609\) −37.7442 374.467i −0.0619774 0.614889i
\(610\) −140.421 + 67.6230i −0.230198 + 0.110857i
\(611\) −1162.78 + 559.964i −1.90307 + 0.916471i
\(612\) −256.842 58.6225i −0.419676 0.0957884i
\(613\) 225.349 987.317i 0.367616 1.61063i −0.365693 0.930736i \(-0.619168\pi\)
0.733309 0.679896i \(-0.237975\pi\)
\(614\) 663.925 + 1378.65i 1.08131 + 2.24536i
\(615\) −175.612 364.663i −0.285549 0.592948i
\(616\) 72.3219 + 74.0409i 0.117406 + 0.120196i
\(617\) −74.7731 36.0088i −0.121188 0.0583612i 0.372307 0.928110i \(-0.378567\pi\)
−0.493495 + 0.869748i \(0.664281\pi\)
\(618\) −1038.58 −1.68056
\(619\) 12.5696i 0.0203063i 0.999948 + 0.0101531i \(0.00323190\pi\)
−0.999948 + 0.0101531i \(0.996768\pi\)
\(620\) −807.052 388.656i −1.30170 0.626864i
\(621\) 95.8238 + 76.4169i 0.154306 + 0.123055i
\(622\) −767.225 175.114i −1.23348 0.281534i
\(623\) 137.864 379.630i 0.221290 0.609357i
\(624\) 17.9152 + 78.4917i 0.0287103 + 0.125788i
\(625\) 276.684 + 133.244i 0.442694 + 0.213190i
\(626\) 1277.34 291.544i 2.04047 0.465725i
\(627\) −71.8790 + 90.1334i −0.114639 + 0.143753i
\(628\) 649.610 + 148.269i 1.03441 + 0.236097i
\(629\) −118.955 + 94.8636i −0.189118 + 0.150817i
\(630\) 268.153 + 438.102i 0.425640 + 0.695400i
\(631\) −771.936 + 967.978i −1.22335 + 1.53404i −0.460208 + 0.887811i \(0.652225\pi\)
−0.763146 + 0.646226i \(0.776346\pi\)
\(632\) −480.691 602.767i −0.760587 0.953746i
\(633\) 134.156 + 278.577i 0.211936 + 0.440090i
\(634\) 880.244 + 1103.79i 1.38840 + 1.74100i
\(635\) 1043.28 238.122i 1.64296 0.374996i
\(636\) 306.844i 0.482459i
\(637\) 701.580 + 16.4825i 1.10138 + 0.0258753i
\(638\) −219.272 −0.343687
\(639\) −64.5226 282.692i −0.100974 0.442398i
\(640\) −1105.55 + 881.645i −1.72742 + 1.37757i
\(641\) 87.0744 41.9328i 0.135841 0.0654178i −0.364728 0.931114i \(-0.618838\pi\)
0.500570 + 0.865696i \(0.333124\pi\)
\(642\) 319.234 254.581i 0.497249 0.396543i
\(643\) −209.980 167.453i −0.326563 0.260425i 0.446460 0.894804i \(-0.352685\pi\)
−0.773023 + 0.634378i \(0.781256\pi\)
\(644\) 702.987 + 719.696i 1.09159 + 1.11754i
\(645\) 450.989 + 565.522i 0.699207 + 0.876778i
\(646\) 305.003 1336.31i 0.472141 2.06859i
\(647\) −470.456 375.176i −0.727135 0.579871i 0.188408 0.982091i \(-0.439667\pi\)
−0.915543 + 0.402220i \(0.868239\pi\)
\(648\) −13.3181 58.3505i −0.0205526 0.0900470i
\(649\) −80.9935 + 168.185i −0.124797 + 0.259144i
\(650\) 1520.43 347.028i 2.33912 0.533890i
\(651\) −197.457 + 120.859i −0.303314 + 0.185652i
\(652\) −142.452 + 624.121i −0.218484 + 0.957241i
\(653\) 376.421 472.017i 0.576448 0.722843i −0.405054 0.914293i \(-0.632747\pi\)
0.981503 + 0.191449i \(0.0613187\pi\)
\(654\) 4.94198 10.2621i 0.00755654 0.0156913i
\(655\) −268.806 −0.410391
\(656\) 98.5088i 0.150166i
\(657\) 59.3564 123.255i 0.0903445 0.187602i
\(658\) −1899.19 + 639.620i −2.88631 + 0.972067i
\(659\) −608.569 + 293.071i −0.923473 + 0.444721i −0.834310 0.551296i \(-0.814134\pi\)
−0.0891633 + 0.996017i \(0.528419\pi\)
\(660\) 162.769 78.3854i 0.246620 0.118766i
\(661\) 1168.15 + 266.622i 1.76724 + 0.403361i 0.977645 0.210265i \(-0.0674325\pi\)
0.789597 + 0.613626i \(0.210290\pi\)
\(662\) 318.693 1396.29i 0.481410 2.10919i
\(663\) 155.117 + 322.104i 0.233963 + 0.485828i
\(664\) 343.552 + 713.394i 0.517398 + 1.07439i
\(665\) −1376.05 + 842.250i −2.06924 + 1.26654i
\(666\) −90.6548 43.6571i −0.136118 0.0655511i
\(667\) −732.198 −1.09775
\(668\) 799.143i 1.19632i
\(669\) 448.378 + 215.928i 0.670222 + 0.322762i
\(670\) −293.502 234.060i −0.438063 0.349344i
\(671\) 13.8121 + 3.15253i 0.0205844 + 0.00469826i
\(672\) 44.8810 + 445.273i 0.0667872 + 0.662608i
\(673\) −85.4122 374.215i −0.126913 0.556041i −0.997902 0.0647391i \(-0.979378\pi\)
0.870990 0.491301i \(-0.163479\pi\)
\(674\) 1446.95 + 696.814i 2.14681 + 1.03385i
\(675\) 173.633 39.6306i 0.257234 0.0587121i
\(676\) −137.211 + 172.057i −0.202974 + 0.254522i
\(677\) −121.061 27.6313i −0.178819 0.0408143i 0.132174 0.991227i \(-0.457804\pi\)
−0.310993 + 0.950412i \(0.600661\pi\)
\(678\) 175.822 140.213i 0.259324 0.206804i
\(679\) −584.416 72.8083i −0.860702 0.107229i
\(680\) −460.066 + 576.905i −0.676568 + 0.848389i
\(681\) 188.132 + 235.910i 0.276259 + 0.346417i
\(682\) 58.5215 + 121.521i 0.0858086 + 0.178183i
\(683\) 241.825 + 303.239i 0.354063 + 0.443981i 0.926685 0.375839i \(-0.122645\pi\)
−0.572622 + 0.819819i \(0.694074\pi\)
\(684\) 533.500 121.768i 0.779970 0.178023i
\(685\) 686.674i 1.00244i
\(686\) 1077.88 + 160.078i 1.57126 + 0.233349i
\(687\) 166.044 0.241694
\(688\) 39.1742 + 171.633i 0.0569393 + 0.249467i
\(689\) −325.555 + 259.621i −0.472503 + 0.376809i
\(690\) 900.326 433.574i 1.30482 0.628368i
\(691\) 390.912 311.742i 0.565720 0.451146i −0.298394 0.954443i \(-0.596451\pi\)
0.864114 + 0.503296i \(0.167880\pi\)
\(692\) −1149.17 916.429i −1.66064 1.32432i
\(693\) 5.77233 46.3333i 0.00832949 0.0668590i
\(694\) −1159.85 1454.40i −1.67125 2.09568i
\(695\) −317.920 + 1392.90i −0.457438 + 2.00417i
\(696\) 279.546 + 222.931i 0.401647 + 0.320303i
\(697\) −97.3377 426.465i −0.139652 0.611857i
\(698\) −87.6552 + 182.018i −0.125581 + 0.260771i
\(699\) −52.5520 + 11.9946i −0.0751817 + 0.0171597i
\(700\) 1454.55 146.610i 2.07793 0.209443i
\(701\) −161.054 + 705.625i −0.229749 + 1.00660i 0.720095 + 0.693875i \(0.244098\pi\)
−0.949845 + 0.312723i \(0.898759\pi\)
\(702\) −147.410 + 184.846i −0.209986 + 0.263314i
\(703\) 137.124 284.740i 0.195055 0.405036i
\(704\) 231.868 0.329358
\(705\) 1201.66i 1.70449i
\(706\) 306.137 635.700i 0.433622 0.900425i
\(707\) 579.819 + 947.293i 0.820111 + 1.33988i
\(708\) 798.318 384.450i 1.12757 0.543008i
\(709\) 943.596 454.412i 1.33088 0.640920i 0.372934 0.927858i \(-0.378352\pi\)
0.957949 + 0.286938i \(0.0926374\pi\)
\(710\) −2304.85 526.068i −3.24627 0.740940i
\(711\) −77.3926 + 339.079i −0.108850 + 0.476904i
\(712\) 166.481 + 345.702i 0.233822 + 0.485536i
\(713\) 195.416 + 405.786i 0.274076 + 0.569125i
\(714\) 177.183 + 526.100i 0.248156 + 0.736835i
\(715\) −220.884 106.372i −0.308929 0.148772i
\(716\) −956.362 −1.33570
\(717\) 273.018i 0.380778i
\(718\) 762.624 + 367.260i 1.06215 + 0.511504i
\(719\) 593.791 + 473.532i 0.825856 + 0.658598i 0.942363 0.334592i \(-0.108598\pi\)
−0.116507 + 0.993190i \(0.537170\pi\)
\(720\) 73.0835 + 16.6808i 0.101505 + 0.0231678i
\(721\) 689.727 + 1126.86i 0.956626 + 1.56291i
\(722\) 378.331 + 1657.58i 0.524005 + 2.29581i
\(723\) −562.859 271.058i −0.778504 0.374908i
\(724\) −1080.74 + 246.673i −1.49274 + 0.340708i
\(725\) −663.373 + 831.844i −0.914998 + 1.14737i
\(726\) 622.612 + 142.107i 0.857592 + 0.195740i
\(727\) −359.319 + 286.547i −0.494249 + 0.394150i −0.838649 0.544673i \(-0.816654\pi\)
0.344400 + 0.938823i \(0.388082\pi\)
\(728\) −476.930 + 465.857i −0.655123 + 0.639913i
\(729\) −16.8342 + 21.1095i −0.0230922 + 0.0289567i
\(730\) −695.429 872.041i −0.952643 1.19458i
\(731\) 339.186 + 704.327i 0.464003 + 0.963512i
\(732\) −41.9283 52.5764i −0.0572791 0.0718257i
\(733\) −281.618 + 64.2775i −0.384199 + 0.0876910i −0.410258 0.911969i \(-0.634561\pi\)
0.0260588 + 0.999660i \(0.491704\pi\)
\(734\) 390.927i 0.532598i
\(735\) 297.257 581.890i 0.404432 0.791688i
\(736\) 870.644 1.18294
\(737\) 7.59340 + 33.2689i 0.0103031 + 0.0451409i
\(738\) 226.170 180.364i 0.306463 0.244396i
\(739\) 810.417 390.276i 1.09664 0.528114i 0.204040 0.978963i \(-0.434593\pi\)
0.892601 + 0.450848i \(0.148878\pi\)
\(740\) −387.205 + 308.786i −0.523250 + 0.417278i
\(741\) −580.588 463.004i −0.783520 0.624836i
\(742\) −551.478 + 337.548i −0.743232 + 0.454917i
\(743\) 37.8997 + 47.5247i 0.0510090 + 0.0639632i 0.806682 0.590986i \(-0.201261\pi\)
−0.755673 + 0.654950i \(0.772690\pi\)
\(744\) 48.9407 214.423i 0.0657804 0.288203i
\(745\) −817.557 651.980i −1.09739 0.875141i
\(746\) −17.2981 75.7881i −0.0231879 0.101593i
\(747\) 154.983 321.826i 0.207474 0.430825i
\(748\) 190.354 43.4471i 0.254484 0.0580844i
\(749\) −488.223 177.300i −0.651833 0.236715i
\(750\) 87.4379 383.091i 0.116584 0.510787i
\(751\) −585.889 + 734.681i −0.780145 + 0.978271i 0.219851 + 0.975533i \(0.429443\pi\)
−0.999996 + 0.00273730i \(0.999129\pi\)
\(752\) −126.896 + 263.503i −0.168745 + 0.350403i
\(753\) 53.9341 0.0716256
\(754\) 1412.43i 1.87325i
\(755\) −546.358 + 1134.52i −0.723652 + 1.50268i
\(756\) −158.545 + 154.864i −0.209716 + 0.204847i
\(757\) −1169.62 + 563.258i −1.54507 + 0.744066i −0.995798 0.0915777i \(-0.970809\pi\)
−0.549272 + 0.835644i \(0.685095\pi\)
\(758\) −1258.46 + 606.043i −1.66024 + 0.799529i
\(759\) −88.5584 20.2129i −0.116678 0.0266309i
\(760\) 341.059 1494.28i 0.448762 1.96616i
\(761\) −310.065 643.857i −0.407445 0.846067i −0.999202 0.0399511i \(-0.987280\pi\)
0.591757 0.806116i \(-0.298434\pi\)
\(762\) 331.850 + 689.094i 0.435499 + 0.904323i
\(763\) −14.4163 + 1.45309i −0.0188943 + 0.00190444i
\(764\) 1056.79 + 508.924i 1.38323 + 0.666131i
\(765\) 332.876 0.435132
\(766\) 488.999i 0.638380i
\(767\) −1083.35 521.715i −1.41245 0.680201i
\(768\) −225.284 179.658i −0.293338 0.233929i
\(769\) −264.998 60.4841i −0.344601 0.0786529i 0.0467179 0.998908i \(-0.485124\pi\)
−0.391319 + 0.920255i \(0.627981\pi\)
\(770\) −319.935 206.309i −0.415500 0.267934i
\(771\) −116.813 511.790i −0.151508 0.663801i
\(772\) −1397.64 673.067i −1.81041 0.871849i
\(773\) 683.961 156.110i 0.884814 0.201953i 0.244116 0.969746i \(-0.421502\pi\)
0.640698 + 0.767793i \(0.278645\pi\)
\(774\) −322.333 + 404.193i −0.416451 + 0.522213i
\(775\) 638.057 + 145.632i 0.823300 + 0.187913i
\(776\) 437.433 348.841i 0.563702 0.449537i
\(777\) 12.8365 + 127.353i 0.0165205 + 0.163903i
\(778\) 947.593 1188.24i 1.21799 1.52731i
\(779\) 566.511 + 710.382i 0.727228 + 0.911915i
\(780\) 504.914 + 1048.47i 0.647326 + 1.34419i
\(781\) 133.988 + 168.016i 0.171560 + 0.215130i
\(782\) 1052.91 240.320i 1.34643 0.307314i
\(783\) 161.299i 0.206002i
\(784\) 126.631 96.2075i 0.161519 0.122714i
\(785\) −841.917 −1.07251
\(786\) −42.7513 187.306i −0.0543909 0.238302i
\(787\) 77.6902 61.9558i 0.0987168 0.0787241i −0.572888 0.819634i \(-0.694177\pi\)
0.671604 + 0.740910i \(0.265605\pi\)
\(788\) −733.741 + 353.351i −0.931144 + 0.448415i
\(789\) 426.244 339.918i 0.540233 0.430821i
\(790\) 2217.03 + 1768.02i 2.80636 + 2.23800i
\(791\) −268.895 97.6498i −0.339943 0.123451i
\(792\) 27.6566 + 34.6802i 0.0349199 + 0.0437882i
\(793\) −20.3068 + 88.9700i −0.0256076 + 0.112194i
\(794\) −702.333 560.092i −0.884550 0.705405i
\(795\) 86.2736 + 377.989i 0.108520 + 0.475458i
\(796\) −53.2884 + 110.654i −0.0669452 + 0.139013i
\(797\) 865.780 197.609i 1.08630 0.247941i 0.358361 0.933583i \(-0.383336\pi\)
0.727938 + 0.685643i \(0.240479\pi\)
\(798\) −805.733 824.885i −1.00969 1.03369i
\(799\) −288.989 + 1266.15i −0.361689 + 1.58466i
\(800\) 788.806 989.132i 0.986008 1.23641i
\(801\) 75.1029 155.953i 0.0937614 0.194698i
\(802\) 858.622 1.07060
\(803\) 101.389i 0.126263i
\(804\) 70.2794 145.937i 0.0874122 0.181513i
\(805\) −1068.33 688.911i −1.32712 0.855790i
\(806\) −782.770 + 376.962i −0.971179 + 0.467695i
\(807\) 489.311 235.640i 0.606333 0.291995i
\(808\) −1028.69 234.791i −1.27313 0.290583i
\(809\) −138.658 + 607.499i −0.171394 + 0.750926i 0.814032 + 0.580820i \(0.197268\pi\)
−0.985426 + 0.170106i \(0.945589\pi\)
\(810\) 95.5139 + 198.337i 0.117918 + 0.244860i
\(811\) −462.329 960.035i −0.570072 1.18377i −0.964314 0.264761i \(-0.914707\pi\)
0.394242 0.919007i \(-0.371007\pi\)
\(812\) 163.685 1313.86i 0.201583 1.61806i
\(813\) −690.546 332.550i −0.849381 0.409040i
\(814\) 74.5724 0.0916123
\(815\) 808.883i 0.992494i
\(816\) 72.9937 + 35.1519i 0.0894531 + 0.0430783i
\(817\) −1269.54 1012.42i −1.55390 1.23920i
\(818\) −934.067 213.195i −1.14189 0.260629i
\(819\) 298.453 + 37.1821i 0.364411 + 0.0453994i
\(820\) −316.839 1388.16i −0.386389 1.69288i
\(821\) 662.653 + 319.117i 0.807129 + 0.388693i 0.791488 0.611185i \(-0.209307\pi\)
0.0156413 + 0.999878i \(0.495021\pi\)
\(822\) 478.479 109.210i 0.582091 0.132858i
\(823\) −168.606 + 211.425i −0.204867 + 0.256896i −0.873642 0.486570i \(-0.838248\pi\)
0.668774 + 0.743466i \(0.266819\pi\)
\(824\) −1223.68 279.297i −1.48505 0.338953i
\(825\) −103.198 + 82.2975i −0.125088 + 0.0997545i
\(826\) −1569.16 1011.86i −1.89971 1.22502i
\(827\) 682.404 855.707i 0.825156 1.03471i −0.173599 0.984816i \(-0.555540\pi\)
0.998754 0.0498960i \(-0.0158890\pi\)
\(828\) 268.829 + 337.101i 0.324672 + 0.407126i
\(829\) −69.0989 143.485i −0.0833521 0.173082i 0.855127 0.518419i \(-0.173479\pi\)
−0.938479 + 0.345336i \(0.887765\pi\)
\(830\) −1815.81 2276.95i −2.18772 2.74332i
\(831\) −186.210 + 42.5011i −0.224079 + 0.0511446i
\(832\) 1493.56i 1.79515i
\(833\) 453.148 541.628i 0.543996 0.650213i
\(834\) −1021.14 −1.22439
\(835\) 224.690 + 984.433i 0.269090 + 1.17896i
\(836\) −317.082 + 252.865i −0.379285 + 0.302470i
\(837\) −89.3924 + 43.0491i −0.106801 + 0.0514326i
\(838\) 107.634 85.8349i 0.128441 0.102428i
\(839\) 473.511 + 377.612i 0.564375 + 0.450074i 0.863649 0.504093i \(-0.168173\pi\)
−0.299274 + 0.954167i \(0.596745\pi\)
\(840\) 198.129 + 588.293i 0.235868 + 0.700349i
\(841\) 76.4452 + 95.8593i 0.0908980 + 0.113982i
\(842\) −301.731 + 1321.97i −0.358351 + 1.57004i
\(843\) 509.994 + 406.707i 0.604975 + 0.482451i
\(844\) 242.043 + 1060.46i 0.286781 + 1.25647i
\(845\) 120.648 250.529i 0.142779 0.296484i
\(846\) −837.325 + 191.114i −0.989746 + 0.225903i
\(847\) −259.293 769.905i −0.306131 0.908978i
\(848\) −20.9977 + 91.9967i −0.0247614 + 0.108487i
\(849\) 116.825 146.494i 0.137603 0.172549i
\(850\) 680.913 1413.93i 0.801075 1.66345i
\(851\) 249.014 0.292613
\(852\) 1020.06i 1.19726i
\(853\) −62.6025 + 129.995i −0.0733910 + 0.152398i −0.934436 0.356130i \(-0.884096\pi\)
0.861045 + 0.508528i \(0.169810\pi\)
\(854\) −48.3696 + 133.193i −0.0566389 + 0.155964i
\(855\) −622.961 + 300.002i −0.728609 + 0.350880i
\(856\) 444.590 214.103i 0.519381 0.250121i
\(857\) −1131.68 258.299i −1.32052 0.301399i −0.496535 0.868017i \(-0.665395\pi\)
−0.823981 + 0.566618i \(0.808252\pi\)
\(858\) 38.9911 170.831i 0.0454442 0.199104i
\(859\) −82.9074 172.159i −0.0965162 0.200418i 0.847121 0.531401i \(-0.178334\pi\)
−0.943637 + 0.330983i \(0.892620\pi\)
\(860\) 1104.07 + 2292.62i 1.28380 + 2.66584i
\(861\) −345.894 125.613i −0.401736 0.145891i
\(862\) 506.367 + 243.853i 0.587433 + 0.282893i
\(863\) 843.288 0.977158 0.488579 0.872520i \(-0.337515\pi\)
0.488579 + 0.872520i \(0.337515\pi\)
\(864\) 191.798i 0.221989i
\(865\) 1673.28 + 805.809i 1.93443 + 0.931571i
\(866\) 125.644 + 100.198i 0.145085 + 0.115702i
\(867\) −137.274 31.3319i −0.158332 0.0361382i
\(868\) −771.833 + 259.942i −0.889208 + 0.299473i
\(869\) −57.3583 251.303i −0.0660049 0.289187i
\(870\) −1184.87 570.605i −1.36192 0.655867i
\(871\) −214.299 + 48.9124i −0.246038 + 0.0561566i
\(872\) 8.58243 10.7620i 0.00984224 0.0123418i
\(873\) −246.072 56.1644i −0.281870 0.0643349i
\(874\) −1753.88 + 1398.67i −2.00673 + 1.60031i
\(875\) −473.719 + 159.542i −0.541394 + 0.182334i
\(876\) 300.061 376.264i 0.342535 0.429526i
\(877\) −21.9176 27.4838i −0.0249915 0.0313384i 0.769179 0.639034i \(-0.220666\pi\)
−0.794170 + 0.607695i \(0.792094\pi\)
\(878\) 173.549 + 360.379i 0.197665 + 0.410455i
\(879\) 4.26125 + 5.34344i 0.00484784 + 0.00607900i
\(880\) −54.1647 + 12.3627i −0.0615508 + 0.0140486i
\(881\) 760.028i 0.862688i 0.902187 + 0.431344i \(0.141961\pi\)
−0.902187 + 0.431344i \(0.858039\pi\)
\(882\) 452.741 + 114.586i 0.513312 + 0.129916i
\(883\) 264.891 0.299990 0.149995 0.988687i \(-0.452074\pi\)
0.149995 + 0.988687i \(0.452074\pi\)
\(884\) 279.862 + 1226.15i 0.316586 + 1.38705i
\(885\) −875.323 + 698.047i −0.989066 + 0.788754i
\(886\) 927.327 446.577i 1.04664 0.504037i
\(887\) 777.125 619.737i 0.876127 0.698688i −0.0783645 0.996925i \(-0.524970\pi\)
0.954492 + 0.298236i \(0.0963984\pi\)
\(888\) −95.0710 75.8166i −0.107062 0.0853791i
\(889\) 527.281 817.686i 0.593117 0.919782i
\(890\) −879.918 1103.38i −0.988672 1.23976i
\(891\) 4.45278 19.5089i 0.00499751 0.0218955i
\(892\) 1368.78 + 1091.57i 1.53451 + 1.22373i
\(893\) −600.275 2629.98i −0.672200 2.94510i
\(894\) 324.278 673.370i 0.362727 0.753211i
\(895\) 1178.11 268.895i 1.31632 0.300441i
\(896\) −158.943 + 1275.80i −0.177391 + 1.42388i
\(897\) 130.200 570.443i 0.145150 0.635945i
\(898\) 489.648 613.999i 0.545265 0.683740i
\(899\) 257.177 534.034i 0.286070 0.594031i
\(900\) 626.537 0.696152
\(901\) 419.021i 0.465062i
\(902\) −93.0232 + 193.165i −0.103130 + 0.214152i
\(903\) 652.610 + 81.3041i 0.722713 + 0.0900377i
\(904\) 244.863 117.920i 0.270866 0.130442i
\(905\) 1261.97 607.733i 1.39444 0.671528i
\(906\) −877.436 200.269i −0.968473 0.221048i
\(907\) −252.826 + 1107.70i −0.278750 + 1.22128i 0.620626 + 0.784106i \(0.286878\pi\)
−0.899376 + 0.437176i \(0.855979\pi\)
\(908\) 460.567 + 956.378i 0.507233 + 1.05328i
\(909\) 206.526 + 428.857i 0.227202 + 0.471789i
\(910\) 1328.93 2060.84i 1.46036 2.26466i
\(911\) 659.010 + 317.362i 0.723392 + 0.348367i 0.759081 0.650996i \(-0.225648\pi\)
−0.0356896 + 0.999363i \(0.511363\pi\)
\(912\) −168.284 −0.184522
\(913\) 264.733i 0.289960i
\(914\) 987.474 + 475.542i 1.08039 + 0.520287i
\(915\) 66.4324 + 52.9781i 0.0726037 + 0.0578996i
\(916\) 569.483 + 129.981i 0.621707 + 0.141901i
\(917\) −174.834 + 170.775i −0.190659 + 0.186232i
\(918\) 52.9411 + 231.950i 0.0576700 + 0.252669i
\(919\) 1295.81 + 624.030i 1.41002 + 0.679032i 0.975168 0.221469i \(-0.0710850\pi\)
0.434856 + 0.900500i \(0.356799\pi\)
\(920\) 1177.38 268.729i 1.27976 0.292097i
\(921\) 520.140 652.235i 0.564756 0.708182i
\(922\) 1674.80 + 382.263i 1.81649 + 0.414602i
\(923\) −1082.27 + 863.078i −1.17255 + 0.935079i
\(924\) 56.0677 154.392i 0.0606793 0.167090i
\(925\) 225.607 282.902i 0.243900 0.305840i
\(926\) −663.017 831.397i −0.716001 0.897837i
\(927\) 245.675 + 510.149i 0.265021 + 0.550323i
\(928\) −714.401 895.831i −0.769829 0.965335i
\(929\) −949.491 + 216.715i −1.02206 + 0.233278i −0.700530 0.713623i \(-0.747053\pi\)
−0.321527 + 0.946901i \(0.604196\pi\)
\(930\) 808.947i 0.869836i
\(931\) −359.906 + 1422.03i −0.386580 + 1.52742i
\(932\) −189.628 −0.203464
\(933\) 95.4700 + 418.281i 0.102326 + 0.448319i
\(934\) −1074.55 + 856.924i −1.15048 + 0.917478i
\(935\) −222.274 + 107.042i −0.237727 + 0.114483i
\(936\) −223.390 + 178.148i −0.238665 + 0.190329i
\(937\) 736.804 + 587.582i 0.786344 + 0.627088i 0.932087 0.362234i \(-0.117986\pi\)
−0.145743 + 0.989322i \(0.546557\pi\)
\(938\) −339.598 + 34.2296i −0.362045 + 0.0364921i
\(939\) −445.357 558.460i −0.474288 0.594739i
\(940\) −940.675 + 4121.36i −1.00072 + 4.38443i
\(941\) −370.745 295.660i −0.393991 0.314197i 0.406378 0.913705i \(-0.366792\pi\)
−0.800369 + 0.599508i \(0.795363\pi\)
\(942\) −133.900 586.653i −0.142144 0.622774i
\(943\) −310.625 + 645.020i −0.329401 + 0.684008i
\(944\) −265.657 + 60.6344i −0.281416 + 0.0642314i
\(945\) 151.763 235.348i 0.160596 0.249046i
\(946\) 85.2596 373.547i 0.0901264 0.394870i
\(947\) 564.834 708.279i 0.596446 0.747919i −0.388374 0.921502i \(-0.626963\pi\)
0.984819 + 0.173583i \(0.0555345\pi\)
\(948\) −530.870 + 1102.36i −0.559989 + 1.16283i
\(949\) −653.091 −0.688188
\(950\) 3259.77i 3.43134i
\(951\) 333.959 693.473i 0.351166 0.729204i
\(952\) 67.2813 + 667.510i 0.0706736 + 0.701166i
\(953\) 1267.19 610.248i 1.32969 0.640344i 0.372021 0.928224i \(-0.378665\pi\)
0.957666 + 0.287881i \(0.0929506\pi\)
\(954\) −249.664 + 120.232i −0.261702 + 0.126029i
\(955\) −1444.91 329.792i −1.51300 0.345331i
\(956\) 213.722 936.376i 0.223558 0.979472i
\(957\) 51.8684 + 107.706i 0.0541989 + 0.112545i
\(958\) −439.883 913.426i −0.459168 0.953472i
\(959\) −436.251 446.621i −0.454902 0.465715i
\(960\) 1252.94 + 603.382i 1.30514 + 0.628523i
\(961\) 596.399 0.620603
\(962\) 480.353i 0.499328i
\(963\) −200.563 96.5862i −0.208269 0.100297i
\(964\) −1718.26 1370.27i −1.78243 1.42144i
\(965\) 1910.94 + 436.159i 1.98025 + 0.451979i
\(966\) 310.128 853.988i 0.321043 0.884045i
\(967\) −349.184 1529.88i −0.361101 1.58209i −0.750406 0.660977i \(-0.770142\pi\)
0.389306 0.921109i \(-0.372715\pi\)
\(968\) 695.358 + 334.867i 0.718345 + 0.345937i
\(969\) −728.538 + 166.284i −0.751845 + 0.171604i
\(970\) −1283.07 + 1608.91i −1.32275 + 1.65867i
\(971\) −1117.06 254.962i −1.15042 0.262576i −0.395547 0.918446i \(-0.629445\pi\)
−0.754874 + 0.655869i \(0.772302\pi\)
\(972\) −74.2614 + 59.2215i −0.0764006 + 0.0609274i
\(973\) 678.144 + 1107.93i 0.696962 + 1.13868i
\(974\) −1439.41 + 1804.96i −1.47783 + 1.85314i
\(975\) −530.114 664.742i −0.543707 0.681787i
\(976\) 8.97291 + 18.6324i 0.00919356 + 0.0190906i
\(977\) −353.709 443.538i −0.362036 0.453979i 0.567137 0.823623i \(-0.308051\pi\)
−0.929173 + 0.369644i \(0.879480\pi\)
\(978\) 563.634 128.646i 0.576313 0.131540i
\(979\) 128.286i 0.131038i
\(980\) 1475.02 1763.02i 1.50512 1.79900i
\(981\) −6.20973 −0.00633000
\(982\) −18.7515 82.1556i −0.0190952 0.0836615i
\(983\) 613.566 489.302i 0.624177 0.497764i −0.259573 0.965723i \(-0.583582\pi\)
0.883750 + 0.467959i \(0.155011\pi\)
\(984\) 314.981 151.687i 0.320103 0.154154i
\(985\) 804.518 641.582i 0.816769 0.651352i
\(986\) −1111.23 886.176i −1.12701 0.898758i
\(987\) 763.428 + 781.575i 0.773484 + 0.791869i
\(988\) −1628.81 2042.46i −1.64859 2.06727i
\(989\) 284.701 1247.36i 0.287867 1.26123i
\(990\) −127.557 101.723i −0.128845 0.102751i
\(991\) 123.760 + 542.229i 0.124884 + 0.547153i 0.998199 + 0.0599963i \(0.0191089\pi\)
−0.873314 + 0.487157i \(0.838034\pi\)
\(992\) −305.805 + 635.011i −0.308271 + 0.640132i
\(993\) −761.237 + 173.747i −0.766604 + 0.174972i
\(994\) −1833.32 + 1122.14i −1.84439 + 1.12891i
\(995\) 34.5318 151.294i 0.0347053 0.152054i
\(996\) 783.478 982.451i 0.786625 0.986396i
\(997\) 84.2282 174.902i 0.0844817 0.175428i −0.854448 0.519537i \(-0.826105\pi\)
0.938930 + 0.344109i \(0.111819\pi\)
\(998\) −503.465 −0.504474
\(999\) 54.8563i 0.0549113i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 147.3.j.a.13.3 108
3.2 odd 2 441.3.v.c.307.16 108
49.34 odd 14 inner 147.3.j.a.34.3 yes 108
147.83 even 14 441.3.v.c.181.16 108
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
147.3.j.a.13.3 108 1.1 even 1 trivial
147.3.j.a.34.3 yes 108 49.34 odd 14 inner
441.3.v.c.181.16 108 147.83 even 14
441.3.v.c.307.16 108 3.2 odd 2